Exercises for the lecture on

Foundations and Applications of Special Relativity

von Domenico Giulini

Sheet 6

Problem 1

Let V be an $n \geq 3$ dimensional real vector space with non-degenerate symmetric bilinear form $\eta: V \times V \rightarrow \mathbb{R}$ of signature $(1, n-1)$. This means, that there is a onedimensional subspace in V restricted to which η is positive definite and an ($n-1$)dimensional subspace restricted to which it is negative definite. The elements in V are classified as timelike, spacelike, or lightlike according to whether their square $\nu^{2}:=$ $\eta(v, v)$ is positive, negative, or zero, respectively.

1. Define the η-orthogonal complement of a vector $w \in \mathrm{~V}$ by

$$
\begin{equation*}
w^{\perp}:=\{v \in \mathrm{~V}: \eta(v, w)=0\} \tag{1}
\end{equation*}
$$

and show that w^{\perp} is a $(n-1)$ dimensional linear subspace that contains w iff w is lightlike, in which case η restricted to w^{\perp} is degenerate.
2. Prove that if w is either timelike or spacelike, the restriction of η to w^{\perp} is nondegenerate and negative-definite in the first and of signature $(1, n-2)$ in the second case.
3. Generally, we call an n^{\prime}-dimensional linear subspace $\mathrm{V}^{\prime} \subset \mathrm{V}$ timelike, spacelike or lightlike iff η restricted to V^{\prime} has signature $\left(1, n^{\prime}-1\right),\left(0, n^{\prime}\right)$, or is degenerate, respectively. Apply this to the 2 -dimensional plane $\mathrm{V}^{\prime}=\operatorname{span}\{v, w\}$ and prove the following inequalities (we write $v \cdot w:=\eta(v, w)$ and $v^{2}:=\eta(v, v)$):

$$
\begin{array}{ll}
v^{2} w^{2} \leq(v \cdot w)^{2} & \text { if } \operatorname{span}\{v, w\} \text { is timelike } \\
v^{2} w^{2} \geq(v \cdot w)^{2} & \text { if } \operatorname{span}\{v, w\} \text { is spacelike } \\
v^{2} w^{2}=(v \cdot w)^{2} & \text { if } \operatorname{span}\{v, w\} \text { is lightlike } \tag{2c}
\end{array}
$$

These triple of equations replace the single Cauchy-Schwarz inequality for non-positive-definite inner products.

Problem 2

Let V be a $n \geq 3$ real vector space with non-degenerate symmetric bilinear form $\eta: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$. Let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}$ be a map that preserves the inner product; i.e. $\eta(f(v), \mathrm{f}(w))=\eta(v, w)$ for all $v, w \in \mathrm{~V}$.

- Prove that if f is surjective it must be linear and hence an isomorphism.

Hint: Consider $\mathrm{I}:=\eta(\mathrm{af}(\mathrm{u})+\mathrm{bf}(v)-\mathrm{f}(\mathrm{au}+\mathrm{bv}), w)$, where $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $\mathfrak{u}, v, w \in$ V. Use the properties of f and η to show that $I=0$.

