Exercises for the lecture on

Foundations and Applications of Special Relativity

von DOMENICO GIULINI

Sheet 7

Problem 1

Let N and Q be groups and $\alpha : Q \to Aut(N)$ a homomorphism. The semi-direct product N $\rtimes_{\alpha} Q$ of N with Q relative to α is defined by the following multiplication map on the set N $\times Q$ (compare last lecture):

$$(\mathbf{n}_1, \mathbf{q}_1)(\mathbf{n}_2, \mathbf{q}_2) = (\mathbf{n}_1 \alpha_{\mathbf{q}_1}(\mathbf{n}_2), \, \mathbf{q}_1 \mathbf{q}_2) \,. \tag{1}$$

- 1. Show that (e_N, e_Q) is the group identity, that the inverse of (n, q) is $(n, q)^{-1} = (\alpha_q^{-1}(n^{-1}), q^{-1})$, and that the group multiplication (1) is associative. Here e_N and e_Q denote the identities in N and Q, respectively.
- 2. Consider the following subgroups in N $\rtimes_{\alpha} Q$:

$$N' := N \times \{e_Q\} = \{(n, e_Q) : n \in N\}, Q' := \{e_N\} \times G\} = \{(e_N, q) : q \in Q\},$$
(2)

and show that N' is always normal, whereas Q' is normal iff α is trivial (i.e. kernel(α) = Q).

- 3. Let $Q'_n := (n, e_Q)Q'(n, e_Q)^{-1}$ (conjugation of Q' with an element $(n, e_Q) \in N'$). What elements are in the intersection $Q'_{n_1} \cap Q'_{n_2}$ for n_1 and n_2 different elements in N? Specialise this to the case $\mathbb{R}^3 \rtimes SO(3)$ and give an interpretation of this intersection.
- 4. Prove that a group G is the semi-direct product N ⋊_αQ for some α iff it contains two subgroups N' and Q' isomorphic to N and Q, respectively, such that 1) N' is normal, 2) N'Q' := {n'q' : n' ∈ N', q' ∈ Q'} = G, and 3) N' ∩ Q' = e_G. Hint: Consider the embeddings (injective homomorphisms) i : N → G and j : Q → G the images of which are N' and Q', respectively. Consider the map φ : N × Q → G, φ(n, q) = i(n)j(q) and show that it is a group isomorphism if we endow N × Q with the semi-direct product structure relative to α : Q → Aut(N), where

$$\alpha_{q}(n) := i_{N'}^{-1} [j(q)i(n)j(q^{-1})].$$
(3)

and $i_{N'}^{-1}$ denotes the inverse of i restricted to N'.

Another characterisation of a semi-direct product is this: Let G be a group admitting a projection homomorphism π : G → Q onto a subgroup Q ⊂ G. (Note: The word "projection" entails that the map π is surjective and idempotent; i.e. π ∘ π = π). Then G is a semi-direct product of the kernel N and the image Q of π. Prove that statement.

Problem 2

Consider (1 + 2)-dimensional Minkowski space represented in an affine chart by \mathbb{R}^3 with the metric $\eta_{ab} = \text{diag}(1, -1, -1,)$. The coordinates are called $(x^0, x^1, x^2) = (ct, x, y)$. Consider the circle $x^2 + y^2 = \mathbb{R}^2$ in space which we think of as an (infinitely thin) fibre-glass cable as wave-guide, inside which light can travel tangentially. Assume that at time t = 0 two photons of equal frequency are emitted from a point on the circle, say $(x = 0, y = -\mathbb{R})$, one in each direction of the wave-guide.

Assume that simultaneous and equilocal to the photon-emission event, i.e. at (t = 0, x = 0, y = -R), an observer starts running along the circular wave-guide, say in a counterclockwise direction, with constant angular velocity Ω , where $\Omega R < c$. On his/her way the observer will first meet the clockwise, then the counterclockwise circling photon.

1. Calculate the observer's proper time difference between these two meeting events as a function of Ω .

Hint: The proper time of the observer is the length of the observer's world-line divided by c measured in the metric η . The three worldlines (one for each photon, one for the observer) lie in the 2-dimensional cylinder $x^2 + y^2 = R^2$ in 3-dimensional Minkowski spacetime. Think of this cylinder as being cut open along the generator x = 0, y = R parallel to the t-axis and unfold it to a time-like planar strip of widths $2\pi R$ in the ct - x plane. In this fashion the problem reduces to a simple geometric problem in (1+1)-dimensional Minkowski spacetime.

2. What would happen if one tried to synchronise the clocks along the waveguide in such a way that with respect to them the moving observer measures the same velocity c of light in both directions?

Hint: Take the picture of the planar strip and draw into it the line of Einsteinsimultaneity for the observer.

3. What has all this to do with the Sagnac-Effect?