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Outline

I In this talk I wish to discuss the recent (Feb. 18. 2010) Nature
paper by Holger Müller, Achim Peters, and Steven Chu: A preci-
sion measurement of the gravitational redshift by the interference
of matter waves.

I In this paper it is claimed that a re-interpretation of some 10-years
old experiments using vertical beams of laser cooled atoms give
rise to a dramatic improvement in measurement of gravitational
redshift and hence of Einstein’s equivalence principle and the ge-
ometric nature of gravity.

I This paper has started a still ongoing controversy with a criticism
in Nature (September 2.) by Peter Wolf, Luc Blanchet, Christian
Bordé, Serge Reynaud, Christophe Salomon, and Claude Cohen-
Tannoudji and a reply to that by the authors: “We stand by our
result”.

I Controversial is the answer to the question: What has been mea-
sured?
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Reminder: Principles of Equivalence

Three formulations of the equivalence principle should be clearly
distinguished

1. The weak equivalence principle (WEP) states the universality of
free fall (UFF) for test particles.

2. The strong equivalence principle (SEP) states the universality
of free fall also for bodies whose gravitational self-energy is not
negligible.

3. The Einstein equivalence principle (EEP) states that for all non-
gravitational interactions, which do not couple to tidal gravitational
fields, the usual laws (special relativistic) hold in a local inertial
(freely falling and non rotating) reference frame.⇒ Geometrisation of gravitational interaction and universal coupling-
scheme for interaction between gravity and matter.

ηµν 7→ gµν ∂µ 7→ ∇µ := ∂µ + D∗(Γµ) (1)

We see EEP as the foundation of the statements that space-time is
curved and that gravity and inertia are merely attributes of space-
time’s geometry.
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The EEP canonised

The Einstein Equivalence Principle is usually canonised in the
following form (cf. C. Will: Living Reviews 2006):
EEP is equivalent to

I WEP is valid.
I The outcome of any local non-gravitational experiment is indepen-

dent of the velocity of the freely-falling reference frame in which it
is performed.⇒ Local Lorentz invariance (LLI) .

I The outcome of any local non-gravitational experiment is indepen-
dent of where and when in the universe it is performed.⇒ Local position invariance (LPI) .
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Equivalence principle(s) and QM

I According to EEP, a homogeneous gravitational field cannot be
distinguished from uniform acceleration wrt. an inertial system.
The single-particle Schrödinger equation in a homogeneous grav-
itational field ~g = −g~ez is given by

ih̄∂tΨ =
`
−

h̄2

2mi
∆+ mggz

´
Ψ (2)

I Let K be an inertial reference frame without gravitational field. Let
K ′ be constantly accelerated by ~a = g~ez relative to K . Then

~x ′ = ~x − 1
2 gt2

, t ′ = t (3)

In terms of (~x ′, t ′) the free one-particle Schrödinger equation is
equivalent to

ih̄∂t ′Ψ
′ =

„
−

h̄2

2mi
∆

′ + migz ′
«
Ψ

′ (4)

where

Ψ
′(~x ′

, t ′) = Ψ(~x , t) exp
“
−i

mig
h̄

`
z ′t ′ − 1

6 gt ′3
´”

(5)

⇒ If mi = mg , evolution of rays is identical to (2).
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LPI and redshift -1
I Let there be a static gravitational field ~g = −g~ez . Assume validity

of EEP−LPI = WEP+LLI. Then WEP guarantees local existence
of freely-falling frame F 3 with coordinates {xµ

f } whose acceleration
is the same as that of test particles:

ctf = (zs + c2
/g) sinh(gts/c) ,

xf = xs ,

yf = ys ,

zf = (zs + c2
/g) coth(gts/c) .

I LLI guarantees that, locally, time measured by, e.g., an atomic
clock is proportional to Minkowskian proper length in F 3. If we
consider violations of LPI, the constant of proportionality might
depend on the space-time point (e.g. via dependence on gravi-
tational potential φ) as well as the type of clock:

c2 dτ2 = F 2(φ)
ˆ
c2dt2

f − dx2
f − dy2

f − dz2
f

˜
(6)

= F 2(φ)

»“
1 +

gzs

c2

”2
c2dt2

s − dx2
s − dy2

s − dz2
s

–
. (7)
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LPI and redshift -2

I The same time interval dts = dts(z
(1)
s ) = dts(z

(2)
s ) on the two static

clocks at rest wrt. {xµ
s }, placed at different heights z(1)

s and z(2)
s ,

correspond to different intervals dτ(1), dτ(2) of the inertial clock,
giving rise to the redshift (all coordinates are {xµ

S } now, so we drop
the subscript s):

ζ :=
dτ(2) − dτ(1)

dτ(1)
=

F (z(2))(1 + gz(2)/c2)

F (z(1))(1 + gz(1)/c2)
− 1 (8)

I For small ∆z = z(2) − z(1) this gives to first order in ∆z

∆ζ = (1 + β)g∆z/c2 (9)

where

β =
c2

g

`
~ez · ~∇ ln(F )

´
(10)

parametrises the deviation from GR result. β may depend on po-
sition, gravitational potential, and the type of clock one is using.
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Redshift, WEP, and energy conservation

time
T1 T2 T3 T4

hν gA gB

height

A

B

B ′

Figure 1: Gedankenexperiment by NORDTVEDT to show that energy conservation con-
nects anomalous redshift and violation of WEP. Considered are two copies of a system that
is capable of 3 energy states A, B, and B ′ (blue, pink, and red), with EA < EB < EB ′ . Ini-
tially system 2 is in state B and placed a height h above system 1 which is in state A. At time
T1 system 2 makes a transition B → A and sends out a photon of energy hν = EB − EA.
At time T2 system 1 absorbs this photon, which is now blue-shifted, and makes a transi-
tion A → B ′. At T3 system 2 has been dropped from height h with acceleration gA, has
hit system 1 inelastically, leaving one system in state A and at rest, and the other system
in state B with an upward motion with kinetic energy Ekin = MAgAh + (EB ′ − EB). The
latter motion is decelerated by gB , which may differ from gA. At T4 the system in state B
has climbed to the same height h by energy conservation. Hence have Ekin = MBgBh and
therefore MAgAh + MB ′c2 = MBc2 + MBgBh, from which we get

δν

ν
=

(MB ′ − Ma) − (MB − MA)

MB − MA
=

gBh

c2

»
1 +

MA

MB − MA

gB − gA

gB

–
(11a)

⇒ β =
MA

MB − MA

gB − gA

gB
=:

δg/g

δM/M
(11b)
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Dependencies

I Equations (11) answer the question of how accurate a clock must
be in order to test the metric nature of gravity to the same level of
accuracy than Eötvös-type experiments.

I Given that for the latter we have δg/g < 10−13, this depends on
the specific situation (interaction) through δM/M. For magnetic
interaction have typically δM/M ≈ 10−4 and hence β < 10−9.

I We also note

(SRT ) and (UFF ) ⇒ (redshift)

(EEP) ⇒ (UFF ) and (redshift)

(EEP) ⇐ (UFF ) and (redshift) [Schiff’s conjecture]

9/26



‘Down-to-Earth’ Issues
in Atom Interferometry

Domenico Giulini

Outline

Redshift and EPs

The argument

How to calculate
phase shifts

Quadratic Lagrangians

Exact free-phase
calculation

Intermediate
conclusion

Phases from laser
interactions

Conclusion

The Argument of Müller, Peters, and Chu

Figure 2: Atom interferometer and 2-photon Raman beam-splitter (Fig. 1 of Müller et al.).
If k1 := ‖~k1‖ > k2 := ‖~k2‖, then the transition g1 → g2 is accompanied by a four-
momentum change of ∆p = h̄

`
~k1 − ~k2 , ω1 − ω2

´
, the transition g2 → g1 by −∆p.

∆φ = ∆φredshift + ∆φtime︸ ︷︷ ︸
∆φfree⇔geometry

+∆φlight (12)
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The Argument of Müller, Peters, and Chu (cont’d)

I “As the purpose of our analysis is to study violations of local posi-
tion invariance, it is useful to re-derive the phase from first princi-
ples”

∆φfree =
1
h̄

∫
L dt =

mc2

h̄︸ ︷︷ ︸
ωC

∫
dτ (13)

where

dτ =
1
c

p
|gµν(x)dxµdxν| (14)

I “This shows that the phase is the integral of the Comptonunit fre-
quency ωC := mc2/h̄ over the proper time dτ as it varies over the
trajectory:”

I “An atom interferometer thus provides a textbook test case of gen-
eral relativity: a neutral atom is almost ideal as a light test particle
and contains a built-in quantum clock.”

11/26



‘Down-to-Earth’ Issues
in Atom Interferometry

Domenico Giulini

Outline

Redshift and EPs

The argument

How to calculate
phase shifts

Quadratic Lagrangians

Exact free-phase
calculation

Intermediate
conclusion

Phases from laser
interactions

Conclusion

The Argument of Müller, Peters, and Chu (cont’d)

I “If the gravitational redshift is conventional [as predicted by GR], it
turns out that they [contributions in (12)] have the same magnitude
but opposite sign”

∆φ = ∆φredshift = −∆φtime = ∆φlight (15)

I This allows to regard the phase shift as entirely due to either red-
shift (Müller et al.). However, one might just as well regard it as
due to the interaction with light:

∆φ = ∆φredshift + ∆φtime + ∆φlight︸ ︷︷ ︸
=0

= ∆φredshift (16a)

∆φ = ∆φredshift + ∆φtime︸ ︷︷ ︸
=0

+∆φlight = ∆φlight (16b)

I Müller et al. state that the former cancellation generalises to cases
of anomalous redshift. This is their essential point.
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The Argument of Müller, Peters, and Chu (cont’d)

Figure 3: Table 1 in Müller et al., p. 927. The overall signs of the quantities ∆ϕ are
conventional.
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The Argument of Müller, Peters, and Chu (cont’d)

∆φ = ∆φredshift = (1 + β)κT 2g (17)

I Hence the redshift per unit length is

z := (1 + β)
g
c2

=
∆φ

κT 2c2
(18)

I The measured versus the predicted (taking systematic corrections
into account) values are

zmeas= (1.090 322 683± 0.000 000 003)× 10−16 m−1 (19a)

zpred= (1.090 322 675± 0.000 000 006)× 10−16 m−1 (19b)

which translates to

β =
zmeas

zpred
− 1 = (7± 7)× 10−9

. (20)

This should be compared to previous tests (Gravity-Probe-A, 1976)
using hydrogen masers in rockets at altitude 10 000 Km (7×10−5)

and planned ones (launch 2013) on the ISS (ACES, 2× 10−6).
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The Argument of Müller, Peters, and Chu (cont’d)

“In summary, we improved the precision of measurements
of the gravitational redshift by a factor of 10 000.
This compares favourably to the European Space
Agency’s ACES mission, where it is anticipated that the
gravitational redshift can be tested to a precision of
2 p.p.m.”

Müller et al. 2010
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How to calculate phase shifts:
Path-integral representation of Schrödinger evolution

ψ(zb, tb) =

∫
space

dza K (zb, tb ; za, ta)ψ(za, ta) (21)

where
K (zb, tb ; za, ta) := 〈zb | exp

`
−iH(tb − ta)/h̄

´
|za〉 . (22)

The path-integral representation of the propagator K is

K (zb, tb ; za, ta) =

∫
Γ(a,b)

Dz(t) exp
`
iS[z(t)]/h̄

´
(23)

where
Γ(a, b) :=

{
z : [ta, tb] → M | z(ta,b) = za,b

}
(24)

and S : Γ(a, b) → R is the action.
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P2-Lagrangians

L(z, ż) = a(t)ż2 + b(t)żz + c(t)z2 + d(t)ż + e(t)z + f (t) (25)

Examples are: 1) The free particle, 2) particle in a homogeneous
gravitational field, 3) particle in a rotating frame of reference.
Let z∗ ∈ Γ(a, b) be the solution to the classical equations of motion:

δS
δz(t)

˛̨̨̨
z(t)=z∗(t)

= 0 (26)

Writing z(t) = z∗(t) + ξ(t), so that

K (zb, tb ; za, ta)
∫

Γ(0,0)

Dξ(t) exp
`
iS[z∗(t) + ξ(t)]/h̄

´
(27)

Taylor-expansion around z∗(t) gives

K (zb, tb ; za, ta) = exp
{

i
h̄

S∗(zb, tb ; za, ta)
}

×
∫

Γ(0,0)

Dξ(t)exp

{
i
h̄

∫
Γ(0,0)

dt
ˆ
a(t)ξ̇2 + b(t)ξ̇ξ+ c(t)ξ2˜} (28)
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Form of propagator for P2-Lagrangians

I For polynomial Lagrangians of at most quadratic order the propa-
gator has the exact representation

K (zb, tb ; za, ta) = F (tb, ta) exp
{

i
h̄

S∗(zb, tb ; za, ta)
}

(29)

where F (tb, ta) does not depend on the initial and final position and
S∗ is the action for the extremising path (classical solution).

I Using this expression, the phase-change in a Kasevich-Chu situ-
ation can be calculated exactly for Newtonian Lagrangians of at
most quadratic order.

I In the following we shall briefly forget about the derivation of (29)
and use this formula to calculate the phase change along any
path, even if it is not a stationary point of the action functional.
This seems to be the rationale behind the argument of Müller
et al.
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Spacetime paths in Kasevich-Chu situation

Figure 4: Spacetime paths followed by the atoms in the experiment of Kasevich and Chu.
Raman pulses occur at times 0, T , and 2T with four-momenta p1 = h̄(−k1~ez , ω1) and
p2 = h̄(k2~ez , ω2). The insert shows the atomic level scheme and the directions of the
laser beams. Transitions g1 → g2 and g2 → g1 are accompanied by four-momentum
transfers ∆12p = (−κ, ω) and ∆21p = −∆12p respectively, where κ = k1 + k2 > 0 and
ω = ω1 − ω2 > 0.
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Exact NR calculation of ∆φfree

I The non-relativistic Lagrangian for a particle of mass m in a homo-
geneous (vertical) gravitational field ~g = −g~ez is given by (taking
only into account the z-degree of freedom):

L(z, ż) = 1
2 mi ż

2 − mggz (30)

Here and in the following we shall separate the kinetic (“time”) from
the potential (“redshift”) contribution by writing the latter in redred.

I From this the action along a parabolic path with acceleration ~g =

−g ′~ez , where g ′ is not necessarily equal to (mg/mi)g, and con-
necting the initial event (za, ta) with the final event (zb, tB) can be
obtained by straightforward computation:

Sg ′(zb, tb ; za, ta) =
mi

2
(zb − za)

2

tb − ta

−
mgg

2
(zb + za)(tb − ta)

+
g ′

24
(tb − ta)

3(mig
′ − 2mgg)

(31)

Terms in red (∝ mg) originate from the potential part, those ∝ mi

from the kinetic part.
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Exact NR calculation of ∆φfree (cont’d)

I Applied to A = (zA, tA = 0), B = (zB, tB = 2T ), C = (zC , tC = T ),
and D = (zD, tD = T ) (see Figure 4) and noting that the (tb − ta)3

- term is independent of the zX s and hence does not contribute to
differences for equal time lapses, we find

∆φfree = h̄−1
h
Sg ′(A; C) + Sg ′(C; B) −

`
Sg ′(A; D) + Sg ′(D; B)

´i
=

mi

h̄T

“
zC − zD

”h
(zC + zD − zA − zB) − (mg/mi)gT 2

i
(32)
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Exact calculation of ∆φprop (contd.)

I Let A0 = (z0
A, tA = 0), B0 = (z0

B, tB = 2T ), C0 = (z0
C , tC = T ),

and D0 = (z0
D, tD = T ) be the corresponding events for g ′ = 0

(vanishing gravitational field), then obviously

zA = z0
A zC = z0

C − 1
2 g ′T 2 zD = z0

D − 1
2 g ′T 2 zB = z0

B − 2g ′T 2

(33)
where, since A0C0B0D0A0 is a parallelogram,

z0
A + z0

B = z0
C + z0

D . (34)

Hence
zC + zD − zA − zB = gT 2

. (35)

I Using also that

zC − zD = z0
C − z0

D = ∆vz T =
h̄κ
m

T (36)

we finally get

∆φfree = ∆φtime + ∆φredshift

= κT 2
“

g ′ − (mg/mi)g
” (37)
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Intermediate result
I In metric theories, the classical action along a solution path is

S =

∫
dt

`
1
2 mż2(t) − mgz(t)

´
(38a)

= h̄ωC

∫
dt

`
1
2 (ż2(t)/c2) − (g/c2)z(t)

´
(38b)

∼= h̄ωC

∫
dt

»
1 −

1
c

q
gµν

`
z(t)

´
żµ(t)żν(t)

–
(38c)

I Differences for paths with same initial and final t-values can there-
fore be written as differences of proper-time integrals:

∆(S/h̄) ∼= −∆

{
ωC

∫
dτ

}
(39)

I If the path is a stationary point of the action and the redshift is non
anomalous, the foregoing result implies g ′ = (mg/mi)g = g and
∆φfree = 0. It therefore states that the number of proper Compton
periods along the upper path is the same as that on the lower path.
The phase difference could then be argued to be entirely due to
the laser interaction. But that is not the viewpoint of Müller et al.
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Phases from laser interactions

I Along the “upper” path ACB the phase due to laser interaction is
(here and in the following κ := ‖~k1 − ~k2‖ and : ω = ω1 −ω2):

U(3)
g2g2

U(2)
g2g1

exp
{

i
h
−κ

`
z0

C − 1
2 g ′T 2´

−ωT − φII

i}
︸ ︷︷ ︸

at C

U(1)
g1g1

(40)

I Along the “lower” path ADB the phases are

U(3)
g2g1

exp
{

i
h
−κ

`
z0

B − 2g ′T 2´
− 2ωT − φIII

i}
(at B)

× U(2)
g1g2

exp
{

−i
h
−κ

`
z0

D − 1
2 g ′T 2´

−ωT − φII

i}
(at D)

× U(1)
g2g1

exp
{

i
`
−κz0

A −ω · 0 − φI
´}

(at A) (41)

I Hence the upper minus the lower phase is, up to U ’s and φ’s:

∆φinteraction= −κ
ˆ
(z0

c + z0
D − z0

A − z0
B) + g ′T 2˜

= −κg ′T 2

= −(~k1 − ~k2) · ~g ′ T 2

(42)
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Total phase shift
I Since we assumed the trajectory to be parabolic wrt. g ′, the pa-

rameter g only enters in calculating the redshift part of ∆φ. Al-
lowing for this also to be anomalous, we make the replacement
g → (1 + β)g. Then we get

∆φ = κT 2g ′︸ ︷︷ ︸
∆φtime

− κT 2(mg/mi)(1 + β)g︸ ︷︷ ︸
∆φredshift

−κT 2g ′︸ ︷︷ ︸
∆φlight

(43)

I This equation contains an unknown g. It is eliminated through a
nearby reference measurement of the acceleration ḡ = (Mg/Mi)g
of a corner cube of inertial mass Mi and gravitational mass Mg .

I Using the Nordtvedt parameter for the atom-cube pair,

η := η(atom, cube) := 2
(mg/mi) − (Mg/Mi)

(mg/mi) + (Mg/Mi)
, (44)

we get for the total phase shift (43):

∆φ = −κT 2ḡ (1 + β)
2 + η

2 − η
≈ −κT 2ḡ (1 + β)(1 + η) . (45)

I We see that violations of URS and WEP enter in precisely the
same fashion. Possible variations of mg/mi between the hyperfine-
split states are not taken into account here.

25/26



‘Down-to-Earth’ Issues
in Atom Interferometry

Domenico Giulini

Outline

Redshift and EPs

The argument

How to calculate
phase shifts

Quadratic Lagrangians

Exact free-phase
calculation

Intermediate
conclusion

Phases from laser
interactions

Conclusion

Conclusion
I A simple replacement g → (1 + β)g in the action and then pro-

ceeding in standard fashion renders measurable quantities insen-
sitive to β. Sensitivity to η remains however.

I If energy and momentum are conserved within the system we
are considering, then violations of UFF and URS are linked (→
Nordtvedt’s Gedankenexperiment) and current limits on the for-
mer imply better limits on the latter than the atom interferometric
experiment discussed here.

I Hence the whole consideration of Müller et al. is only relevant for
those types of violations of URS where energy-momentum con-
servation does not hold within the system (→ additional forces,
e.g. scalar fields etc.). If fundamental energy - momentum con-
servation is rescued by introducing additional fields (forces), they
must couple non minimally and violate UFF.

I Independent of all that, the argument of Müller et al. seems theo-
retically incomplete, for the following reason: When using the path
integral to calculate the propagator, one may only replace the in-
tegral over actions along paths by a single action, i.e. use the
representation (29), if the later extremises the action, which in our
case means g ′ = g and ∆φfree = 0. Otherwise we cut the logical
connection to the propagator and hence the phase shift.

I To me, and at this moment, the only logically consistent interpreta-
tion of what has been done is a measurement of the Eötvös factor. 26/26
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