Exercises for the lecture on

Foundations and Applications of Special Relativity

von Domenico Giulini

Sheet 8

Problem 1

The so-called four-momentum of a point particle moving on a timelike trajectory in Minkowski space is given by $p=\mathfrak{m v}$, where $v=c u$ and $u \in V$ with $\eta(u, u)=1$ is a state of motion and m is a constant called the rest-mass of the particle. If the "particle" has zero rest mass (photon) p is lightlike. If $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis of (V, η) with dual basis $\left\{\theta^{0}, \theta^{1}, \theta^{2}, \theta^{3}\right\}$ so that $\eta\left(e_{a}, e_{b}\right)=\operatorname{diag}(1,-1,-1,-1)$, we call $p^{0}:=\theta^{0}(p)=E / c$, where E is the "energy" of the particle with respect to the reference frame represented by $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$, and $p^{a}=\theta^{a}(p)(a=1,2,3)$ the a-th component of the momentum.

Consider the case of the elastic collision of two particles, the first with rest mass zero and the second with rest mass $m>0$. The assumption of elasticity here means that the rest-masses before and after collision are the same for each particle. Think of the first particle as being a photon with four momentum p_{1}, so its energy in the specified frame is $\hbar \omega$, with ω the photon's angular frequency in that frame, and $p^{a}=\hbar k^{a}$, with $\mathbf{k}=\left(k^{1}, k^{2}, k^{3}\right)$ the components of the wave-vector. That p is lightlike is equivalent to the standard dispersion relation $\omega^{2}=c^{2}\|\mathbf{k}\|^{2}$.

Assume the massive particle to be at rest initially and consider energy-momentum conservation in the given frame:

$$
\begin{equation*}
p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime} . \tag{1}
\end{equation*}
$$

where the primed quantities are those after collision. Prove Compton's formula, according to which the wavelength $\lambda^{\prime}=2 \pi c / \omega^{\prime}$ of the photon after scattering is related to the wavelength $\lambda=2 \pi \mathrm{c} / \omega$ before scattering by

$$
\begin{equation*}
\lambda^{\prime}-\lambda=\frac{h}{m \mathrm{c}}(1-\cos \varphi), \tag{2}
\end{equation*}
$$

where φ is the scattering angle and $h=2 \pi \hbar$. Hint: Note that $p_{1}^{2}=p_{1}^{\prime 2}=0$ and that $p_{2}^{2}=p_{2}^{\prime 2}=m c^{2}$ (elasticity assumption). Use (1) to show $p_{1} \cdot p_{2}=p_{1}^{\prime} \cdot p_{2}^{\prime}$. Next multiply (1) with p_{1}^{\prime} and derive $p_{1} \cdot p_{1}^{\prime}+p_{2} \cdot p_{1}^{\prime}=p_{1} \cdot p_{2}$ and from that (2).

Problem 2

Consider a real $n \geq 3$ vector space V with non-degenerate symmetric bilinear form η of signature $(1, n-1)$ (i.e. Minkowski metric). Via η we identify V^{*} with V, which
allows us to identify $\operatorname{End}(\mathrm{V}) \simeq \mathrm{V} \otimes \mathrm{V}^{*}$ with $\mathrm{V} \otimes \mathrm{V}$. An element $u \otimes v \in \mathrm{~V} \otimes \mathrm{~V}$ then acts as a linear map on $w \in \mathrm{~V}$ via

$$
\begin{equation*}
(u \otimes v) w=(v \cdot w) u \tag{3}
\end{equation*}
$$

where we also used the abbreviation

$$
\begin{equation*}
v \cdot w:=\eta(v, w) \tag{4}
\end{equation*}
$$

The composition of the two linear maps denoted by $(u \otimes v)$ and $\left(u^{\prime} \otimes v^{\prime}\right)$ is then given by

$$
\begin{equation*}
(u \otimes v) \circ\left(u^{\prime} \otimes v^{\prime}\right)=\left(v \cdot u^{\prime}\right) u \otimes v^{\prime} \tag{5}
\end{equation*}
$$

In this way we know how to form powers and sums of powers of elements of the form $u \otimes v$, which just form the associative algebra $\operatorname{End}(V)$.

1. We write

$$
\begin{equation*}
u \wedge n:=u \otimes n-n \otimes u \tag{6}
\end{equation*}
$$

Show that for any pair (u, n) of vectors the map $u \wedge n \in \operatorname{End}(V)$ is anti-selfadjoint with respect to η.
2. Show that the map

$$
\begin{equation*}
\mathrm{L}(u, n):=\exp (u \wedge n):=\sum_{k=0}^{\infty} \frac{(u \wedge n)^{k}}{k!} \tag{7}
\end{equation*}
$$

is a proper orthochronous Lorentz transformation.
3. Specialise to the case where u and n are orthogonal with u timelike and v spacelike:

$$
\begin{equation*}
(u \cdot n)=0, \quad u^{2}=-n^{2}=1 \tag{8}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
(u \wedge n)^{2}:=(u \wedge n) \circ(u \wedge n)=P_{(u, n)} \tag{9}
\end{equation*}
$$

where $P_{(u, n)}$ is the orthogonal projection (with respect to η) onto the timelike 2-dimensional subspace (2-plane) span $\{u, n\} \subset V$. Prove further that

$$
\begin{equation*}
\mathrm{B}(u, n, \rho):=\exp (-\rho u \wedge n)=\mathrm{id}_{v}+(\cosh (\rho)-1) \mathrm{P}_{(\mathrm{u}, \mathrm{n})}-\sinh (\rho) u \wedge n \tag{10}
\end{equation*}
$$

and that this is an active boost-transformation with rapidity $\rho=\tanh ^{-1}(\beta)$ in the plane $\operatorname{span}\{u, v\}$. Split the exponential series into its odd and even powers, use (8), and take care with the zeroth-order term, which is just id_{V}. After proving (9), apply the result to u, n, and any vector orthogonal to $\operatorname{span}\{u, v\}$ and see what you get.
4. Suppose $\left(u^{\prime}, n^{\prime}\right)$ is another pair of vectors that satisfies (8), $\operatorname{span}\left\{u^{\prime}, v^{\prime}\right\}=$ $\operatorname{span}\{u, v\}$, and that endows the 2-plane with the same orienation. Show that $\mathrm{B}(u, v, \rho)=\mathrm{B}\left(u^{\prime}, v^{\prime}, \rho\right)$. Hint: You can prove this in words, without any calculation. Can you write the same transformation by choosing u and n both lightlike?
5. Repeat the same calculation, now with u and v both spacelike and orthonormal. Show that you just get (10), but now with cos and sin replacing cosh and sinh. Show that this gives a rotation in the spacelike (oriented) 2-plane span $\{u, v\}$ by an angle $(-\rho)$.
6. Repeat the calculation once more, now with u lightlike and n spacelike, normalised, and othogonal to u. Hint: In this case the exponential series is finite.

