Exercises for the lecture on Foundations and Applications of Special Relativity von DOMENICO GIULINI

Sheet 6

Problem 1

Let V be an $n \ge 3$ dimensional real vector space with non-degenerate symmetric bilinear form $\eta : V \times V \to \mathbb{R}$ of signature (1, n - 1). This means, that there is a one-dimensional subspace in V restricted to which η is positive definite and an (n - 1)-dimensional subspace restricted to which it is negative definite. The elements in V are classified as timelike, spacelike, or lightlike according to whether their square $v^2 := \eta(v, v)$ is positive, negative, or zero, respectively.

1. Define the η -orthogonal complement of a vector $w \in V$ by

$$w^{\perp} := \{ v \in V : \eta(v, w) = 0 \}$$

$$\tag{1}$$

and show that w^{\perp} is a (n - 1) dimensional linear subspace that contains w iff w is lightlike, in which case η restricted to w^{\perp} is degenerate.

- 2. Prove that if w is either timelike or spacelike, the restriction of η to w^{\perp} is nondegenerate and negative-definite in the first and of signature (1, n - 2) in the second case.
- Generally, we call an n'-dimensional linear subspace V' ⊂ V timelike, space-like or lightlike iff η restricted to V' has signature (1, n'-1), (0, n'), or is degenerate, respectively. Apply this to the 2-dimensional plane V' = span{v, w} and prove the following inequalities (we write v ⋅ w := η(v, w) and v² := η(v, v)):

$$v^2 w^2 \le (v \cdot w)^2$$
 if span{ v, w } is timelike, (2a)

$$v^2 w^2 \ge (v \cdot w)^2$$
 if span $\{v, w\}$ is spacelike, (2b)

$$v^2 w^2 = (v \cdot w)^2$$
 if span{ v, w } is lightlike. (2c)

These triple of equations replace the single Cauchy-Schwarz inequality for non-positive-definite inner products.

Problem 2

Let V be a $n \ge 3$ real vector space with non-degenerate symmetric bilinear form $\eta : V \times V \to \mathbb{R}$. Let $f : V \to V$ be a map that preserves the inner product; i.e. $\eta(f(v), f(w)) = \eta(v, w)$ for all $v, w \in V$.

• Prove that if f is surjective it must be linear and hence an isomorphism.

Hint: Consider I := $\eta(af(u)+bf(v)-f(au+bv), w)$, where $a, b \in \mathbb{R}$ and $u, v, w \in V$. Use the properties of f and η to show that I = 0.