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Hermann Weyl (1885 - 1955)

I “First of all, we observe that in
General Relativity the notion of
relative motion of two bodies is
as meaningless as the notion of
absolute motion applied to a single
one.”
(Space-Time-Matter, 1923)

I “We keep the dualism of guidance
and force; but guidance is a phys-
ical field of state (like the electro-
magnetic) interacting with matter.
Gravitation is part of the guidance,
it’s not a force.”
(Massenträgheit und Kosmos, 1924)
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Motivation and Irritation: The “Pioneer Anomaly”

aanom = (8.6± 1.34)× 10−10 m · s−2

H0c ≈ (72 km · s−1 ·Mpc−1) · (3× 105 km · s−1) ≈ 7× 10−10 m · s−2
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Newtonian theory

I Suppose local inertial systems mutually expand from each other according
to Hubble’s law:

Ṙ(t) = H(t)R(t), where H(t) := ȧ(t)/a(t) (1)

I Taking into account Ḣ = (ä/a)− H2, the Hubble acceleration is

R̈ = ḢR + HṘ = (ä/a) R = −qH2 R (2)

where q := −äa/ȧ2 is the usual deceleration parameter
I The Newtonian force is proportional to the acceleration relative to these

local inertial frames, so that the Newtonian equations of motion in an ex-
panding universe is obtained from the usual one by replacing

~̈x 7→ ~̈x − (ä/a)~x (3)
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Newtonian theory (contd.)

I Applied to the motion of a single particle in a radial 1/r2 force-field gives
(setting (ä/a)now = −q0H2

0 =: A)

1
2 ṙ2 + U(r) = E r2ϕ̇ = L (4)

with

U(r) =
L2

2r2
−

C
r
−

A
2

r2 (5)

I The critical radius where the attracting force (C > 0) is balanced by the
cosmological repulsion (for A > 0) is

rc =

[
C
A

]1/3
=

{[
RsR2

H/(2|q0)
]1/3 ≈ (M/M�)1/3 400 ly[

RqR2
H/(2|q0)

]1/3 ≈ (q/e)2/3 30 AU
(6)

Here the upper and lower equality holds in case of gravitational and elec-
trical attraction, where Rs = 2GM/c2 and Rq = 2q2/mc2 respectively.
Stable circular orbits exist for r < (1/4)1/3rc ≈ 0.63 rc .
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General Relativity

I In Newtonian theory we can (mathematically) add the potential of an iso-
lated source to any other solution and obtain a new solution (with the same
boundary conditions at spatial infinity) in which a new source has been
(physically) “added”.

I Due to the non-linear nature of Einstein’s equations this is not possible in
GR. There is no unambiguous way to compose a new solution from two
old ones. Correspondingly, there is no obvious way (if any) to state the
simultaneous physical presence of two systems characterised by individual
solutions. In particular, there is no obvious way to add a local source to a
cosmological background.

I Two strategies have been mainly employed: to join and to alloy (or amal-
gamate) solutions.
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Joined Solutions

I Given two spacetimes (M±, g±) with boundaries Γ± and diffeomorphism
φ : Γ+ → Γ−, we can form M := M+∪φM− and require Darmois’ junction
conditions

g+

∣∣
T Γ+

= φ∗g−
∣∣
T Γ−

, K+ = φ∗K− . (7)

which state the continuity of the (⊥, ‖) and (⊥,⊥) components of the Ein-
stein tensor across Γ and hence, via Einstein’s equation, the continuity
across Γ of the matter’s current densities ⊥ S for energy and momentum.

I Joining spherically symmetric spacetimes along a curve γ ⊂ B of SO(3)-
orbits (2-spheres) requires continuity of:

1. γ’s arc length and curvature;

2. the areal radius R;

3. the Misner-Sharp energy.
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Intermezzo: Hawking mass and Misner-Sharp energy

I In case of spherical symmetry, the Hawking mass (defined for any closed
spacelike 2d-submanifold S)

MH (S) :=

√
Area(S)

16π

(
1 +

1
2π

∫
S
θ+θ− dµS

)
(8)

equals the Misner-Sharp energy

E := − 1
2 R3 Sec(g)

∣∣
TS = 1

2 R
(
1 + g(dR, dR)

)
, (9)

if S is a SO(3) orbit of spherical symmetry.
I E can be considered as positive real-valued function on B, i.e. of time and

radius.
I Corresponding to Riem = Ricci + Weyl, E decomposes as

E = ER + EW . (10)

EW corresponds to the mass/energy of a black-hole.
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The Swiss-Cheese Universe

I Join Schwarzschild-DeSitter spacetime

gSdS =V (R) dT 2 −
(
V (R)

)−1 dR2 − R2 gF

V (R) = 1− (2m/R)− 1
3 ΛR2

(11)

to FLRW Universe

gFLRW = dt2 − a(t)2

(
dr2

1− kr2
+ r2 gF

)
. (12)

I Have RSdS = R and RFLRW = a(t)r . At gluing radius have R = a(t)r and

ESdS = m + 4π
3 R3

SdSρΛ = EFLRW = 4π
3 R3

FLRW (ρ+ ρΛ) (13)

⇔ m = 4π
3 R3ρ ⇔ r(t) =

(
m

(4π/3)a3(t)ρ(t)

)1/3
(14)
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Einstein-Straus

I Einstein & Straus 1945, Schücking 1954:

RV (t) =

(
3m

4πρ(t)

)1/3
(15)

Note: Rv is an areal radius, whose definition is that the proper surface-area
of the SO(3) orbit is 4πR2

v . Hence (4π/3)R3
v is the proper volume if g(3) is

flat, but smaller/larger if g(3) is of positive/negative curvature.

I Applied to spatially flat universe of critical density ρcrit :=
3H0
8πG , get

Rv =
(
RS R2

H
)1/3 ≈ (m/m�)1/3 400 ly , (16a)

RS := (2Gm/c2) ≈ (m/m�) 3 km , (16b)

RH := (c/H0) ≈ 4 Gpc ≈ 1.3× 1023 km . (16c)

RS and RH are the Schwarzschild radius for the mass M and the Hubble
radius respectively.
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GR: Alloying solutions

I Close to inhomogeneity solutions should approximate exterior Schwarzschild
metric (possibly filled in by some interior solution with matter)

g(4) =

[
1−m/2r
1 + m/2r

]2
dt2 −

[
1 +

m
2r

]4
g(3)

flat (17)

and far out it should approximate FLRW universe

g(4) = T 2 − a2(t) g(3)
cc (18)

I The question is: how to combine these two exact solutions in order to get
new exact solution describing a compact object ‘immersed’ in cosmological
background?
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McVittie’s Ansatz

I In 1933, McVittie suggested the following simple Ansatz in his paper: ‘The
mass-particle in an expanding universe’:

g(4) =

[
1−m(t)/2r
1 + m(t)/2r

]2
dt2 − a2(t)

[
1 +

m(t)
2r

]4
g(3)

cc (19)

where m(t) and a(t) are two positive functions of time t .
I In recent years, solutions within the reach of this Ansatz have often been

used to study the impact of cosmological expansion on local inhomogeneities.
I In the following we shall investigate some consequences of this Ansatz.

For simplicity we will set

g(3)
cc = g(3)

flat = dr2 + r2g(2)

S2
1

(20)

I Solutions in this class have first been considered by McVittie in 1933 and
have recently again been proposed and analysed.
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General solutions in McVittie’s class
I We keep McVittie’s Ansatz and wish to generalise the matter model so as

to allow for arbitrary energy infall (D.G& Carrera 2010).
I It turns out that this is possible only if radial mass currents as well as non-

vanishing heat currents are present, i.e. if

Tµν = ρ uµuν + p (uµuν − gµν) + (uµqν + qµuν) (21)

with

u = cosh(χ) et + sinh(χ) er

q = |q|
(
sinh(χ) et + cosh(χ) er

) (22)

I For general χ and qµ have a radial energy current

J = −T (et , er ) = q (1 + 2 sinh2 χ)︸ ︷︷ ︸
Jh

+ (ρ+ p) sinhχ cosh χ︸ ︷︷ ︸
Jm

(23)

whose components are constrained to satisfy (here for small χ)

J = Jm + Jh ≈ Jm/2 ≈ −Jh (24)

I The t-rate of energy accretion by central mass is given by

(am)̇ = (−4πR2 J) gtt (25)
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Doppler Tracking

I Doppler Tracking is a common method of tracking the position of vehicles
in space by measuring the Doppler shift of exchanged electromagnetic sig-
nals. If the geometry of space is time dependent, this will clearly influence
such measurements. What does it mean to map out a trajectory.

I The following is based on work with Matteo Carrera (CQG 26, 2006).
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DT in Minkowski space I

I At the event p0 = (t0, ~x0) a radio signal
of frequency ω0 is emitted towards the
spacecraft and received by it at event
p1 = (t1, ~x1) with frequency ω1.

I In case of simple reflection, a return-
ing radio signal is emitted at p1 =
(t1, ~x1) with frequency ω1 and received
by us at event p2 = (t2, ~x2) with fre-
quency ω2.

I Note: All frequencies refer to those
measured by observers that are lo-
cally co-moving with the given world-
lines (γ = worldline of spacecraft)

— γ

– us

p0

p1

p2
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DT in Minkowski space II

I Given a lightlike vector k (wave vector) and observers u, v at the same
spacetime point. The observed frequencies are

ωv (k) := g(v , k) ωu(k) := g(u, k) (26)

whose ratio is given by

ωv (k)

ωu(k)
=

g(v , k)

g(u, k)
=

g(P‖u v + P⊥u v , k)

g(u, k)

= g(u, v)

[
1 +

g(v ,P⊥u k)

g(u, v)g(u, k)

]
= g(u, v)

[
1− βk̂

u (v)
] (27)

where the spacelike unit vector k̂ := P⊥u k/‖P⊥u k‖ defines the direction of
k in the rest system of u.
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DT in Minkowski space III

I We wish to take the differential quotient of ω(t2)/ω(t0) with respect to t2,
assuming a constant function ω0. We get

ω̇(t2)

ω0
=

−2β̇(t1)(
1 + β(t1)

)2
dt1
dt2

(28)

I If we are resting at the origin of the coordinate system, with respect to
which r is the radial distance to the spacecraft, we have t2 − t1 = r(t1)/c
and therefore

1−
dt1
dt2

=
1
c

dr(t1)

dt1

dt1
dt2
⇐⇒

dt1
dt2

=
1

1 + β(t1)
(29)

I Hence (28) becomes (β̇ ≡ α)

ω̇(t2)

ω0
=

−2β̇(t1)(
1 + β(t1)

)3 ≈ −2α(t1)
(

1− 3β(t1) + · · ·
)

(30)
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DT in general I

I In a general spacetime (M, g) [we use signature (+,−,−,−) for g] there
is no privileged (e.g. inertial) global reference frame by means of which we
may introduce kinematical variables that characterise worldlines (different
ones collectively). Hence ‘appropriate’ fiducial observer-fields need to be
introduced.

I An observer at the event p is a future pointing unit timelike vector. An
observer field is a field of observers. Any observer u at p gives rise to
an orthogonal split of the tangent space at p, Tp(M) = T‖p (M) ⊕ T⊥p (M),
where

T‖p (M) := Span{u} , T⊥p (M) := {v ∈ Tp(M) | g(v , u) = 0} (31)

The associated projection operators are given by

P‖u : Tp → T‖p (M) , v 7→P‖u (v) := u g(u, v) (32a)

P⊥u : Tp → T⊥p (M) , v 7→P⊥u (v) := v − u g(u, v) (32b)
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DT in general II

I Let u be an observer field along one
integral line of which we are moving.
As before, γ is the worldline of the
spacecraft. The field u is defined in
a neighbourhood of γ.

I The wave-vector k0 emitted at p0 suf-
fers three changes:

1. propagation from p0 to p1:
k0 → k1

2. reflection at p1:
k1 → k ′1

3. propagation from p1 to p2:
k ′1 → k2

I We are interested in

ω2

ω0
=

g(u2, k2)

g(u0, k0)
=

[
ω2

ω′1

][
ω′1
ω1

] [
ω1

ω0

]
p0

p2

p1
k̂1

k0

u0

k1k′1

u1
γ̇(p1)

u2

k2

γ —
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DT in FLRW/McVittie

I An exact formula for 1
ω0

dω2(t2)
dt2

can be derived for FLRW universes.

I For purely radial motion and keeping only quadratic terms in β, linear terms
in H∆t , and also mixed terms βH∆t , we get:

1
ω0

dω2(t2)

dt2
≈ −

2
c

{
cα
(
1− 3β − 3H∆t

)
+ Hcβ

}
=: − 2 a∗/c (33)

where a∗ is the naive Doppler-tracking acceleration. Hence in this approx-
imation there are two modifications due to cosmic expansion:

1. a downscaling of acceleration by (1− 3H∆t)
⇒ Pioneer: ∆a/a < 10−12

2. a constant contribution Hcβ in velocity direction
⇒ Pioneer: ∆a/a < 10−7

This can be generalised to McVittie, where an extra term (m0c/R2)∆τ
appears in cα(· · · ).
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Other coordinates I

II Instead of the standard co-moving radial coordinate r in FLRW models on
may employ the cosmologically simultaneous geodesic distance r∗ (here
flat case):

(t , r) 7→ (t∗ , r∗) := (t , a(t)r) (34)

so that the new field of geodesically equidistant observers r∗ = const . is

u∗ =
1

‖∂/∂t∗‖
∂

∂t∗
where

∂

∂t∗
=

∂

∂t
− H(t)r

∂

∂r
(35)

I Since u∗ is not geodesic (inward accelerated) get additional cosmological
acceleration (ä/a)r∗ in radial direction in Newtonian equation of motion.
More general, for geodesics in McVittie spacetime, we obtain to leading
order

αu∗ (γ) ≈
(

ä
a

r∗ −
m0

r2
∗

)
~er ◦ γ (36)
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Other coordinates II
In (t∗, r∗) coordinates, the flat FLRW metric assumes the form

g = c2
{

1−
(
Hr∗/c

)2
}{

dt∗ +
Hr∗/c2

1−
(
Hr∗/c

)2 dr∗︸ ︷︷ ︸
θ=simultaneity 1-form

}2
−
{

dr2
∗

1−
(
Hr∗/c

)2 + r2
∗ dΩ2

︸ ︷︷ ︸
h=spatial radar metric

}

I Radar distance (measured by h) and Einstein simultaneity (θ = 0) are
given by

l∗ = (c/H) sin−1(Hr∗/c) ≈ r∗
{

1 + 1
6 (Hr∗/c)2 +O(3)

}
(37)

∆t∗ = (1/2H) ln
(
1− (Hr∗/c)2) ≈ (r∗/c)

{
− 1

2 (Hr∗/c) +O(2)
}

(38)

I Mapping out a trajectory l∗(t∗) in terms of radar distance of Einstein-
simultaneous events hence means to write

l∗(t∗) := (c/H) sin−1(r∗(t∗ + ∆t∗)H/c
)
≈ r∗ − 1

2 (v/c)(Hc)(r∗/c)2 + · · ·

which in leading order gives

l̈∗ ≈ r̈∗ − (Hc)(v/c)3 + · · · (39)
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Cosmological versus Einstein Simultaneity

I The reflection-event p1 lies on
the same hypersurface of con-
stant cosmological time t = t∗
as the event p′1 on our world-
line. However, our eigentime at
p′1 is not the mean of our eigen-
times at p0 and p2. Rather, this
is true for the event p′′1 , which
is hence Einstein-simultaneous
with p1 and which lies to the fu-
ture of p′1 by the amount |∆t∗|,
given by (38). p0

p2

p1p′′1
p′1
|∆t∗|
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Summary

I Derivation of exact double-Doppler-formula for FLRW spacetimes.
I Derivation of approximate double-Doppler-formula for McVittie spacetime.

⇒ There exist no Pioneer-like anomalies due to cosmic expansion.

⇒ Kinematical effects consistently estimated, which e.g. lead to Hc–term at
(v/c)3–suppressed level.
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THANK YOU!
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