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Super- and ordinary selection rules

I The notion of superselection rule (SSR) was introduced in
1952 by Wick, Wightman, and Wigner in connection with the
problem of how to consistently assign intrinsic parity to
elementary particles. They understood a SSR as generally
expressing “restrictions on the nature and scope of possible
measurements”.

I The concept of SSR should be contrasted with that of an
ordinary selection rule. The latter refers to a dynamical
inhibition of some transition, usually due to the existence of a
conserved quantity, that is, a symmetry. For example, rotational
symmetry restricts electric dipole transitions of atoms according
to the well known Selection Rule:

∆J = 0,±1 (except J = 0 → J = 0) and ∆MJ = 0,±1
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Super- and ordinary selection rules (contd.)

I In QM, conserved physical quantities correspond to operators
that commute with the Hamiltonian. In contrast, SSRs
correspond to quantities that commute with all observables.

I Two states, ψ1 and ψ2, are separated by a SR if

〈ψ1 | H | ψ2〉 = 0

where H is the Hamiltonian. They are separated by a SSR if

〈ψ1 | A | ψ2〉 = 0

for all (physically realisable) observables A.
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Inhibition of superposition principle

I A SSR implies an inhibition to the superposition principle in the
sense that the relative phase between ψ1 and ψ2 is not
measurable and that coherent superpositions of ψ1 and ψ2

cannot be verified: Let ψ+ = (ψ1 + ψ2)/
√

2, then

〈ψ+ | A | ψ+〉 = 1
2

`
〈ψ1 | A | ψ1〉+ 〈ψ2 | A | ψ2〉

´
= Tr(ρA)

where
ρ = 1

2

`
| ψ1〉〈ψ1 | + | ψ2〉〈ψ2 |

´
I Hence, with respect to the (physically realisable)

observables, the linear combination ψ+ corresponds to a mixed
state. Clearly, this could not be true if all self-adjoint operators in
B(H) corresponded to (physically realisable) observables; e.g.
take

A =| ψ1〉〈ψ2 | + | ψ2〉〈ψ1 |
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A brief critical intermezzo

I The validity of ordinary selection rules is approximate, in
the same way as the corresponding dynamical
symmetries are. The latter are always breakable in
principle (like e.g. by environmental changes).

I In contrast, a SSR is usually understood as exact, i.e. not
‘breakable’ under all circumstances.

I Is this qualitative distinction well founded? Or is perhaps
the ‘Super’ merely a quantitative statement, like ‘very
strong’?
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Discrete SSR

I There exists a finite or countably infinite family {Pi | i ∈ I} of
mutually orthogonal and exhaustive projection operators on
Hilbert space H:

H =
M
i∈I

Hi Hi := Pi(H)

such that each observable commutes with all Pi . That is, the
sectors Hi reduce the algebra of observables.

I Equivalently, one may also say that states (density matrices) on
the given set of observables commute with all Pi , which is
equivalent to the identity

ρ =
X
i∈I

PiρPi

I If I′ = {i ∈ I | λi := Tr(ρPi) 6= 0} has more than one element, ρ
is mixed:

ρ =
X
i∈I′

λiρi where ρi := PiρPi/λi
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Discrete SSR (contd.)

I Only vectors in the union
S

i∈I Hi define pure states.
I If, conversely, any non-zero vector in this union defines a pure

state, with different rays corresponding to different states, one
speaks of an abelian superselection rule. The Hi are then
called superselection sectors or coherent subspaces on
which the observables act irreducibly.

I The subset Z of observables commuting with all observables,
called the centre of the algebra of physical observables, is then
given by

Z :=

(X
i

aiPi | ai ∈ R

)
They are called superselection- or classical observables.
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General SSR

I In general, the Hilbert space will not split into a discrete direct
sum of subspaces which are invariant under the action of
observables, but rather into a ‘continuous direct sum’, that is, a
direct integral:

H =

Z
Λ

dµ(λ)H(λ)

I States are square-integrable functions f : λ 7→ f (λ) ∈ H(λ) and
observables are functions O : λ 7→ O(λ) ∈ B(H(λ)). Closed
subspaces of H which are left invariant by the observables are
precisely given by

H(∆) =

Z
∆

dµ(λ)H(λ)

where ∆ ⊂ Λ is any measurable subset of non-zero measure. In
general, a single H(λ) will not be a subspace (unless the
measure has discrete support at λ).

I States are separated by a SSR if their supports in Λ are disjoint.
Hence one also speaks of disjoint states.
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SSRs discussed in the literature

In the literature, SSRs are discussed in connection with a variety of
superselection-observables, most notably

I univalence
I overall mass (in non-relativistic QM),
I electric charge
I baryonic and leptonic charge
I time
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Algebraic Theory

I In Algebraic Quantum Mechanics, a system in isolation is
characterised by an abstract C∗–algebra C.

I Depending on contextual physical conditions, one chooses a
faithful representation π : C → B(H) in the (von Neumann)
algebra of bounded operators on some Hilbert space H. After
completing the image of π in the weak operator-topology on
B(H) (dressing) one obtains a von Neumann sub-algebra
M ⊂ B(H), called the algebra of (bounded) observables.
The physical observables proper correspond to the self-adjoint
elements of M.

I SSRs are now said to exists if the commutant

M′ :=
˘

B ∈ B(H) | [A,B] = 0∀A ∈ M
¯

is not trivial (different from multiples of the unit). Note that this
makes reference to the Hilbert space H and is hence not
intrinsic to C. Sectors are defined by the projectors in M′.
Abelian SSRs are characterised by M′ being abelian. Note also
that M′′ = M holds for any von Neumann algebra M ⊆ B(H).
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Algebraic Theory (contd.)
I Dirac’s requirement of the existence of a maximal commuting

set of observables now reads as follows: There exists a
maximal abelian subalgebra A ⊂ M. This is a non-trivial
requirement since maximality refers to B(H) (not to M).

A max. abelian ⇔ A = A′

(
A ⊆ A′ A is abelian
A ⊇ A′ A is maximal

I Theorem: This is equivalent to the existence of a cyclic vector.
I Theorem: This is equivalent to M′ being abelian.
I Proof of the latter: If A ⊆ M is max. abelian, then M′ ⊆ A′ = A ⊆ M

and hence M′ ⊆ M′′, i.e. M′ is abelian. Conversely, let

M′ ⊆ M (M abelian) (1)

A = A′ ∩M (A max. abelian in M) (2)

Since A ⊆ M implies M′ ⊆ A′, we have

M′ (1)
= M ∩M′ ⊆ M ∩ A′

(2)
= A

Now, M′ ⊆ A implies A′ ⊆ M so that (2) implies A = A′.
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SSR and Decoherence

I Decoherence explains the invisibility of certain states due to the
ubiquitous dynamical process of phase dislocalisation.

I Formally, the process is of the following form, which makes the
connection with SSR obvious:

ρ ≡
X

i,j

Pi ρPj  
X

i

Pi ρPi

I The complete set of projection operators, {Pi}, depends on the
interaction of the system with the environment. They define the
sectors across which phase relations cannot be measured
locally (→ ‘pointer basis’).

I This gives rise to the notion of environmentally induced SSRs.
I Traditional arguments for SSRs suggest a more fundamental

nature. These will be discussed next.
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SSR and conserved additive quantities

I Let Q be the operator corresponding to a ‘charge-like’ quantity.
This means that it is 1) conserved under time evolution ,
2) additive under composition of systems, and 3) for subsystems
independent of the state of the complementary system. If
H = H1 ⊗H then Q = Q1 ⊗ 1 + 1⊗Q2.

I It is not difficult to show that superpositions of Q eigenstates
cannot form through the processes of time evolution,
composition, and decomposition of systems.

I Exact von Neumann measurements respecting the conservation
of Q are impossible for operators not commuting with Q (Wigner
1952). Approximate measurements are only possible to the
extend that the apparatus can be prepared in a superposition of
Q eigenstates (Araki & Yanase 1960), in which case the total
system (laboratory) cannot be in an eigenstate of Q.

I This seems to give rise to an abundance of SSRs.
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Intermezzo: Proof of Wigner’s theorem
I Let S be the system to be measured, A the measuring apparatus. Then

H = HS ⊗HA. The charge-like quantity is represented by the operator
Q = QS ⊗ 1 + 1⊗ QA, the observable of S by P ∈ B(HS).

I Let {|sn〉} ⊂ HS be a set of normalised eigenstates for P so that
P|sn〉 = pn|sn〉. Let U ∈ B(H) be the unitary evolution operator for the
von Neumann measurement and {|an〉} ⊂ HA a set of normalised
‘pointer states’ with neutral pointer-position a0, so that

U
`
|sn〉|a0〉

´
= |sn〉|an〉

I We assume the total Q to be conserved during the measurement, i.e.
[U, Q] = 0. Clearly 〈an | am〉 6= 1, for, otherwise, this is not a
measurement, since 〈an | am〉 = 1 if and only if |an〉 = |an〉). Then

(pn − pm)〈sn|QS |sm〉 = 〈sn| [P, QS ] |sm〉 = 〈sn|〈a0| [P ⊗ 1, Q] |sm〉|a0〉

= (pn − pm)〈sn|〈a0| U†QU |sm〉|a0〉
= (pn − pm)〈sn|〈an| QS ⊗ 1 + 1⊗ QA |sm〉|am〉
= 〈an|am〉 (pn − pm)〈sn|QS |sm〉

⇔ 〈sn|QS |sm〉 = 0 if pn 6= pm ⇔ [QS , P] = 0
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SSR and conserved additive quantities
(contd.)

I Clearly, there are many conserved quantities without associated
SSR, like momentum, angular momentum, etc. One crucial
observation here is that these quantities are physically always
understood as relative to a system of reference that, by its very
definition, must have certain localisation properties which
exclude the total system to be in eigenstates of relative (linear
and angular) momenta.

I “...SSRs do not exist. The belief of 3W is wrong because their
basic assumption about physics is incorrect. [...] Different
observers can disagree on whether two states are coherently
superposed” (Mirman 1977; Aharonov & Susskind 1967)

I The question may be asked whether there is a fundamental
difference in this respect between the Noether charges for
spacetime symmetries (momentum, angular momentum etc.)
and those for global gauge transformations, like electric charge.
(Aharonov & Susskind 1967 versus 3W 1970)
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SSR and symmetries

I Certain symmetry considerations seem to unambiguously prove
the existence of SSR. These proofs rely on the fact that in QM
and QFT it is sufficient to implement symmetries by (anti-)unitary
ray representations:

U(g1)U(g2) = ω(g1, g2) U(g1g2)

where ω : G ×G → U(1) := {z ∈ C | |z| = 1} is the so-called
multiplier that satisfies (associativity of group action)

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3)

I Any function α : G → U(1) allows to redefine U 7→ U ′ via
U ′(g) := α(g)U(g), which amounts to a redefinition ω 7→ ω′:

ω′(g1, g2) = α(g1)α(g2)
α(g1g2)

ω(g1, g2)

I Two multipliers ω and ω′ are called similar if this holds for some
function α. A multiplier is called trivial if it is similar to ω ≡ 1, in
which case the ray-representation is a proper representation in
disguise.
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SSR and symmetries (contd.)

I Theorem: Given unitary ray-representations U1,2 of G on H1,2,
respectively, with non-similar multipliers ω1,2, then no
ray-representation of G on H = H1 ⊕H2 exists which restricts to
U1,2 on H1,2 respectively.

I From this a SSR follows from the hypothesis of a definite
symmetry group and Wigner’s theorem, according to which
symmetries are always implementable by (anti-) unitary
ray-representations. The largest subset of rays in H1 ⊕H1 on
which G acts is the set of rays in H1 ∪H1.

I An example is given by the SSR of univalence, that is, between
states of integer and half-integer spin. Here G is the group
SO(3) of proper spatial rotations. For integer spin it is
represented by proper unitary representations, for half integer
spin with non-trivial multipliers.
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Example: Univalence

I We need to prove that multipliers of spin-1/2 representation are
not trivial. This is implied if they are not trivial after restriction to
a subgroup G ⊂ SO(3). Choose for G the four-element abelian
group D4 (isomorphic to ∼= Z2 × Z2), given by the identity and the
180◦ rotations gi (i = 1, 2, 3) about the x , y , z axes.

I Have ω(ga, ga) = −1 and ω(ga, gb) = −ω(gb, ga) = 1 for b cyclic
successor of a.

I Since G is abelian, a redefinition

ω′(g1, g2) = α(g1)α(g2)
α(g1g2)| {z }
D(g1,g2)

ω(g1, g2)

amounts to a symmetric correction, D(g1, g2) = D(g2, g1), which
cannot cancel the antisymmetric ω.

I The virtue of this proof is that it makes clear that no smoothness
assumptions concerning the function α need to be made.
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Caveats

I The symmetry argument crucially depends on the ‘size’ of the
proposed symmetry group G. In case of univalence, no SSR
would result if SU(2) instead of SO(3) were required to act on
state space (cf. S. Weinberg, QTF I).

I Generally, a ray representation of G with non-trivial multiplier ω
can always be considered as proper representation of a central
extension Gω of G by U(1), given by (multiplicative structure on
the set S1 ×G)

(z1, g1)(z2, g2) = (z1z2ω(g1,g2) , g1g2)

The proper representation Uω of Gω follows form the ray
representation U of G via

Uω

`
(z, g)

´
:= z · U(g)

I Independently of ω, there exist universal central extensions Ĝ
of G by abelian groups A, so that any ray representation of G
corresponds to a proper representation of Ĝ.
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Example: Mass superselection

I Consider ordinary QM for N particles with masses ma,
interacting via a Galilei invariant potential V (‖~xa − ~xb‖). The
inhomogeneous Galilei group acts as symmetries of the
Schrödinger equation via a unitary ray representation with
non-trivial multiplier (where M =

P
a ma and g = (R, ~v ,~a, b)):

ω(g1, g2) = exp


i
M
~

“
~v1 · R1 · ~a2 + 1

2
~v2

1 b2

” ff
I For different overall masses M and M ′ the multipliers are

inequivalent. Hence a SSR for mass results (‘Bargmann SSR’).
I But: mass superselection for what system? In order to makes

sense of that, mass must be a dynamical variable.
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Example: Mass superselection (contd.)

I Adjoin N new pairs of conjugate variables (λa,ma) and consider
minimally extended action

S[λa, ~xa ; ma, ~pa] =

Z
dt

nX
a

maλ̇a + ~pa · ~̇xa − H(ma, ~xa, ~pa)
o

I Hamilton’s equations give
I ṁa = 0 ⇒ ma = const.
I ~̇xa = ∂H/∂~pa , ~̇pa = −∂H/∂~xa (as before)
I λ̇a = ∂V/∂ma − ~p2

a/2m2
a (by quadrature)

I The symmetry group of this system is the 11-dimensional
Schrödinger group (central R-extension of Galilei), which does
not give rise to any SSR (D.G. 1995).

I Mass superselection corresponds to removing the average λ
position,

P
a λa, from the observables, thereby creating a

non-trivial centre of the algebra of observables.
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SSR and locality & causality

I In QFT SSRs emerge through the requirement of locality and
causality: M is given by the (weak closure of) observables
localised in space and time (smearing functions of compact
support). Two localised observables commute if their space-time
support is causally disconnected (spacelike separated).

I SSRs then arise for charge-like quantities which can be
measured on spheres of arbitrarily large spatial radii due to
Gauß’ law ρ = ~∇ · ~E :˙
Ψ

˛̨ ˆ
A ,Q

˜ ˛̨
Φ

¸
= lim

R→∞

D
Ψ

˛̨̨ Z
‖~x‖≤R

d3x
ˆ

A , ρ(~x)
˜ ˛̨̨

Φ
E

= lim
R→∞

D
Ψ

˛̨̨ Z
‖~x‖=R

d2σ
ˆ

A , ~E(~x)
˜
· ~n

˛̨̨
Φ

E
I This vanishes if the 2-sphere ‖~x‖ = R is spacelike separated

from A’s support. Gauß’s law can be justified as operator identity
(Strocchi & Wightman 1974).
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SSR and locality & causality (contd.)

I The foregoing argument seems to suggest an abundance of
SSRs in field theory, one for each Gauß-like law.

I For example, in General Relativity, the Poincaré charges mass,
linear-, and angular momentum are all given by surface
integrals over 2-spheres at spacelike infinity:

m = lim
R→∞

(
c2

16πG

Z
SR

d2σ na
“
∂bgab − ∂agbb

”)

pξ = lim
R→∞

(
c2

8πG

Z
SR

d2σ na
“

Kab − δabKcc

”
ξb

)

I In this context the restriction to local observables seems less
well justified. For example, an observable not commuting with
angular momentum would be the spatial orientation relative to a
background reference frame by “looking at fixed stars”
(→ extra-galactic celestial reference frame).
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Asymptotic DOF

I Consider electromagnetic system spatially enclosed within
sphere r ≤ R, so that normal component of~j and tangential
components of ~B vanish on the boundary.

I Consistent variational principle requires addition of canonical
pair

`
λ(θ, ϕ), f (θ, ϕ)

´
of boundary fields (equivalently: their

spherical-harmonics components (λ`m, f`m)) fields, which give
rise to an additional term in the Hamiltonian (Gervais &
Zwanziger 1980): X

`m

φ`m
`
E`m − f`m

´
where φ`m and E`m are the spherical-harmonics components of
the scalar potential and the electric flux-density, (~n · ~E), on the
boundary.

I In addition to Maxwell’s equations in the bulk we get on the
boundary:

λ̇`m = −φ`m , ḟ`m = 0 , E`m = f`m

where the third equation is the boundary part of Gauß’ law.



On Superselection
Rules

Domenico Giulini

Basics

Characterisation
Discrete

General

Algebraic

Generation
Decoherence

Conserved Quantities

Symmetries

Example: Univalence

Example: Mass

Locality & Causality

Example: Electric Charge

Summary

Asymptotic DOF (contd.)

I In the presence of charged states, the necessity to include
degrees of freedom on the boundary does not disappear if
the boundary is pushed to infinity.

I A SSR for electric charge arises only if the conjugate ‘position’
observable, λ00, is removed from the observables by
supplementary conditions, like locality.

I In local QED there seems to arise an abundance of SSRs, not
just that connected with the overall electric charge, but also for
each asymptotic flux distribution.

I In the retarded representation of the EM fields, each asymptotic
flux distribution is connected with incoming particle momenta. In
order to avoid SSRs for incoming momenta—so as to be able to
form incoming wave packets—we have to appropriately dress
the incoming particle states with incoming radiation fields so as
to comply with fixed asymptotic flux conditions. (Zwanziger 1976,
Haller 1978, Fröhlich et. al 1979, Gervais & Zwanziger 1980,
Buchholz 1982 ...)
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Summary

I Derivations of so-called hard SSR usually rest on assumptions
of exact symmetry and/or locality & causality. But whereas the
derivations are (mathematically) exact, the hypotheses on which
they rest are to be considered as physical idealisations of
approximate validity.

I Derivations of so-called soft SSR are themselves subject to
approximations right from the beginning. But the hypotheses on
which they rest are more realistic.

“The theoretical results currently available fall into two
categories: rigorous results on approximate models
and approximate results on realistic models”

A.S. Wightman & N. Glance 1989
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