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Dynamical Laws

I A dynamical law is a selection principle that characterises a subset

Sol ⊂ Kin . (1)

Here Kin denotes the set of kinematically allowed trajectories and Sol of
that of dynamically allowed “solutions” (J. Anderson 1967).

I As the word trajectory suggests, Kin is usually considered to be a set of
mappings between two spaces X and Y, obeying certain properties P

Kin :=
{
T : X → Y | T satisfies P

}
. (2)

X might, e.g., be the affine real line (for time) and Y the affine real 3N
space of N-particle configurations. Alternatively, X may be 4-dimensional
spacetime and Y the total space of field values (i.e. Kin is the space of
sections in the bundle Y with base X).

I Dynamical laws come in the form of equations of motion, which charac-
terise Sol as zero-level set of a function (e.g., the gradient of an action)

EoM : Kin → Z ⇒ Sol := EoM−1(0) . (3)

The function EoM will generally depend (ex- or implicitly) on other para-
metric quantities Σ, like countably many numbers (masses, charges), or
elements of other functions spaces (like external currents and other fields),
which are themselves to be thought of as given (defining EoM), rather
than to be solved for. Whether the Σ are eventually determined themselves
by some equations of motion will not matter at this point.
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Symmetries of dynamical laws

I Let G be a group and Φ : G → Aut(Kin) ⊆ Bij(Kin) be an effective
action of G on the set Kin (i.e. Φ is an injective homomorphism). Then
the pair (G,Φ) is called a symmetry of EoM iff Sol ⊂ Kin is an invariant
subset. That is,

EoM[Σ;Φg(T)] = 0 ⇔ EoM[Σ; T ] = 0 . (4)

Note that Σ is not acted upon. T ′ := Φg(T) has to satisfy the very same
equation of motion, not an appropriately translated one.

I Effectivity is imposed w.l.o.g and means that Φg = id ⇒ g = e (injectivity
of Φ). But particular Φg may have fixed points T in Sol. We call

Stab(G,Φ)(T) :=
{
g ∈ G | Φg(T) = T

}
⊆ G (5)

the symmetry group of the solution T induced by (G,Φ).

I Symmetry operations may or may not be thought of as connecting observa-
tionally distinguishable state of affairs, depending on dynamical response in
the given setting. Responseless operations (e.g., zeros of momentum map)
are considered gauge transformations, which form normal subgroup. The
quotient group is then that of proper physical symmetries, e.g., “asymp-
totic symmetries” in theories with long-ranging fields (allowing for non-zero
charges / momenta).
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Some issues

I Note that in order for (G,Φ) to be called an a symmetry of the EoM we
do not just require it to act on Sol, but that this action extends to Kin.

I Suppose next to an action (G,Φ) on Kin we also had an action (G,Ψ)
on the set Bac of background structures Σ. Then, by choosing (Bac, Ψ)
appropriately we may always achieve covariance

EoM[Ψg(Σ);Φg(T)] = 0 ⇔ EoM[Σ; T ] = 0 (6)

without proper dynamical symmetries. The latter are given by the stabiliser
sugbroup for Σ:

Stab(G,Ψ)(Σ) :=
{
g ∈ G | Ψg(Σ) = Σ

}
⊆ G . (7)

I If we now enlarge Kin to Kin∗ := Bac×Kin and extend EoM from Kin
to EoM∗ on Kin∗ in such a way, that the projection of Sol∗ ⊂ Kin∗

unto first factor is precisely Σ, then we turned the covariance group of
EoM into the symmetry group of EoM∗.

I This seems always possible, if we do not somehow distinguish “true” equa-
tions of motion (allowing for sufficiently many physical degrees of freedom)
from fake ones, that just put certain external quantities onto fixed values.
(→ Example)
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Example: Two formulations of vacuum electrodynamics
in Minkowski space

1. Equation of Motion = vacuum Maxwell equations

EoM[g; F] = 0 ⇔ {
dF = 0 (no metric dependence) ,

d ?g F = 0 (metric dependence in ?) .
(8)

All diffeos are symmetries of first and covariance of second equation, but
only (conformal) isometries of g are also symmetries of second equation.

2. This changes if we regard g as dynamical rather than as background vari-
able and add the appropriate equation of motion, that simply enforces g
to be flat.

EoM[∅; (g, F)] = 0 ⇔

dF = 0 ,

d ?g F = 0 ,

Riem(g) = 0 .

(9)

Now the set of background structures is empty and all covariances are
symmetries. The quotient-set of symmetry-equivalent solutions has not
changed, but that does not yet imply physical equivalence to the first for-
mulation. Such equivalence cannot be stated without assumptions on the
observational indistinguishability of (certain) symmetry-related configura-
tions.
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How should G act on Map(X, Y)?

I Given G-actions Φ and Ψ on X and Y, respectively. Then G also acts on
X × Y via Θ := Ψ × Ψ and hence also on graphs of maps (trajectories)
T : X 7→ Y. This action is

ΘgT := Ψg ◦ T ◦Φ−1
g . (10)

This comprises all examples of, e.g., tensor fields over Minkowski space
with G being the Poincaré group.

I There are examples where this is not general enough. The generalisation
consists in letting the G-operation Ψ on the fibre Y depend on the base-
point in X: For given action Φ on the base X, Ψ : G × X → Aut(Y) is
required to satisfy

Ψ(g·h,x) = Ψ`
g,Φh(x)

´ ◦ Ψ(h,x) . (11)

Then
(ΘgT)(x) := Ψ`

g,Φ−1
g (x)

´“
T

`
Φ−1

g (x)
´”
, (12)

too, defines an action of G on Map(X, Y) generalising (10). This gener-
alisation is needed in GR and also in classical mechanics (→ example).

I Both actions are (ultra-)local in the sense that the Y-value of the Θ-
transformed field at the Φ-transformed X-point depends only on the value
of the untransformed field at the untransformed point. Many of the stan-
dard statements is crucially depend on this locality constraint, which is
often made implicitly. (→ examples).
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Gal-action on trajectories in CM

I In CM (Classical Mechanics) have X = affine R (time), Y = affine R3N

(configuration space), and

G = Gal
↑
+

∼=
`
Rb × R3

~a

´
o

`
R3

~v o SO(3)D

´
∼= (R~a × R3

~v

´
o

`
Rb × SO(3)D

´
.

(13)

I The action Φ of G on time and the generalised action Ψ of G on configu-
rations space are given by

Φ(b,~a,~v,D)(t) = t + b , Ψ[(b,~a,~v,D),t](~xa) = D~xa + ~vt + ~a . (14)

I Hence, according to (12), action of Gal
↑
+ on Map(R,R3N) is given

Θ(b,~a,~v,D)[~xa](t) = D~xa(t − b) + ~v(t − b) + ~a . (15)

Theorem: (Gal
↑
+, Θ) is a symmetry of the Newtonian EoM if forces derive

from Gal
↑
+-invariant potential V : R3N → R.

I But there are other symmetries. For example, for N particles of masses
ma under mutual Newtonian gravitational attraction, the scaling actions
of G = R+ on X = R and Y = R3N, given by Φs(t) = s3/2t and
Ψs(~xa) = s · ~xa, make R+ a symmetry group with action

Θs[~xa](t) = s · ~x(s−3/2t) . (16)
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Locality example 1:
Symmetries of sourceless Maxwell equations

I Let ~E = (1/c)×(Electric field) and Ẋ := (1/c)∂tX, then Maxwell’s vacuum
equations read

~̇E = ~∇× ~B , ~∇ · ~E = 0 (17)

~̇B = −~∇× ~E , ~∇ · ~B = 0 . (18)

These are invariant under Galilei as well as Poincaré group. The imple-
mentation in first case is, however, non-local: Given

t ′ = t , ~x ′ = ~x + ~vt Galilean boost (19a)

t ′ = t + ~v · ~x +O(v2) , ~x ′ = ~x + ~vt +O(v2) Lorentzian boost (19b)

have respective symmetry-actions on ~E and ~B fields:

~E ′ = ~E − ~v× ~B − (~v · ~x)~∇× ~B +O(v2)

~B ′ = ~B + ~v× ~E + (~v · ~x)~∇× ~E +O(v2) , (20a)

~E ′ = ~E − ~v× ~B +O(v2)

~B ′ = ~B + ~v× ~E +O(v2) . (20b)

I Reading symmetry-groups off equations involves assumptions on action.
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Locality example 2:
Proper Poincaré irreducibility

I In SR, all equations for free elementary fields are projection conditions
onto (almost) irreducible subspaces of the proper orthochronous inho-

mogeneous Lorentz group ILor
↑
+, e.g., Weyl-, Dirac-, Maxwell-, Proca-,

Rarita-Schwinger-, Dirac-Bargmann-, Pauli-Fierz-, etc., fields.

I From Mackey theory we know that proper-irreducible representations cor-
respond to fields whose Fourier transform has support on positive- or
negative-energy mass-shell (with values in irreducible rep. space of little
group).

I Since projection operator corresponding to positive or negative energy-
support restriction in Fourier space is non-local in space-time (it enlarges
space-time support), it cannot be imposed as differential operator (unlike
support restriction on union of pos. and neg. shells).

I If operators non-local in space-time (local in Fourier space) are admitted,

fields forming proper irreducible representations of Ilor
↑
+ are possible and

no ILor
↑
+ - invariant dynamics involves negative-mass states (antiparticles).

I In what sense does SR imply the existence of anti-particles?
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No symmetry versus no implementability

I Recall that our definition of symmetry assumed a group G and an action
Φ of G on Kin, such that Sol ⊂ Kin is invariant (as set) under (G,Φ).
Acoordingly, stating that G “is no symmetry” might mean that, either

1. given (G,Φ), Sol ⊂ Kin is not invariant;

2. given G, no “physically reasonable” action Φ of G on Kin can be
defined.

I As an illustration, consider the question of parity-symmetry of the free
equation for the massless neutrino field. It may be either described by a
2-component Weyl spinor φA satisfying the Weyl equation,

∂AA ′φA = 0 , (21)

of by a four-component Dirac spinor ψ = (φA, χ̄A ′ ) satisfying the Majo-

rana condition χ̄A ′ = φ̄B ′
εB ′A ′ (so as to reduce the number of compo-

nents to two):

γµ∂µψ :=
√
2

„
0 ∂AA ′

∂A ′A 0

« „
φA

φ̄A ′

«
= 0 . (22)
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No symmetry versus no implementability

I According to many text-books, the Weyl equation is not parity invariant,
whereas the Dirac equation is. Indeed, the Dirac equation is symmetric
under (inversion in the spacelike hyperplane perpendicular to timelike n):

ρn : xµ 7→ −xµ + 2nµ(nνx
ν) , (23)

acting on ψ as

PD : ψ 7→ ψp := ηnµγ
µ(ψ ◦ ρn) , (24)

where η is a complex number of unit modulus, called the intrinsic parity
of the particular field ψ.

I On the other hand, there simply seems to be no implementation of parity
transformations on Weyl spinors. The general proof is this: By definition,
parity transformations commute with spatial rotations and turn (upon con-
jugation) boosts into their inverse. Hence parity is never implementable
via complex-linear (sic!) transformations in any complex vector space that
carries an irreducible representation of the Lorentz group which stays irre-
ducibbe upon restriction to the subgroup of spatial rotations. But that is
exactly the case for spinors of exclusively unprimed or primed indices.
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No symmetry versus no implementability

I The foregoing sounds as if the Weyl- and Majorana theory (of the Neutrino)
had different symmetry properties. Can that be? If so, in what sense?

I There is an obvious bijection between Weyl- and Majorana spinors, map-
ping solutions of (21) to solutions of (22), and vice versa:

β : φA 7→ „
φA

φ̄A ′

«
. (25)

Using this map we can pull-back the parity-action on Majorana spinors to
Weyl spinors, thus turning into a symmetry of the Weyl equation:

PW := β ◦ PD ◦ β−1 : φA 7→ η
√
2 nAA ′

(φ̄A ′ ◦ ρn) . (26)

I This does not contradict the non-go result shown above, which assumed
complex-linearity, whereas (26) is anti-linear. Note that on general Dirac
spinors PD is complex linear, but not on Majorana spinors (which are a
priori reals) in the complex structure which would make β complex linear:
I : (φA, φ̄A ′ ) 7→ (iφA,−iφ̄A ′ ).

I So how do we (or did Pauli) known which implementation is allowed and
which is not? The answer is: without considering interactions, we don’t!
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Conclusion / Outlook

I Notion of “dynamical symmetries” (in the sense used here) depends on
choice of Kin and implementation Φ of G on Kin. Prejudices concerning
“physical” and “unphysical” Φ usually enter at this point.

I Locality assumptions referring to space-time seem crucial in all of modern
field theory.

I Further refinement of this discussion considers symmetries with dynamical
response (“proper physical”) and those without (“gauge”), associated with
characterisation of “true” degrees of freedom, e.g., via methods of phase-
space reduction (constrained Hamiltonian systems, symplectic reduction,
Dirac-Bergmann algorithm).

I A properly formulated theory should not leave ambiguous the local degrees
of freedom. However, global ambiguities related to disconnected symmetry
grous may arise if you follow strategy to reduce “exactly what’s generated
by first-class constraints”.

I Such “gauge transformations” form normal subgroup within the group of all
dynamical symmetries. The corresponding quotient group will, if carefully
taken, often turn out finite dimensional, but not necessarily connected.
The corresponding “asymptotic symmetries” might then be a countably
infinite or finite extension of expected groups, e.g. R instead of U(1),
or SU(2) instead of SO(3). Associated theoretical phenomena are, e.g.,
“continuous charge sectors” (Dyon solutions in YM-Higgs theory) or “spin
1/2 from boson fields” (Skyrminos).
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