Exercises for the lecture on

Foundations and Applications of Special Relativity

von Domenico Giulini

Sheet 9

Problem 1

Consider a process $A+B \rightarrow C$ where two particles A and B annihilate each other and create a third particle C. The corresponding 4 -momenta are p_{A}, p_{B} and p_{C}, respectively. Show that p_{C} cannot be lightlike if at least one of p_{A} and p_{B} are timelike. Hint: Apply the appropriate Cauchy-Schwarz inequality.

Problem 2

Consider two particles with masses m_{1} and m_{2} and 4 -momenta p_{1} and p_{2}, respectively. We have $p_{a}^{2}:=\eta\left(p_{a}, p_{a}\right)=m_{a}^{2} c^{2}$. The 4-momentum P of the combined system is given by the sum $p_{1}+p_{2}$.

Generally, if u is a unit timelike vector representing an inertial system, the energy of a system with 4-momentum p in that system is $E_{u}:=c p \cdot u$. Apply this to the 2particle system and calculate the energy E_{cm} in the "centre-of-mass" system, where u is proportional to $p_{1}+p_{2}$, and also the energy E_{ℓ} in the "laboratory system", where one of system, say the second, is at rest, i.e. u is proportional to p_{2}. Express $E_{c m}$ as a function E_{ℓ}. Observe how $E_{c m}$ grows as a function of E_{ℓ} for increasingly larger E_{ℓ} ? What conclusion do you draw from this?

Hint: The calculation will give you $E_{c m}$ as well as E_{ℓ} as function of $\left(p_{1} \cdot p_{2}\right):=$ $\eta\left(p_{1}, p_{2}\right), m_{1}$, and m_{2}. This allows you to eliminate $p_{1} \cdot p_{2}$ and express $E_{c m}$ through E_{ℓ}, m_{1}, and m_{2}.

Problem 3

A particle P_{0} of mass m_{0} decays into two particles P_{1} and P_{2} of masses m_{1} and m_{2}, respectively. Show that the energy and modulus of 3-momentum $\left\|\mathbf{p}_{1}\right\|$ of P_{1} in the rest frame of P_{0} are

$$
\begin{align*}
E_{1} & =c^{2} \frac{m_{0}^{2}+m_{1}^{2}-m_{2}^{2}}{2 m_{0}} \tag{1a}\\
\left\|\mathbf{p}_{1}\right\| & =c \frac{\sqrt{\left[m_{0}^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[m_{0}^{2}-\left(m_{1}-m_{2}\right)^{2}\right]}}{2 m_{0}} \tag{1b}
\end{align*}
$$

and with indices 1 and 2 exchanged for particle P_{2}. Note that the right-hand of side of (1a) is non-symmetric under $1 \leftrightarrow 2$ whereas (1b) is symmetric. Why is that?

What are the magnitudes of the velocities of P_{1} and P_{2} in the rest frame of P_{0} ?

Problem 4

This exercise is an extension of the previous Problem 3. Show that the magnitude of the relative velocity β_{10} (in units of c) of P_{1} in the rest frame of P_{0} is

$$
\begin{equation*}
\beta_{10}=\frac{\sqrt{\left[m_{0}^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[m_{0}^{2}-\left(m_{1}-m_{2}\right)^{2}\right]}}{m_{0}^{2}+m_{1}^{2}-m_{2}^{2}} \tag{2}
\end{equation*}
$$

and similarly for β_{20} with indices exchanged, and that the relative velocity β_{12} (in units of c) of P_{1} in the rest frame of P_{2} is

$$
\begin{equation*}
\beta_{12}=\frac{\sqrt{\left[m_{0}^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[m_{0}^{2}-\left(m_{1}-m_{2}\right)^{2}\right]}}{m_{0}^{2}-m_{1}^{2}-m_{2}^{2}} \tag{3}
\end{equation*}
$$

which equals β_{21} Hint: The first equation follows from (1). For the second we recall that the relative velocity between two states of motion (timelike normalised vectors) u_{1} and u_{2} is the velocity of the boost in the plane $\operatorname{span}\left\{u_{1}, u_{2}\right\}$ that transforms one into the other. Now, $u_{1} \cdot u_{2}=\gamma=1 / \sqrt{1-\beta^{2}}$. In our case $u_{1}=p_{1} /\left(m_{1} c\right)$, $u_{2}=p_{2} / m_{2} c$, and $\left(m_{0} c\right)^{2}=\left(p_{1}+p_{2}\right)^{2}=\left(m_{1} c\right)^{2}+\left(m_{2}\right)^{2}+2\left(p_{1} \cdot p_{2}\right)$.

Problem 5

A particle of charge e moves in a constant electric field $\mathbf{E}=E \mathbf{n}$. Here E is constant and \mathbf{n} is also constant and normalised $\|n\|=1$. The Lagrangian is

$$
\begin{equation*}
\mathrm{L}(x, \dot{\mathbf{x}})=-\mathrm{mc}^{2} \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{\mathrm{c}^{2}}}+\mathrm{eE}(\mathbf{x} \cdot \mathbf{n}) . \tag{4}
\end{equation*}
$$

Solve the equations of motion with initial conditions $\mathbf{x}(\mathrm{t}=0)=\dot{\mathbf{x}}(\mathrm{t}=0)=\mathbf{0}$. Describe the graph of the function $\mathrm{t} \mapsto \mathbf{x}(\mathrm{t})$ geometrically.

