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LIE GROUPS AND LIE ALGEBRAS

2.1 Lie groups

The most general definition of a Lie groupG is, that it is a differentiable manifold
with group structure, such that the multiplication map G×G→ G, (g, h) 7→ gh,
and the inversion map G → G, g 7→ g−1, are differentiable. But we shall not
need this concept in full generality. In order to avoid more elaborate differential
geometry, we will restrict attention to matrix groups .

Consider the set of all invertible n × n matrices with entries in F, where F

stands either for the real (R) or complex (C) numbers. It is easily verified to
form a group which we denote by GL(n,F), called the general linear group in n
dimensions over the number field F. The space of all n×nmatrices, including non-
invertible ones, with entries in F is denoted by M(n,F). It is an n2-dimensional

vector space over F, isomorphic to Fn
2

. The determinant is a continuous function
det : M(n,F) → F and GL(n,F) = det−1(F − {0}), since a matrix is invertible

iff its determinant is non zero. Hence GL(n,F) is an open subset of Fn
2

. Group
multiplication and inversion are just given by the corresponding familiar matrix
operations, which are differentiable functions Fn

2 × Fn
2 → Fn

2

and Fn
2 → Fn

2

respectively.

2.1.1 Examples of Lie groups

GL(n,F) is our main example of a (matrix) Lie group. Any Lie group that we
encounter will be a subgroups of some GL(n,F). The simplest such subgroup is

SL(n,F) := {g ∈ GL(n,F) | det(g) = 1} , (2.1)

the so called special linear group for the number field F. Subgroups whose ele-
ments satisfy det(g) = 1 are also called unimodular.

Choosing F = R, one has an important class of subgroups of GL(n,R), the so
called (pseudo) orthogonal groups , defined by

O(p, q) := {g ∈ GL(n,R) | gE(p,q)g⊤ = E(p,q)} , (2.2)

where E(p,q) is the n × n diagonal matrix with the first p entries +1 and the
remaining q entries −1 (clearly p+ q = n):

E(p,q) := diag(1, · · · , 1︸ ︷︷ ︸
p

,−1, · · · ,−1︸ ︷︷ ︸
q

) . (2.3)

If either q or p are zero, the group is simply called orthogonal, otherwise pseudo-
orthogonal. In this case one usually writes O(n) instead of O(n, 0) or O(0, n).
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Taking the determinant of the defining relation in (2.4) shows that det(g) = ±1
for g ∈ O(p, q). Those elements for which the determinant is +1 form a subgroup
(of index two), and are called the unimodular or special (pseudo) orthogonal
groups :

SO(p, q) := {g ∈ O(p, q) | det(g) = 1} . (2.4)

Here one usually writes SO(n) instead of SO(n, 0) or SO(0, n).
Different tuples (p, q) and (p′, q′) with n = p+ q = p′ + q′ lead in general to

non isomorphic Lie groups of the same dimension7. This is not the case over the
field of complex numbers, where for any two (p, q) and (p′, q′) with fixed sum n
there always exists a matrix T ∈ GL(n,C) such that TE(p,q)T⊤ = E(p′,q′); just
take for T the diagonal matrix with an appropriate distribution of 1’s and i’s in
the diagonal (in the real case this is excluded by ‘Sylvester’s law of inertia’, see
e.g. [7]). This means that over the complex numbers it would be meaningless to
distinguish between the pseudo and proper orthogonal groups for fixed n, since
they are all conjugate in GL(n,C) (hence, in particular, isomorphic). For F = C

one therefore just writes O(n,C) for the subgroup of GL(n,C) defined through
gg⊤ = E(n), where E(n) is the unit n × n matrix. Note that the convention is
such that O(n) always means O(n,R).

Next we mention the (pseudo) unitary groups, defined by

U(p, q) := {g ∈ GL(n,C) | gE(p,q)g† = E(p,q)} , (2.5)

where † denotes hermitian conjugation, i.e., transposition and complex conjuga-
tion. Here the terminology is entirely analogous to the orthogonal groups, i.e.,
we simply speak of unitary groups if p = 0 or q = 0, in which case we write
U(n) instead of U(n, 0) or U(0, n), otherwise of pseudo unitary groups. Taking
the determinant of the defining relation shows | det(g)| = 1. The subgroups of
matrices with unit determinant are the unimodular or special (pseudo) unitary
groups :

SU(p, q) := {g ∈ U(p, q) | det(g) = 1} . (2.6)

Again we write SU(n) instead of SU(n, 0) or SU(0, n).
Finally, to complete the list of the so-called classical Lie groups, we men-

tion the symplectic groups. Let E(n) be the unit n × n matrix, and Ê(2n) the
antisymmetric 2n× 2n matrix

Ê(2n) :=

(
0 E(n)

−E(n) 0

)
, (2.7)

we define SP(2n,F), the symplectic group in 2n dimensions over the field F, by:

SP(2n,F) := {g ∈ GL(n,F) | gÊ(2n)g⊤ = Ê(2n)} (2.8)

7The dimension of a Lie group is the dimension of its underlying real manifold. Here it can
be identified with n2 minus the number of independent defining conditions, which are 1

2
n(n+1)

in (2.2), hence the dimension of O(p, q) and SO(p, q) is 1
2
n(n − 1).
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We mention without proof that SP(2n,F) ⊂ SL(2n,F), which is not immediate
from their definition.

Let us now make a few topological remarks (compare A.3). GL(n,F) and

its subgroups are subsets of M(n,F) ∼= Fn
2

and are topologised by the subset
topology. The maps of group multiplication and inversion are rational functions
in the matrix entries and are clearly continuous (in fact, differentiable). Hence we
deal, in particular, with topological groups. The subgroup SL(n,F) is a closed
in M(n,F) (and also in GL(n,F)) since it is the pre-image of 1 ∈ F under the
determinant function. Similarly, any other subgroup we mentioned is a closed
subset of M(n,F) since its defining relation is f(g) = 0, and hence the group is
given by f−1(0), with a continuous function f : M(n,F) → M(n,F), which, for
example, for U(p, q) takes the form f(g) = gE(p,q)g† − E(p,q). Correspondingly,
the unimodular groups (i.e. det(g) = 1) are closed subgroups of SL(n,F). Finally
we remark that O(n), U(n) and their unimodular counterparts are compact. This
follows immediately from the defining relations, e.g. from gg† = E(n) for U(n),
which in particular implies that the modulus of each matrix element is bounded
above by 1. Hence U(n) is a closed and bounded subset of M(n,F) ∼= Fn

2

and
hence compact(compare A.3.6). This argument does not work for the pseudo
orthogonal and unitary groups, since their defining relation contains E(p,q) with
p > 1 and q > 1, which is not positive or negative definite, and hence we cannot
conclude boundedness of the matrix elements. In fact, all these groups are non
compact.

2.1.2 The inhomogeneous linear groups

The vector space Fn is an abelian group with respect to its additive structure.
The usual linear action of GL(n,F) on Fn defines a homomorphism of GL(n,F)
into the automorphism group of Fn with respect to which we can construct the
semi-direct product Fn ⋊ GL(n,F) (compare A.4.3). Multiplication and inver-
sion are then given by (elements of GL(n,F) are now denoted by capital letters,
elements of Fn by lower case letters):

(a′, A′)(a,A) = (a′ +A′a,A′A) . (2.9)

(a,A)−1 = (−A−1a,A−1) . (2.10)

This can be repeated verbatim for any subgroup G of GL(n,F)). The corre-
sponding semi-direct product is then called the corresponding inhomogeneous
(or affine) group, and denoted by IG:

IG := F
n

⋊ G (2.11)

In this fashion one defines the groups ISL(n,F), ISO(p, q), etc.
The inhomogeneous group of some subgroup G ⊆ GL(n,F) can be considered

as a subgroup of GL(n + 1,F), that is, there is an embedding (compare A.4.2)
IG → GL(n+ 1,F), given by:
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IG ∋ (a,A) 7−→
(

1 0⊤

a A

)
(2.12)

where we used a 1 + n-split matrix notation. One easily verifies that matrix
multiplication and inversion in GL(n + 1,F) reproduces (2.9) and (2.10). This
means that the inhomogeneous groups are also matrix groups.

2.1.3 Polar decomposition

At this point we wish to mention an important way to uniquely decompose any
matrix in GL(n,C) as product of a unitary and a positive-definite hermitian
matrix. It is called the polar decomposition. This subsection is devoted to state
and prove this result.

2.1.3.1 Preliminaries: Maps of hermitean matrices We start by recalling some
useful properties of hermitean matrices and maps between them. The space of n×
n hermitean matrices is a real vector space of dimension n2 and will be denoted
by H(n). Subject to a choice of basis, hermitean matrices may be identified with
self-adjoint linear maps in an n-dimensional complex vector space with scalar
product. In the following we will make use of such an identification and denote
the matrix and the map by the same letter. Let now A be a self-adjoint map. Its
eigenvalues, {λ}, are real and the eigenvectors are orthogonal if they belong to
different eigenvalues. The subset {λ} ⊂ R is called the spectrum of A and will
be denoted by S(A).

Let Pλ be the orthogonal projector onto the subspace spanned by eigenvectors
of eigenvalue λ; then A can be written in the form

A =
∑

λ∈S(A)

λPλ (2.13)

where

Pλ = P †
λ ,

∑

λ∈S(A)

Pλ = E , PλPλ′ = δλλ′Pλ (no summation) , (2.14)

where δλλ′ = 1 if λ = λ′ and zero otherwise. This is called the spectral decom-
position of A. This decomposition is unique, which merely says that the set of
eigenvalues, S(A), and the set of eigenspaces, {Pλ} are uniquely determined by
A.

The spectral decomposition is a useful tool to define and study maps of
hermitean matrices in terms of maps of real numbers. Any map f : R → R

defines a map f̂ : H(n) → H(n) via

f̂(A) :=
∑

λ

f(λ)Pλ . (2.15)

More generally, if the domain D of f is a proper subset of R (2.15) still defines

a function f̂ on the domain D̂ = {A ∈ H(n) | S(A) = D}. It turns out that many

properties of f are inherited by f̂ , as we now show.
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If f is injective on the domain D then f̂ is injective on the domain D̂. To see
this, let A,A′ ∈ D̂ and assume f̂(A) = f̂(A′); then

f̂(A) =
∑

λ∈S(A)

f(λ)Pλ =
∑

λ∈S(A′)

f(λ)P ′
λ = f̂(A′) . (2.16)

Uniqueness of the spectral decomposition together with injectivity of f imply
that the spectra and the families of projectors coincide so that A = A′.

Surjectivity of f is also inherited by f̂ . More precisely, suppose that D ⊆
Im(f), then D̂ ⊆ Im(f̂). To see this, pick an A ∈ D̂, whose spectral projectors
are Pλ, and define A′ by

A′ :=
∑

λ∈S(A)

µλPλ (2.17)

for some (non-unique if f is not injective) µλ ∈ f−1(λ). Then f(A′) = A, as
desired.

Finally we note that f̂ is continuous if f is. With the foregoing this implies
that if f is a homeomorphism between the domains D and D′ in R, then f̂
is a homeomorphism between the domains D̂ and D̂′ in H(n). An example of
particular interest to us is the exponential map, exp : R → R+, which is a
homeomorphism (the continuous inverse being the logarithm ln : R+ → R).
Hence we have a homeomorphism êxp : H(n) → H+(n), where H+(n) denotes the
positive definite (i.e. all eigenvalues strictly positive) n× n hermitean matrices.
In future we will save notation and simply drop the hat over matrix functions.

2.1.3.2 The polar decomposition

Theorem 2.1 Let X ∈ GL(n,C); then there exits a unique R ∈ U(n) and a
unique positive-definite hermitian matrix B (i.e. B’s eigenvalues are all positive
and B = B†) such that

X = BR . (2.18)

If X ∈ GL(n,R) then B is real, symmetric, and positive definite and R is real
and orthogonal, i.e., R ∈ O(n).

Proof Define A := XX†, which is an element of H+(n) (zero eigenvalues are
excluded since det(X) 6= 0). Let B :=

√
A ∈ H+(n) (note that the square-root-

function is a homeomorphism of the positive real line) and define R := B−1X .
We have R† = X†B−1 = X−1B = R−1, where the first equality follows from
hermiticity of B and the second from B2 = XX†. Hence R is unitary and we
have shown existence of a polar decomposition. To show uniqueness, assume
there exist two decompositions: X = B1R1 = B2R2. Then B1 = B2R3, where
R3 := R2R

−1
1 is again unitary. Hermiticity of B1,2 and unitarity of R3 now

imply B2
1 = B1B

†
1 = B2R3R

†
3B

†
2 = B2

2 and hence B1 = B2, since ‘squaring’ is
an injective map on H+(n). This in turn implies R1 = R2 and hence uniqueness.
Finally, if X is real then B and consequently R are also real. 2
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Obviously the theorem could have also been formulated with the opposite order
of the factors on the right hand side of (2.1), i.e., X = RB. Decomposing a
given X according to both orders will generally result in the same unitary but
a different (conjugate) hermitian factor. This follows from B1R1 = R1B2 where

B2 := R†
1B1R1 is hermitian.

The polar decomposition defines maps

PolC : GL(n,C) → H+(n) × U(n) , (2.19)

PolR : GL(n,R) → S+(n) × O(n) , (2.20)

where H+(n) and S+(n) denote the spaces of positive definite hermitian matrices
(over C) and positive definite symmetric matrices (over R). PolR is just the
restriction to GL(n,R) of PolC, hence it is sufficient to state and prove the
following result for PolC.

Theorem 2.2 The maps PolC and PolR in (2.19) and (2.20) are homeomor-
phisms.

Proof It is sufficient to give the proof for PolC; that for PolR is entirely anal-
ogous. Bijectivity is obvious. The inverse of PolC is (B,R) 7→ BR (matrix mul-
tiplication), which is clearly continuous. Hence it remains to show that PolC is
continuous. Let {Xi ∈ GL(n,C) | i ∈ N} be a sequence converging to X with
PolC(Xi) = (Bi, Ri) and PolC(X) = (B,R). We need to show that Bi → B and
Ri → R as i→ ∞. As U(n) is compact (cf. 2.1.1) the sequence {Ri | i ∈ N} has
a subsequence {Rα | α ∈ I ⊂ N} converging to some R′ ∈ U(n) (cf.A.3.6). Hence

the sequence {Bα := XαR
−1
α } of hermitean matrices converges to B′ := XR′−1

(using continuity of matrix multiplication). Since the set of hermitean matrices
is closed (being f−1(0) of the continuous map f : M(n,C) → M(n,C), f(A) :=
A−A†) we know that B′ must also be hermitean. Therefore X = B′R′ is a polar
decomposition whose uniqueness implies R′ = R and B′ = B. Hence R is the
unique accumulation point of {Ri} so that Ri → R and Bi → B as i → ∞, as
desired. 2

Clearly PolR is just the restriction of PolC to the subgroup GL(n,R) of GL(n,C).
As it turned out, the image of this restriction is then just the intersection of the
image of PolC with GL(n,R). However, this will not be true for all subgroups G

of GL(n,C). That is, we do not always have

Im(PolC
∣∣
G
) ⊆ (H+(n) ∩ G) × (U(n) ∩ G) . (2.21)

This means that in general we cannot be sure that if we polar decompose an
element of a subgroup that the resulting factors will again be members of that
subgroup. However, it is useful to know that for a large class of subgroups this is
the case and that these subgroups comprise U(p, q) and O(p, q) as well as their
unimodular versions. More precisely, we have
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Theorem 2.3 Let G ⊂ GL(n,C) be any of the subgroups U(p, q), SU(p, q), O(p, q),
or SO(p, q), where p+ q = n. Then we have a map

PolG := PolC
∣∣
G

: G → (H+(n) ∩ G) × (U(n) ∩ G) (2.22)

which is a homeomorphism onto its image (continuous and injective, but gener-
ally not surjective).

Proof We only need to show (2.21); the rest is a direct consequence of theorem
2.2. The case of unimodular groups is readily dealt with: for a polar decomposi-
tion A = BR we have | det(A)| = det(B) since det(B) ∈ R+ and | det(R)| = 1.
det(A) = 1 then implies det(B) = 1 and det(R) = 1. It remains to prove (2.21)
for G = U(p, q) (the case G = O(p, q) then follows by restriction to real matri-
ces). For this it will suffice to show that A = BR ∈ U(p, q) implies B ∈ U(p, q),

since then R = B−1A ∈ U(p, q). But B is defined by B =
√
AA† and matrices

in U(p, q) satisfy AE(p,q)A† = E(p,q), by definition. Now E(p,q) is real symmetric
and its own inverse and hence also in U(p, q). So A ∈ U(p, q) implies A† ∈ U(p, q)
and therefore AA† ∈ U(p, q)∩ H+(n). But, generally, if some C ∈ U(p, q)∩ H+(n)
then the unique square root

√
C in H+(n) will again lie in U(p, q). To see this

we employ the exponential map exp : H(n) → H+(n) discussed above. There is
a unique X ∈ H(n) so that C = exp(X). Using the defining relation for U(p, q)
and injectivity of exp we find that C ∈ U(p, q) iff E(p,q)XE(p,q) = −X . But this
relation is linear in X and hence also satisfied if we replace X with X/2. Hence√
C = exp(X/2) is also in U(p, q). 2

Being the intersection of two closed subgroups, K := G ∩ U(n) is again a
closed subgroup of GL(n,C). Therefore it is also a closed subgroup of U(n) and
hence compact since U(n) is compact (cf. A.3.6). In fact, it is a maximal compact
subgroup of G, meaning that there is no strictly larger compact subgroup of G

properly containing K. To see this by way of contradiction, assume there is a
compact subgroup K ′ such that K ⊂ K ′ ⊂ G. Then, by hypothesis, there exists
an element A ∈ K ′ − K whose polar decomposition is A = BR with B 6= E.
But A ∈ K ′ and R ∈ K ⊂ K ′ so that AR−1 = B ∈ K ′ and therefore Bm ∈ K ′

for all integers m. Since B 6= E there exists an eigenvalue R ∋ λ 6= 1 of B with
corresponding eigenvalue λm of Bm. Hence λm → ∞ for m→ ∞ (if λ > 1) or for
m → −∞ (if λ < 1). This implies that K ′ cannot be compact since it contains
a sequence of matrices with unbounded eigenvalues (cf. A.3.6).

2.2 Lie algebras

To every Lie group one can uniquely associate an algebraic object, called a Lie
algebra. Many operations on and between Lie groups have their unique corre-
spondences as operations on and between Lie algebras. But as Lie algebras are
linear spaces they are easier to handle and thus many problems concerning Lie
groups can be solved by considering the corresponding problem of Lie algebras.
This is why they are so useful.
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An n-dimensional Lie algebra L over F is an n-dimensional vector space over
F together with an map L× L→ L called the Lie bracket , which is denoted by
a square bracket and which, for all X,Y, Z ∈ L and a ∈ F, satisfies the following
conditions:

[X,Y ] = −[Y,X ] (antisymmetry) (2.23)

[X,Y + aZ] = [X,Y ] + a[X,Z] (bilinearity) (2.24)

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0 (Jacobi-identity) (2.25)

Note that Lie-algebras are anti-commutative and non-associative; associativity
is replaced by the Jacobi-identity.

Given a basis {ea}, a = 1, · · · , dim(L), of L, we can write [ea, eb] = Ccabec
with coefficients Ccab ∈ F, called the structure constants of L with respect to
{ea}. Equation (2.23) is equivalent to antisymmetry in the lower index pair,
Ccab = −Ccba, and the Jacobi identity (2.25) is equivalent to

CdabC
n
cd + CdbcC

n
ad + CdcaC

n
bd = 0 , (2.26)

which, using antisymmetry, is equivalent to the statement that CdabC
n
cd is totally

antisymmetric in abc, i.e., Cd[abC
n
c]d = 0. Conversely, given an n-dimensional

vector space V with basis {ea}, any choice of 1
2n

2(n − 1) numbers Ccab which
satisfy (2.26) will make V into a Lie algebra through [ea, eb] := Ccabec and linear
extension.

Any associative algebra is automatically a Lie algebra by defining the Lie
bracket to be the commutator (associativity is needed to ensure the Jacobi iden-
tity):

[A,B] := AB −BA . (2.27)

This can be done, for example, with End(V ), the endomorphisms of a vector
space V (cf. A.5.2). The resulting Lie algebra is usually called gl(V ), or gl(n,F)
if it results from the concrete matrix algebra M(n,F) (see below). In fact, antic-
ipating some terminology explained below, a deep theorem due to Ado implies
that any finite dimensional Lie algebra has a faithful finite dimensional represen-
tation. This is the same as saying that any finite dimensional Lie algebra over F

is isomorphic to a Lie subalgebra of M(n,F) for some n.

2.2.1 General notions

2.2.1.1 Subalgebras and ideals If L′ and L′′ are subsets of L, we shall write
[L′, L′′] for the linear span of all vectors of the form [X ′, X ′′] with X ′ ∈ L′ and
X ′′ ∈ L′′. A linear subspace L′ ⊆ L is a Lie subalgebra (or simply ‘subalgebra’
if the Lie-context is obvious) iff [L′, L′] ⊆ L′, and a Lie ideal (or simply ‘ideal’
if the Lie-context is obvious) iff [L′, L] ⊆ L′. {0} and L are the trivial ideals of
L; an ideal is called non-trivial iff it is different from these two. The center of L,
defined by Z(L) := {X ∈ L | [X,Y ] = 0 ∀Y ∈ L}, is an obvious example of an
ideal.
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Having an ideal I ⊂ L, the quotient L/I (as vector spaces, cf. A.5.1) is
again a Lie algebra with Lie bracket [〈X〉, 〈Y 〉] := 〈[X,Y ]〉, where 〈·〉 denote the
equivalence class for the moment. It is a simple exercise to show that this is
indeed a well defined Lie bracket.

Given two ideals I and I ′ of L, their intersection, I ∩ I ′, their sum, I + I ′ :=
span{I ∪ I ′}, and their Lie bracket, [I, I ′], are again ideals. The last assertion
follows from the Jacobi identity which, written in our compact notation, implies:
[[I, I ′], L] = [[L, I], I ′] + [[I ′, L], I] = [I, I ′].

2.2.1.2 Homomorphisms A linear map f : L → L′ between Lie algebras is
a Lie homomorphism (or simply ‘homomorphism’ if the Lie-context is obvious)
iff f([X,Y ] = [f(X), f(Y )] for all X,Y ∈ L. Here we denoted the Lie brackets
in L and L′ by the same symbol [·, ·], which should not give rise to confusion.
Kernel and image of a Lie homomorphism are defined as for general linear maps
(cf. A.5.2). Both are clearly Lie subalgebras and it is easy to see that the kernel
is even an ideal. A homomorphism f : L → L′ maps any subalgebra K ⊆ L
to a subalgebra K ′ := f(K) ⊆ L′. If K is an ideal in L, then K is surely an
ideal in f(L) ⊆ L′ (the image of f) but not necessarily in L′. A bijective Lie
homomorphism is called a Lie isomorphism. As usual, we have the (now Lie-)
isomorphism Im(f) ∼= L/Ker(f).

2.2.1.3 Direct sums, derivations, and semi-direct sums Given two Lie algebras
L and L′. An obvious way to make the vector space L⊕ L′ into a Lie algebra is
to define [(X,X ′), (Y, Y ′)] := ([X,Y ], [X ′, Y ′]), for all X,Y ∈ L and X ′, Y ′ ∈ L′

and where we used the same symbol [·, ·] to denote the Lie brackets in the various
spaces. With this Lie bracket L⊕ L′ is called the direct sum of the Lie algebras
L and L′. The natural projections πL : L ⊕ L′ → L and πL′ : L ⊕ L′ → L′

are Lie homomorphisms whose kernels are the ideals L ⊕ {0L′} and {0L} ⊕ L′

(we distinguishing the null vectors in L and L′ by subscripts), which we may
naturally identify with L and L′ respectively.

A derivation of the Lie algebra L is a linear map ϕ : L → L which satisfies
ϕ([X,Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )]. The space of derivations of L is itself a Lie
algebra, called Der(L). Linearity is obvious and the Lie bracket is defined by
[ϕ,ϕ′] := ϕ ◦ ϕ′ − ϕ′ ◦ ϕ which clearly satisfies the Jacobi identity. One merely
has to check that[ϕ,ϕ′] is again a derivation, which is also almost immediate.
Hence we can consider Der(L) as Lie subalgebra of gl(L).

Given a Lie homomorphism σ : L′ → Der(L), X 7→ σX , we can generalize the
construction above and turn the vector space L⊕ L′ into a Lie algebra through
the definition

[(X,X ′), (Y, Y ′)] := ([X,Y ] + σX′(Y ) − σY ′(X) , [X ′, Y ′]) . (2.28)

Only the Jacobi identity needs to be checked, which is readily done if one uses
the fact that, by linearity, it is sufficient to check it for the two cases where
the first vector is of the form X ⊕ {0L′} and the second of the form {0L} ⊕X ′
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and vice versa. This Lie algebra is called the semi direct sum of L and L′ with
respect to σ, and denoted by L⋊σ L

′. It reduces to the direct sum if one chooses
σ to be the constant map onto the trivial derivation which maps all of L to zero.
Sometimes the reference to σ is suppressed if its choice is obvious. (Compare this
to the notion of a semi direct product of groups explained in A.4.3)

L ⊕ {0L′} and {0L} ⊕ L′ are still Lie subalgebras of L ⋊ L′, but now only
the first is also an ideal, whereas the latter is an ideal iff σ is trivial. This is
connected to the fact that now only the projection πL′ but not πL is a Lie
homomorphism. Conversely, given a Lie algebra L′′ and two subalgebras L and
L′ of which one, say L, is even an ideal. Given further that (i) L′′ = span{L∪L′}
and (ii) L ∩ L′ = {0} (i.e. L′′ = L ⊕ L′ as vector spaces). Then it is easy to see
that L′′ = L⋊σ L

′, with σX′(Y ) = [X ′, Y ]. This is the analogue for Lie algebras
of the statement made for groups at the end of A.4.3.

2.2.1.4 Solvability L(1) := [L,L] is called the first derived subalgebra of L. It is
an ideal since the Lie bracket of ideals is again an ideal, as we already remarked.
By the same token, any further member of the the derived series of second, third,
etc. derived algebras, defined inductively by L(n) := [L(n−1), L(n−1)], is an ideal.
Now L is called solvable iff L(n) = {0} for some n. Note that this means that
L(n−1) is abelian, so that every solvable Lie algebra L contains a nonzero abelian
ideal, namely the last nonzero algebra in the derived series.

One immediately sees that subalgebras and homomorphic images of solvable
Lie algebras are again solvable. Another very useful observation is the following:
if I ⊂ L is a solvable ideal such that the quotient L/I is solvable, then L itself
must be solvable. Indeed, by hypothesis there exist integers n and m such that
(L/I)(n) = {0} and I(m) = {0}. If π : L→ L/I denotes the canonical projection,
we have π(L(n)) = (L/I)(n) = {0} implying L(n) ⊆ I and hence L(n+m) ⊆ I(m) =
{0}. Finally, it is not hard to see that if I, I ′ are solvable ideals of L, so is
I+I ′ = span{I∪I ′}. To see this, first observe that there is a natural isomorphism
(I + I ′)/I ′ ∼= I/I ∩ I ′. As a homomorphic image of I the right side is solvable,
hence the left side is, and by the result just proven I + I ′ is solvable. This last
result implies that we can uniquely associate a maximal solvable ideal to each
Lie algebra, called the radical R(L) of L.

There is a useful condition for L ⊆ gl(V ) to be solvable, known as Cartan’s
criterion for solvability: L is solvable iff trace(XY ) = 0 for all X ∈ L and all
Y ∈ [L,L]. (See [10], 4.3, for a proof).

2.2.1.5 Simplicity and semi-simplicity A Lie algebra L is called simple iff it is
at least two dimensional and has no nontrivial ideals. Simplicity clearly implies
L(1) = [L,L] = L, hence simplicity excludes solvability and, in particular, that
the Lie algebra is abelian. The condition of having dimension at least two, or
equivalently that L(1) 6= {0}, is put to avoid having the (necessarily abelian)
one-dimensional Lie algebra also among the list of simple Lie algebras, which
would be inconvenient for many purposes. L is called semi-simple iff it has no
solvable ideals other than {0}, which is equivalent to R(L) = {0}. It is also
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equivalent to saying that it has no abelian ideals other than {0}, since any
nonzero solvable ideal must contain a nonzero abelian ideal, and any abelian
ideal is trivially solvable. It follows that simplicity implies semi-simplicity, but
not vice versa. We will explain the precise relation below. Note also that the
direct sum L = L′⊕L′′ of two semi-simple Lie algebras L′ and L′′ is again semi-
simple. Indeed, if there existed a non-trivial solvable ideal in L its projections
into L′ and L′′ were again solvable ideals in L′ and L′′ of which at least one
must be non-trivial, in contradiction to the assumed semi-simplicity of L′ and
L′′. Finally we remark that the quotient L/R(L) is semi-simple. To see this,
assume Q ⊂ L/R(L) is a non-zero solvable ideal. Then there exists an ideal
I ⊆ L such that Q = I/R(L). But then I is solvable (since Q and R(L) are
solvable) and properly contains R(L), which contradicts maximality of R(L).

It is a non-trivial fact that for any Lie algebra L one can find a subal-
gebra M which is complementary and transversal to the radical R(L), i.e.,
span{R(L) ∪ M} = L and R(L) ∩ M = {0} (see e.g. [16] for a proof). Such
an M is called a Levi subalgebra. M is isomorphic to L/R(L) and must, as we
have just seen, consequently be semi-simple. Furthermore, from 2.2.1.3 we know
that the two stated conditions imply that L is a semi-direct sum of the ideal
R(L) with M . Hence we see that any Lie algebra is the semi-direct sum of its
radical, the maximal solvable ideal, and a semi-simple subalgebra. This is called
a Levi decomposition.

2.2.1.6 Representations Let V be a vector space and L a Lie algebra over the
common number field F. A Lie homomorphism L → gl(V ) is called a repre-
sentation of L on V . The representation is called faithful iff the representation
homomorphism is injective. Hence any representation of a simple Lie algebra is
either trivial, i.e., maps everything to the zero endomorphism, or faithful. Of
particular importance is the so-called adjoint representation ad : L → gl(L) of
L on itself, given by

X → adX , adX(Y ) := [X,Y ] . (2.29)

Indeed, (2.25) is equivalent to adX ◦adY −adY ◦adX = ad[X,Y ] and hence implies
the Lie homomorphism property. The kernel of ad is just the center Z(L). The
image adL of ad is a Lie subalgebra of gl(L) called the adjoint Lie algebra, which
is clearly isomorphic to L/Z(L). With respect to a basis {ea} the matrix of adX
(where X = Xaea) is given by [adX ]ab = XcCacb.

2.2.1.7 The Killing form Using ad one defines a symmetric bilinear form on
L, called the Killing form, given by

κ(X,Y ) := trace(adX ◦ adY ) . (2.30)

Its components with respect to a basis are

κab := κ(ea, eb) = CnamC
m
bn . (2.31)
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Besides being bilinear and symmetric, the Killing form also possesses an impor-
tant property sometimes referred to as associativity, which reads

κ([X,Y ], Z) = κ(X, [Y, Z]) . (2.32)

It simply follows from the identity trace([f, g]h) = trace(f [g, h]) for any three
endomorphisms f, g, h of a finite dimensional vector space, applied to f = adX ,
g = adY , h = adZ , and the fact that ad is a Lie homomorphism. An interesting
consequence is that the 3rd rank tensor Cabc := κadC

d
bc is totally antisymmetric.

The null space of κ, which is an invariant of L, is defined by N(L) := {X ∈
L | κ(X,Y ) = 0 ∀Y ∈ L}. It follows immediately from (2.32) that N(L) is an
ideal. In fact, (2.32) implies that if I is an ideal and I⊥ := {X ∈ L | κ(X,Y ) =
0 ∀Y ∈ I}, its κ-orthogonal complement, then I⊥ is also an ideal. This follows
from κ([I⊥, L], I) = κ(I⊥, [L, I]) = κ(I⊥, I) = {0}.

We note that the Killing form κI of an ideal I ⊂ L is just the restriction of the
Killing form κ of L to I. This is generally false for Lie subalgebras which are not
ideals. It follows from the general fact that for any f ∈ End(V ), whose image lies
in the subspace W ⊂ V , we have trace(f) = trace(f |W ), where the trace on the
right hand side taken in W . We apply this to adX ◦ adY ∈ End(L), whose image
lies in I for X ∈ I, and get κ(X,Y ) = trace(adX ◦adX) = trace(adX |I ◦adY |I) =
κI(X,Y ), for all X,Y ∈ I.

We can now give useful criteria for solvability and semi-simplicity of L in
terms of κ. We start with solvability and consider the adjoint map ad : L →
adL ⊆ gl(L). Since adL ∼= L/Z(L) and Z(L) is an abelian (hence solvable) ideal,
we infer from 2.2.1.4 that L is solvable iff adL is solvable. Cartan’s criterion for
solvability applied to the latter shows that adL is solvable iff 0 = trace(adX ◦
ad[Y,Z]) = κ(X, [Y, Z]) for all X,Y, Z ∈ L. Hence L is solvable iff κ(X, [Y, Z]) = 0
for all X,Y, Z ∈ L, i.e., iff L(1) ⊆ L⊥ = N(L).

Next we turn to Cartan’s criterion for semi-simplicity: A Lie algebra L is
semi-simple iff its Killing form is non degenerate, that is, iff N(L) = {0}. In other
words, the null space N(L) is zero iff the radical R(L) is zero. To show this, let us
first suppose that L is not semi-simple. Then it contains an abelian ideal I and for
X ∈ I and Y ∈ L we have κ(X,Y ) = trace(adX ◦ adY ) = trace(adX |I ◦ adY |I) =
0, since adX |I ≡ 0 due to I being abelian. Hence I ⊆ N(L) 6= {0}. The converse
follows from the trivial remark that κ(X, [Y, Z]) = 0 for each X,Y, Z ∈ N(L),
which immediately implies solvability of the ideal N(L) by the criterion just
proven, and hence N(L) ⊆ R(L). This is still a totally general result. Assuming
semi-simplicity now implies N(L) = {0}

Finally we mention the notion of compactness as applied to Lie algebras,
where we limit attention to the semisimple case. A semisimple Lie algebra L
is called compact iff its Killing form is negative definite. The reason for this
expression lies in the fact, that Lie groups whose Lie algebras (see Sect. 2.3 below)
are semisimple and compact are always compact, now in the proper topological
sense. We refer to chapter II, § 6 of [9] for a detailed discussion.
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2.2.1.8 Unique decomposition of semi-simple algebras into simple ones Let L
be semi-simple and suppose it contains an ideal I ⊂ L. Then κ([I⊥, I], L) =
κ(I⊥, [I, L]) = κ(I⊥, I) = {0} and hence [I⊥, I] = {0} since κ is non degenerate.
This implies that I ∩ I⊥ ⊂ L is an abelian ideal and hence that I ∩ I⊥ = {0}
since L is semi-simple. Therefore L = I⊕I⊥. Suppose I also contains a nontrivial
ideal I ′. Then, in the same fashion, I = I ′ ⊕ I ′

⊥
, where I ′ and I ′

⊥
are ideals of

I. But being contained in I they have zero Lie brackets with I⊥ and hence are
also ideals of L. This means that we can continue breaking up ideals into direct
sums of κ-orthogonal subideals of L. This procedure stops after a finite number
of steps when all subideals so obtained are simple. Hence the semi-simple Lie
algebra L is the direct sum of a finite number (say n) of κ-orthogonal simple
ideals:

L =

n⊕

i=1

Ii . (2.33)

Moreover, this decomposition is unique. To see this, assume I ⊆ L is a simple
ideal. We show that it must be one of the Ii. For this we note that [I, L] ⊆ I must
also be an ideal of L and hence of I. It is nonzero since otherwise I were a nonzero
abelian ideal of L, in contradiction to semi-simplicity. Simplicity of I now implies
[I, L] = I. On the other hand, (2.33) gives I = [I, L] = [I, I1] ⊕ · · · ⊕ [I, In] and
again simplicity of I implies that all but one summand, say [I, Ii], are zero. Then
I = [I, Ii], implying I ⊂ Ii and finally I = Ii by simplicity of Ii.

Introducing (2.33) in [L,L] and using [Ii, Ii] = Ii and [Ii, Ij ] = {0} for i 6= j
one shows that [L,L] = L for any semi-simple L. This relation is expressed in
words by saying that L is perfect. Note that we have also shown that any ideal
I ⊂ L is given by some partial sum of (2.33). Hence I and L/I are also semi-
simple. This means that ideals and homomorphic images of semi-simple algebras
are again semi-simple.

2.2.1.9 Complexification, realification, and reals forms In the structure and
representation theory it is mandatory to clearly distinguish between real and
complex Lie algebras. There are various ways to connect these, which play a
vital rôle in representation theory and which we therefore wish to explain in some
detail. The following five points exactly parallel the corresponding discussion for
vector spaces given in A.5.3).

1. A complex structure of a real Lie algebraL is a complex structure J : L→ L
of the underlying real vector space (cf. A.5.3) which satisfies J([X,Y ]) =
[J(X), Y ] = [X, J(Y )] for all X,Y ∈ L. L can then be considered as
complex Lie algebra, LC, by defining complex scalar multiplication through
(a+ib)X := aX+bJ(X). Note that as sets and abelian groups (with respect
to +) L and LC coincide, but that dimC LC = 1

2 dimR L.

2. A real structure of a complex Lie algebra L is a real structure C : L→ L of
the underlying complex vector space (cf. A.5.3) which satisfies C([X,Y ]) =
[C(X), C(Y )] for all X,Y ∈ L. The set of ‘real vectors’, LR := {X ∈ L |
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C(X) = X}, then forms a real Lie algebra when scalar multiplication is
restricted to R.

3. The complexification, LC, of a real Lie algebra L is obtained by the com-
plexification (C ⊗ L)C of the underlying vector space (cf.A.5.3), made into
a complex Lie algebra by defining the Lie bracket through [z1 ⊗X1, z2 ⊗
X2] := z1z2 ⊗ [X1, X2] and linear extension. Its complex dimension equals
the real dimension of L. LC inherits a natural real structure given by
C(z ⊗ X) := z ⊗ X and antilinear extension, whose real vectors are just
those in 1 ⊗ L ⊂ LC; hence (LC)R = 1 ⊗ L ∼= L. Moreover, if originally L is
the set of real elements in a complex Lie algebra L′ with real structure C,
i.e. L = L′

R
, then LC = (L′

R
)C ∼= L′.

4. The realification, LR, of a complex Lie algebra L is the realification of
the underlying vector space (cf.A.5.3), made into a real Lie algebra by
simply restricting the original C-linear Lie bracket to an R-linear one. The
real dimension of LR is twice the complex dimension of L. Clearly LR has
a natural complex structure given by J(X) := iX , so that (LR)C ≡ L.
Finally, if L arose via a complex structure on some real Lie algebra L′, i.e.
L = L′

C
, then LR = (L′

C
)R ≡ L′.

5. Note that in the literature C⊗L is sometimes referred to as the complexi-
fication of L, but that is an abuse of language: If L is real, then the symbol
C ⊗ L makes sense only if C is considered as two-dimensional real vector
space and the tensor product is that of real vector spaces. Hence C ⊗ L is
a priori a real vector space. The complexification LC is only obtained after
we use the natural complex structure of C⊗L to turn it into the complex
vector space (C ⊗ L)C. Rather, the real vector space C ⊗ L is identical to
LCR := (LC)R, which we call the complex double of L.

Let us now discuss how the processes of complexification and realification
preserve semi-simplicity and simplicity. We start with complexification first.

It is easy to see that LC is semi-simple iff L is. Indeed, this follows immediately
from κC(1 ⊗ X, 1 ⊗ y) = κ(X,Y ), where κC and κ are the Killing forms of LC

and L respectively. Hence κC is non-degenerate iff κ is. Moreover, if I is a non-
trivial ideal in L then C ⊗ I is clearly non-trivial ideal in LC. Hence simplicity
of LC implies that of L. But, in general, the converse fails, like in the relevant
example of the Lie algebra of the Lorentz group, which is simple, but whose
complexification is not simple. At first one might think that this cannot happen,
since if I ⊂ LC is a non-trivial ideal then IR := I ∩ L is an ideal in L. However,
the latter may turn out to be trivial.

As regards realification, it is again true that LR is semi-simple iff L is. To
show this, we calculate the Killing form κR of LR. Let A + iB be the matrix of
the map adX ◦ adY with respect to a basis {e1, · · · , en} of L, where A and B are
real. Choosing {e1, · · · , en, J(e1), · · · , J(en)} as basis for LR, and observing that
J commutes with any adX and hence with adX ◦ adY , we see that the matrix of
the latter map (now considered as R-linear map of LR) has the form
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(
A −B
B A

)
. (2.34)

This implies κR(X,Y ) = 2Re(κ(X,Y )) and hence that κR is non-degenerate iff κ
is.

Moreover, in contrast to the case of complexification, it is true that the re-
alification LR is simple iff L is. First, if I is a non-trivial ideal in L then IR is
a non-trivial ideal in LR. Hence simplicity of LR implies that of L. Conversly,
suppose L is simple. Then L is clearly semi-simple. As just shown this implies
that LR is also semi-simple. Hence it uniquely decomposes into a direct sum of
simple ideals Ii (cf. formula (2.33)). Pick some ideal, Ik say, and consider its
image I ′k := J(Ik) under the complex structure. It is easy to verify that I ′k is
also an ideal of LR (to prove that I ′k is a Lie subalgebra you already need to use
that Ik is an ideal). Now, for X,Y ∈ Ik, [J(X), J(Y )] = J([X, J(Y )]) = −[X,Y ]
shows that [I ′k, I

′
k] = [Ik, Ik] = Ik, (since Ik is perfect, cf. 2.2.1.8) and hence that

Ik ⊆ I ′k. But I ′k is an isomorphic image (via J) of Ik, so that I ′k = J(Ik) = Ik.
This shows that all ideals Ii in the decomposition of LR are invariant under the
complex structure J and that consequently the complex Lie algebra L decom-
poses into the ideals (Ii)C. But L was assumed to be simple, hence there can be
only one summand, and consequently LR is also simple, as was to be shown.

Given a real Lie algebra L we can first complexify and then realify it to
obtain another real Lie algebra, LCR, of twice the dimension of L. Clearly this
is just C ⊗ L, where C is considered as 2-dimensional real vector space and the
tensor product is over R. The natural real structure C of LC now becomes a
linear involution on LCR which still satisfies C[X,Y ] = [CX,CY ]. The maps
P± := 1

2 (id ± C) are orthogonal projection operators (i.e. P± ◦ P± = P± and
P± ◦ P∓ = 0) which satisfy P± ◦ C = C ◦ P± = ±P±. Their images are the
eigenspaces of C corresponding to the eigenvalues ±1. A simple computations
shows

[P±X,Y ] = P±[X,Y ] ± [CX,P−Y ]

= P∓[X,Y ] ± [CX,P+Y ] ,
(2.35)

which respectively imply

[P±X,P+Y ] = P±[X,Y ] ,

[P±X,P−Y ] = P∓[X,Y ] .
(2.36)

Let us set L± := Im(P±) ⊂ LCR, so that LCR = L+⊕L− as vector spaces (not Lie
algebras). Then (2.36) is equivalent to the following structure of Lie brackets

[L+, L+] ⊆ L+ , [L+, L−] ⊆ L− , [L−, L−] ⊆ L+ . (2.37)

Hence L+ is a subalgebra isomorphic to L but not an ideal, wheras L− is
only a linear subspace (as such isomorphic to L) but not a subalgebra. This
is precisely the structure of the Lie algebra of the Lorentz group, where L+



LIE ALGEBRAS 31

corresponds to spatial rotations and L− to boosts. The underlying mathemat-
ical explanation being that the Lie algebra of the Lorentz group arises from
that of the group of spatial rotations by the procedure discussed here, i.e. by
first taking the complexification and then the realification. Let us be slightly
more concrete at this point: denote by {e1, · · · , en} a basis of L, such that
[ea, eb] = Ccabec, and by {e(+)

1 , · · · , e(+)
n , e(−)

1 , · · · , e(−)
n } the associated basis of LCR,

given by e(+)

k := 1 ⊗ ek and e(−)

k := i⊗ ek, which is adapted to the vector-space
decomposition LCR = L+ ⊕ L−, so that {e(+)

a } is a basis of L+ and {e(−)
a } is a

basis of L−. Then (2.36) leads to

[e(+)

a , e(+)

b ] = Ccab e
(+)

c , [e(+)

a , e(−)

b ] = Ccab e
(−)

c , [e(−)

a , e(−)

b ] = −Ccab e(+)

c , (2.38)

which concretises the structure (2.37). Since the construction described here is
of some importance, we give it a special name:

Definition 2.4 Let L be a real Lie algebra. The real Lie algebra LCR is called
the complex double of L.

The complex double of a semi-simple Lie algebra is again semi simple, since both
processes of complexification and realification preserve semi simplicity. This is
not necessarily the case for simplicity, which, as discussed above, need not be
preserved by complexification. Both cases arise. For example, suppose the real Lie
algebra L has a complex structure, so that L = (LC)

R. Then LC = (LC)
RC ∼= LC⊕LC

as shown below; cf. equation (2.40). Hence LCR ∼= L⊕L (as Lie algebras), so that
the complex double of a Lie algebra with complex structure is never simple. On
the other hand, the Lie algebra of the Lorentz group, which is simple, is the
complex double of the Lie algebra of the group of spatial rotations.

Next we consider the composition of complexification and realification in the
reversed order. For this let L now be a complex Lie algebra, which we first
realify and then complexify to obtain LRC. The natural complex structure J
of LR becomes a C-linear map in LRC, still satisfying J ◦ J = −id, given by
J(z⊗X) := z⊗J(X) for all X ∈ LR and linear extension. Then P± := 1

2 (id∓ iJ)
are two orthogonal projection operators (i.e. P± ◦ P± = P± and P± ◦ P∓ = 0)
on LRC which satisfy P± ◦ J = J ◦P± = ±iP±. Their images are the eigenspaces
of J corresponding to the eigenvalues ±i. From J [X,Y ] = [JX, Y ] = [X, JY ] it
immediately follows that

[P±X,Y ] = [X,P±Y ] = P±[X,Y ] , (2.39)

showing that L± := Im(P±) ⊂ LRC are both ideals, each isomorphic to L; hence
we have the direct sum decomposition (now as Lie algebras, not just vector
spaces):

LRC = L+ ⊕ L− , L±
∼= L . (2.40)

Let us also state this more concretely in terms of an adapted basis: Denote by
{e1, · · · , en} a basis of L, such that [ea, eb] = Ccabec. Then {e1, · · · en, J(e1), · · · , J(en)}
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is a basis of LR. An adapted basis for LRC is given by {e(+)

1 , · · · , e(+)
n , e(−)

1 , · · · , e(−)
n },

where
e(±)

k := 1
2 (1 ⊗ ek ∓ i⊗ J(ek)) . (2.41)

Here ‘adapted’ means that the basis vectors are eigenvectors of J : J(e(+)

k ) =
±i e(+)

k so that span{e(±)

1 , · · · , e(±)
n } = Im(P±). An easy calculation then gives

the concretisation of (2.40):

[e(+)

a , e(+)

b ] = Ccab e
(+)

c , [e(+)

a , e(−)

b ] = 0 , [e(−)

a , e(−)

b ] = Ccab e
(−)

c . (2.42)

Note also that LRC, being the complexification of something (LR) real, has a
natural real structure C, given by C(z ⊗ X) := z ⊗ X . With respect to C
the basis {e1, · · · en, J(e1), · · · , J(en)} is real and {e(+)

1 , · · · , e(+)
n } the complex

conjugate (image under C) of {e(−)

1 , · · · , e(−)
n }. Hence L+ and L− are complex

conjugate to each other. This can, of course, also be seen in a basis independent
fashion. Indeed, the antilinear map C clearly commutes with J , which implies
that C ◦ P± = P∓ ◦ C.

Finally we turn to the notion of real forms. Let L be a complex Lie algebra.
Roughly speaking, a real form of L is a real Lie algebra whose complexification
is (isomorphic to) L. More precisely, a real form L′ of L is a subalgebra L′ ⊂ LR

such that, as vector spaces, LR = L′ ⊕ J(L′). In general, a complex Lie algebra
will have many, mutually non-isomorphic real forms. The coordinate description
of this fact is as follows: Let L′ and L′′ be two real forms of L and let {e′a}
and {e′′a} be bases of L′ and L′′ with associated structure constants C′c

ab and
C′′c
ab respectively. That L′ and L′′ are not isomorphic (as real Lie algebras) is

equivalent to saying that there are no invertible real matrices {Aab} such that

C′′c
ab = Acl C

′l
mnA

−1m
a A

−1n
b . (2.43)

However, that they are both reals forms of the same complex Lie algebra L is
equivalent to the statement that (2.43) holds for some complex matrix {Aab}.
Note that the structure constants C′c

ab and C′′c
ab are real.

2.2.1.10 The universal enveloping algebra Let L be a Lie algebra over F and
TL the tensor algebra of the vector space L (cf. A.6.4). Let IS be the two sided
ideal in TL generated by the set S := {X ⊗Y −Y ⊗X − [X,Y ] | X,Y ∈ L} (cf.
A.6.3). The quotient Env(L) := TL/IS is an associative algebra over F and is
called the universal enveloping algebra of the Lie algebra L. There is a natural
embedding j : L→ Env(L) given by j := π ◦ i, where i is the natural embedding
of L in TL and and π : TL→ Env(L) is the natural projection. By construction
one has j([X,Y ]) = j(X)j(Y ) − j(Y )j(X). The centre (cf. A.6.3) of Env(L) is
called the Casimir algebra whose elements are called Casimir elements.

The important property of Env(L) is that a Lie-algebra representation ρ :
L → gl(V ) induces a unique associative-algebra representation R : Env(L) →
End(V ) such that ρ = R ◦ i. To see this go to the diagram (A.57) and apply it
to the case at hand where V = L, f = ρ, and A = End(V ). This gives us an
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associative-algebra representation ϕ of TL in End(V ) which satisfies ϕ ◦ i = ρ.
But ρ is a representation of a Lie algebra, not just a linear map of the underlying
vector space. Hence ϕ satisfies ϕ(X ⊗ Y − Y ⊗ X − [X,Y ]) = ρ(X)ρ(Y ) −
ρ(Y )ρ(X)−ρ([X,Y ]) = 0, which implies that IS lies in the kernel of ϕ. Therefore
there is a homomorphism R : Env(L) → End(V ) so that ϕ = R ◦ π and hence
ρ = ϕ ◦ i = D ◦ j. Uniqueness of ϕ (for given ρ) implies the uniqueness of R.

2.3 Lie algebras of Lie groups

We wish to associate a real (i.e. over F = R) Lie algebra to a Lie group G ⊆
GL(n,F). For this we consider a differentiable curve A(s) ∈ G, s ∈ I ⊆ R and
0 ∈ I, such that A(0) = E. Its derivative at s = 0, denoted by Ȧ := d

ds

∣∣
s=0

A(s),
is called the ‘tangent vector’ of A at E. It is a matrix in M(n,F). The set of
possible tangent vectors of G at E is called the ‘tangent space’ of G at E. We
show that this tangent space is a Lie algebra over R. Linearity is easy to see, since
if X and Y are tangent vectors to A(s) and B(s) at E, X + Y and aX (a ∈ R)
are tangent vectors at E to the curves C(s) := A(s)B(s) and C̃(s) := A(as)
respectively. It remains to show that this real linear subspace of M(n,F) is a Lie
algebra when the Lie bracket is defined to be the commutator. To do this, let X
and Y again be tangent to A(s) and B(s) at E and define the new curve

D(s) :=

{
A(τ(s))B(τ(s))A−1(τ(s))B−1(τ(s)) for s ≥ 0,

B(τ(s))A(τ(s))B−1(τ(s))A−1(τ(s)) for s ≤ 0,
(2.44)

with reparametrization τ(s) := sign(s)
√

|s| and inverse s(τ) = sign(τ)τ2. We

have D(0) = E and claim that D is differentiable at s = 0 with Ḋ = [X,Y ]. To
see this, we first restrict to s ≥ 0 and calculate the right derivative:

Ḋ = lim
s→0

D(s) − E

s
= lim

s→0

{
[A(τ(s)), B(τ(s))]A−1(τ(s))B−1(τ(s))

s

}

= lim
τ→0

{[
A(τ) − E

τ
,
B(τ) − E

τ

]
A−1(τ)B−1(τ)

}

= [X,Y ] , (2.45)

where in the last step we used that the limit of a product is the product of the
limits. For s ≤ 0 the calculation works analogously leading to the same result
for the left derivative. This proves the claim.

For G = GL(n,F), any matrix X ∈ M(n,F) can be the tangent vector to a
curve in E; take e.g. A(s) = exp(sX), where exp of a matrix is defined through
its Taylor series. Hence the Lie algebra of GL(n,F) is given by M(n,F), considered
as real vector space. It has real dimension 2n2 for F = C and n2 for F = R.

For the other Lie groups mentioned above, their Lie algebras are obtained
by differentiation of the defining condition. For example, let A(s) be a curve in
SL(n,F) such that A(0) = E. The defining condition reads det(A(s)) = 1, which
upon differentiation (at s = 0) leads to trace(Ȧ) = 0. For a curve in O(p, q) the
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defining condition reads A(s)E(p,q)A⊤(s) = E(p,q), whose differentiation leads
to the condition that the matrix E(p,q)Ȧ must be antisymmetric. Since this is
equivalent to E(p,q)ȦE(p,q) = −Ȧ (where E(p,q) squares to the identity) it already
implies that Ȧ is trace free. Hence the Lie algebras of o(p, q) and SO(p, q) coincide.
The same holds for the complex orthogonal groups. For a curve in U(p, q) we
obtain the condition that E(p,q)Ȧ must be antihermitean. This only implies a
purely imaginary trace, so that for SU(p, q) we have the additional contraint
trace(Ȧ) = 0. Finally, for SP(2n,F) we get that Ê(2n)Ȧ is symmetric. Here again
tracelessness is implied. To see this, first note the antisymmetry of Ê(2n) and that
(Ê(2n)) squares to minus the identity; then taking the trace of Ê(2n)XÊ(2n) = X⊤

implies trace(X) = 0. We summarize all this by the following list of Lie algebras,
which we denote by the same letters as the corresponding group, but written in
lower case letters:

gl(n,F) = M(n,F) (2.46)

sl(n,F) = {X ∈ M(n,F) | trace(X) = 0} (2.47)

o(n,C) = {X ∈ M(n,C) | X = −X⊤} (2.48)

so(n,C) = o(n,C) (2.49)

o(p, q) = {X ∈ M(n,R) | E(p,q)X = −(E(p,q)X)⊤} (2.50)

so(p, q) = o(p, q) (2.51)

u(p, q) = {X ∈ M(n,C) | E(p,q)X = −(E(p,q)X)†} (2.52)

su(p, q) = {X ∈ M(n,C) | E(p,q)X = −(E(p,q)X)†, trace(X) = 0} (2.53)

sp(2n,F) = {X ∈ M(n,F) | Ê(2n)X = (Ê(2n)X)⊤} (2.54)

Clearly these Lie algebras can also be characterised in a coordinate indepen-
dent fashion. As an example, let us consider o(p, q). Let V be an n = p + q–
dimensional real vector space with basis {ea} and dual basis {Ea} of V ∗. Let
further ω = ωabE

a ⊗ Eb be a symmetric non-degenerate bilinear form, where
{ωab} = E(p,q). ω defines a isomorphism ω↓ : V → V ∗ (‘index lowering’), as
explained in Sect. A.5.7. We consider the Lie algebra gl(V ) of endomorphisms
of V . The Lie algebra o(p, q) corresponds to the subalgebra of endomorphisms
which satisfy the relation ω(Xv,w) = −ω(v,Xw) for all v, w in V . This can be
written without v, w in terms of maps as follows:

o(p, q) = {X ∈ gl(V ) | ω↓ ◦X = −X⊤ ◦ ω↓} , (2.55)

which is the coordinate-free version of (2.50). Here X⊤ denotes the map trans-
posed to X ; cf. Sect. A.5.5. Analogously, coordinate-free definitions can be given
for all the other Lie algebras listed above.

As already mentioned, all Lie algebras of Lie groups are a priori to be consid-
ered as real Lie algebras. However, those subalgebras of M(n,C) whose defining
relations do not involve a complex conjugation of X have a complex structure
given by multiplication by i. This simply follows from the reality of the matri-
ces E(p,q) and Ê(2n), so that iX satisfies the corresponding relation if X does.
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Hence gl(n,C), sl(n,C), o(n,C), so(n,C), and sp(2n,C) have a natural complex
structure and can therefore also be considered as complex Lie algebras, which
according to our notations in Sect. 2.2.1.9 we denote by a subscript C, like e.g.
gl(n,C)C. But note that this does not make sense for u(p, q) and su(p, q).

Finally we note that the Lie algebra of a direct product G′ = H × G of Lie
groups is just given by the direct sum of the individual Lie algebras:

G′ = H ×G ⇒ g′ = h ⊕ g . (2.56)

This immediately follows from the definition of the direct product of groups
(cf. Sect. A.4.3) and the definition of the Lie algebra of a Lie group, as given
above. Slightly more complicated is the Lie algebra of the semi-direct product
G′ = H ⋊α G, for some α : G→ Aut(H) (cf. Sect. A.4.3), which turns out to be
the semi-direct sum h ⋊σ g (cf. (2.28), where the homomorphism σ : g → Der(h)
derives from α. For the inhomogeneous groups, i.e. semi-direct products with
vector-spaces, this structure is most easily determined directly: Let G ⊆ GL(n,F)
be any of the groups just considered, with Lie algebra g, and IG its inhomogeneous
group as defined in (2.11). The lie algebra of the latter is then given by the set

ig = {(a,X) | a ∈ F
n, X ∈ g} , (2.57)

with Lie bracket being given by

[(a,X) , (b, Y )] = (X · b− Y · a , [X,Y ]) . (2.58)

A convenient way to see this is via the embedding (2.12), which also embeds g

into M(n+ 1,F), so that

(a,X) 7−→
(

0 0⊤

a X

)
. (2.59)

Simple commutation then leads to (2.58). Equation (2.57) is clearly just a special
case of (2.28) for L = Fn (made into a Lie algebra by setting all Lie brackets to
zero), L′ = g ⊆ GL(n,F) and σX(a) := X · a. Note that the endomorphisms of
Fn are derivations of the abelian Lie algebra L made from Fn.

2.3.1 Simplicty

In this subsection we wish to establish simplicity for many of the Lie algebras
listed above. For this we recall that simplicity of a complex Lie algebra implies
simplicity for any of its real forms (cf. 2.2.1.9). We have

Theorem 2.5 The following complex Lie algebras are simple:

1) sl(n,C)C for n ≥ 2,

2) so(n,C)C for n = 3 and n ≥ 5,

3) sp(n,C)C for n ≥ 2.

Proof We shall only prove parts 1) and 2). Part 3) is of less interest to us and
only included for completeness. The proof of 3) works along the very same lines
as those we present now.
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1) We need to distinguish the cases n = 2 and n ≥ 2. For n = 2 a convenient
basis of traceless matrices is given by

X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, (2.60)

whose commutators are

[X+, X−] = H , [H,X±] = ±2X± . (2.61)

Suppose C = x+X
+ + x−X

− + hH is an element of a non-zero ideal
I ⊆ sl(2,C)C. If x± = 0 then H ∈ I then [H,X±] = ±2X± ∈ I; hence
I = sl(2,C)C. If e.g. x− 6= 0 then [X+, [X+, H ]] = −2x−X

+ implies x+ ∈ I
and (2.61) imply X−, H ∈ I. Similarly if x+ 6= 0.
For n ≥ 2 we introduce the n2 matrices Bij , 1 ≤ i, j ≤ n, whose definition
is that the entry of Bij at the intersection of the i-th row and j-th column
is 1 and 0 otherwise, i.e. its ab-component is (Bij)ab = δiaδjb. A basis of
sl(n,C)C is given by the n(n − 1) matrices Bij for i 6= j and the n − 1
matrices Bi := Bii − Bnn for 1 ≤ i ≤ n − 1. The product of two B-
matrices is given by BijBkl = δjkBil and their commutator accordingly. In
what follows, we shall disable the summation convention. Let now again
I ⊆ sl(n,C)C be a non-zero ideal. Suppose C =

∑
ij cijBij ∈ I. We first

assume that C is diagonal, i.e. cij = 0 for i 6= i. Since C is trace free the
diagonal entries cannot all be identical, hence caa 6= cbb for some index pair
a, b where a 6= b. Now, [Bab, C] = (cbb− caa)Bab so that Bab ∈ I. Then, for
any i distinct from a and b (here we need n ≥ 3) we have [Bia, Bab] = Bib so
that Bib ∈ I. Since for any pairwise distinct i, j, b we have [Bib, Bbj ] = Bij ,
these results imply Bij ∈ I for any i 6= j. Now [Bij , Bji] = Bii−Bjj shows
that I contains a basis of sl(2,C)C and hence that I = sl(2,C)C. Next we
turn to the general case where C is not diagonal, so that cab 6= 0 for some
pair of distinct indices a, b. Then, for any i distinct from a and b (here again
we need n ≥ 3), a short calculation gives [Bbi, [Bia, [Bba, C]]] = −cabBba,
so that Bba ∈ I. Now the steps proceed as above, showing again that
I = sl(2,C)C.

2) It is easy to see that so(3,C)C is isomorphic to sl(2,C)C, so that only the
cases sl(n,C)C for n ≥ 5 remain. A basis for sl(n,C)C is given by the
n(n − 1)/2 antisymmetric matrices Kij := Bij − Bji for 1 ≤ i < j ≤ n.
Their commutation relations are

[Kij ,Kkl] = δjkKil + δilKjk − δikKjl − δjlKik . (2.62)

Let C =
∑
i<j cijKij be an element in a non-zero ideal I ⊆ sl(n,C)C so that

cab 6= 0 for some pair of distinct indices a, b. Choose indices i, j, k such that
a, b, i, j, k are pairwise distict (here we use n ≥ 5). A slightly longer but
straightforward calculation using (2.62) gives [Kik, [Kji, [Kbi, [Kak, C]]]] =
cabKij , so that Kij ∈ I for all i, j distinct from a and b. Then [Kij ,Kja] =
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Kia, [Kij ,Kjb] = Kib and [Kia,Kib] = −Kab show that in fact all Kij are
in I and hence that I = so(n,C)C 2

Clearly sl(n,R)C ∼= sl(n,C)C. It is also easy to see, and will be shown explicitly
in Sect. 3.6.4, that so(p, q)C ∼= so(n,C)C and su(p, q)C ∼= sl(n,C)C; cf. (3.85) and
(3.88) respectively. Hence we have

Corollary 2.6 The following families of real Lie algebras are simple

1) sl(n,R) for n ≥ 2,

2) so(p, q) for p+ q = 3 or p+ q ≥ 5,

3) su(p, q) for p+ q ≥ 2.

The exceptional cases p + q = 4 are interesiting in their own right and also
physically, since p = 1, q = 3 corresponds to the Lorentz group in 3+1 space-
time dimensions. Let us therefore look at these examples in more detail. We
shall use the coordinate free definition (2.55) for o(p, q) = so(p, q). V is now a
four-dimensional real vector space with basis {ea} and dual basis {Ea} of V ∗,
where the latin indices range over {0, 1, 2, 3}. Then ω = ωabE

a ⊗ Eb, where
{ωab} = E(p,q) (cf. (2.3)).

In what follows we identify End(V ) with V ⊗V ∗ by their natural isomorphism.
Writing X = Xa

bea ⊗ Eb, (2.55) is equivalent to Xab = −Xba, where Xab :=
ωacX

c
b. Therefore a basis for so(p, q) is given by the ten elements

Mab = ea ⊗ Eb − eb ⊗ Ea , (2.63)

where Ea := ω↓(ea) = ωabE
b. Their Lie brackets are

[Mab,Mcd] = ωadMbc + ωbcMad − ωacMbd − ωbdMac . (2.64)

We define an isomorphism ⋆ of so(p, q) by

⋆Mab := 1
2εabcd ω

ciωdj Mij , (2.65)

where εabcd are the components of the totally antisymmetric tensor E0 ∧ E1 ∧
E2 ∧E3 and where {ωab} is the inverse matrix of {ωab}. Note that, up to signs,
the map ⋆ merely permutes the basis elements Mab. Note also that the exis-
tence of this isomorphism is particular to p + q = 4. It is easy to see that
⋆ ◦ ⋆ = (−1)q id|so(p,q), so that for odd q there are no real eigenvalues of ⋆. For
even q, however, the eigenvalues are ±1. The projectors onto the corresponding
eigenspaces are P± = 1

2 (id±⋆). Moreover, a straightforward computation8 shows

⋆[⋆A,B] = ⋆[A, ⋆B] = (−1)q [A,B] , (2.66)

or equivalently

[⋆A,B] = [A, ⋆B] = ⋆[A,B] , (2.67)

8Using εabcdεijkl = (−1)q 4! δi
[a

δ
j
b
δk
c δl

d]
.
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for all A,B ∈ so(p, q). This implies that the projectors onto the eigenspaces of
⋆, P± = 1

2 (id ± ⋆), also satisfy

[P±A,B] = [A,P±B] = P±[A,B] , (2.68)

which shows that, for even q, the Lie algebra so(p, q) is the direct sum of two
ideals, given by the ranges of P±. These ranges are isomorphic to so(3) for
q = 0, 4 and isomorphic to so(1, 2) = so(2, 1) for q = 2. To see this, first note
that (2.64) immediately implies that span{Mµν} is a 3-dimensional subalgebra
of so(p, q), where greek indices range over {1, 2, 3}. This subalgebra has exactly
the characterisation (2.55) with ω↓ restricted to span{eµ}, which is just the
definition of so(3) if q = 0 or q = 4 and of so(1, 2) if q = 2. These subalgebras
are isomorphic to the ranges of P±. The isomorphisms are simply given by

Mαβ →Mab =





Mµν for a = µ and b = ν,

±ε0µνλωναωλβMαβ for a = 0 and b = µ,

±εµ0νλω
ναωλβMαβ for a = µ and b = 0.

(2.69)

where the upper (+) sign is for the range of P+ and the lower (-) sign for the
range of P−. Note that this simply uses the map ⋆ (2.65) to express the three
elements M0µ = −Mµ0 through the three Mµν = −Mνµ so as to produce the
required eigenvectors to ⋆. Hence we have shown that

so(4) ∼= so(3) ⊕ so(3) , (2.70)

so(2, 2) ∼= so(1, 2) ⊕ so(1, 2) . (2.71)

implying, in particular, that so(4) and so(2, 2) are semi-simple (since the sum-
mands on the right-hand side are semi-simple by Corrolary2.6) but not simple.

Finally there remains only the physically most relevant case p = 1, q = 3 (or,
equivalently, p = 3, q = 1). We set

Rα := 1
2εαβγMβγ , Bα := Mα0 , (2.72)

where εαβγ are the components of E1 ∧ E2 ∧ E3. In terms of Rα, Bα (2.64) is
equivalent to

[Rα, Rβ ] = εαβγRγ , [Rα, Bβ] = εαβγBγ , [Bα, Bβ ] = −εαβγRγ . (2.73)

Clearly, the Lie algebra span{R1, R2, R3} is isomorphic to so(3). Comparison of
(2.73) and (2.38) shows that

so(3)CR ∼= so(1, 3) . (2.74)

Finally we note that

so(1, 2) ∼= sl(2,R) . (2.75)
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as one immediately checks by first noting that for p = 1, q = 2 (2.64) boils down
to (the index set is now {0, 1, 2})

[M12,M01] = M02 , [M12,M02] = −M01 , [M01,M02] = −M12 . (2.76)

Setting X± := M01 ±M12 and H := 2M02 this shows to be equivalent to (2.61),
thereby proving (2.75). Since we obviously have sl(2,R)CR ∼= sl(2,C), (2.75) and
(2.74) imply

sl(2,C) ∼= so(1, 2)CR ∼= so(3)CR ∼= so(1, 3) . (2.77)

In view of Theorem2.5 this also shows simplicity of so(1, 3).

2.3.2 Homomorphisms

Let φ : G → G′ be a differentiable homomorphism of Lie groups and A(s) be a
curve with A(0) = E and Ȧ = X . We denote the derivative of φ at E by φ̇.9

For the mapped curve A′ := φ ◦A in G′ we have A′(0) = E′ (identity matrix in
G′) and Ȧ′ = φ̇(X) by the chain rule. Mapping the curve D(s) defined in (2.44)
leads to the analogously defined curve in terms of A′ := φ ◦ A and B′ := φ ◦ B
whose tangent at E′ can be calculated just as in (2.45). This shows that

d

ds

∣∣∣
s=0

(φ ◦D)(s) = φ̇([X,Y ]) = [φ̇(X), φ̇(Y )] , (2.78)

which states that φ̇ is a Lie algebra homomorphism.

2.3.3 The exponential map

By exp : M(n,F) → M(n,F) we denote the so-called exponential map, which is
defined by its usual Taylor series, which converges absolutely at any X ∈ M(n,F).
If X lies in the Lie algebra g of G ⊆ GL(n,F) then exp(X) lies in ∈ G. For
the general and special linear groups this follows immediately from the general
formula det(exp(X)) = exp(trace(X)). But it is also easy to check directly for
the other groups. For example, for X ∈ u(p, q), we have

exp(X)E(p,q)[exp(X)]† = exp(X) exp(E(p,q)X†E(p,q))E(p,q)

=E(p,q) ,
(2.79)

where in the second step we used E(p,q) = (E(p,q))−1 and in the last step
E(p,q)X†E(p,q) = −X , which is equivalent to the defining relation in (2.52) due
to the hermiticity of E(p,q). Hence we have shown that exp(X) fulfills the defining
relation of U(p, q) if X satisfies those of u(p, q). In a similar fashion, this result
extends to all other Lie groups mentioned before.

We note some further properties of exp : g → G: First we note that exp is
infinitely differentiable (analytic, in fact) and that its first derivative at 0 ∈ g,

9Usually the differential of the map φ is denoted by φ∗ (or dφ); then φ̇ := φ∗(E). Since we
shall only need the differential evaluated at E, and since no confusion with general derivatives
of curves (also denoted by an overdot) should arise, we decided for this convenient shorthand.
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exp∗(0) : g → g, is the identity map. Hence 0 ∈ g is a regular point and the
inverse-function-theorem implies that there exist neighbourhoods U of 0 ∈ g

and V of E ∈ G such that exp : U → V is a diffeomorphism. Globally such
a diffeomorphism cannot exist in general. Obviously exp cannot be injective in
general. Consider e.g. the group U(1), which is just the circle of complex numbers
of unit modulus, and its Lie algebra, u(1) ∼= iR, the line of purely imaginary
numbers. Under exp this line is clearly wound infinitely many times around the
circle.

Surjectivity also fails in general. It trivially fails for all those elements of
the group which are not in the identity component (compare A.4.6), since any
exp(X) is connected to the identity by the arc t 7→ exp(tX). But exp may also
fail to cover all of the identity component. This happens for example for the
group SL(2,C), which is relevant in special relativity. To see this, consider the
following element

A =

(
−1 a
0 −1

)
where 0 6= a ∈ C , (2.80)

which is connected to the identity by the arc

A(t) =

(
exp(tπi) ta

0 exp(−tπi)

)
. (2.81)

Assuming exp(X) = A with X ∈ sl(2,C) it follows that the eigenvalues of X
must be ±λ (since X is trace free) and satisfy exp(λ) = −1 (since −1 is the
double eigenvalue of A). In particular, X has two different eigenvalues and is
therefore diagonalizable by some T ∈ GL(2,C). Writing D = diag(λ,−λ) we
have exp(X) = T exp(D)T−1 = Tdiag(−1,−1)T−1 = −E 6= A, a contradiction.
This shows that no element of the form (2.80) lies in the image of the exponential
map for SL(2,C).

However, its is true for any Lie group G that the elements in the image of exp
generate the identity component G0, meaning that any g ∈ G0 can be written as
a finite product of the form

g = exp(X1) exp(X2) · · · exp(Xn) . (2.82)

To see this we remark that elements of the form (2.82) clearly constitute a
subgroup, G′, which is contained in G0 since replacing the Xi by tXi gives an
arc connecting g to the identity. G′ certainly contains a whole neighbourhood,
V , of the identity since such a V is already contained in the image of exp, as
shown above. Hence also gV ⊂ G′ for g ∈ G′. But gV is a neighbourhood of g
so that G′ is open. Since any open subgroup of a topological group is also closed
(cf. A.4.6) and since G′ ⊆ G0 with G0 connected we must have G′ = G0 (cf.
A.3.5). We remark that the argument just given in fact generally shows that any
open neighbourhood of the identity element in a topological group generates the
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identity component, that is, any element in the identity component is a finite
product of elements from the neighbourhood.

Very useful for the study of Lie groups is to consider their one-parameter
subgroups. These are homomorphisms A : R → G, with R considered as additive
group, so that A(t + t′) = A(t) · A(t′) for all t, t′ ∈ R. The point we wish to
make here is that A is uniquely determined by X = Ȧ and, in fact, necessarily
given by A(t) = exp(tX) (which is obviously a one-parameter subgroup). To see
this we first take d

dt′ |t′=0 of the equation expressing the homomorphism property

and get Ȧ(t) = A(t) ·X . Then we consider the curve C(t) := A(t) exp(−tX) for
which C(0) = E. Differentiation gives Ċ(t) = (Ȧ(t) − A(t) · X) exp(−tX) = 0
and therefore C(t) ≡ E, which proves the claim.

We can now show another important property of the exponential map con-
cerning homomorphisms. For this let φ : G → G′ be a differentiable homomor-
phism of Lie groups. Then A(t) := φ(exp(tX)) is a one parameter subgroup of
G′ with tangent Ȧ = φ̇(X). The result above now implies A(t) = exp(tφ̇(X))
and therefore φ(exp(tX)) = exp(tφ̇(X)). Evaluation at t = 1 gives an equation
valid for all X ∈ g; hence

φ ◦ exp = exp ◦φ̇ . (2.83)

We have seen above (2.3.2) that a homomorphism φ between Lie groups
uniquely determines a homomorphisms φ̇ between the corresponding Lie alge-
bras. What about the converse? Given two Lie groups G,G′ with Lie algebras
g, g′ and an algebra homomorphism f : g → g′. Does a group homomorphism
φ : G → G′ exist such that φ̇ = f? And, given its existence, is it unique? To an-
swer the second (and easier) question first, we combine (2.83) with the fact that
products of the form (2.82) generate the identity component. It immediately fol-
lows that if there exist two group homomorphisms φ1, φ2 for which φ̇1 = φ̇2 = f
one has φ1

∣∣
G0 = φ2

∣∣
G0 , that is, their restrictions to the identity component must

coincide. This implies uniqueness for connected groups, but for groups with more
than one connected component one generally cannot do better than this, since
one may vary the group homomorphisms off the identity component. For exam-
ple, a homomorphism φ1 : O(n) → O(n) may be changed to φ2(g) := det(g)φ1(g)
where still φ̇1 = φ̇2.

Having seen that uniqueness is implied by the connectedness of G we mention
that existence of φ is implied by another, more restrictive requirement on G,
namely its simply-connectedness (cf. A.3.7; note that simply connectedness is
defined to imply connectedness). The proof of the existence part, which is slightly
outside the scope of this book, may be e.g. be found in [17], Thm. 3.27. Hence
we can state the following

Theorem 2.7 Let G and G′ be Lie groups and f : g → g′ a homomorphisms
between their Lie algebras. If G is connected there is at most one homomorphism
φ : G → G′ for which φ̇ = f . Φ exist if G is simply connected.

In particular it follows that two simply connected Lie groups are isomorphic if
their Lie algebras are isomorphic.
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2.4 Universal covering groups

We have seen that every Lie group uniquely determines a Lie algebra. The con-
verse is not quite true. Existence holds, that is, every abstract Lie algebra L is
(isomorphic to) the Lie algebra g of some Lie group G. This by no means trivial
fact follows from the theorem of Ado, already mentioned at the beginning of
section 2.2. But uniqueness may fail: non-isomorphic Lie groups may have iso-
morphic Lie algebras. A physically relevant and often cited example is given by
the Lie groups SO(3) and SU(2). Let us look at this example first before we
present some general and more abstract arguments.

2.4.1 The relation between SU(2) and SO(3)

A general rotation in ordinary three-dimensional space by an angle α about an
axis represented by the unit vector ~n is given by

~x 7→ R(α,~n)~x := ~n(~n · ~x) + (~x − ~n(~n · ~x)) cos(α) + (~n× ~x) sin(α) , (2.84)

which shows that the components of any SO(3) matrix can be written in the
form

Rab = nanb + (δab − nanb) cos(α) − εabcnc sin(α) (2.85)

for some normalized unit vector ~n = (n1, n2, n3). Keeping ~n fixed and taking
the derivative with respect to α at α = 0 leads to the Lie-algebra element
corresponding to an infinitesimal rotation about the ~n axis:

~x 7→ I(~n)~x :=
d

dα

∣∣∣
α=0

R(α,~n)~x = ~n× ~x . (2.86)

Their commutation relations are:

[I(~n), I(~m)] = I(~n× ~m) . (2.87)

Let ~e1 := (1, 0, 0)⊤, ~e2 := (0, 1, 0)⊤, and ~e3 := (0, 0, 1)⊤ be the three standard
basis vectors, (2.87) is equivalent to, writing Ia := I(~ea) etc.:

[Ia, Ib] = εabcIc . (2.88)

The Lie algebra of SU(2) is given by the real vector space of all traceless
anti-hermitean 2 × 2 matrices (cf. (2.53). A basis is e.g. given by {J1, J2, J3},
where

Ja := − i
2σa (2.89)

and the σi denote—as usual—the three Pauli matrices:

σ1 :=

(
0 1
−1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (2.90)

By straightforward calculation one verifies the relations
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σaσb = δabE
(2) + iεabcσc , (2.91)

which imply
trace(σaσb) = 2δab . (2.92)

The commutation relations between the Ja follow from (2.91):

[Ja, Jb] = εabcJc , (2.93)

so that the map so(3) → su(2), given by Ia 7→ Ja plus linear extension, defines
a Lie isomorphisms. However, the groups SO(3) and SU(2) are not isomorphic.
Rather, there is a surjective homomorphism from SU(2) to SO(3) which fails to
be injective since every image has two pre-images. Hence SU(2) is a double cover
of SO(3), and since SU(2) is simply connected it is in fact a the universal cover.

Let us explain this in detail, since this will also be relevant for the Lorentz
group. There is an obvious isomorphism of real vector spaces between R3 and the
set of hermitean traceless elements in M(2,C), which forms a real vector space
which we denote by HT(2,C) for the moment. The isomorphism is given by

τ : R
3 → HT(2,C), ~x 7→ τ(~x) := ~x · ~σ , (2.94)

with inverse following from (2.92)

τ−1 : HT(2,C) → R
3, X 7→ τ−1(X) := 1

2 trace(X~σ), . (2.95)

One readily checks that the square of the euclidean norm obeys

‖ ‖2 = − det ◦τ . (2.96)

The group SU(2) acts linearly (cf. A.4.5) on HT(2,C)) via conjugation:

Ad : SU(2) × HT(2,C) → HT(2,C) ,

(A,X) 7→ AdA(X) := AXA−1 = AXA† .
(2.97)

Hence there is also a linear action of SU(2) on R3, given by

SU(2) × R
3 → R

3, (A, ~x) 7→ π(A)~x := τ−1 ◦ AdA ◦ τ(~x) . (2.98)

Equation (2.96) together with det ◦AdA = det (since det(A) = 1 for all A ∈
SU(2)) now immediately imply that π(A) is norm preserving, so that the map
A 7→ π(A) := τ−1 ◦ AdA ◦ τ is a homomorphism from SU(2) to O(3). We show
that it is in fact a homomorphism onto SO(3).

Matrices in O(3) have determinant equal to either plus or minus one (take
the determinant of the defining equation in (2.50)). Those with determinant +1
are not in the same connected component (cf. A.3.5) as those with determinant
−1. This follows from the continuity of the determinant function and the fact
that its image, which is +1,−1, is disconnected (cf. A.3.5). On the other hand,
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a complex 2 × 2 matrix A is in SU(2) iff A has unit determinant and A† is the
inverse of A. Hence SU(2) can be equivalently characterized by:

SU(2) =

{(
a −b̄
b ā

) ∣∣∣ a, b ∈ C and |a|2 + |b|2 = 1

}
. (2.99)

Decomposing a = x1 + ix2 and b = x3 + ix4, where all xi are real, this shows
that, topologically speaking, SU(2) is homeomorphic (cf. A.3.2) to the unit 3-
sphere, here represented as unit 3-sphere in R

4. In particular, it follows that
SU(2) is connected. Hence the image of the homomorphism π : SU(2) → O(3)
must lie in a single connected component, namely the component which contains
the identity, which is SO(3).

Hence we have a homomorphism

π : SU(2) → SO(3), A 7→ π(A) := τ−1 ◦ AdA ◦ τ . (2.100)

In components this reads, writing Rab for the matrix components of π(A),

Rab = 1
2 trace(σaAσbA

†) , (2.101)

or equivalently (the equivalence being a consequence of (2.92)),

σaRab = AσbA
† . (2.102)

We have not yet shown surjecivity, i.e. that any special orthogonal matrix
Rab can be represented in the form (2.101). This can be easily verified explicitly
by writing down an SU(2) matrix A(α,~n), which, when inserted into the right
hand side of (2.101), results in (2.85). In fact, the matrix A(α,~n) is easy to guess:

it is just the exponential of α~n · ~J . The power-series expansion, which defines
the exponential function, is readily evaluated if one uses the fact that any even
power of ~n · ~σ equals the unit matrix, which in turn follows from (2.91); hence

A(α,~n) := exp
(
− i

2α~n · ~σ
)

= cos
(
α
2

)
− i~n · ~σ sin

(
α
2

)
. (2.103)

A direct computation of the right hand side of (2.102) with A = A(α,~n), where
(2.91) is systematically used to resolve products of Pauli matrices into linear
combinations of the unit matrix and Pauli matrices, shows that Rab is just given
by (2.85).

Finally we show that if π(A) = R, then π−1(R) = ±A. Indeed, according to
(2.102), the relation π(A) = R = π(A′) is equivalent to the statement that A−1A′

commutes with all Pauli matrices and hence with all complex 2×2matrices (since
the Pauli matrices together with the unit matrix span M(2,C)). Hence A−1A′

must be a complex multiple of the identity matrix (the centre of the associative
algebra M(2,C) is generated by the unit matrix). But since A−1A′ ∈ SU(2) we
must, in fact, have A−1A′ = ±1, which proves the assertion. We summarise our
findings obtained so far in the following
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Theorem 2.8 The map π : SU(2) → SO(3), defined by (2.100) is a surjective
2-1 homomorphism of Lie groups. From its component version (2.101) it is clear
that this map is continuous, in fact C∞.

We have seen above that topologically SU(2) can be identified with the unit
3-sphere in R4. Under this identification the self-map A 7→ −A on SU(2) corre-
sponds to the antipodal map of the 3-sphere. Topologically the map π : SU(2) →
SO(3) can therefore be considered as the identification map from S3 to RP3,
where RP3 is the 3-dimensional real-projective space, which can be thought of
as quotient under antipodal identification on the 3-sphere S3. Alternatively, it
may be thought of as obtained from a closed solid 3-ball by identifying an-
tipodal points on its boundary 2-sphere. This is because antipodal identifica-
tion on S3 allows us to cut off its, say, lower hemisphere, leaving us with the
upper hemisphere—which topologically is an open 3-ball—without any identi-
fications and the equator—which is a 2-sphere—with antipodal identifications.
Note that (2.103) can then be thought of as coordinatisation of the 3-sphere
by 3-dimensional spherical polar coordinates, where ψ = α/2 ∈ [0, π] is the po-
lar angle and ~n (with ~n · ~n = 1) parametrises 2-spheres, which degenerate to
points for ψ = 0 and ψ = π and become largest for the equatorial 2-sphere
at ψ = π/2, i.e. α = π. In these coordinates the antipodal map is given by
(ψ,~n) 7→ (π − α,−~n) which identifies rotations by an angle α about the axis ~n
with rotations about the oppositely orinted axis −~n by an angle 2π − α, a well
known identity in SO(3). More useful coordinates on SU(2) as well as on SO(3)
are the Euler angles, (ψ, θ, ϕ), defined by

A(ψ, θ, ϕ) := A(ψ,~e3)A(θ, ~e2)A(ϕ,~e3) . (2.104)

Using (2.103) we can evaluate the right-hand side:

A(ψ, θ, ϕ) :=

(
e−i(ψ+ϕ)/2 cos(θ/2) , −e−i(ψ−ϕ)/2 sin(θ/2)

ei(ψ−ϕ)/2 sin(θ/2) , ei(ψ+ϕ)/2 cos(θ/2)

)
, (2.105)

where ψ and ϕ are taken with periodic identifications modulo 4π and 2π re-
spectively and θ ∈ [0, π]. The antipodal map A 7→ −A is now simply given
by (ψ, θ, ϕ) 7→ (ψ + 2π , θ, ϕ) so that the Euler angles also parametrise SO(3)
when ψ is taken with periodic identifications modulo 2π. Explicit expressions
for R(ψ, θ, ϕ) := π(A(ψ, θ, ϕ)) can be otained by either using (2.105) in (2.101)
or, alternatively, by multiplying R(ψ,~e3)R(θ, ~e2)R(ϕ,~e3) since this is just the
right-hand side of (2.104) after application of the homomorphism π.

SO(3) is the quotient group SU(2)/Z2, where Z2 = {1,−1} is the centre
of SU(2). Note that already topologically SO(3) is a quotient- but not a sub-
space of SU(2): we cannot find a continuous map i : SO(3) → SU(2) such that
π ◦ i = idSO(3). The best one can do is to restrict to rotations by angles different
from 180 degrees. Then, as discussed above, such rotations make up an open 3-
ball which can either be considered as the upper or the lower hemisphere (without
the equator) of the 3-sphere that makes up SU(2).
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An explicit formula for the embedding of that subset of SO(3) into SU(2) can
be obtained as follows. Multiply (2.102) with σb (summation over b) and apply
the general formula (a proof of which will be given below)

σaMσa = 2 trace(M)1−M , (sumation over a=1,2,3) (2.106)

which is valid for any M ∈ M(2,C), to M = A†. One obtains

σaRabσb = 2 trace(A†)A− 1 . (2.107)

Taking the trace of this equation we get 2δabRab = 2trace(R) on the left hand
side, due to (2.92), and 2((trace(A))2 − 1) on the right hand side, due to the
reality of traces in SU(2) (cf. (2.99)). This we can solve for trace(A) up to sign:

trace(A) = trace(A†) = ±
√

1 + trace(R) , (2.108)

This can in turn be used to eliminate trace(A) in (2.107) and solve for A in terms
of R:

A = ± 1 + σaRabσb

2
√

1 + trace(R)
(2.109)

Since trace(R) = 1 + 2 cos(α) (cf. (2.84), where α is the rotation angle, we see
that the right-hand side of (2.109) exits for rotation angles different from 180
degrees. This are our two embeddings i± : S → SU(2) of the open and dense
subset S ⊂ SO(3) of rotations with rotation angles different from 180 degrees,
such that π ◦ i± = idS .

Let us finally prove (2.106): The Pauli matrices together with the unit matrix
span M(2,C). Hence we can expand M in terms of them. Since the Pauli matrices
are traceless, we have M = Mbσb + 1

2 trace(M)1. By (2.91) different Pauli ma-
trices anticommute and each Pauli matrix squares to the identity matrix. Hence
σaσbσa = −σb and σa1σa = 31 (summation over a!). This implies (2.106).

2.4.2 The general construction

In this subsection we wish to show that any universal covering space G′ of a Lie
group G (generally: topological group) can be given a group structure such that
the covering map π : G′ → G is a group homomorphism. For this we shall merely
need to make repeated use of the lifting property (A.1) of universal covering
spaces explained in A.3.7.

We start by defining a map (we let elements of G
′ carry a prime)

µ : G
′ × G

′ → G, (g′, h′) 7→ π(g′)π(h′)−1 , (2.110)

and observe that due to G′×G′ being simply connected (since G′ is, by definition)
there exists a lift µ′ of µ which makes the following diagram commute:

G′ × G′ G
µ

G
′

G′ × G′

µ′

G
′

G

π (2.111)
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Moreover, choosing some e′ ∈ π−1(e), where e ∈ G is the group identity, we
can fix µ′ uniquely by the specification µ′(e′, e′) = e′, which makes sense since
(2.110) requires µ(e′, e′) = e.

By means of the map µ′ we define the operations of inversion and group
multiplication on G′ as follows:

g′−1 := µ′(e′, g′) , (2.112a)

g′h′ := µ′(g′, h′−1) , (2.112b)

where (2.112a) is used in (2.112b) to define h′−1. Then, using (2.110), it follows
that

π(g′−1) = µ(e′, g′) = π(g′)−1 (2.113a)

π(g′h′) = µ(g′, h′−1) = π(g′)π(h′−1)−1 = π(g′)π(h′) , (2.113b)

where (2.113a) was already used in the last step of (2.113b). Hence π : G′ → G

is a group homomorphisms, provided (2.112) endows G′ with a group structure.
This we will now show by checking the group axioms Gr1-Gr3 as listed in A.4.

Gr1 The map m : G′ × G′ → G′, (g′, h′) 7→ g′h′, is defined in (2.112).

Gr2 We prove that e′ is the group identity. Note that (2.112a) and the definition
of µ′ imply e′−1 = µ′(e′, e′) = e′ and hence with (2.112b) e′e′ = e′. Now
consider the following three maps G′ → G′: the identity I, the left e′-
multiplication L(g′) := e′g′, and the right e′-multiplication R(g′e′). All
these maps send e′ to e′ and satisfy π ◦X = π, where X stands for any of
them. For example: π ◦ L(g′) = π(e′g′) = α(e′, g′−1) = π(e′)π(g′−1)−1 =
π(g′). Hence all three maps make the following diagram commute:

G′ Gπ

G′

G′

X

G′

G

π (2.114)

and satisfy X(e′) = e′. This implies that all three maps coincide, i.e. are
the identity map.

Gr3 We proceed similarly to prove that g′−1, as defined by (2.112a), is indeed
the inverse of g′. Consider three maps G′ → G′, given by: C′(g′) = e′ (the
constant map onto e′), R(g′) = g′g′−1, and L(g′) = g′−1g′. All maps send
e′ to e′ and satisfy π ◦X = C, where C : G′ → G is the constant map onto
e. For example, π ◦ L(g′) = π(g′−1g′) = e due to (2.113b,(2.113a). Hence
all three maps make the following diagram commute

G′ G
C

G′

G′

X

G′

G

π (2.115)
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and satisfy X(e′) = e′. So they coincide, i.e. are all the constant map onto
e′.

Gr4 To prove associativity we consider two maps G′ × G′ × G′ → G′ given
by L(g′, h′, k′) = (g′h′)k′ and L(g′, h′, k′) = g′(h′)k′. Both send (e′, e′, e′)
to e′. A third map D : G′ × G′ × G′ → G is defined by D(g′, h′, k′) =
π(g′)π(h′)π(k′). Equation (2.113b) implies π ◦L = D = π ◦R, so that both
maps X = L,R make the following diagram commute

G′ × G′ × G′ G
D

G′

G′ × G′ × G′

X

G′

G

π (2.116)

and satisfy X(e′, e′, e′) = e′. Hence the maps coincide and associativity
holds.

This proves our general assertion. Note that π−1(e) ⊂ G′ is discrete and, being
the kernel of the homomorphism π, necessarily a normal subgroup. Hence G

′ is
a downward extension of G (cf. A.4.1) by a discrete group isomorphic to π−1(e).
Moreover, π−1(e) is actually central, i.e. a subgroup within the centre (cf. A.4.1)
of G. Let us prove this. We have to show that h′ ∈ π−1(e) implies that g′h′ = h′g′

for all g′ ∈ G′. Now, π(g′h′) = µ(g′h′−1) = π(g′)π(h′) = π(g′), since h′ lies in
the kernel of π; similarly π(h′g′) = π(g′). Define the maps G′ → G′ given by
g′ 7→ R(g′) = g′h′ and g′ 7→ L(g′) = h′g′. As we have just seen, π ◦X = π for
X = L or X = R. Moreover, both maps send e′ to h′. Hence both maps make
a diagram like (2.114) commute and coincide on e′, which implies that these
maps coincide, i.e. h′g′ = g′h′ for all g′ ∈ G′. Repeating the argument for all
h′ ∈ π−1(e′) proves the claim. Thus we learn that the universal cover group G′ of
G is a central downward extension of G by some discrete though not necessarily
finite group.
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ELEMENTS OF REPRESENTATION THEORY

3.1 Fundamentals

In this chapter we will review some basic facts of representation theory. The
notion of a ‘representation’ applies to quite general algebraic objects, like groups,
algebras, Lie algebras etc. Here we shall confine attention to Lie groups and their
Lie algebras. For these, the notion of a representations of the object in a vector
space V is given by homomorphisms

D : G → GL(V ) , (3.1)

ρ : g → gl(V ) , (3.2)

where D and ρ are homomorphisms of groups and Lie algebras respectively. By
a representation of G or g in V we shall always understand the triple (G, D, V ) or
(g, ρ, V ) respectively, though often one just calls the maps D or ρ representations
if G or g and V are implicitly understood. As regards representations of Lie
algebras, we shall be mostly interested in the cases where ρ = Ḋ, i.e. where the
Lie algebra homomorphisms is just the differential evaluated at the identity of
the Lie group homomorphisms, as explained in 2.3.2.

For representation theory it is more appropriate to think of the object to be
represented as an abstract one. In contrast, in 2.1.1 we introduced Lie groups as
groups of matrices. This means that we defined Lie groups and their associated
Lie algebras by one of their representations, the so called defining representation.
A representation is called faithful iff the kernel of the homomorphism is trivial
(cf. A.4.2 and A.5.2). Clearly, any faithful representation could have been used
as definining representaion, but conventionally one selects one to be given this
name, as is more or less apparent from the names of the groups themselves. For
example, the Lie group O(n) is defined as group of n × n orthogonal matrices,
which selects an n-dimensional representation as defining one.

Let us now move straightaway to some basic definitions. We shall restrict
all statements to Lie groups, the corresponding statements for Lie algebras are
obtained by obvious changes. Two representations (G, D, V ) and (G, D′, V ) are
equivalent iff there exists f ∈ GL(V ) sucht that

D′(g) = f ◦D(g) ◦ f−1 , ∀g ∈ G . (3.3)

Equivalence in this sense defines an equivalence relation on the set of represen-
tations of a group.



50 ELEMENTS OF REPRESENTATION THEORY

Let V be a complex vector space with real structure C : V → V (cf. A.5.3).
Then the representation (G, D, V ) is called real with respect to C iff (recall that
C = C−1)

C ◦D(g) ◦ C = D(g) , ∀g ∈ G . (3.4)

The matrix elements of each D(g) with respect to a real basis of V are real
numbers. One calls a representation (G, D, V ) simply real iff it is equivalent to
a real representation with respect to some C. If f is the eqivalence, so that
f ◦ D ◦ f−1 is C-real, then D is real with respect to the new real structure
C′ := f−1 ◦C ◦ f . This means that we can find a basis with respect to which the
matrix elements of all D(g) are real.

Given representations (G, D1, V1) and (G, D2, V2) of the same group G, one
can form the direct-sum representation (G, D1⊕D2, V1⊕V2) with D1⊕D2(g)v1⊕
v2 := D1(g)v1 ⊕ D2(g)v2 for all v1 ∈ V1 and v2 ∈ V2. Similarly one can form
the tensor-product representation (G, D1 ⊗ D2, V1 ⊗ V2), with D1 ⊗ D2(g)v1 ⊗
v2 := D1(g)v1 ⊗ D2(g)v2 plus linear extension. To be distinguished from the
tensor-product of two representations of the same group is the tensor-product
of two representation of two different groups. Let (G1, D1, V1) and (G2, D2, V2)
two representations, then their tensor product is defined as representation (G1 ×
G2, D1⊗D2, V1⊗V2), i.e. as representation of the direct-product group (cf. A.4.3)
G1×G2 with D1⊗D2(g1, g2)v1⊗v2 := D1(g1)v1⊗D2(g2)v2 plus linear extension.
In particular, this notion should not be confused to the former in the case where
G1 and G2 are isomorphic to the same group G. Then D1 ⊗ D2 in the former
case is the restriction of D1 ⊗ D2 in the latter case to the ‘diagonal’ subgroup
{(g, g) | g ∈ G} of G × G, which is isomorphic to G.

Often one is interested in special classes of representations, where the images
of the homomorphisms (3.1,3.2) are contained in certain subgroups or subalge-
bras of GL(V ) and gl(V ) respectively. For example, if V is a complex vector space
with inner product 〈· | ·〉, one may require the D(g) to satisfy

〈D(g)v | D(g)w〉 = 〈v | w〉 (3.5)

for all g ∈ G and all v, w ∈ V . This is equivalent to (with some slight abuse of
notation we write D†(g) for [D(g)]† and D−1(g) for [D(g)]−1)

D†(g) = D(g−1) = D−1(g) (3.6)

for all g ∈ G. Such representations are called unitary (and orthogonal if V is
real). Recall that the antilinear operation † : End(V ) → End(V ) is defined by
the inner product through

〈Tv | w〉 =: 〈v | T †w〉 , ∀v, w ∈ V . (3.7)

Hence unitary representations are homomorphisms (3.1) whose image is con-
tained in

U(V ) := {T ∈ GL(V ) | T † = T−1} , (3.8)
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the group of unitary (with respect to 〈· | ·〉) isomorphisms of V . For the Lie-
algebra representation the corresponding statement is that the homomorphism
(3.2) has image contained in the Lie subalgebra (cf. 2.52)

u(V ) := {T ∈ End(V ) | T † = −T } (3.9)

of anti-hermitean endomorphisms of V . These form obviously a real Lie algebra,
since real linear combinations as well as the commutator of anti-hermitean en-
domorphisms are again anti hermitean. Hence, for unitary representations, we
write instead of (3.1,3.2)

D : G → U(V ) , (3.10)

ρ : g(V ) → u(V ) . (3.11)

3.2 Reducibility, irreducibility, and full reducibility

Let (G, D, V ) be a representation; A subspace V ′ ⊆ V is said to be an invariant
subspace for this represenation iff D(g)v ∈ V ′ for all v ∈ V ′ and all g ∈ G. For
this one also writes D(g)V ′ ⊆ V ′ for all g ∈ G. The representation (G, D, V ) is
reducible iff there exists a non-trivial invariant subspace, i.e. a subspace V ′ ⊆ V
different from {0} and V . If there is no such invariant subspace the representa-
tion is called irreducible. In the reducible case the subspace V ′ is sometimes said
to reduce the given representation. Then the homomorphism D uniquely defines
a homomorphism D′ : G → GL(V ′) by restricting each D(g) to V ′. The triple
(G, D′, V ′) defines a sub-representation of (G, D, V ). If i : V ′ → V is the (injec-
tive) embedding map, D′ is characterised by i ◦D′(g) = D(g) ◦ i for all g ∈ G.
One says that the embedding i intertwines D′ with D (the general definition of
an intertwining map will be given below). If V ′ ⊂ V is an invariant subspace,
each linear map D(g) also defines a linear map D′′(g) on the quotient V ′′ = V/V ′

such that D′′ : G → GL(V ′′) is also a homomorphism. The ensuing representation
(G, D′′, V ′′) is called a quotient-representation of (G, D, V ). If π : V → V/V ′ is
the (surjective) projection map, D′′ is characterized by π ◦D(g) = D′′(g) ◦ π for
all g ∈ G. This means that π intertwines D with D′′.

If H ⊂ G is a subgroup and (G, D, V ) a representation, the restriction D|H
of the homomorphism D : G → GL(V ) to H defines a representation (H, D|H, V )
which usually is simply referred to as a restriction or, more precisely, H-restriction
of (G, D, V ). Clearly, irreduciblity of a restriction implies irreducibility of the
original representation, whereas a restriction of an irreducible represenation will
generally be reducible. The ‘smaller’ the subgroup H ⊂ G the more likely it is
that the H-restriction of an irreducible D becomes reducible.

The representation (G, D, V ) is called fully reducible iff for any invariant
subspace V ′ ⊂ V there is a complementary invariant subspace, i.e. another in-
variant subspace V ′′ ⊂ V such that V = V ′ ⊕ V ′′. In this case one also writes
D = D′ ⊕D′′, where D′ and D′′ are the sub-representations of G in V ′ and V ′′.
Note that the existence of such a V ′′ is by no means guaranteed. For example,
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consider the following two-dimensional reducible representation of the additive
abelian group of real numbers:

R ∋ g 7→ D(g) :=

(
1 g
0 1

)
. (3.12)

The one-dimensional subspace V ′ = span{(1, 0)⊤} of eigenvectors (eigenvalue
1) for each D(g) is clearly invariant, but there is no complementary invariant
subspace since no other eigenvectors exist (the D(g) are not diagonalizable for
g 6= 1).

If V ′ ⊂ V reduces (G, D, V ) and if V ′′ ⊂ V is complementary to V ′ but not
necessarily invariant, we can write each D(g) into triangular form with respect
to the decomposition V = V ′ ⊕ V ′′:

D(g) =

(
D′(g) K(g)

0 D′′(g)

)
. (3.13)

Here D′ is the sub-representation in V ′ and D′′ the quotient-representation in
V/V ′, where we identify V/V ′ with V ′′. With this identification in mind K(g)
should be thought of as a linear map V/V ′ → V ′. Let g = g1g2, then the
homomorphism property of D implies

D′(g1g2) = D′(g1) ◦D′(g2) , (3.14)

D′′(g1g2) = D′′(g1) ◦D′′(g2) , (3.15)

K(g1g2) = D′(g1) ◦K(g2) + K(g1) ◦D′′(g2) . (3.16)

Equations (3.14) and (3.15) just state the obvious homomorphism properties for
the sub- and quotient-representations D′ and D′′ respectively. Note that there is
no canonical way to identify the quotient space V/V ′ with a particular subspace
V ′′. For example, given a basis {e1, · · · , en} = {ei} of V ′, then any completion
by {en+1, · · · , em} = {eµ} to a basis of V defines a complementary subspace
V ′′ = span{eµ} isomorphic to V/V ′. Any other choice of such a complementary
subspace can be realized by a change of basis,

ei 7→ ẽi := ei , (3.17)

eµ 7→ ẽµ := eµ +X i
µ ei , (3.18)

such that V ′′ 7→ Ṽ ′′ := span{ẽµ}. The coefficients X i
µ should be thought of as

matrix elements of a linear map X : V/V ′ → V ′ with respect to the bases {eµ}
of V/V ′—here being identified with V ′′—and {ei} of V ′, such that X(eµ) =
X i
µei. Writing the representation D into triangular form with respect to the new

decomposition V = V ′ ⊕ Ṽ ′′ changes (3.13) by an equivalence transformation

(
D′(g) K(g)

0 D′′(g)

)
7→
(

idV ′ −X
0 idV ′′

)(
D′(g) K(g)

0 D′′(g)

)(
idV ′ X
0 idV ′′

)
(3.19)
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which leaves D′ and D′′ unchanged and redefines K according to

K(g) 7→ K̃(g) = K(g) + D′(g) ◦X − X ◦D′′(g). (3.20)

The representation is fully reducible iff among these equivalences there is one for
which K̃(g) = 0 for all g ∈ G. Hence we have

Lemma 3.1 A reducible representation (G, D, V ) with sub-representation (G, D′, V ′)
and quotient-representation (G, D′′, V ′′), where V ′′ := V/V ′, is fully reducible iff
for a given triangular decomposition (3.13) there exists a linear map X : V ′′ →
V ′ such that

K(g) = X ◦D′′(g) − D′(g) ◦X . (3.21)

Unitary representations are always fully reducible; for if V ′ ⊂ V is an invari-
ant subspace, its orthogonal complement

V ′
⊥ := {v ∈ V | 〈v | v′〉 = 0 ∀v′ ∈ V ′} (3.22)

is also invariant, as is easily seen from (3.6) and (3.6). There is a very important
application of this fact of which we shall make essential use of later on:

Theorem 3.2 Representations of compact groups are always fully reducible.

Proof The idea is to show that, for any given representation (G, D, V ) with G

compact there always is an inner product with respect to which this represen-
tation is unitary. Indeed, let (· | ·) be any inner product on V , we define a new
inner product by simply integrating the old one over all of G:

〈v | w〉 :=

∫

G

(D(g)v | D(g)w) dµ(g) . (3.23)

For finite-dimensional representaions D the integrand is a bounded function on
G for any pair of vectors v and w. Hence the compactness assumption implies
the existence (i.e. convergence) of this integral. We will show that there exists a
measure dµ(g) on G which is invariant under left multiplications, i.e. under the
maps Lh : G → G, g 7→ g′ := Lh(g) := hg. This will then immediately prove the
theorem, since it implies

〈D(h)v | D(h)w〉 =

∫

G

(D(hg)v | D(hg)w) dµ(g)

=

∫

G

(D(g′)v | D(g′)w) dµ(Lh−1g′)

=

∫

G

(D(g′)v | D(g′)w) dµ(g′) = 〈v | w〉 .

(3.24)

In order to prove existence of such measure, we will need some elementary con-
cepts form the differential geometry of Lie groups. We first remark that, in this
context, a ‘measure’ on G is a function g 7→ ω(g), where ω(g) is a non-vanishing
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n := dim(G) form (cf. A.6.5) over the vector space Tg(G) of tangent vectors
at g ∈ G, which may be represented as tangent vectors to differentiable curves
through g. As introduced in (cf. 2.3), the Lie algebra g is just Te(G). Given
a differentiable invertible map φ : G → G (not necessarily a homomorphism),
we obtain a map of the set of curves through g to the set of curves through
φ(g), just by taking the composition of the curve with φ, which, upon differen-
tiation at g, gives an isomorphism φ∗|g : Tg(G) → Tφ(g)(G). The dual map is
φ∗|g : T ∗

φ(g)(G) → T ∗
e (G), where T ∗

g (G) is the vector space dual to Tg(G). Setting

φ = Lg−1 we obtain an isomorphism L∗
g−1 : T ∗

e (G) → T ∗
g (G), which extends

naturally to the n-fold exterior products of the cotangent spaces. Hence, given
any n-form ω on Te(G), we obtain an n-form ω(g) := L∗

g−1 |gdµ(e) on each Tg(G)

which defines a function g 7→ ω(g) that is, by definition, left invariant in the fol-
lowing sense: L∗

h−1ω(g) = ω(hg). Going back to the measure-theoretic language,
the left translation by h ∈ G of dµ is just dµ → dµ ◦ Lh−1 , which in terms of
forms translates to ω → L∗

h−1ω by the ‘change-of-variables-formula’.10 2

So we have seen that there exist Lie groups, like the compact ones, for which
all representations are fully reducible. In the sequel we shall therefore simply
call a Lie group or a Lie algebra fully reducible iff all their representastions are
fully reducible.

3.3 Schur’s Lemma and some of its consequences

Let (G, D1, V1) and (G, D2, V2) be two representations of G and f : V1 → V2 a
linear map. f is called an intertwining map or simply an intertwiner (of the first
with the second representation) iff for all g ∈ G

f ◦D1(g) = D2(g) ◦ f . (3.26)

The set of all intertwiners of D1 with D2 obviously forms a linear subspace of
Lin(V1, V2), which we denote by LinG(V1, V2) (this notation does not refer to D1

and D2 which are assumed given). If V = V1 = V2 the set of intertwiners is a
subalgebra of End(V ) (cf. A.5.2), denoted by EndG(V ). Note that an intertwiner
f is an equivalence iff it is an isomorphism (cf. (3.3).

For better readability we now state and prove the main result in form of three
lemmas:

Lemma 3.3 Let f be an intertwiner between (G, D1, V1) and (G, D2, V2). Then
1) Ker(f) ⊆ V1 and 2) Im(f) ⊆ V2 are invariant subspaces.

10For example, in local coordinates {xµ}, let the measure dµ be given by the n-form ω =
f dx1 ∧ · · · ∧ dxn, for some positive real-valued function f . Then

φ∗ω = (f ◦ φ) d(x1 ◦ φ) ∧ · · · ∧ d(xn ◦ φ)

= (f ◦ φ)
“

∂(x1
◦φ◦x−1)

∂xi dxi
”

∧ · · · ∧
“

∂(xn
◦φ◦x−1)

∂xk dxk
”

= f◦φ
f

det(φ∗) ω ,
(3.25)

where φ∗ here stands for the Jacobi-Matrix of the map φ with respect to {xµ}. In the special
case where f is constant, i.e. dµ is the translation-invariant measure for the coordinates {xµ}
(their ‘Lebesgue measure’), (3.25) reduces to the standard formula for integration in Rn.



SCHUR’S LEMMA AND SOME OF ITS CONSEQUENCES 55

Proof If v ∈ Ker(f) then, for all g ∈ G, f(D1(g)v) = D2(g)f(v) = 0 and hence
D1(g)v ∈ Ker(f), which proves the first statement. If w = f(v) ∈ Im(f) then, for
all g ∈ G, D2(g)w = D2(g)f(v) = f(D1(g)v) ∈ Im(f), which proves the second
statement. 2

Lemma 3.4 Let f be an intertwiner between (G, D1, V1) and (G, D2, V2). Then
1) D1 irreducible implies either f is injective or f ≡ 0 and 2) D2 irreducible
implies either f is surjective or f ≡ 0.

Proof By the previous lemma, D1 irreducible implies hat Ker(f) is either V1 or
{0} (zero vector in V1), which proves the first statement. Likewise D2 irreducible
implies that Im(f) is either V2 or {0} (zero vector in V2), which proves the second
statement. 2

Lemma 3.5. (Schur) Let f be an intertwiner between irreducible representa-
tions (G, D1, V1) and (G, D2, V2). Part 1: f is either an isomorphism or f ≡ 0.
Part 2: If V1 = V2 = V and D1 = D2 = D and if f 6≡ 0 has a non-zero
eigenvector—which is always true if V is complex—then f = a idV for some
a ∈ F − {0}.

Proof Part 1 is a direct consequence of the previous Lemma. To prove Part 2
we observe that an eigenspace of f is invariant under D, since f(v) = av for
a ∈ F implies f(D(g)v) = D(g)f(v) = aD(g)v. Irreducibility of f implies the
eigenspace to be all of V and hence f = a idV . 2

Two immediate and important implications of Schur’s Lemma for the case F = C

are the following:

Proposition 3.6 Intertwiners for irreducible representations on complex vector
spaces are uniquely determined up to a complex multiple.

Proof Let (G, D1, V1) and (G, D2, V2) be irreducible representations and f1,2 :
V1 → V2 two intertwiners, so that for all g ∈ G

f1 ◦D1(g) = D2(g) ◦ f1 , (3.27)

f2 ◦D1(g) = D2(g) ◦ f2 . (3.28)

If at least one of the maps f1,2 is identically zero the claim is trivially true, so
assume f1,2 6≡ 0. Then Lemma3.4 and the irreducibility of D1,2 imply that f1,2
are isomorphisms and hence invertible. Let f := f−1

2 ◦ f1 then (3.27,3.28) imply

D1(g) = f ◦D1(g) ◦ f−1 . (3.29)

Since we work over the complex numbers f has at least one eigenvalue. Schur’s
Lemma then implies f = a idV1 , i.e. f1 = a f2 for a ∈ C − {0}. 2

Proposition 3.7 Let (G, D, V ) be an irreducible representation of an abelian
group G on the complex vector space V , then dim(V ) = 1.
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Proof Let h ∈ G be some element different from the identity. Then, since
hg = gh, D(h) ◦ D(g) = D(g) ◦ D(h) so that f := D(h), being non-zero, has
a non-zero eigenvector. Part 2 of Schur’s Lemma implies f = D(h) = a(h) idV
where a : G → C − {0} is some function. This implies that any subspace of
V is invariant, which is compatible with the assumed irreducibility iff V is one
dimensional. 2

We stress that this result is not true for real vector spaces. For example, the
defining representation of SO(2) is given by

[ϕ] 7→
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
, (3.30)

where [ϕ] ∈ R/2πZ = [0, 2π) labels the rotation angle which faithfully parametrises
the group. This representation is clearly irreducible and two-dimensional.

3.4 Decomposing fully reducible representations into irreducibles

The significance of full reducibility lies in the fact that such representations
are ‘almost’ uniquely determined by their irreducible subrepresentations, in a
sense made precise below. This means that the representation theory of fully
reducible Lie groups or algebras is essentially exhausted by the classification of
their irreducible representations (up to equivalence). We have already seen that
compact Lie groups are fully reducible. But, in fact, any semi-simple Lie algebra
and corresponding Lie group is fully reducible. In particular, this holds for the
Lorentz group, as we will see later on.

For the rest of this section we restrict attention to finite-dimensional repre-
sentations over complex vector spaces. Hence by ‘representation’ we shall always
mean ‘finite dimensional representation’ and by ‘vector space’ always ‘complex
vector space’ !

We begin with an almost trivial statement, that for easier reference we for-
mulate as

Lemma 3.8 Let (G, D, V ) and (G, D′, V ′) be representations.

1) There exists an injective intertwiner f : V → V ′ of D with D′ iff D′

contains a sub-representation equivalent to D.

2) There exists an surjective intertwiner f : V → V ′ of D with D′ iff D has
a quotient-representation equivalent to D′.

Proof Part 1: Let f : V → V ′ be an injective intertwiner and Ṽ := Im(f) ⊂
V ′. Then f is an equivalence of (G, D, V ) with (G, D̃, Ṽ ), where D̃ is the sub-
representation (cf. Lemma3.3). Conversely, let (G, D̃, Ṽ ) be a sub-representation
of (G, D′, V ′) equivalent to (G, D, V ) with equivalence map f ′ : V → Ṽ . Let
i : Ṽ → V ′ be the embedding (intertwining D̃ with D′), then f := i◦f ′ : V → V ′

is an injective intertwiner of D with D′. Part 2: Let f : V → V ′ be surjective
intertwiner and Ṽ := V/Ker(f). Then f is equivalence between (G, D̃, Ṽ ) and
(G, D′, V ′), where D̃ is the quotient-representation (cf. Lemma3.3). Conversely,
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let (G, D̃, Ṽ ) be a quotient-representation of (G, D, V ) equivalent to (G, D′, V ′)
with equivalence map f ′ : Ṽ → V ′. Let π : V → Ṽ be the projection (intertwining
D with D̃), then f := f ′ ◦π : V → V ′ is a surjective intertwiner of D with D′. 2

Let us now consider the situation where a representation (G, D, V ) decom-
poses as direct sum of subrepresentations (G, Dj , Vj), where j ∈ J = {1, · · · , n}
for some n ∈ N, such that

V =
⊕

j∈J

Vj . (3.31)

This decompostion defines n projection maps πj : V → Vj , where πj projects
parallel to the complement ⊕J∋k 6=jVk of Vj and intertwines D with Dj, i.e.
πj ◦D(g) = Dj(g)◦πj for all a ∈ G. Conversely, the embedding map (‘inclusion’)
ij : Vj → V intertwines Dj with D, i.e. ij ◦Dj(g) = D(g) ◦ ij for all g ∈ G. The
maps Pj := ij ◦ πj : V → V commute with all D(g), Pj ◦D(g) = D(g) ◦ Pj for
all j ∈ J and g ∈ G, and satisfy the usual ‘projector identities’ (which would not
make sense if written in terms of πj instead of Pj due to mismatches of ranges
and domains):

Pj ◦ Pk = δjk Pk (no k-summation) , (3.32)
⊕

j∈J

Pj = idV . (3.33)

Now, let (G, D′, V ′) be an irreducible subrepresentation of D, which we geo-
metrically characterise by an inclusion map i′ : V ′ → V intertwining D′ with D.
Then the map

π′
j := πj ◦ i′ : V ′ → Vj (3.34)

intertwines D′ with Dj and is either zero (i.e. the constant map onto the zero
vector) or injective, due to the first part of Lemma3.4. Let J ′ ⊆ J be the set of
indices whose assigned maps are not zero. J ′ is clearly not empty, as follows e.g.
from (3.33), and Part 1 of Lemma 3.8 implies that each Dj for j ∈ J ′ contains
a subrepresentation equivalent to D′. Geometrically speaking this means the
following: if J ′ has just one element, say j′, then V ′ ⊆ Vj′ and V ′ ∩ Vj = {0} for
all j ∈ J − {j′}. If, however, J ′ has more than one element then V ′ ⊂ ⊕j∈J′Vj
and V ′ ∩ Vj = {0} for all j ∈ J , i.e. V ′ lies ‘skew’ to all Vj .

Let us now specialize to the case where all subrepresentations Dj , j ∈ J ,
are irreducible. This does not imply a loss of generality if D is fully reducible,
because any fully reducible representation can clearly be written as direct sum
of irreducibles. The second part of Lemma3.4 then implies that the maps π′

j

(cf. (3.34) are isomorphisms for j ∈ J ′ and hence equivalences. In particular,
all Dj for j ∈ J ′ are mutually equivalent. In the extreme case where all Dj for
j ∈ J are pairwise inequivalent there is therefore a unique j′ ∈ J such that
Im(π′

j′ ) = Vj′ and Im(π′
j) = {0} for J ∋ j 6= j′. Hence, in this case, where

D′ is equivalent to precisely one of the Dj , the image in V of the embedding
i′ : V ′ → V is uniquely determined.
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Next we turn to the other extreme case, where all Dj for j ∈ J are mutually
equivalent. That is, D is a representation of n mutually equivalent irreducible
representations. Such representations are given a special name:

Definition 3.9 Let (G, D, V ) be a representation which is a direct sum of mutu-
ally equivalent representations (G, Dj , Vj) where j ∈ {1, · · · , n}. If (G, D′, V ′) is
equivalent to each (G, Dj , Vj) then (G, D, V ) is called an isotypic representation
of type (G, D′, V ′) and multiplicity n.

In contrast to the case above, for isotypic representations of multiplicity n > 1 the
image i′(V ′) ⊂ V is far from being uniquely determined. In fact, there are many
more irreducible sub-representations of D equivalent to the Dj then just the Dj

themselves. To arrive at a classification, let f ′
j : V ′ → Vj be the equivalence

maps so that f ′
j ◦ D′(g) = Dj(g) ◦ f ′

j for all g ∈ G. We wish to consider V ′ as
a sub-representation of D. In order to do this we need to specify an embedding
i′ : V ′ → V which intertwines D′ with D, i.e. i′ ◦D′(g) = D(g) ◦ i′ for all g ∈ G.
Having done this, we can use i′ to construct the maps π′

j as in (3.34) which are
also intertwiners between D′ and Dj. Since these representations are assumed
irreducible, Proposition3.6 implies

πj ◦ i′ = aj fj (no j-summation) (3.35)

for some aj ∈ C, not all of which are zero. Composing the maps on both sides
to the left with ij and summing over j, using (3.33), gives

i′ =
∑

j∈J

aj (ij ◦ fj) . (3.36)

Note that two n-tuples (a1, · · · , an) and (ã1, · · · , ãn) define the same subspace
i′(V ′) ⊂ V iff they are proportional, i.e. iff aj = λãj for λ ∈ C − {0}. Propor-
tionality in this sense defines an equivalence relation on Cn − {0}, the set of
non-zero complex n-tuples. The set of equivalence classes is known as CPn−1,
the complex projective space of (complex) dimension n− 1.11 Conversely, given
an embedding defined through (3.36) for some non-zero n-tuple (a1, · · · , an), we
obtain an equivalence between D′ and Dk for each k ∈ J for which ak 6= 0.
Indeed, composing both sides of (3.36) with πk and using πk ◦ ij = δkj idVj

gives
π′
k := πk ◦ i′ = akfk (no k-summation). Hence we have shown that the set of

subspaces in V whose sub-representation is equivalent to all Dj is in bijective
correspondence to CPn−1.

Up to equivalence, isotypic representations can be put into a convenient form
by using an isomorphism between the n-fold direct sum ⊕j∈JVj and the tensor
product Cn⊗V ′, where V ′ is isomorphic to each Vj . Let, as before, fj : V ′ → Vj

11CPn is a compact complex manifold of dimension n. As real manifold it has dimension 2n.
For example, one may show quite easily that CP1 is homeomorphic to the 2-sphere, which is
a two-dimensional real and one-dimensional complex manifold.
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be a collection of n isomorphisms and let {e1, · · · , en} denote the standard basis
of Cn. Then we define an isomorphism I : Cn ⊗ V ′ → ⊕j∈JVj = V by

I(ej ⊗ v) := (ij ◦ fj)(v) (3.37)

plus linear extension. The embedding (3.36) is then just given by the image
I(V ′(a)), where a =

∑
j ajej ∈ Cn and V ′(a) := {a ⊗ v | v ∈ V ′} ⊂ Cn ⊗ V ′

(linear subspace). Hence, using I, we may identify V with Cn⊗V ′ such that any
irreducible subspace of V is identical to some V ′(a) for a ∈ Cn − {0} and where
V ′(a) = V ′(b) iff b = λa for some λ ∈ C − {0}. This we summarise as

Lemma 3.10 Let (G, D, V ) be an isotypic representation of type (G, D′, V ′) and
multiplicity n. Then D is equivalent to (G, idCn ⊗D′,Cn ⊗ V ′)

We can now precisely state the uniqueness properties of decompositions of
fully reducible representations. Let us first say it in words: A fully reducible rep-
resentation decomposes uniquely, up to equivalence, into isotypic representations
of mutually inequivalent types. For each specification of an equivalence class of
an irreducible sub-representation which occurs with multiplicity n, there is a
CPn−1 worth of different subspaces with sub-representations in that equivalence
class. Stated more formally we have

Theorem 3.11 Let (G, D, V ) be a fully reducible representation. Then there is
a unique set {(G, Dk, Vk) | k = 1, · · ·n} of mutually inequivalent irreducible
representations and a unique set {m(k) ∈ N | k = 1, · · ·n} of multiplicities such
that the following equivalence (∼=) holds:

(G, D, V ) ∼=
(

G ,

n⊕

k=1

idCm(k) ⊗Dk ,

n⊕

k=1

C
m(k) ⊗ Vk

)
. (3.38)

Irreducible sub-representations in the equivalence class of (G, Dk, Vk) are pre-
cisely given by the sub-representations on Vk(a) := {a ⊗ v | v ∈ Vk} for some
a ∈ Cm(k) − {0}.

As an application, let us state and prove a useful result concerning irreducible
representations of direct-product groups:

Proposition 3.12 Let G = G′ × G′′, then a representation of (G, D, V ) is ir-
reducible iff it is equivalent to the tensor product of irreducible representations
(G′, D′, V ′) and (G′′, D′′, V ′′). The equivalence class of (G, D, V ) determines the
equivalence classes of (G′, D′, V ′) and (G′′, D′′, V ′′), and vice versa.

Proof To save notation we identify G′ and G′′ with the subgroups {(g′, e′′) | g′ ∈
G′} ⊂ G′×G′′ and {(e′, g′′) | g′′ ∈ G′′} ⊂ G′×G′′ of G respectively, where e′ and e′′

are the neutral elements of G′ and G′′ respectively. Let (G, D, V ) be irreducible.
We consider the restricted representation (G′′, D′′, V ), where D′′ := D|G′′ . This
will generally now be reducible. Let (G′′, D′′

0 , V0) be an irreducible subrepresen-
tation. Then, for any g′1 ∈ G′, the subspace V1 := D(g′1)V0 of V will also carry
an irreducible representation (G′′, D′′

1 , V1). This is because the maps D(g′) and
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D(g′′) commute for all g′ ∈ G′ and all g′′ ∈ G′′, so that D(g′1) : V0 → V1 de-
fines an equivalence between (G′′, D′′

0 , V0) and (G′′, D′′
1 , V1), i.e. D(g′1)◦D′′

0 (g′′) =
D′′

1 (g′′)◦D(g′1) for all g′′ ∈ G′′, where D(g′1) is clearly invertible. Since the inter-
section V0 ∩ V1 then also reduces G′′, and since both representations are already
irreducible, we must have either V0 = V1 or V0 ∩ V1 = {0}. We assume we
have chosen g′1 such that the latter holds. Note that such a g′1 certainly exists,
since otherwise V0 ⊂ V would be G invariant, contrary to the assumption that
(G, D, V ) is irreducible. Now we can continue in this fashion, picking g′2, g

′
3, · · ·

and defining at each stage Vi := D(g′i)V0, so that Vi∩⊕j<iVj = {0} for all i ≤ n.
The process terminates after a finite number, n, of steps where ⊕ni=1Vi = V .
This shows that (G′′, D′′, V ) is an isotypic representation of type (G′′, D′′

0 , V0)
and multiplicity n (cf. Definition 3.9). Theorem3.11 now implies the equivalence
(G′′, D′′, V ) ∼= (G′′, idCn ⊗D′′

0 ,C
n ⊗ V0). Now consider the restricted representa-

tion (G′, D′, V ), where D′ := D|G′ . Since D′ and D′′ commute, Schur’s Lemma
implies that under this equivalence we have (G′, D′, V ) ∼= (G′, D′

0⊗ idV0 ,C
n⊗V0)

for some representation D′
0 on Cn. But the latter must be irreducible, for if there

was an G′-invariant subspace W ⊂ Cn then W ⊗ V0 ⊂ V would be G-invariant,
in violation of the irreducibility of D. Hence, to sum up, we have shown that
there are irreducible representations (G′, D′, V ′) with V ′ ∼= Cn and (G′′, D′′, V ′′)
with V ′′ ∼= V0 such that

(G′ × G
′′ , D , V ) ∼= (G′ × G

′′ , D′ ⊗D′′ , V ′ ⊗ V ′′) . (3.39)

Coversely, given two irreducible representations (G′, D′, V ′) and (G′′, D′′, V ′′),
then it is easy to see that their tensor-product is an irreducible representation
of G = G′ × G′′. 2

Proposition 3.13 Let G = G′ × G′′, then G is fully reducible if G′ and G′′ are
fully reducible

Proof We adopt the notation from the proof above. Let (G, D, V ) be a re-
ducible representation and (G′, D′, V ), (G′′, D′′, V ) their restrictions to G′ and
G′′ reprectively. Since D′′ is fully reducible, it can be written in the form (3.38):

(G′′, D′′, V ) ∼=
(

G
′′ ,

n⊕

k=1

idCm(k) ⊗D′′
k ,

n⊕

k=1

C
m(k) ⊗ V ′′

k

)
. (3.40)

Since D′ and D′′ commute, Theorem3.11 further implies that D′(g′) leaves each
isotypic component Cm(k)⊗V ′′

k invariant. Moreover, since each D′′
k is irreducible,

D′(g′) restricted to each isotypic component is of the form D′
k(g

′) ⊗ idV ′′
k

for

some possibly reducible representation (G′, D′
k,C

m(k)). Full reducibility of each
D′
k now allows to write it as direct sum of irreducibles. Hence D can be written

as direct sum of tensor products of irreducible representations of D′ and D′′,
that is, by Proposition 3.12, as direct sum of irreducible representations of D,
which shows fully reducibility of D. 2
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3.5 Upward extensions by Z2

Let G be a group and H ⊂ G a subgroup of index two (cf. A.4.1). H is necessarily
normal, since left and right cosets each partition G into two sets, one of which
is H (coset of the identity), so that the other coset must in each case be the
complement H̄ := G − H. Hence left and right cosets coincide and H is normal.
Note that H̄ ⊂ G is merely a subset and not a subgroup. If h̄ ∈ H̄ then h̄−1 ∈ H̄

(since h̄−1 ∈ H would imply h ∈ H due to H being a group) and for h ∈ H one
has hh̄ ∈ H̄ and h̄h ∈ H̄ (since e.g. hh̄ = h′ ∈ H would imply h̄ = h−1h′ ∈ H due
to H being a group). Hence the product of a finite number of elements in G is in
H iff the number of elements taken from H̄ is even. These rules merely state the
homomorphism property for the projection map π : G → G/H ∼= Z2, given by

π(g) =

{
0 for g ∈ H ,

1 for g ∈ H̄ .
(3.41)

So we see that G is an upward extension of H by Z2 (cf. A.4.1). In the previous
subsection 2.4.1 we have seen that downward extensions by Z2 play a rôle in the
transition form certain Lie groups to their universal cover groups, like e.g. in the
transition from SO(3) to SU(2) or, similarly, in the transition form the Lorentz
group SO(1, 3)0 (the identity component of SO(1, 3)) to SL(2,C) that we will
discuss later on. Now we consider upward extensions of Z2, which also play a
rôle in our subsequent discussions, namely when we adjoin new transformations,
like e.g. the parity transformation (space reflection).

Then it will be of interest to know whether representations of the new group
will still be fully reducible. More precisely we ask: given that all representations
of H are fully reducible, is it true that all representations of its upward Z2-
extension, G, are also fully reducible? The affirmative answer is given by the
following

Theorem 3.14 Let G be an upward extension of H by Z2 and (G, D, V ) a re-
ducible representations with invariant subspace V ′ ⊂ V , so that (H, D|H, V ) is
fully reducible. Then (G, D, V ) is also fully reducible.

Proof Since D|H is fully reducible we can choose a complement V ′′ ⊂ V to V ′

so that K(h) = 0 for all h ∈ H. The proof will then show that we can always
redefine V ′′ 7→ Ṽ ′′ with associated change K 7→ K̃ according to (3.20), such that
K̃(g) = 0 for all g ∈ G. We proceed by evaluating (3.16) for several cases:

• Let h̄1,2 ∈ H̄ so that g = h̄1h̄2 ∈ H, then (3.16) and K(g) = 0 imply

D′(h̄−1
1 ) ◦K(h̄1) = −K(h̄2) ◦D′′(h̄−1

2 ) . (3.42)

Since left and right hand side depend on different variables this is equivalent
to the constancy of each side. In particular we have

1
2 K(h̄) ◦D′′(h̄−1) = X ∈ Lin(V/V ′, V ′) (3.43)

for any h̄ ∈ H̄, where X is h̄-independent.
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• Since gg−1 ∈ H we trivially have K(gg−1) = 0 for all g ∈ G, which in (3.16)
leads to

K(g−1) = −D′(g−1) ◦K(g) ◦D′′(g−1) . (3.44)

• Now we choose h ∈ H and h̄ ∈ H̄ so that h̄hh̄−1 ∈ H and henceK(h̄hh̄−1) =
0. Using (3.16) twice to resolve the triple product h̄hh̄−1 ∈ H and also
K(h) = 0 leads to

K(h̄) ◦D′′(h) = D′(h̄hh̄−1) ◦K(h̄) . (3.45)

An equivalent form is obtained by replacing h→ h̄−1hh̄:

D′(h) ◦K(h̄) = K(h̄) ◦D′′(h̄−1hh̄) (3.46)

Now we show: there exists an X ∈ Lin(V/V ′, V ′) such that K̃(g) = 0 for all
g ∈ G, where K̃(g) is given in terms of K(g) and X by (3.20). In fact, X is just
given by (3.43). To verify this, set X = 1

2K(h∗)D
′′(h−1

∗ ) for some h̄∗ ∈ H̄ and

evalute K̃(g). First we choose g = h ∈ H and obtain with K(h) = 0

K̃(h) = 1
2

(
D′(h) ◦K(h̄∗) ◦D′′(h̄−1

∗ ) −K(h̄∗) ◦D′′(h̄−1
∗ ) ◦D′′(h)

)

= 1
2

(
K(h̄∗) ◦D′′(h̄−1

∗ h) −K(h̄∗) ◦D′′(h̄−1
∗ h)

)
= 0 ,

(3.47)

where we used (3.46)in the transition from the first to the second line.
Next we choose g = h̄ ∈ H̄:

K̃(h̄) = K(h̄) + 1
2

(
D′(h̃) ◦K(h̄∗) ◦D′′(h̄−1

∗ ) −K(h̃) ◦D′′(h̄−1
∗ h̄)

)

= K(h̄) − 1
2

(
K(h̄) +K(h̄∗) ◦D′′(h̄−1

∗ h̄)
)

= 1
2

(
K(h̄) −K(h̄∗) ◦D′′(h̄−1

∗ h̄)
)

= 1
2

(
K(h̄) ◦D′′(h̄−1) −K(h̄∗) ◦D′′(h̄−1

∗ )
)
◦D′′(h̄) ,

= 0

(3.48)

where we used (3.42) in the transition from the first to the second and (3.43) in
the transition to the last line. 2

Having established the fact that G inherits full reducibility from H, we now
turn to some results concerning irreducible representations. More precisely, we
wish to know to what degree an irreducible representation of G is determined by
its H-restriction. As one might expect, this depends on whether the H-restriction
stays irreducible or becomes reducible. We deal with the irreducible case first.

Theorem 3.15 Let G be an upward extension of H by Z2 and (G, D, V ) an
irreducible representation whose restriction (H, D|H, V ) is also irreducible. The
vector space V is assumed complex. Then the only other representation (G, D̃, V )
whose restriction (H, D̃|H, V ) is equivalent to (H, D|H, V ) must be equivalent to

D̂(g) =

{
D(g) for g ∈ H ,

−D(g) for g ∈ H̄ .
(3.49)

D and D̂ are inequivalent representations.
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Proof Let us first assume that D and D̃ be such that D|H = D̃|H, leaving the
case or mere equivalence until the end. Let h ∈ H and h̄ ∈ H̄ so hat h̄hh̄−1 ∈
H. Hence, by hypothesis, D(h̄hh̄−1) = D̃(h̄hh̄−1), which is easily seen to be
equivalent to the condition that D̃(h̄−1) ◦ D(h̄) commutes with D(h) for all
h ∈ H and all h̄ ∈ H̄. Since D|H is irreducible, Schur’s Lemma together with
F = C implies

D(h̄) = λ(h̄)D̃(h̄) (3.50)

for some function λ : H̄ → C − {0}. Replacing h̄→ hh̄ and using the homomor-
phism property of D and D̃ together with D(h) = D̃(h) shows λ(hh̄) = λ(h̄)
for all h ∈ H. Since any element in H̄ can be written in the form hh̄ for some h
and fixed h̄ this implies constancy of λ; let its value be also denoted by λ. Then,
writing down (3.50) with h̄ replaced by h̄−1 and comparison with the inversion of
(3.50) finally shows λ = ±1. The value λ = +1 corresponds to D̃ = D and λ = −1
to D̃ = D̂. Note that D̂ is indeed a representation, as follows e.g. immediately
from the remark that D̂, as defined by (3.49), is just D̂(g) = (−1)π(g)D(g), where
π : G → G/H = Z2 is the projection homomorphism. To show the inequivalence
of D̂ and D by way of contradiction, assume f ◦ D̂(g) ◦ f−1 = D(g). Choosing
g ∈ H implies that f commutes with the irreducible representation D|H so that
Schur’s Lemma gives f = a idV . Now choosing g ∈ H̄ yields D(g) = −D(g), a
contradiction. Finally we relax the initial assumption of equality to mere equiv-
alence of the H-restrictions, i.e. we only assume D̃|H = f ◦D|H ◦ f−1. Then all
agruments given above hold unchanged when D̃ is replaced by f ◦D̃◦f−1. Hence
D̃ turns out to be either equal to f ◦D ◦ f−1 or to f ◦ D̂ ◦ f−1. 2

Now we consider the other case, where the restriction to D to H is reducible

Theorem 3.16 Let G be an upward extension of H by Z2 and (G, D, V ) an
irreducible representation whose restriction (H, D|H, V ) is reducible. The vec-
tor space V is assumed complex. Then (H, D|H, V ) = (H, D′ ⊕ D′′, V ′ ⊕ V ′′),
where (H, D′, V ′) and (H, D′′, V ′′) are inequivalent irreducible representations of
equal dimension. The equivalence class of (G, D, V ) is uniquely determined by
the equivalence classes of (H, D′, V ′) and (H, D′′, V ′′).

Proof Part A: Showing D|H = D′ ⊕D′′.
Let V ′ ⊂ V irreducible subspace for D|H. Let V ′′ := D(h̄∗)V

′ for some h̄∗ ∈ H̄.
V ′′ is independent of the choice of h̄∗, since any other h̄ ∈ H̄ can be written in the
form h̄ = h̄∗h for some (uniquely determined) h ∈ H. (Hence we may also use h̄−1

∗

instead of h̄∗, showing that V ′ = D(h̄∗)V
′′. This we shall use in PartB.) V ′′ is also

D|H-invariant, since D(H)V ′′ = D(H)D(h̄)V ′ = D(h̄)D(h̄−1Hh̄)V ′ = D(h̄)V ′ =
V ′′, using normality of H. Hence V ′ ∩ V ′′ is also D|H-invariant. Irreducibility of
D|H then implies V ′ ∩ V ′′ = {0}, the only other possibility V ′ ∩ V ′′ = V ′, i.e.
V ′′ ⊆ V ′, being excluded since it would imply that V ′ reduced G, contrary to
our initial assumption. But now V ′⊕V ′′ reduces G and irreducibility of D hence
implies V ′ ⊕ V ′′ = V . This shows (H, D|H, V ) = (H, D′ ⊕D′′, V ′ ⊕ V ′′).
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Part B: Showing inequivalence of D′ and D′′.
Suppose, by way of contradiction, that f : V ′ → V ′′ is an equivalence of D′

and D′′. Then D|H is an isotypic representation of type D′ and multiplicity 2
and all subspaces V (a) := {a1v + a2f(v) | v ∈ V ′} give mutually equivalent
irreducible representations of H for any non-vanishing tuple a := (a1, a2) ∈ C2

(cf. the discussion following equation 3.36). We show that then there exists a
tuple (a1, a2) such that V (a1, a2) in fact reduces G, contrary to the assumed
irreducibility of D. To do this, we consider the maps

U : V ′ → V ′′ , U := D(h̄∗)|V ′ (3.51)

W : V ′′ → V ′ , W := D(h̄∗)|V ′′ (3.52)

together with their inverse maps. In terms of them, the action of D(h̄∗) on V (a)
is given by:

D(h̄∗)(a1v + a2 f(v))) = a1 U(v) + a2W ◦ f(v) . (3.53)

Writing down the intertwining property f ◦ D′(h) = D′′(h) ◦ f with h̄−1
∗ hh̄∗

replacing h gives

f ◦ (U−1 ◦D′′(h) ◦ U) = (W−1 ◦D′(h) ◦W ) ◦ f . (3.54)

Using the intertwining property once more to express D′′ in terms of D′, this
may be equivalently rewritten as saying that W ◦ f ◦ U−1 ◦ f commutes with
D′(h) for all h ∈ H. Irreducibility of D′ and Schur’s Lemma then imply

U = λ (f ◦W ◦ f) (3.55)

for some λ ∈ C − {0}. Note that U,W and hence λ depend on the choice on h̄∗.
Inserting (3.55) into (3.53) gives

D(h̄∗)(a1v + a2 f(v))) = a2v
′ + a1λf(v′) , (3.56)

where v′ := W ◦ f(v). This shows that V (a) is invariant under D(h̄∗) iff (a1, a2)
are chosen such that a2/a1 = λa1/a2, i.e. iff (a2/a1)

2 = λ, which always possesses
two different solutions in the space of non-vanishing tuples (a1, a2) modulo pro-
portionality. Hence there are in fact two subspaces V (a) ⊂ V which are invariant
under H and D(h̄∗) and hence under G, which contradicts the irreducibility of
(G, D, V ).

Part C: Showing that the equivalence class of D is uniquely determined by those
of D′ and D′′.
It suffices to show that (G, D, V ) and (G, D̃, V ) must be equivalent if they both
restrict to (H, D′⊕D′′, V ′⊕V ′′). From this, equivalence of (G, D, V ) and (G, D̃, V )
then immediately follows, given that their restrictions are (H, D′ ⊕ D′′, V ′ ⊕
V ′′) and (H, D̃′ ⊕ D̃′′, Ṽ ′ ⊕ Ṽ ′′) respectively, with (H, D′, V ′) and (H, D′′, V ′′)
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merely equivalent to (H, D̃′, Ṽ ′) and (H, D̃′′, Ṽ ′′) respectively. To prove the first
statement, we define analogously to (3.51) and (3.52) the maps

Ũ : V ′ → V ′′ , Ũ := D̃(h̄∗)|V ′ , (3.57)

W̃ : V ′′ → V ′ , W̃ := D̃(h̄∗)|V ′′ . (3.58)

By hypothesis, we have for all h ∈ H

D(h)|V ′ = D̃(h)|V ′ = D′(h) , (3.59)

D(h)|V ′′ = D̃(h)|V ′′ = D′′(h) . (3.60)

Replacing h by h̄−1
∗ hh̄∗, these two equations can be written in the form

(U ◦ Ũ−1) ◦D′′(h) = D′′(h) ◦ (U ◦ Ũ−1) , (3.61)

(W ◦ W̃−1) ◦D′(h) = D′(h) ◦ (W ◦ W̃−1) , (3.62)

valid for all h ∈ H. Irreducibility of D′ and D′′ and Schur’s Lemma imply

Ũ = aU , W̃ = bW , (3.63)

for some a, b ∈ C − {0}. Now, even though the maps U,W, Ũ, W̃ depend on the
choice of h̄∗ the numbers a, b do not depend on it. To see this, replace h̄∗ with
h∗h̄∗ for some h∗ ∈ H and define maps U ′,W ′ and Ũ ′, W̃ ′ as in (3.51,3.52) and
(3.57,3.58) repectively by using h∗h̄∗ instead of h̃∗. We then obtain

Ũ ′ = a′ U ′ , W̃ ′ = b′W ′ , (3.64)

for some a′, b′ ∈ C − {0}. But we have

U ′ := D(h∗)|V ′′ ◦ U , W ′ := D(h∗)|V ′ ◦W , (3.65)

Ũ ′ := D̃(h∗)|V ′′ ◦ Ũ , W̃ ′ := D̃(h∗)|V ′ ◦ W̃ , (3.66)

where D(h∗) = D̃(h∗), since the restrictions of D and D̃ to H coincide by hy-
pothesis. Hence (3.63) and (3.64) imply a = a′ and b = b′, showing that a, b
are universal. In particular, choosing h∗ = h̄−2

∗ , so that U ′ = W−1, W ′ = U−1,
Ũ ′ = W̃−1, and W̃ ′ = Ũ−1, this leads to b = a−1. But this implies the equiva-
lence of D and D̃ as follows: let

f : V ′ ⊕ V ′′ → V ′ ⊕ V ′′ , f := a idV ′ ⊕ idV ′′ (3.67)

and v = (v′, v′′) ∈ V ′ ⊕ V ′′; then

D(h̄∗)v = (Wv′′ , Uv′) , D̃(h̄∗)v = (W̃ v′′ , Ũv′) , (3.68)

so that
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f−1 ◦D(h̄∗) ◦ f = f−1 ◦D(h̄∗) (Wv′′ , a Uv′)

= f−1 (Wv′′ , a Uv′)

= (bWv′′ , a Uv′)

=
(
W̃v′′ , Ũv′

)

= D̃(h̄∗)v ,

(3.69)

where we used a−1 = b on the right of the third equality sign. Since (3.69) is
valid for all v ∈ V ′ ⊕ V ′′, we infer D̃(h̄∗) = f−1 ◦ D(h̄∗) ◦ f . But, trivially,
we also have D̃(h) = f−1 ◦D(h) ◦ f since D|H = D′ ⊕D′′. Hence we also have
D̃(hh̄∗) = f−1◦D(hh̄∗)◦f for all h ∈ H or, in other words, D̃(g) = f−1◦D(g)◦f
for all g ∈ G. This finally shows equivalence of D and D̃ and finishes the proof
of the theorem. 2

3.6 Weyl’s unitarian trick

In this section we wish to prove a result due to Hermann Weyl (cf. [18]), known as
‘unitarian trick’, which establishes bijections between the sets of finite-dimensional
complex representations of three related objects: a Lie group, its Lie algebra, and
its complexified Lie algebra. Its use will lie in the fact that it establishes tight
correspondences between representations of Lie groups which have isomorphic
complexified Lie algebras, but may themeselves be very different. This often al-
lows to reduce the representation theory of one class of groups to that of another
one, which may have been already developed. This is precisely what happens for
the Lorentz group, as we shall see below. All vector spaces will be complex and
finite dimensional.

3.6.1 Correspondences between representations of simply connected Lie groups
and their Lie algebras: Part 1

Lemma 3.17 Let (G, D1, V1) and (G, D2, V2) be representations of the Lie group
G with associtated representations (g, Ḋ1, V1) and (g, Ḋ2, V2) of its Lie algebra.
Then

i) every D1-invariant subspace of V1 is also Ḋ1-invariant;

ii) if D1 is equivalent to D2 then Ḋ1 is equivalent to Ḋ2;

iii) if G is connected, the converse of i) and ii) holds.

Proof We shall employ the exponential map (cf. Sect. 2.3.3).

i) Let V ′
1 ⊆ V1 be D1-invariant, then D1(exp(tX))V ′

1 ⊂ V1 for all X ∈ g and
all t ∈ R. Taking the t-derivative at t = 0 gives Ḋ1(X)V ′

1 ⊆ V1 for all
X ∈ g.

ii) Let f : V1 → V2 the equivalence map, i.e. D2(g) = f ◦D1(g) ◦ f−1 for all
g ∈ G. Then f ◦D1(exp(tX)) ◦ f−1 = D2(exp(tX)) for all X ∈ g and all
t ∈ R. Taking the t-derivative at t = 0 gives f ◦ Ḋ1(X) ◦ f−1 = Ḋ2(X) for
all X ∈ g.
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iii) converse of i): Let V ′
1 ⊆ V1 be Ḋ1-invariant, then, using (2.83),D1(exp(X))V ′

1 =
exp(Ḋ1(X))V ′

1 =
∑
n

1
n! [Ḋ1(X)]nV ′

1 ⊆ V1 for all X ∈ g and hence

D1(exp(X1) · · · exp(Xn))V
′
1 ⊂ V1 , (3.70)

for all X1, · · · , Xn ∈ g. If G is connected, this and (2.82) imply D1(g)V
′
1 ⊂

V1 for all g ∈ G.

iii) converse of ii): Let Ḋ1 and Ḋ2 be equivalent, i.e. Ḋ2(X) = f ◦ Ḋ1(X)◦ f−1

for all X ∈ g, then D2(exp(X)) = exp(Ḋ2(X)) = exp(f ◦ Ḋ1(X) ◦ f−1) =
f ◦ exp(Ḋ1(X)) ◦ f−1 = f ◦D1(exp(X)) ◦ f−1 for all X ∈ g. Hence

D2(exp(X1) · · · exp(Xn)) = f ◦D1(exp(X1) · · · exp(Xn)) ◦ f−1 (3.71)

for all X1, · · · , Xn ∈ g. If G is connected, this and (2.82) imply D2(g) =
f ◦D1(G) ◦ f−1 for all g ∈ G. 2

As a direct consequence of this lemma we can, without further proof, assert the
following

Proposition 3.18 Let G be a connected Lie group. Then

i) a representation (G, D, V ) is reducible or fully reducible respectively iff this
is true for (g, Ḋ, V ).

ii) two representations (G, D1, V1) and (G, D2, V2) are equivalent iff this is true
for (g, Ḋ1, V1) and (g, Ḋ2, V2).

We now introduce the following notation: Let Rep(G, V ) denote the set of all
representations of G in V and similarly Rep(g, V ) the set of all representations
of g in V . Then we have the “dot”-map

∆ : Rep(G, V ) → Rep(g, V ) , D 7→ ∆(D) := Ḋ (3.72)

Proposition 3.19 The map ∆ is i) injective if G is connected and ii) bijective
if G is simply connected.

Proof Assume Ḋ1 = Ḋ2, then D1(exp(X)) = exp(Ḋ1(X)) = exp(Ḋ2(X)) =
D2(exp(X)) for all X ∈ g. Hence

D1(exp(X1) · · · exp(Xn)) = D2(exp(X1) · · · exp(Xn)) (3.73)

for all X1, · · · , Xn ∈ g. Connectedness and (2.82) now imply D1 = D2, which
proves part i). To prove part ii) we need to show surjectivity. This follows directly
from Theorem2.7. 2

Remark Part ii) of Proposition3.18 implies that for connected G the map ∆
projects to a map ∆̃ between the sets of equivalence classes of representations.
That is, if πG : Rep(G, V ) → [Rep(G, V )] and πg : Rep(g, V ) → [Rep(g, V )] are
the projection maps that assign to each representation its equivalence class, then
πg ◦ ∆ = ∆̃ ◦ πG. Proposition3.19 could then be phrased in terms of ∆̃, saying

that ∆̃ is injectice and bijective if G is simply connected.



68 ELEMENTS OF REPRESENTATION THEORY

3.6.2 Correspondences between representations of real and complex Lie algebras

Let L be a real Lie algebra with representation ρ : L → gl(V ) in a complex
vector space V . We consider the complexification LC (cf. Sect. 2.2.1.9). Then we
obtain a representation ρC : LC → gl(V ) by setting

ρC(z ⊗X) := zρ(X) (3.74)

and R-linear extension; clearly ρC|L = ρ. Conversely, let ρ : LC → gl(V ) be a
(C-linear) representation, then (ρ|L)C = ρ, since (ρ|L)C(z ⊗ X) = z(ρ|L)(X) =
zρ(1 ⊗X) = ρ(z ⊗X) for all z ⊗X ∈ LC, implying the claim due to C-linearity
of both sides. For the further discussion it will be helpful to introduce a little
refinement into our notation:

Definition 3.20 If L is a real Lie algebra and V a complex vector space, then
Rep

R
(L, V ) denotes the set of all R-linear representations. If L is a complex Lie

algebra, then Rep
C
(L, V ) denotes the set of all C-linear representations.

We then have the following maps, of which the discussion above shows that they
are inverse to each other:

Γ : Rep
R
(L, V ) → Rep

C
(LC, V ) , ρ 7→ ρC , (3.75)

Γ−1 : Rep
C
(LC, V ) → Rep

R
(L, V ) , ρ 7→ ρ|L . (3.76)

Indeed, representations related by these maps have the same reducibility and
equivalence properties. This is expressed by the following

Lemma 3.21 Regarding representation ρ ∈ Rep
R
(L, V ) and their images ρC ∈

Rep
C
(LC, V ) under (3.75), the following statements hold:

i) The map (3.75) is a bijection with inverse (3.76).

ii) V ′ ⊆ V is invariant under ρ iff it is invariant under ρC

iii) ρ is (fully) reducible iff ρC is (fully) reducible.

iv) ρ1 and ρ2 are equivalent iff ρ1C
and ρ2C

are equivalent.

Proof We have already seen that (3.76) is the inverse of (3.75), which also
implies bijectivity and hence proves i). The other parts are proven as follows:

ii) Let V ′ ⊆ V be a (complex!) (ρ, L)-invariant subspace, then for any v ∈ V ′

and all z ∈ C and all X ∈ L we have ρC(z⊗X)v = zρ(X)(v) = ρ(X)(zv) ∈
V ′, so that V ′ is also (ρC, L

C)-invariant. Conversely, let V ′ ⊆ V be a (ρC, L
C)-

invariant subspace, then it is trivially (ρ, L)-invariant, since for any v ∈ V ′

we have ρ(X)(v) = ρC(1 ⊗X)v ∈ V ′ for all X ∈ L.

iii) Is a direct consequence of part ii).

iv) Let ρ1 and ρ2 be equivalent; since the vector space V is complex, this
means that there exists a C-linear bijection f : V → V , so that ρ2(X) =
f ◦ ρ1(X) ◦ f−1. Then, for all z ∈ C and all X ∈ L we have ρ2C

(z ⊗X) =
zρ2(X) = zf ◦ ρ1(X) ◦ f−1 = f ◦ zρ1(X) ◦ f−1 = f ◦ ρ1C

(z ⊗ X) ◦ f−1.
Complex linearity of both sides implies ρ2C

= f ◦ ρ1C
◦ f−1. Conversely,
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let ρ1C
and ρ2C

be equivalent. Then ρ2C
(z ⊗X) = f ◦ ρ1C

(z ⊗X) ◦ f−1 for
all z ∈ C and all X ∈ L, so that, in particular, ρ2(X) = ρ2C

(1 ⊗ X) =
f ◦ ρ1C

(1 ⊗X) ◦ f−1 = f ◦ ρ1(X) ◦ f−1 for all X ∈ L. 2

This immediately imples

Theorem 3.22 Let the real Lie algebras L1 and L2 be real forms of the complex
Lie algebra L, i.e. LC

1
∼= L ∼= LC

2. Then, for any finite-dimensional complex
vector space V , there is a bijection f : Rep

R
(L1, V ) → Rep

R
(L2, V ) such that for

ρ1, ρ
′
1 ∈ Rep(L1, V ):

i) V ′ ⊆ V is ρ1-invariant iff it is ρ2 := f(ρ1)-invariant,

ii) ρ1 and ρ′1 are equivalent iff ρ2 := f(ρ1) and ρ′2 := f(ρ′1) are equivalent.

The value of this insight lies in the fact that amongst the various real forms
of a given complex Lie algebra there are often some which are ‘nice’ as far as
representation theory is concerned. For semi-simple Lie algebras one such nice
property is compactness (cf. Sect. 2.2.1.7) for reasons that will become clear in
the next subsection. In this regard the following result is most useful:

Theorem 3.23 Any complex semisimple Lie algebra has a compact real form.

For a proof we refer to Theorem6.3 in [9]. Since complexification preserves
semisimplicity (cf. Sect. 2.2.1.9) this implies, that for any semisimple real Lie
algebra L1 we can find a compact semisimple real Lie algebra L2 such that
L1C = LC

2.
Let us finally remark on the comparison between Rep

C
(L, V ) and Rep

R
(LR, V ),

where L is now a complex Lie algebra. It is clear that

Rep
C
(L, V ) = {ρ ∈ Rep

R
(LR, V ) | ρ ◦ J = iρ} , (3.77)

where J is the natural complex structure of LR. This defines an embedding ι :
Rep

C
(L, V ) → Rep

R
(LR, V ), which combines with the bijection Γ : Rep

R
(LR, V ) →

Rep
C
(LRC, V ) to an embedding ι′ := Γ ◦ ι : Rep

C
(L, V ) → Rep

C
(LRC, V ). On the

other hand, we also know that LRC = L+⊕L− where L±
∼= L are the eigenspaces

for the eigenvalues ±i of the natural complex-structure map J of LR linearly
extended to LRC; compare (2.40). Identifying Rep

C
(L, V ) with its image under ι′,

equation (3.77) can then be expressed in the form

Rep
C
(L, V ) = {ρ ∈ Rep

C
(LRC = L+ ⊕ L−, V ) | ρ|L− = 0} , (3.78)

that precisely characterises which of the representations in Rep
R
(LR, V ) corre-

spond to representations in Rep
C
(L, V ).

3.6.3 Correspondences between representations of simply connected Lie groups
and their Lie algebras: Part 2

As an common result from Propositions3.18, 3.19 and Lemma3.21 let us note,
that the following composition of maps,
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Rep(G, V )

Rep
R
(g, V )

∆

Rep(G, V ) Rep
C
(gC, V )

Γ◦∆
Rep

C
(gC, V )

Rep
R
(g, V )

Γ
(3.79)

is a bijection for simply connected G which, moreover, respects all reducibility
and equivalenc properties. This means that, as far as finite-dimensional complex
representations are concerned, the representation theory of a simply connected
Lie group is fully determined by that of its complexified Lie algebra. In particular
it imples the group version of Theorem3.22.

Theorem 3.24 Let G1 and G2 be simply-connected Lie groups whose complex-
ified Lie algebras gC

1 and g2
C are isomorphic. Then, for any finite-dimensional

complex vector space V , there is a bijection F : Rep(G1, V ) → Rep(G2, V ) such
that for D1, D

′
1 ∈ Rep(G1, V )

i) V ′ ⊆ V is D1-invariant iff it is D2 := F (D1)-invariant,

ii) D1 and D′
1 are equivalent iff D2 := F (D1) and D′

2 := F (D′
1) are equivalent.

Note that g1 and g′ are real forms of gC. Hence simply-connected Lie groups
whose Lie algebras are both real forms of the same complex Lie algebra have the
same (finite dimensional) represenation theory. Moreover, Theorem3.23 and the
ensuing discussion tells us that for any semisimple real Lie algebra g1 we can
find a compact semisimple real Lie algebra g2 such that gC

1 = gC

2. The universal-
cover group G2 with Lie algebra g′ must then be compact (cf. Sect. 2.2.1.7) and
its representations therefore fully reducible, according to Theorem3.2. Hence we
have

Corollary 3.25 Complex representations of semi-simple Lie algebras and their
corresponding Lie groups are fully reducible.

We may consider the realification gCC of gCC as the Lie algebra of a new Lie
group. (As we have repeatedly emphasised, the Lie algebra of a Lie group is
a priori to be understood as real.) We make the following extension of Defini-
tion 2.4:

Definition 3.26 Let G be a simply connected Lie group with Lie algebra g. The
unique simply connected Lie group whose Lie algebra is gCR is called the complex
double of G and denoted by 2G.

It is interesting to compare Rep(2G, V ) with Rep(G, V ). For the first we have
the string of bijections (preserving reducibilities and equivalences)

Rep(2G, V ) ↔ Rep
R
(gCR, V ) ↔ Rep

C
(gCRC, V ) ↔ Rep

C
(gC

+ ⊕ gC

−, V ) . (3.80)

and for the second, using (3.78):

Rep(G, V ) ↔ Rep
C
(gC, V ) ↔ {ρ ∈ Rep

C
(gC

+ ⊕ gC

−, V ) | ρ|gC

−
= 0} . (3.81)
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3.6.4 Examples

As first example we consider the Lie algebra so(p, q). Its defining relation is
given by equation (2.50). Its complexification is then simply given by allowing
the matrices X to be complex:

so(p, q)C = {X ∈ M(n,C) | E(p,q)X = −(E(p,q)X)⊤} . (3.82)

Note that the defining relation is C-linear in X , hence it is the same for so(p, q)
and so(p, q)C. We claim that so(p, q)C is isomorphic to

so(n,C)C = {X ∈ M(n,C) | X = −X⊤} , (3.83)

where n = p+ q and where we put the subscript C on so(n,C) to indicate that
we regard the a priori real Lie algebra so(n,C) as complex (due to its complex
structure given by multiplicating the matrices by i). Indeed, an isomorphism
so(p, q)C → so(n,C) is given by X 7→ X ′ := AXA−1, where

A := diag(1, · · · , 1︸ ︷︷ ︸
p

, i, · · · , i︸ ︷︷ ︸
q

) . (3.84)

This obviously defines an isomorphism of vector spaces and X ′ satisfies the
defining relations in (3.83) iff X satisfies the defining relations in (3.82), simply
because conjugation of E(p,q) by A results in the identity matrix. Hence for all
non-negative integers p, q, where p+ q = n, we have an isomorphism of complex
Lie algebras

so(p, q)C ∼= so(n,C)C . (3.85)

Since the right hand side depends only on the sum n = p + q, this implies that
any two so(p, q) for fixed n = p + q are real forms of the same complex Lie
algeba and therefore have the same complex finite-dimensional representations
according to Theorem3.22. The compact real form, whose existence is ensured
by Theorem3.23 for n > 2 (so(2) is not semi-simple), is obtained by setting
p = n, q = 0 (or p = 0 and q = n), resulting in so(n).

As second example we consider the Lie algebra su(p, q), where n = p+ q ≥ 2.
This time, the first part of its defining relations (cf. equation (2.53)),

E(p,q)X = −(E(p,q)X)† , trace(X = 0) , (3.86)

is not C-linear in X because of the complex conjugation in †, and therefore does
not survive complexification. Tracelessness remains of course. Those X which
still do satisfy (3.86) form the real subalgebra su(p, q) ⊂ su(p, q)C. Conjugation
by the complex matrix A (3.84) now defines an isomorphism su(p, q)C → sl(n,C)C

for n = p+ q (again we put the subscript C on the right hand side since sl(n,C)
is a priori to be taken as real Lie algebra). Indeed, conjugating those elements
which satisfy (3.86) results in all traceless anti-hermitian n × n matrices, i.e.
in the real subalgebra su(n) ⊂ sl(n,C), whose span over C is the space of all
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complex n × n traceless matrices, i.e. sl(n,C)C. The last statement follows e.g.
from the identity

A ≡ 1
2 (A−A†)︸ ︷︷ ︸
anti-herm.

+ i 1
2i(A+A†)︸ ︷︷ ︸
anti-herm.

. (3.87)

Hence
su(p, q)C ∼= sl(n,C)C . (3.88)

Again the right hand side only depends on the sum n = p+ q so that all su(p, q)
are real forms of the same complex Lie algebra sl(n,C)C and hence have the same
complex finite-dimensional representations according to Theorem3.22. Moreover,
all Lie algebras su(p, q) are semisimple. The compact real form is obtained by
setting p = n, q = 0 (or p = 0 and q = n), resulting in su(n). The corresponding
simply connected Lie group is SU(n).

Taking the realification of (3.88) shows that sl(n,C) is su(p, q)CR, i.e. the com-
plex double of su(p, q) (cf. Definition 2.4). Taking the composition of realification
and complexification of (3.88) gives, using (2.40),

sl(n,C)C ∼= su(p, q)CRC ∼= su(n)CRC = su(n)C ⊕ su(n)C (3.89)

where the two su(n)C on the right hand side considered as subalgebras of sl(n,C)C,
are complex conjugate to each other (with respect to the natural real structure
that sl(n,C)C obtains by being the complexification of something real). In par-
ticular, sl(n,C) and su(n)C ⊕ su(n) are both real forms of the same complex Lie
algebra.


