Das Problem der Trägheit

Domenico Giulini Universität Freiburg i.Br. Fakultät für Physik Hermann-Herder-Straße 3 D-79104 Freiburg

August 2001

Zusammenfassung

Wenn es tatsächlich stimmt, daß alle in der Natur auftretenden Kräfte im Rahmen der vier fundamentalen Wechselwirkungen im Prinzip beschrieben werden können, muß sich letztlich auch das begrifflich unbefriedigende Konzept der Scheinkraft eliminieren lassen. Einzig scheint dafür die Gravitationskraft in Frage zu kommen, die im Rahmen der Allgemeinen Relativitätstheorie (ART) zusammen mit der Trägheit theoretisch vereinheitlicht beschrieben wird. Im folgenden zeichnen wir einige Stationen der geschichtlichen Entwicklung dieser begrifflichen Problemstellung nach und setzen diese in Relation zur gegenwärtigen Auffassung innerhalb der ART.

1 Einleitung

Man denke sich eine eiserne Hantel, etwa wie sie zum Bizepstraining verwendet wird. Ihre feste, undurchdringliche Stofflichkeit erklären wir heute durch die elektromagnetischen Kräfte, die die Eisenatome in eine mehr oder weniger fest geordnete, räumliche Struktur zwingen. Enorme Kräfte wären nötig, um die Hantel etwa entlang ihrer Achse zu zerreißen. Eine Möglichkeit, dies trotzdem zu bewerkstelligen, ist, sie um eine die Hantelachse senkrecht schneidende Achse schnell zu rotieren. Dazu braucht man weniger Kraft als Geschicklichkeit. Erhöht man die Drehgeschwindigkeit durch

^{*}In einem Brief an Michele Besso vom 29.4.1917, sich auf ein Manuskript Friedrich Adlers beziehend; siehe Doc. 331 in (Einstein, 1998, S. 441)

ständiges Anstoßen, so kann man die längs der Hantelachse zerrenden Zentrifugalkräfte beliebig erhöhen. Schließlich wird auch die beste Hantel aus jedem uns bekannten Material in Stücke zerreißen.

Ein äquivalentes, aber vielleicht noch eindrücklicheres Beispiel aus der modernen Physik ist das Zerreißen von Atomkernen bei Stößen mit Drehimpulsübertrag. Hier wird die bindende Wirkung der Kernkraft, d.h. der starken Wechselwirkung, durch die Zentrifugalkraft überkompensiert, so daß ein Atomkern fragmentiert.

Nun wird mit einer gewissen Selbstverständlichkeit aus der modernen Physik immer wieder berichtet, daß sich alle in der Natur auftretenden Kräfte letztlich auf die sogenannten vier fundamentalen Wechselwirkungen zurückführen lassen. Diese sind

- Gravitation,
- Elektromagnetismus,
- Starke Wechselwirkung,
- Schwache Wechselwirkung.

Davon treten wegen der geringen (d.h. subatomaren) Reichweite der starken und schwachen Wechselwirkungen im Alltagsleben nur die ersten beiden direkt in Erscheinung. In Hinblick auf das obige Beispiel scheint die Frage auf der Hand zu liegen, welcher Wechselwirkung denn die Kraft zuzuordnen ist, die es schließlich zuwege brachte, die elektromagnetischen Kräfte der Eisenatome bzw. die Kernkraft der Nukleonen zu überwinden und somit die Hantel bzw. den Atomkern zu zerreißen; mit anderen Worten, welcher Wechselwirkung denn die Zentrifugalkraft angehört.

Die allseits bekannte, im Geiste Isaac Newtons gegebene Antwort, die auch heute noch dem Lehrbuchkanon entspricht, fällt dann aber enttäuschend aus, nämlich so, daß die Zentrifugalkraft sowie alle Trägheitskräfte überhaupt keiner Wechselwirkung zuzuordnen seien. Ein Widerspruch mit obiger Behauptung liege aber nicht vor, da es sich bei der Zentrifugal- bzw Trägheitskraft nicht um eine Naturkraft, sondern um eine Scheinkraft handle. Wie ist das zu verstehen?

Die obigen Beispiele demonstrieren sicherlich überzeugend, daß unter "Scheinkraft" nicht eine mit *nur scheinbarer Wirkung* zu verstehen ist; wie könnten sie sonst durch Naturkräfte Zusammengehaltenes, wie einen Atomkern, auseinanderreißen? Das "Schein" bezieht sich vielmehr auf die Auffassung – die an dieser Stelle etwas zirkelhaftes bekommt –, daß die Ursache solcher Kräfte eben nicht in einer Wechselwirkung mit anderen, derselben Wechselwirkung unterliegenden existierenden physikalischen Objekten zu suchen sei, also keine *dynamische* Ursache habe, sondern Scheinkräfte seien rein *kinematisch* zu erklären, nämlich als Effekte der Bewegung gegenüber dem *Absoluten Raum*.

Nicht zu allen Zeiten ist die hier angesprochene begriffliche Problematik gleich stark empfunden worden. Eine frühe und sehr klare Sicht gibt Heinrich Hertz in seiner Vorlesung Über die Constitution der Materie aus dem Jahre 1884, die unter anderem folgenden bemerkenswerten Satz enthält:

"Doch wollen wir darüber klar sein, daß die Proportionalität zwischen Masse und Trägheit ebenso sehr einer Erklärung bedarf, und ebensowenig als bedeutungslos hingestellt werden darf, wie die Gleichheit der Geschwindigkeit elektrischer und optischer Wellen." (Hertz, 1999, S. 122)

Man könnte vielleicht meinen, daß sich die angesprochene Problematik mit der Vermeidung des Kraftbegriffes ebenfalls auflösen läßt. So hat ja Hertz selbst in seinem erst posthum erschienenen Werk Die Prinzipien der Mechanik (Hertz, 1910) von 1894 eine axiomatische Begründung der Mechanik ohne Verwendung des Kraftbegriffes gegeben, und auch in der modernen Formulierung der analytischen Mechanik, die rein mit Begriffen der Differentialgeometrie (symplektischer Mannigfaltigkeiten) auskommt, braucht man nicht von Kräften zu sprechen. Für das hier vorliegende Problem, welches aber eher mit einer (möglicherweise nicht wohldefinierten) Dichotomie kinematisch-dynamisch zu tun hat, liefern solche Manöver sprachlicher Ausgrenzung aber wenig Einsicht. Als Lösungen sind hier vielmehr solche gemeint, die von der Vorstellung ausgehen, daß die angeblich kinematische Ursache in Wahrheit doch dynamischer Natur ist, daß also etwa der 'Absolute Raum' symbolhaft für ein nur approximativ von dynamischen Rückwirkungen freies System steht, wie etwa dem System der umgebenden Massen (Mach) oder einem dynamischen Feld der Gravitation (Einstein). Im folgenden will ich einige Stationen der Entwicklung der modernen Auffassung dieses Problems erörtern.

2 Rückschau auf Newton und Leibniz

Im Eröffnungskapitel "Definitionen" der 'Principia' bestimmt Newton im berühmten "Scholium" die Begriffe "absolute, wirkliche mathematische Zeit" und "absoluter, wirklicher mathematischer Raum" und unterscheidet diese streng von der/dem unmittelbar sinnlich wahrnehmbaren "relativen und landläufig so genannten Zeit/Raum". Nach weiteren Erläuterungen dieser Unterschiede fährt er so fort:

"Die wahren Bewegungen der einzelnen Körper zu erkennen und von den scheinbaren durch den wirklichen Vollzug zu unterscheiden, ist freilich sehr schwer, weil die Teile jenes unbeweglichen Raumes, in dem die Körper sich wirklich bewegen, nicht sinnlich erfahren werden können. Die Sache ist dennoch nicht gänzlich hoffnungslos, denn man kann Beweise dafür teils aus den scheinbaren Bewegungen finden, die die Differenzen zwischen wirklichen Bewegungen sind, teils aus den Kräften, die die Ursachen und die Wirkungen der wirklichen Bewegungen sind." (Newton, 1988, S. 51)

Es folgt ein Beispiel mit zwei durch einen Faden verbundenen Massen. Durch Messung der Fadenspannung wird der Betrag der Rotationsgeschwindigkeit gemessen, durch Messung der Veränderung dieser Spannung bei entgegengesetzt gleichen an den Massen angreifenden Kräften senkrecht zum Faden wird die Drehachse gemessen. Schon kurz zuvor illustriert Newton den dynamischen Unterschied von absoluter zu relativer Bewegung in seinem berühmten 'Eimerexperiment', das er nach eigenen Angaben selbst durchgeführt hat. Mit diesem soll gezeigt werden, daß zwar die absolute (wahre) Bewegung des Wassers im Eimer Ursache physikalisch meßbarer Kraftwirkungen ist (erkennbar an der parabolisch veränderten Oberfläche des Wassers), nicht jedoch die relative (scheinbare) Bewegung des Wassers gegen den Eimer. In Newtons Worten:

"Die Wirkungen, durch die man absolute und relative Bewegungen unterscheiden kann, sind die Fliehkräfte von der Achse der Kreisbewegung; denn in einer ausschließlich relativen Kreisbewegung existieren diese Kräfte nicht, in einer wirklichen und absoluten aber sind sie größer oder kleiner, je nach der Menge der Bewegung. Wenn ein Eimer an einer sehr langen Schnur hängt und beständig im Kreis gedreht wird, bis die Schnur durch die Zusammendrehung sehr steif wird, dann mit Wasser gefüllt wird und zusammen mit diesem stillsteht, und dann durch irgend eine plötzliche Kraft in entgegengesetzte Kreisbewegung versetzt wird und, während die Schnur sich aufdreht, längere Zeit diese Bewegung beibehält, so wird die Oberfläche des Wassers am Anfang eben sein wie vor der Bewegung des Gefäßes. Aber nachdem das Gefäß durch die allmählich auf das Wasser von außen übertragene Kraft bewirkt hat, daß auch dieses Wasser merklich sich zu drehen beginnt, so wird es allmählich von der Mitte zurückweichen und an der Wand des Gefäßes emporsteigen, wobei es eine nach innen gewölbte Form annimmt (wie ich selbst festgestellt habe), und mit immer schnellerer Bewegung wird es mehr und mehr ansteigen, bis es dadurch, daß es sich im gleichen Zeittakt dreht wie das Gefäß, relativ in diesem stillsteht." (Newton, 1988, S. 49)

Am Ende des Eingangskapitels formuliert Newton dann die zweifache Zielsetzung der "Principia". Diese läge einerseits in der Bestimmung der absoluten (wahren) Bewegungen aus ihren Ursachen (Kräften) und Wirkungen

(scheinbaren Bewegungen), andererseits in der Bestimmung der Ursachen (Kraftgesetze) aus den relativen (scheinbaren) oder absoluten (wahren) Bewegungen:

"Wie man aber die wahren Bewegungen aus ihren Ursachen, ihren Wirkungen und ihren scheinbaren Unterschieden, und umgekehrt, wie man aus den wahren oder scheinbaren Bewegungen deren Ursache und Wirkungen ermitteln kann, wird im folgenden ausführlich gezeigt werden. Denn zu diesem Zweck habe ich die folgende Abhandlung [die 'Principia'–DG] verfaßt." (Newton, 1988, S. 52)

Bezüglich des Phänomens der Gravitation betont Newton wiederholt, daß es ihm in der 'Principia' nur um die Aufstellung der Gesetze ihrer Wirkung, nicht aber der Gesetze ihrer Ursache gehe, die ihm bisher verborgen geblieben sind. Denn "bloße Hypothesen denke ich mir nicht aus" (Newton, 1988, S. 230), denn sie "haben in der experimentellen Philosophie keinen Platz" (Newton, 1988, S. 230). Daß aber die Theorie der Gravitation mit der Aufstellung eines reinen Kraftgesetzes noch nicht fertig ist, sagt er klar ebendort am Ende des "Scholium Generales":

"Es mag jetzt gestattet sein, hier noch einiges über ein gewisses äußerst feines immaterielles Prinzip (spiritus) hinzuzufügen, das dichte Körper durchzieht und in ihnen verborgen ist; durch dessen Kraft und Einwirkung ziehen Teilchen der Körper sich auf kleinste Entfernung wechselseitig an und hängen zusammen, nachdem sie in Berührung gebracht sind; (...) Aber diese Dinge können nicht mit wenigen Worten dargelegt werden, und es steht noch keine ausreichende Anzahl von Experimenten zur Verfügung, durch welche die Gesetze der Einwirkungen dieses immateriellen Prinzips genau bestimmt und aufgezeigt werden müssen." (Newton, 1988, S. 230-231)

Es ist verführerisch, in diesem nur sehr zurückhaltend angedeuteten Prinzip eines dynamischen "Äthers" die Anfangsgründe eines modernen Feldbegriffs zu erblicken, auf dessen Relevanz für ein ursächliches Verstehen der Gravitationswirkung Newton hier vorsichtig hinweist. Außerhalb der "Principia" ist er dabei weit weniger zurückhaltend. So schreibt er z.B. am 25. Februar 1693 in einem langen Brief an Bischof Bentley u.a. die folgenden eindrücklichen Zeilen, die wir hier im Original wiedergeben wollen (der besseren Lesbarkeit halber wurde die Orthographie geringfügig dem modernen Gebrauch angepaßt):

"It is unconceivable that inanimate brute matter should (without the mediation of something else which is not material) operate upon and affect other matter without mutual contact; as it must if gravitation in the sense of Epicurus be essential and inherent in it. And this is one reason why I desired you would not ascribe innate gravity to me. That gravity should be innate, inherent and essential to matter so that one body may act upon another at a distance through a vacuum without the mediation of anything else by and through which their action of force may be conveyed from one to another, is to me so great an absurdity that I believe that no man who has in philosophical matters any competent faculty of thinking can ever fall into it. Gravity must be caused by an agent acting constantly according to certain laws, but whether this agent be material or immaterial is a question I have left to the consideration of my readers." (Turnbull, 1961, S. 253-254)

Mit "readers" des letzten Satzes sind zunächst nur die Leser der 'Principia' angesprochen. In seinen wissenschaftlichen Schriften kommt Newton aber nur in den "Queries" im 3. Buch der "Optick" nochmals auf die Problematik eines die Gravitationskraft vermittelnden Äthers zurück, ohne dabei konkrete Vorstellungen zu vermitteln. Sicherlich hat es in Newtons Auffassung eines physikalischen Äthers mehrere unterscheidbare Perioden gegeben (Carrier, 1978, S. 217-241). Dabei ist aber besonders zu beachten, daß dieser Problemkreis mit der Frage nach dem Wesen des Raumes zusammenhing¹, die bei Newton noch eine sehr starke metaphysisch-theologische Komponente hat. Diesbezüglich sei besonders auf den Artikel von Markus Fierz (Fierz, 1954) verwiesen.

Noch 1920 hat sich selbst Albert Einstein nicht gescheut das metrische Feld in der Allgemeinen Relativitätstheorie (ART) als eine feldtheoretische (lokale und dynamische) Realisierung des Absoluten Raumes aufzufassen (Einstein, 1920 a, S. 11) und mit dem "vorrelativistischen" Ätherbegriff zu vergleichen. Damit sollte ausgedrückt werden, daß durch den (dynamischen) Feldbegriff nur Teilaspekte "verrelativieren", aber eben nicht die absolute Existenz einer trägheitsbestimmenden Struktur, die die lokalen Inertialsysteme (bzw. lokalen "Trägheitskompasse" nach (Weyl, 1923, § 36)) festlegt. Diese Struktur verleiht der Raum-Zeit physikalische Eigenschaften, so daß jene als selbständige physikalische Realität neben aller Materie gedacht werden muß. In diesem (und nur in diesem) Sinne kann sie als Analogie zum traditionellen Ätherbegriff gelten. Wir werden am Schluß dieser Arbeit diesen ontologischen Gesichtspunkt erneut aufgreifen.

Dieser Brückenschlag vom Äther zum modernen Feldbegriff ist jedoch nur unter Verzicht auf einige für einen Sustanzbegriff typische Zustandszuschreibungen möglich. So darf dem Äther – ebenso wie den Feldlinien

 $^{^1\}mathrm{Dieser}$ Aspekt wird in der ART wieder aktuell. Darauf werden wir noch mehrfach zurückkommen.

Faradays – kein Bewegungszustand zugeschrieben werden, da das zu inneren Widersprüchen führen würde² (vgl. Einstein, 1920 a, S. 9-10). Der 'Äther' steht dann nur noch für eine von der Materie (in Form von Feldern) unabhängige Existenzform der Raumes-Zeit die ihrerseits aber eine notwendige Voraussetzung dafür ist, Felder *auf ihr* zu definieren.

Einer der einflußreichsten frühen Kritiker Newtons war Gottfried Wilhelm Leibniz. Für ihn war der Raum ein fundamental relationaler Begriff, dessen Verabsolutierung durch eine, wenn auch psychologisch verständliche, rein gedankliche Idealisierung entsteht. Sieht man dies ein, so muß das Schließen auf die reale Existenz eines die physikalischen Objekte tatsächlich beeinflussenden absoluten Etwas (Raum) völlig verfehlt erscheinen. Wie es zu diesem Idealisierungsprozess kommen mag, schildert Leibniz im 47. Abschnitt seines 5. Briefes an Clarke so:

"Hier nun, wie die Menschen dazu kommen, sich den Raumbegriff zu bilden. Sie stellen fest, daß mehrere Dinge auf einmal existieren, und beobachten unter ihnen eine gewisse Ordnung des Nebeneinanderbestehens, entsprechend welcher die gegenseitige Beziehung der Dinge mehr oder weniger einfach ist. Diese gegenseitige Beziehung macht ihre Lage bzw. ihren Abstand aus. Immer wenn der Fall eintritt, daß eines von diesen nebeneinanderbestehenden Dingen seine Beziehung zu einer Menge von anderen Dingen ändert, ohne daß sich die Dinge dieser Menge untereinander ändern, und ein neu hinzukommendes Ding zu diesen anderen Dingen eine solche Beziehung erwirbt, wie sie das erstere Ding zu den anderen Dingen gehabt hat, so sagt man, daß es in dessen Ort gelangt, und nennt diese Veränderung eine Bewegung jenes Dinges, bei dem die unmittelbare Ursache für die Veränderung liegt. (...) Das, was alle diese Orte umfaßt, nennt man Raum. Dies zeigt: um vom Ort und folglich auch vom Raum einen Begriff zu haben, genügt es, jene Beziehungen und die Regeln für ihre Veränderungen zu betrachten, und zwar ohne daß man sich hierfür noch irgend eine absolute Realität zusätzlich zu den Dingen vorstellen muß, deren Lage man betrachtet." (Leibniz, 1991, S. 92-93)

²Denkt man sich die elektrischen Feldlinien im Raum individualisiert und bei Bewegung daher verfolgbar, so kommt man sofort zu Inkonsistenzen. So hätte etwa eine geladene Kugel ein unendliches elektromagnetisches Trägheitsmoment, wenn man sich die im Feld lokalisierte elektrostatische Energiedichte als an den beweglichen Feldlinien haftend und daher mitrotierend vorstellt.

3 Machs Kritik

Ernst Machs Kritik der Newtonschen Auffassungen von Zeit und Raum sind auf wenigen Seiten im 6. Abschnitt des 2. Kapitels seiner "Mechanik" dargelegt. Dabei wendet er sich zu Beginn zunächst der Zeit zu (die Hervorhebungen sind die Machs):

"Wir sind ganz außerstande, die Veränderung der Dinge an der Zeit zu messen. Die Zeit ist vielmehr eine Abstraktion, zu der wir durch Veränderung der Dinge gelangen, weil wir auf kein bestimmtes Maß angewiesen sind, da eben alle untereinander zusammenhängen. Wir nennen eine Bewegung gleichförmig, in welcher gleiche Wegzuwüchse gleichen Wegzuwüchsen einer Vergleichsbewegung (der Drehung der Erde) entsprechen. Eine Bewegung kann gleichförmig sein in Bezug auf eine andere. Die Frage, ob die Bewegung an sich gleichförmig sei, hat gar keinen Sinn. Ebensowenig können wir von einer absoluten Zeit' (unabhängig von jeder Veränderung) sprechen. Diese absolute Zeit kann an gar keiner Bewegung abgemessen werden, sie hat also auch gar keinen praktischen und auch keinen wissenschaftlichen Wert; niemand kann sagen, daß er von derselben etwas wisse, sie ist ein müßiger "metaphysischer" Begriff." (Mach, 1988, S. 217)

Nach ähnlichen Bemerkungen über Newtons Begriff des absoluten Raumes, bringt Mach seine berühmt gewordene Kritik des Newtonschen 'Eimerexperiments':

"Der Versuch Newtons mit dem rotierenden Wassergefäß lehrt nur, daß die Relativdrehung des Wassers gegen die *Gefäßwände* keine merklichen Zentrifugalkräfte weckt, daß dieselben aber durch die Relativdrehung gegen die Masse der Erde und die übrigen Himmelskörper geweckt werden. Niemand kann sagen, wie der Versuch quantitativ und qualitativ verlaufen würde, wenn die Gefäßwände immer dicker und massiger, zuletzt mehrere Meilen dick würden. Es liegt nur der eine Versuch vor, und wir haben denselben mit den übrigen uns bekannten Tatsachen, nicht aber mit unseren willkürlichen Dichtungen in Einklang zu bringen." (Mach, 1988, S. 226)

Die Machsche Kritik betrifft sowohl Aspekte der *Kinematik* als auch der *Dynamik*. In ersten Fall ist es die direkte empirische Unerfahrbarkeit der absoluten Zeit und des absoluten Raumes, die auch Newton stets betont, die aber bei Mach gegen sein (etwas vage formuliertes) Prinzip verstößt, nur direkt

sinnlich wahrnehmbare Größen zur theoretischen Beschreibung zu verwenden.³ Tiefergehend ist der sich auf die Dynamik beziehende Aspekt, der sich in der (auch nur recht vage formulierten) Forderung Machs äußert, nach physikalischen *Ursachen* für die Trägheitskräfte zu suchen. Daß diese Ursachen in den *relativ* beschleunigten Bewegungen gegenüber den kosmischen Hintergrundmassen zu suchen sind, wird erst später (1918) von Einstein zum "Machschen Prinzip" erhoben.

Spekulationen und sogar Experimente zu einer dynamischen Induktionswirkung der Gravitation gab es aber bereits vor 1900.⁴ Wir werden darauf noch zurückkommen. Doch zunächst wollen wir zeigen, wie sich durch die Arbeit einiger Zeitgenossen Machs der kinematische Teil seiner Kritik weitgehend auflösen läßt.

4 Verwandte Kritik: Neumann und Lange, Thomson und Tait

Carl Gottfried Neumann (1832-1925, Mathematiker); Ludwig Gustav Lange (1863-1936, Mathematiker, Physiker und experimenteller Psychologe), 1885-1887 Assistent beim Psychologen Wilhelm Wundt in Leipzig, im gleichen Zeitraum Promotion über Grundlagen der Mechanik. Mehr über das tragische Leben Langes findet man in (von Laue, 1948). James Thomson (Ingenieur, 1822-1892), älterer Bruder William Thomsons (Lord Kelvin); Peter Guthrie Tait (Mathematiker und Physiker, 1831-1901).

Einer der Hauptkritikpunkte an den Newtonschen Konzepten der absoluten Zeit und des absoluten Raumes ist immer wieder deren Mangel an operationaler Zugänglichkeit gewesen. Zwar wurde letztendlich die Eigenrotation der Erde immer als gleichförmig bezüglich der absoluten Zeit und der (mittlere) Fixsternhimmel immer als ruhend bezüglich des absoluten Raumes aufgefaßt, aber diese Festsetzungen wurden eher implizit und ohne erkennbaren Bezug auf die zugrundeliegende Theorie vollzogen. Eine korrekte Formulierung des Trägheitsgesetzes darf sich aber nicht solcher, physikalisch ungerechtfertigter ad – hoc – Identifikationen bedienen, die sich bei genaueren Überprüfungen zudem meist als falsch herausstellen. Vielmehr postuliert das Trägheitsgesetz lediglich die *Existenz* geeigneter raum-zeitlicher Bezugssysteme – sogenannter "Inertialsysteme" und "Inertialzeitskalen" –, bezüglich denen die von ihn getroffenen Aussagen gelten sollen. Einstein

³Genau dieses Prinzip diente bekanntlich später Werner Heisenberg als Leitfaden zur Auffindung der Quantenmechanik (in Matrixdarstellung). So beginnt seine Arbeit von 1925 mit dem Satz: "In dieser Arbeit soll versucht werden, Grundlagen zu gewinnen für eine quantentheoretische Mechanik, die ausschließlich auf Beziehungen zwischen prinzipiell beobachtbaren Größen basiert ist." (Heisenberg, 1925, S. 879).

⁴Bereits 1872 hat Francois Tisserand das Webersche Gesetz der Elektrodynamik hypothetisch auf die Gravitation umgeschrieben und auf die Planetenbewegung angewandt. Mit heutigen Beobachtungen im Sonnensystem ist dieses Gesetz nicht kompatibel. Wir werden weiter unten das Webersche Gesetz noch genauer besprechen.

formulierte diesen Umstand einmal folgendermaßen (die Hervorhebungen sind die Einsteins):

"Es [das Trägheitsgesetz–DG] lautet in ausführlicher Formulierung so: Voneinander hinreichend entfernte, materielle Punkte bewegen sich geradlinig gleichförmig – vorausgesetzt, daß man die Bewegung auf ein passend bewegtes Koordinatensystem bezieht und daß man die Zeit passend definiert. Wer empfindet nicht das Peinliche einer solchen Formulierung? Den Nachsatz weglassen aber bedeutet eine Unredlichkeit." (Einstein, 1920 b, S. 1010)

Die ersten operationalen Definitionen von "Inertialzeitskalen" und räumlichen "Inertialsystemen" (diese Begriffe stammen von Lange) haben – möglicherweise nicht ganz unabhängig – Neumann (Neumann, 1870) und Lange (Lange, 1885) einerseits und Thomson (Thomson, 1884) und Tait (Tait, 1884) andererseits gegeben. Ihnen ist gemein, daß sie an der absoluten Zeit und dem 3-dimensionalen euklidischen Raum festhalten, die Newtonschen Gesetze voraussetzen, die Existenz 'kräftefreier' Massenpunkte annehmen und nur die (gleichzeitigen!) relativen Abstände der Massenpunkte als beobachtbare Größen aufnehmen. Das Problem besteht dann darin, mit Hilfe dieser Grundelemente eine Inertialzeitskala (Neumann) und ein Inertialsystem (Lange) auf operationale Weise zu konstruieren; in Taits eigenen Worten:

"A set of points move, Galilei-wise, with reference to a system of co-ordinate axes; which may, itself, have any motion whatever. From observation of the *relative* positions of the points, merely, to find such co-ordinate axes." (Tait, 1884, S. 743)

Die Lösung kann natürlich nicht eindeutig sein; vielmehr gibt es eine 11parametrige Schar von Lösungen, wobei die 11 Parameter folgenden Freiheiten entsprechen⁵:

- a) drei räumlichen Translationen: $\vec{x} \mapsto \vec{x} + \vec{a}$, $\vec{a} \in \mathbb{R}^3$,
- b) drei räumlichen Geschwindigkeitstransformationen: $\vec{x} \mapsto \vec{x} + \vec{v}t, \ \vec{v} \in \mathbb{R}^3$,
- c) drei räumlichen Rotationen: $\vec{x} \mapsto \mathbf{R} \cdot \vec{x}$, $\mathbf{R} \in O(3)$,
- d) einer zeitlichen Translation: $t \mapsto t + b, b \in \mathbb{R}$,
- e) einer zeitlichen Skalentransformation: $t \mapsto at$, $a \in \mathbb{R} \{0\}$.

⁵Ebenso könnte man statt der euklidischen Struktur nur den Begriff des Senkrechtstehens verwenden, ohne Einführung einer absoluten Längeneinheit. Dann hätte man mit einer 12-parametrigen Entartung zu tun, in der zusätzlich auch räumliche Skalentransformationen $\vec{x} \mapsto a\vec{x}, \ a \in \mathbb{R} - \{0\}$ auftreten.

Die Newtonschen Definitionen von absoluter Zeit und absolutem Raum werden also als Existenzaussagen dynamisch bevorzugter Bezugssysteme aufgefaßt, nämlich derjenigen, in denen die Bewegungsgesetze die einfache, Newtonsche Gestalt haben. Daß es solche Systeme überhaupt gibt, ist eine nicht triviale Aussage über die zugrundeliegenden dynamischen Gesetze.

4.1 Neumann und Lange

Lange baut auf Neumann auf, der nur den zeitlichen Aspekt des Problems operational behandelt. Er zerlegt Newtons Beharrungsgesetz dann sauber in Form zweier Definitionen und zweier Theoreme. Insbesondere tritt dabei zum ersten Mal der von Lange stammende Begriff des "Inertialsystems" auf. Wegen ihrer historischen Wichtigkeit zitieren wir Langes Definitionen und Theoreme in Originalschreibweise (die Hervorhebungen sind die Langes):

Definition 1 "»Inertialsystem« heißt ein jedes Coordinatensystem von der Beschaffenheit, daß mit Bezug darauf drei vom selben Raumpunkt projicirten und dann sich selbst überlassene Punkte P, P', P'' – welche aber nicht in einer geraden Linie liegen sollen – auf drei beliebigen in einem Punkte zusammenlaufenden Geraden G, G', G'' (z.B. auf den Coordinatenaxen) dahinschreiten." (Lange, 1885, S. 337-338)

Theorem 1 "Mit Bezug auf ein Inertialsystem ist die Bahn *jedes beliebigen vierten* sich selbst überlassenen Punktes gleichfalls geradlinig." (Lange, 1885, S. 338)

Definition 2 "»Inertialzeitscala« heisst eine jede Zeitscala, in Bezug auf welche *ein* sich selbst überlassener auf ein Inertialsystem bezogener Punkt (etwa *P*) gleichförmig fortschreitet." (Lange, 1885, S. 338)

Theorem 2 "In Bezug auf eine Inertialzeitscala ist *jeder beliebige andere* sich selbst überlassene Punkt in seiner Inertialbahn gleichförmig bewegt." (Lange, 1885, S. 338)

Definition 1 enthält im wesentlichen Langes Lösungsvorschlag für das Problem der operationalen Festlegung eines Inertialsystems. Daß hier tatsächlich eine Lösung vorliegt, ist keineswegs offensichtlich, denn im allgemeinen ist es nicht richtig, daß ein Bezugssystem, in dem drei Trägheitsbahnen auf Geraden verlaufen, notwendig ein Inertialsystem sein muß. Dies wird hier erst durch die Bedingung sichergestellt, daß sich die Bahnen zum selben Zeitpunkt in einem Raumpunkt treffen, die somit wesentlich ist. Die zugrundeliegenden mathematischen Überlegungen Langes werden wir genauer im Anhang besprechen.

Die operationalistische Festlegung eines Inertialsystems verläuft nach Lange dann so: Man schleudert von einem Raumpunkt O gleichzeitig drei Massenpunkte in drei Richtungen fort, so daß die Massen nicht in einer Ebene mit O liegen. Zu jedem Zeitpunkt wählt man nun das Koordinatensystem, dessen drei Achsen die von O ausgehenden Halbgeraden sind, auf denen jeweils einer der drei Massenpunkte liegt. Diese Zeitschar räumlicher Koordinatensysteme bildet nun ein Inertialsystem. Dieses ist i.a. schiefwinklig, kann aber durch die bekannten Konstruktionen leicht in ein orthogonales umgewandelt werden.⁶

4.2 Taits Lösung des Thomsonschen Problems

In einer direkten Antwort auf das Thomsonsche Problem (siehe obige Wiedergabe in Taits Worten) hat Tait eine bemerkenswerte Lösung angegeben (Tait, 1884), die eine interessante Alternative zum Verfahren Langes darstellt, da sie ein Inertialsystem zusammen mit einer Inertialzeitskala aus einer endlichen Anzahl von instantanen relativen räumlichen Konfigurationen ('Schnappschüsse') zu rekonstruieren erlaubt. Im Folgenden wollen wir die Grundidee Taits schildern.

Wir gehen von n+1 Massenpunkten P_i $(i=0,1,\ldots n)$ aus, die sich a auf Trägheitsbahnen $\vec{x}_i(t)$ bewegen. Beobachtbar sind ihre $\frac{1}{2}n(n+1)$ instantanen Abstände, oder gleichbedeutend, deren Quadrate:

$$R_{ij} := \|\vec{x}_i - \vec{x}_j\|^2 \quad \text{für} \quad 0 \le i < j \le n.$$
 (1)

Äquivalent zu deren Kenntnis ist die Kenntnis der $\frac{1}{2}n(n+1)$ inneren Produkte

$$Q_{ij} := (\vec{x}_i - \vec{x}_0) \cdot (\vec{x}_j - \vec{x}_0) \quad \text{für} \quad 1 \le i \le j \le n \,,$$
 (2)

denn diese hängen mit jenen eineindeutig durch einfache lineare Beziehungen zusammen:

$$R_{ij} = Q_{ii} + Q_{jj} - 2Q_{ij}$$
 für $1 \le i < j \le n$, (3)

$$R_{ij} = Q_{ii} + Q_{jj} - 2Q_{ij}$$
 für $1 \le i < j \le n$, (3)
 $R_{i0} = Q_{ii}$ für $1 \le i \le n$, (4)

$$Q_{ij} = \frac{1}{2} (R_{i0} + R_{j0} - R_{ij}) \quad \text{für} \quad 1 \le i \le j \le n \,.$$
 (5)

Gesucht sind wieder ein Inertialsystem und eine Inertialzeitskala, bezüglich denen gilt: $\vec{x}_i(t) = \vec{a}_i + \vec{v}_i t$, wobei \vec{a}_i und \vec{v}_i von t unabhängig sind. Diese sind natürlich nur bis auf die oben unter a)-e) aufgelisteten Freiheiten bestimmt. a) und b) werden durch die Verabredung eliminiert, daß das 0-te Teilchen im Ursprung ruht, also $\vec{x}_0(t) = 0$. Dann ist

$$Q_{ij}(t) = \vec{x}_i(t) \cdot \vec{x}_j(t) = \vec{a}_i \cdot \vec{a}_j + t(\vec{a}_i \cdot \vec{v}_j + \vec{v}_i \cdot \vec{a}_j) + t^2 \vec{v}_i \cdot \vec{v}_j.$$
 (6)

⁶Seien x, y, z die Achsen des schiefwinkligen Systems. Wir ersetzen die z-Achse durch die auf der xy-Ebene senkrecht stehende z'-Achse, und dann die y-Achse durch eine auf der xz'-Ebene senkrecht stehende y'-Achse. Die drei Achsen x, y', z' stehen nun paarweise senkrecht und bilden wieder ein Inertialsystem.

Mißt man zu k verschiedenen Zeitpunkten t_{α} jeweils alle relativen Abstände und damit die Q_{ij} , so erhält man die $\frac{k}{2}n(n+1)$ Zahlen $Q_{ij}(t_{\alpha})$. Daraus zu bestimmen sind folgende Unbekannte, die wir in vier Gruppen teilen:

- 1. die k Zeiten t_{α} ,
- 2. die n(n+1)/2 Produkte $\vec{a}_i \cdot \vec{a}_j$,
- 3. die n(n+1)/2 Produkte $\vec{v_i} \cdot \vec{v_j}$,
- 4. die n(n+1)/2 symmetrischen Produkte $\vec{a}_i \cdot \vec{v}_j + \vec{v}_i \cdot \vec{a}_j$.

Die Willkür des Nullpunktes und der Einheit der Zeitskala, entsprechend den Punkten d) und e) oben, wird durch die Wahlen $t_1=0$ und $t_2=1$ beseitigt, so daß aus der ersten Gruppe nur die k-2 Zeiten t_3,\ldots,t_k zu bestimmen bleiben. Die restliche noch bestehende Freiheit, entsprechend Punkt c), wird durch die Vereinbarung beseitigt, daß P_1 auf der z-Achse und P_2 in der xz-Ebene liegt – vorausgesetzt P_0,P_1,P_2 liegen nicht auf einer Geraden, sonst wählt man drei andere Massenpunkte, für die dies zutrifft.

Die Strategie Taits ist nun folgende: Aus den $\frac{k}{2}n(n+1)$ Gleichungen, die aus Aufstellen von (6) für jeden der k Zeitpunkte t_{α} entstehen, soll man nach den $k-2+\frac{3}{2}n(n+1)$ Unbekannten der 1. bis 4. Gruppe auflösen. Die Anzahl der Gleichungen minus der Anzahl der Unbekannten ist $\frac{k-3}{2}n(n+1)+2-k$. Sie ist positiv genau dann, wenn $n\geq 2$ und $k\geq 4$. Die Minimalbedingung sind drei Teilchen (n=2) und vier "räumliche Schnappschüsse" (k=4); dann gibt es 12 Gleichungen für 11 Unbekannte. Ist die Auflösung erreicht⁸, so läßt sich das (obigen Verabredungen genügende) Inertialsystem, zusammen mit allen Trajektorien $\vec{x}_i(t)$, aus der Kenntnis der $\frac{3}{2}n(n+1)$ Größen der 2. bis 4. Gruppe bis auf räumliche Spiegelungen eindeutig rekonstruieren, denn diese bestimmen i.a. bis auf kollektive Vorzeichenumkehr (die Q_{ij} hängen von den Vektoren homogen quadratisch ab) eindeutig die 2n Vektoren \vec{a}_i , \vec{v}_i . Letztere haben ja 6n-3 unabhängige Komponenten (-3 wegen der Verabredung über die Lage von \vec{a}_1 und \vec{a}_2), und es gilt $\frac{3}{2}n(n+1) \geq 6n-3 \Leftrightarrow n \geq 2$.

⁷Läßt man die räumliche Längeneinheit unbestimmt, (vgl. Fußnote 5), so hat man an dieser Stelle 12 Unbekannte, und es reichen immer noch 4 Schnappschüsse von drei Teilchen.

⁸Man hat es hier mit einem quartischen System von Gleichungen zu tun, dessen Auflösbarkeit und mögliche Entartungen im Prinzip eigens diskutiert werden müssen, was Tait aber nicht unternimmt.

5 Erste Dynamische Spekulationen: Die Friedlaenders

Schon Neumann spekuliert offen über eine dynamisch-gravitative Induktion der Trägheit, indem er den Absoluten Raum einstweilen mit dem Ruheraum eines hypothetisch postulierten "Körpers Alpha" identifiziert (Neumann, 1870). Genauere Angaben über die zugrundeliegende dynamische Gesetzmäßigkeit oder gar quantitative Überlegungen unterblieben jedoch völlig. Die ersten einigermaßen systematischen Überlegungen in dieser Richtung stammen von den Brüdern Benedict und Immanuel Friedlaender. Ihre Schrift (Friedlaender, 1896) zerfällt in zwei Teile. Der erste, von Immanuel Friedlaender verfaßte Teil, trägt den Titel: "Die Frage nach der Wirklichkeit einer absoluten Bewegung und ein Weg zur experimentellen Lösung"; der zweite Teil, der von Benedict Friedlaender stammt, nennt sich: "Über das Problem der Bewegung und die Umkehrbarkeit der Centrifugalerscheinungen auf Grund der relativen Trägheit". Mit 'Umkehrbarkeit' ist hier die Relativität gemeint, d.h. das Auftreten einer (induzierten) Zentrifugalkraft auf eine ruhende Masse in der Nähe schnell rotierender Massen. Am Ende von Teil I schreibt Immanuel Friedlaender:

"Mir will aber scheinen, daß die richtige Fassung des Gesetzes der Trägheit erst dann gefunden ist, wenn die *relative Trägheit* als eine Wirkung von Massen aufeinander und die *Gravitation*, die ja auch eine Wirkung von Massen aufeinander ist, auf ein *einheitliches Gesetz** zurückgeführt sein werden. Die Aufforderung an die Theoretiker und Rechner, dies zu versuchen, wird aber erst dann von rechtem Erfolg sein, wenn es gelungen ist, die Umkehrbarkeit der Centrifugalkraft nachzuweisen." (Friedlaender, 1896, S. 17)

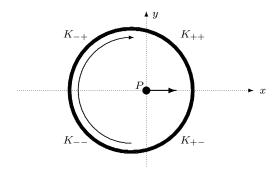
Zum 'einheitlichen Gesetz' macht er in der Fußnote die Bemerkung:

*) "Es wäre dazu sehr zu wünschen, daß die Frage, ob das Webersche Gesetz [vgl. Ausführungen unten-DG] auf die Gravitation anzuwenden ist, sowie die nach der Fortpflanzungsgeschwindigkeit der Schwerkraft, gelöst würden. Zu letzterem Zwecke könnte ein Instrument dienen, das auf statischem Wege die täglichen Schwankungen der Erdschwere in Abhängigkeit von der Stellung der Gestirne zu messen erlaubt." (Friedlaender, 1896, S. 17)

Die quantitativen Überlegungen der Friedlaenders zur Relativität der Zentrifugalkraft lassen sich wie folgt zusammenfassen: Angenommen, die Trägheit sei (zumindest teilweise) ein Induktionseffekt der Gravitation. Das

Trägheitsgesetz wird dann relativ ausgesprochen, d.h., daß schwere Massen ohne Einwirkung äußerer Kräfte ihre *relative* Geschwindigkeit beibehalten. Die induzierten Trägheitskräfte zwischen relativ beschleunigten Körpern gliedern sich dann nach folgendem Schema:

Daß diese dann auch eine Zentrifugalkraft induzieren würden, sieht man qualitativ so: Repräsentiere der Kreis $K=\{(x,y)\in\mathbb{R}^2\mid (x+a)^2+y^2=R^2,\ 0< a< R\}$ einen massiven Ring und P eine Punktmasse am Ursprung x=y=0. Ferner drehe sich der Ring im Uhrzeigersinn um sein Zentrum (-a,0), wobei 0< a< R, mit konstanter Winkelgeschwindigkeit. Die Koordinatenachsen zerlegen K in die vier zusammenhängenden Segmente $K_{++}=\{(x,y)\in K\mid x>0,y>0\},\ K_{+-}=\{(x,y)\in K\mid x<0,y<0\},\ K_{--}=\{(x,y)\in K\mid x<0,y<0\}$ und $K_{-+}=\{(x,y)\in K\mid x<0,y>0\}.$



Wie man explizit nachrechnen kann, sind die relativen Beschleunigungen von P zu mitrotierenden Punkten auf K wie folgt:

K_{++} :	verzögertes Annähern	\longrightarrow	Anziehung	(9)
K_{+-} :	beschleunigtes Entfernen	\longrightarrow	Anziehung	(10)
$K_{}$:	verzögertes Entfernen	\longrightarrow	Abstoßung	(11)
K_{-+} :	beschleunigtes Annähern	\longrightarrow	Abstoßung	(12)

Die Kraftwirkungen ergeben sich aus Schema (7-8) und sind jeweils entlang der Verbindungslinien von P und dem jeweiligen Punkt auf K gerichtet. Man sieht sofort, daß eine resultierende Kraftwirkung auf P entlang der positiven x-Achse entsteht, also in radialer Richtung vom Drehzentrum weg.

In dem im ersten Teil von (Friedlaender, 1896) geschilderten und auch tatsächlich im November 1894 durchgeführten Experiment wurde versucht, die von einer schweren Schwungscheibe (eines Walzwerkes) induzierten Zentrifugalkräfte mit Hilfe einer Torsionswaage nachzuweisen. Letztere

wurde so angebracht, daß der Punkt an dem der Balken am Torsionsfaden hängt auf der gedachten Achsenverlängerung der Schwungscheibe liegt. Die induzierten Zentrifugalkräfte sollten dann nach obigem Schema die Massen an den Enden des Balkens von der Achse des Schwungrades wegdrängen und somit den Balken senkrecht zur Rotationsachse des Schwungrades einzustellen versuchen. Das Experiment verlief aber ergebnislos, was aufgrund der geringen Empfindlichkeit und der beträchtlichen Störeinflüsse selbst für den Experimentator nicht weiter verwunderlich war.

Nach Aufstellung der ART sind immer wieder, teilweise völlig unabhängig voneinander, Versuche unternommen worden, eine Mechanik bewegter Punktmassen zu formulieren, die nur die relativen Abstände als dynamische Variablen enthält. Erste konkrete Formulierungen stammen von Hans Reißner (Reißner, 1914, 1915) und Erwin Schrödinger (Schrödinger, 1925), spätere von Julian Barbour und Bruno Bertotti (Barbour und Bertotti, 1977, 1982) und Donald Lynden-Bell (Lynden-Bell, 1995). Da diese nicht im Rahmen einer Feldtheorie formuliert sind, werden wir sie hier nicht weiter verfolgen. Sie werden in (Barbour und Pfister, 1995) weiter diskutiert.

5.1 Mehr zum Weberschen Gesetz

Zur Illustration und Konkretisierung der Ideen der Brüder Friedlaender sei hier das Webersche Gesetz noch genauer besprochen. Sei t die absolute Zeit (an der wir festhalten) und r(t) der momentane (gleichzeitige) relative Abstand zweier Massenpunkte mit Massen m_1 und m_2 . Ferner bezeichne G die Newtonsche Gravitationskonstante und F die Anziehungskraft zwischen den Massenpunkten entlang ihrer Verbindungsgeraden (F>0 entspricht einer Anziehung, F<0 einer Abstoßung). Dann ist die sinngemäße Übertragung des Weberschen Gesetzes auf die Gravitation gegeben durch

$$F = G \frac{m_1 m_2}{r^2} \left[1 - \frac{1}{2c^2} \left(\frac{dr}{dt} \right)^2 + \frac{r}{c^2} \frac{d^2 r}{dt^2} \right], \tag{13}$$

wobei c eine Konstante mit der Dimension einer Geschwindigkeit ist. In der Elektrodynamik steht hier die Lichtgeschwindigkeit, so daß man hier in Analogie von der Ausbreitungsgeschwindigkeit der Gravitation sprechen müsse. Der hier interessierende Zusatzterm zum Newtonschen Attraktionsgesetz ist der dritte. Man sieht sofort, daß in ihm genau das Schema (7-8) verwirklicht ist, da sowohl eine beschleunigte Annäherung wie eine verzögerte Entfernung $d^2r/dt^2 < 0$ entspricht und somit abstoßend wirkt. Mit $d^2r/dt^2 > 0$ ist es analog. Anhand dieses Gesetzes läßt sich auch der Machsche Gedanke einer durch den kosmischen Massenhintergrund induzierten Trägheit besser verstehen. Dazu betrachte man die Masse $m_1 = m$ als Mittelpunkt einer homogenen Staubkugel B der konstanten Massendichte ρ und mit Radius B. Die Staubteilchen seien relativ zueinander unbewegt. Sei B0 ein rechtwinkliges Koordinatensystem, in dem der Staub ruht und in dessen Ursprung die

Testmasse m momentan liegt. Sei $\vec{x}(t)$ der Ortsvektor von m bezogen auf K, dann soll gelten: $\dot{\vec{x}}(0) = 0$ und $\ddot{\vec{x}}(0) = -a\vec{e}_z$. Nach (13) ergibt sich eine induzierte Kraft parallel zu \vec{e}_z (die x- und y-Komponenten verschwinden) vom Betrag

$$F_z = ma \frac{G\rho}{c^2} \int_B dV \frac{\cos^2 \theta}{r} = ma \left[\frac{2\pi G\rho}{3c^2} R^2 \right] = ma \left[\frac{1}{4} \frac{\rho}{\rho_{\text{crit}}} \frac{R^2}{R_H^2} \right], \quad (14)$$

wobei wir unter impliziter Einführung der 'Hubble-Konstante' H die rechte Seite durch die in der Kosmologie verwendeten Parameter 'kritische Dichte' $ho_{\rm crit}:=3H^2/8\pi G$ und "Hubble-Radius" $R_H:=c/H$ ausgedrückt haben. Eine kritisch verteilte Materiedichte innerhalb des doppelten Hubble-Radius' bzw. eine vierfach kritische Dichte innerhalb des einfachen Hubble-Radius' wäre nach diesem einfachen Modell bereits in der Lage, die gesamte Trägheit auf die Anwesenheit schwerer Masse zurückzuführen. Trägheit und Schwere wären also durch ein einheitliches Gesetz beschrieben, wie von Immanuel Friedlaender gefordert. Allerdings würden nach einem solchen Gesetz die Anisotropien der lokalen Massenverteilung (Sonne, Galaxie etc.) zu einem anisotropen Trägheitsverhalten führen, d.h. einer anisotropen trägen Masse. Allein von der Sonne würde sich z.B. aus (13) eine Anisotropie von der Größenordnung $\Delta m/m = GM/c^2r$ ergeben, wobei r = Abstand Erde-Sonne und M = Sonnenmasse, also etwa 10^{-8} . Bereits Anfang der 60er Jahre ergaben aber die bekannten quantenmechanischen Experimente von Hughes und Drever (an den Zeeman–Linien des Kerns von ⁷Li) eine obere Schranke von $5 \cdot 10^{-23}$ (!) (Hughes, 1964). Moderne Experimente steigern die Genauigkeit sogar um weitere 7 Größenordnungen (siehe z.B. Lamoreaux, 1986). Die somit extrem genau vermessene Isotropie der trägen Masse ist immer wieder zum Stolperstein vereinheitlichter Gesetze wie dem Weberschen oder der oben erwähnten von Reißner, Schrödinger etc. geworden. Es bleibt immerhin, daß bereits die einfachsten Überlegungen wie die obige zu einer Beziehung $m_t = km_s$ zwischen träger und schwerer Masse führen, wobei die Zahl k aus kosmologischen Größen berechnet wird und in der richtigen Größenordnung herauskommt (in unserem Fall war $k = \rho R^2/4\rho_{\rm crit}R_H^2$). Es ist schwer zu leugnen, daß davon eine gewisse suggestive Kraft ausgeht.

6 Einstein

Bereits 1912, also fast vier Jahre vor Aufstellung der ART, spekuliert Einstein über eine von der Gravitation induzierte Trägheitswirkung. Auf der Basis seiner 'Prager Arbeiten' von 1912 (nichtlineare Gleichungen für skalares Gravitationspotential) berechnet er den Einfluss schwerer Massen auf die Trägheit einer Testmasse und findet eine (scheinbare) Zunahme derselben. Er kommentiert das positive Ergebnis so (die Hervorhebungen sind die

Einsteins):

"Es legt dies die Vermutung nahe, daß die *ganze* Trägheit eines Massenpunktes eine Wirkung des Vorhandenseins aller übrigen Massen sei, auf einer Art Wechselwirkung mit den letzteren beruhend.*)" (Einstein, 1912, S. 39)

Und in der Fußnote führt er aus:

*), Es ist dies ganz derjenige Standpunkt, welchen E. Mach in seinen scharfsichtigen Untersuchungen über den Gegenstand geltend gemacht hat..." (Einstein, 1912, S. 39)

Auch in der ART führt Einstein analoge Rechnungen durch und erhält wieder die Bestätigung, daß die Nähe schwerer Massen zu einer Erhöhung der trägen Masse eines Testteilchens führt (Einstein, 1979). Man vergleiche dazu die die oben zitierte Fußnote von Immanuel Friedlaender. Eine spätere genauere Analyse entlarvt dies jedoch als reinen Koordinateneffekt (Brans, 1962). Im selben Büchlein (Vorlesungen in Princeton aus dem Jahre 1921) schreibt Einstein:

"Um diesen Gedanken [den Machschen–DG] im Rahmen der modernen Nahwirkungslehre durchzuführen, mußte die trägheitsbedingende Eigenschaft des raumzeitlichen Kontinuums allerdings als Feldeigenschaft des Raumes analog dem elektromagnetischen Felde aufgefasst werden, wofür die Begriffe der klassischen Mechanik kein Ausdrucksmittel boten. Deshalb mußte der Machsche Lösungsversuch einstweilen scheitern." (Einstein, 1979, S. 58)

Tatsächlich ist der Machsche Gedanke so sehr auf das Konzept einer Fernwirkungstheorie zugeschnitten, daß er – wenn überhaupt – nicht ohne weitere Ergänzungen und Präzisierungen feldtheoretisch zu formulieren ist. Einerseits ist der Begriff der Bewegung (absolut oder relativ) nicht auf das Feld anwendbar (vgl. obige Diskussion und Einstein, 1920 a), andererseits ist selbst der Begriff der relativen Bewegung lokalisierter Körper in der ART vom umgebenden Feldzustand abhängig. Wie oben diskutiert, kommt in einer Feldtheorie der Materie dem Raum eine absolute Existenz zu, die mit der Auffassung einer der Materie untergeordneten Ordnungsstruktur nicht verträglich ist. Hier liegt wohl der eigentliche Grund für die etwas unglückliche Rolle, die der Machsche Gedanke in der heutigen Feldphysik spielt. So hatte schon Einstein vergeblich versucht, seine Feldgleichungen durch Einführung des "kosmologischen Terms" so abzuändern, daß sie ohne Materie überhaupt keine Lösungen zulassen, d.h. dem Einsteinschen Postulat genügen, daß auch die Raum-Zeit mit der Materie verschwindet. Auf Drängen von Fierz

(Pauli, 1996, Brief [1288], S. 382-385), hat sich auch Wolfgang Pauli zu der Überzeugung durchgerungen, daß sich in diesem unbereinigten Verhältnis zwischen "Raum" einerseits und "Feld" andererseits auch eine fundamentale Schwierigkeit des modernen Feldbegriffs widerspiegelt. In Paulis eigenen Worten:

"Ich bin einverstanden mit der Formulierung, daß die Unerfüllbarkeit des Einsteinschen Postulates (bzw. der ursprünglichen Machschen Betrachtungsweise) in der allgemeinen Relativitätstheorie ein tiefes und wesentliches Anzeichen für die Unzulänglichkeit der klassischen Feldphysik ist." (Pauli, Brief [1289], S. 385-389)

7 Das Machsche Prinzip in der ART

Eine mögliche feldtheoretische Umformulierung des Machschen Gedankens muß notwendigerweise die Freiheitsgrade des Gravitationsfeldes selbst mit einbinden. Anderenfalls wird das Machsche Prinzip explizit verletzt, wie etwa in der Gödelschen Lösung (für ein offenes Universum) oder der Lösung von Schücking und Ozsváth (für ein geschlossenes Universum), in denen die lokalen Inertialsysteme gegen die lokalen Ruhesysteme der Materie rotieren (siehe Kapitel 4.6-7 in Ciufolini und Wheeler, 1995, und die dort angeführten Referenzen). Letztere Lösung ist wegen der Geschlossenheit und damit Abwesenheit von Randbedingungen noch wichtiger (siehe unten). Es erscheint also natürlich, daß der Machsche Gedanke zunächst sicher dahingehend uminterpretiert werden muß, daß die lokalen Inertialsysteme erst durch die Konfiguration aller dynamischen Freiheitsgrade eindeutig bestimmt sind. Insbesondere müssen also die Gravitationsfreiheitsgrade selbst mit eingeschlossen werden, was in vereinfachten Fällen auch explizit durchgeführt werden kann (siehe z.B. Lynden-Bell et al., 1995). Aber damit allein ist eine eindeutige Bestimmung auch noch nicht gewährleistet, da in einer Feldtheorie die Konfiguration ja nicht nur von den Anfangs-, sondern auch den Randdaten abhängt. Hält man also an der Eindeutigkeitsforderung des Einstein-Machschen Prinzips fest, ist dieses innerhalb der ART bestenfalls mit räumlich geschlossenen⁹ Lösungen realisierbar, da in diesen wegen der fehlenden Ränder auch keine Randdaten existieren. Das Machsche Prinzip wird somit zu einem Auswahlprinzip, gemäß dem aus der Lösungsmannigfaltigkeit der Einsteinschen Feldgleichungen nur solche Lösungen zu akzeptieren sind, in denen die lokalen Inertialsysteme (bestimmt durch das Gravitationsfeld) an jedem Punkt der Raum-Zeit durch Anfangsdaten, d.h. eine einzige instantane Konfiguration aller dynamischer Felder vollständig bestimmt sind. Die Raum-Zeit muß also global hyperbolisch sein. Diese Forde-

⁹Genauer: Die Cauchy-Flächen sind geschlossen, also kompakt und ohne Rand.

rung ist aber nur dann nicht leer, wenn zusätzlich gefordert wird, daß die Raum-Zeit auch *maximal* im Sinne von *nicht erweiterbar* ist, d.h. sie darf nicht Teil einer echt größeren Raum-Zeit sein, die ebenfalls Lösung der Einsteinschen Gleichungen ist. Denn letztere braucht dann nicht notwendigerweise wieder global hyperbolisch zu sein, und die künstliche Beschränkung auf ein global hyperbolisches Teilstück, das immer existiert, resultiert in einer nicht akzeptablen – weil behebbaren – (geodätischen) Unvollständigkeit. Die Idee, das Machsche Prinzip in der ART als Auswahlprinzip zu benutzen, stammt von J.A. Wheller und wird in James Isenbergs Beitrag zu (Barbour und Pfister, 1995, S. 188-207) mathematisch präziser formuliert.

8 Machsche Effekte in der ART

Als Machsche Effekte werden in der ART heute vorwiegend solche bezeichnet, die auf einem Einfluss von Energie-Impulsströmen auf die lokal definierten Inertialsysteme (Inertialkompass) beruhen, etwa ganz im Sinne der frühen Ideen der Gebrüder Friedlaender. Hier geht es also nicht mehr um eine *Bestimmung*, wie bei der eben besprochenen strengen Einstein-Machschen Doktrin, sondern nur um den Effekt der *Beeinflussung* lokal definierter Inertialsysteme. Ebenfalls im Sinne ihrer Analogie (mit dem Weberschen Gesetz) spricht man auch heute vom 'gravitomagnetischen' Feld. Die von diesem erzeugten Effekte der lokalen Veränderlichkeit des Trägheitskompasses (engl. 'frame–draggin') lassen sich wie folgt unterteilen:

1. Präzession eines Kreisels (Lense-Thirring-Effekt): Im Feld eines rotierenden Zentralkörpers mit Drehimpuls \vec{J} präzediert ein Kreisel am festen Ort \vec{r} mit der Winkelgeschwindigkeit (vgl. Formel (6.1.28) in Ciufolini und Wheeler, 1995, S. 321; die Einheiten sind dort so gewählt, daß G=c=1):

$$\vec{\Omega}_{\text{Kreisel}} = -\frac{\vec{J} - 3\vec{n}(\vec{n} \cdot \vec{J})}{r^3} \left(\frac{G}{c^2}\right) , \qquad (15)$$

wobei $\vec{n} = \vec{r}/r$. Für einen Kreisel in einer polaren Erdumlaufbahn (d.h. die Erdachse liegt in der Ebene der Umlaufbahn) in einer Höhe von $600 \, \mathrm{km}$ ergibt sich der Betrag von $0.043''/\mathrm{Jahr}$. ¹¹

2. Präzession der Bahnebene: Man betrachte ein Teilchen (Satellit) auf einer elliptischen Umlaufbahn mit Halbachse a und Exzentrizität e

 $^{^{10}}$ Nicht behebbare (geodätische) Unvollständigkeiten nenn man in der ART Singularitäten. Für sie sollte ein physikalischer Grund vorliegen, wie z.B. beim Schwarzen Loch.

 $^{^{11}}$ Man beachte die Kleinheit des Effektes: Damit aus einer Entfernung Ezwei Punkte vom Abstand d im Winkelabstand von einer Bogensekunde (1" = (1/3600)°) erscheinen, muß etwa $E=2\cdot 10^5\times d$ gelten. 0,043'' entsprechen $E=5\cdot 10^6\times d$, also etwa d=6 cm und E=300 km, d.h. dem Winkelabstand, in dem ein Augenpaar aus einer Entfernung von 300 km erscheint.

um einen rotierenden Zentralkörper mit Drehimpuls \vec{J} . Die Ebene der Teilchenbahn (bzw. ihre Schnittlinie mit der Äquatorialebene des Zentralkörpers) präzediert (bzw. rotiert) mit der Winkelgeschwindigkeit (vgl. Formel (6.1.33) in Ciufolini und Wheeler, 1995, S. 332)

$$\vec{\Omega}_{\text{Bahnebene}} = \frac{2\vec{J}}{a^3(1-e^2)^{3/2}} \left(\frac{G}{c^2}\right).$$
 (16)

Für einen Erdsatelliten in $5000\,\mathrm{km}$ Höhe ergibt sich ein Betrag von $0,031''/\mathrm{Jahr}$.

3. Präzession des Perizentrums: Man betrachte die gleiche Situation wie unter 2.); die Normale zur Bahnebene sei \vec{n} . Dann präzediert das Perizentrum mit der Winkelgeschwindigkeit (vgl. Formel (6.1.34) in Ciufolini und Wheeler, 1995, S. 332)

$$\vec{\Omega}_{\text{Perizentrum}} = 2 \frac{\vec{J} - 3\vec{n}(\vec{n} \cdot \vec{J})}{a^3 (1 - e)^{3/2}} \left(\frac{G}{c^2}\right). \tag{17}$$

Obwohl es viele allgemein-relativistische Effekte gibt, in denen 'gravitomagnetische' Felder eine Rolle spielen, gibt es bisher kein Präzessionsexperiment, das diese Machschen Effekte isoliert vermessen kann. Der bisherige
Stand ist wie folgt:

- 1'. Ein satellitengestütztes Kreiselexperiment, das 1.) im 'gravitomagnetischen' Feld der Erde testen soll, ist die sogenannte Gravity-Probe-B—Mission der NASA. Es soll den genannten Effekt mit der hohen Genauigkeit von $(5\times 10^{-4})''/J$ ahr vermessen. Die grundsätzliche Idee für dieses Experiment stammt aus den 60er Jahren. Nach einer langen Reihe von Verzögerungen wird der Start zur Zeit (Juli 2002) vom Kennedy Space Center mit 24. April 2003 angegeben. Mehr über die physikalisch-experimentellen und organisatorischen Details dieser faszinierenden Mission erfährt man im Artikel von C.W.F. Everitt et al. in (Lämmerzahl et al., 2001).
- 2'-3'. Eine Kombination von Messungen der in 2.) und 3.) beschriebenen Effekte im Feld der rotierenden Erde existieren bereits durch die Bahndaten der zwei erdumkreisenden LAGEOS I+II–Satelliten (Ciufolini et al.,1998). (LAGEOS: Laser Geodynamic Satellite.) Siehe auch Kapitel 6 in (Ciufolini und Wheeler, 1995) für eine ausführliche Schilderung der prinzipiellen Aspekte. Leider ist hier die Ungenauigkeit in der Bestimmung der Bahnebenenpräzession (Effekt 2) mit etwa 20% sehr hoch, deren Hauptursachen die zu geringen Exzentrizitäten der Satellitenbahnen und die bestehende Unsicherheit in den unteren Multipolmomenten der Erde sind. Tatsächlich ist es der immerhin etwas

höheren Exzentrizität ¹² von LAGEOS II zu verdanken, daß überhaupt eine Messung von 2.) zustandekommt, denn Dank ihr gelingt eine unabhängige Messung der Präzession des Perizentrums (Effekt 3) von LAGEOS II, mit deren Hilfe man die störenden klassischen Multipolterme aus der Bestimmungsgleichung für die Bahnebenenpräzession eliminieren kann. Dieser Schritt ist aber auch gerade die Hauptquelle der Unsicherheit. Mit dem Einbau eines dritten Satelliten, LAGEOS III, den Ciufolini vorgeschlagen hat, könnte 2.) mit wesentlich kleinerer Unsicherheit direkt gemessen werden. Doch gibt es derzeit keine Entscheidung für einen dritten LAGEOS-Satelliten.

 $^{^{12}}$ LAGEOS I hat $\varepsilon_I=0.004$, LAGEOS II $\varepsilon_{II}=0.014$.

9 Schlussbetrachtung

Unsere heutige Auffassung der Trägheit ist die der ART, in der die Gravitation und das die Trägheitsbewegungen bestimmende "Führungsfeld" (dieser anschauliche Begriff stammt meines Wissens von Hermann Weyl; siehe z.B. §29 in (Weyl, 1923, S. 219)) als "wesensgleich" (Einstein) erkannt und vereinheitlicht beschrieben werden. Mathematisch mündet diese Zusammenfassung in dem differentialgeometrischen Objekt des Zusammenhangs auf dem Tangetialbündel der Raum-Zeit-Mannigfaltigkeit. Letzterer ist durch die Raum-Zeit-Metrik lokal bestimmt. Das Führungsfeld ersetzt lokal den Absoluten Raum und macht über die Einsteinschen Feldgleichungen die lokale Trägheitsstruktur von der lokalen Verteilung von Energie-Impuls-Strömen abhängig. Diese Abhängigkeit kommt in den oben beschriebenen Machschen Effekten deutlich zum Ausdruck.

Damit wird aber die Anwendung des Kraftbegriffs auf die Gravitation sinnlos, denn nach Newton sind 'Kräfte' die Ursachen für Abweichungen von Trägheitsbewegungen, während in der ART erst das Führungsfeld diejenige Struktur bereitstellt, die es überhaupt erlaubt von 'Trägheitsbewegung' bzw. 'kräftefreier' Bewegung zu sprechen. So ist es z.B. begrifflich inkonsistent – wie es selbst in modernen, pädagogisch orientierten Texten noch oft geschieht (z.B. Born, 2001, S. 355) – die Lense-Thirring-Präzession eines Kreisels gegenüber dem Fixsternkompass mit dem Wirken einer "gravitomagnetischen Kraft" zu erklären. Tatsächlich ist es ja gerade umgekehrt: Der Drehmomentfrei gelagerte Kreisel präzediert, während der relativ zum Fixsternkompass ruhende Kreisel zur Verhinderung einer Präzession eines Drehmoments bedarf.

In diesem Zusammenhang muß betont werden, daß die Existenz einer Trägheitsstruktur keinesfalls an das Vorhandensein von Materie gekoppelt ist, ebensowenig wie die Raum-Zeit, die in der ART genauso wie bei Newton auch im materiefreien Zustand existiert. Damit führt die ART also weder zu einer vielleicht erhofften Entscheidung im alten Streit zwischen Newton und Leibniz noch zu einer rein relationalen Erklärung der Trägheit, wie sie Mach vorschwebte. Insbesondere beinhaltet sie keine Realisierung des rein relationalen Raumkonzepts Leibniz'. Man könnte sogar sagen, daß sie in ihrer absoluten Setzung eines Raum-Zeit-Kontinuums, die ohne Bezugnahme auf erfüllende Materie geschieht, eher Newtonsch ist. In diesem Sinne schreibt z.B. Fierz in einem Briefentwurf an Pauli:

"...die 'klassizistisch objektiv reale Welt', die ich gerne die absolute Welt nenne, weil sie keinen Beobachter enthält, befindet sich im absoluten Raum. Dieser Raum ist auch in der Relativitätstheorie noch insofern absolut, als man ihn, ohne auf seinen 'Inhalt' Rücksicht zu nehmen, charakterisieren kann und weil er sogar ohne allen Inhalt möglich ist. Dieser absolute Raum ist

ein Ersatz für den fehlenden Beobachter und deshalb ist er das "sensorium dei": Gott ist der alleinige Beobachter." (Pauli, 1996, Brief [1287] S. 379)

Lediglich eine Abhängigkeit der Seinsformen wird in der ART durch die dynamische Wechselwirkung von Materie und metrischer Raumstruktur (Trägheitsstruktur) bewirkt. So wird auch die eingangs gestellte Frage nach der Natur der Trägheitskräfte in Rahmen der ART folgendermaßen beantwortet: Sie entspringen der unvermeidlichen Kopplung des betrachteten materiellen Objekts an die metrische Struktur und damit an das aus dieser Struktur abgeleitete Führungsfeld. Die Raum-Zeit existiert absolut, jedoch gehorcht ihre metrische Struktur den Einsteinschen Differentialgleichungen, die sie an die Energie-Impuls-Ströme der Materie koppeln.

Abschließend wollen wir noch auf folgenden wichtigen Unterschied des Feldkonzeptes in der Gravitation zu dem anderer physikalischer Felder hinweisen (vgl. auch Einstein, 1920 a): Das Führungsfeld ist nicht - wie bei Materiefeldern sonst üblich - ein Feld auf der Raum-Zeit, das jedem Punkt der Raum-Zeit einen Vektor als "Wert des Feldes an diesem Punkt" zuweist. Materiefeldern ist ja gemein, daß unter ihnen insbesondere das Feld mit konstantem Wert ,Null' ausgezeichnet ist, was auch als ,Abwesenheit' des entsprechenden Feldes interpretiert wird. Die Raum-Zeit kann also von einem solchen Feld vollständig befreit werden, ohne dabei selbst verschwinden zu müssen. Hingegen ist es sinnlos, von einem 'verschwindenden' Führungsfeld zu sprechen. 13 Eine 'trägheitsfreie' bzw. 'gravitationsfeldfreie' Raum-Zeit ist im Rahmen der ART daher nicht denkbar. Versuche, das Gravitationsfeld statt mit dem Führungsfeld mit dem Krümmungstensor zu identifizieren, erlauben zwar die Formulierung des Gravitationsfeldes als Tensorfeld auf der Raum-Zeit, führen dann aber geradewegs auf die eingangs gestellte Frage nach der Einordnung der Trägheitskräfte in dieses Schema zurück. Eine vereinheitlichte Beschreibung von Gravitation und Trägheit ist mit einer Auffassung des Gravitationsfeldes als Feld auf der Raum-Zeit nicht zu machen. Dies ist auch der Grund dafür, daß dem Gravitationsfeld selbst keine lokal definierten Größen von Energie, Impuls etc. zugeschrieben werden können.

Eine (Fehl)Identifikation des Gravitationsfeldes mit dem Krümmungstensor führt übrigens auch zu einer Verunmöglichung des Äquivalenzprinzips, nach dem Gravitationsfelder punktweise nicht von Beschleunigungsfeldern unterschieden werden können und damit durch geeignete Wahl des Bewegungszustandes auch wegtransformierbar sind. Diese Aussage wäre

¹³Wenn wir von Zusammenhang sprechen, ist dies nicht zu verwechseln mit den diesen Zusammenhang in redundanter Weise repräsentierenden Christoffel–Symbolen. Diese können punktweise zum Verschwinden gebracht werden (Normalkoordinatensysteme), was nichts mit einem "Verschwinden" des differentialgeometrischen Objekts "Zusammenhang" zu tun hat. So verschwinden z.B. im Minkowskiraum mit Standardkoordinaten alle Christoffel-Symbole sogar global, trotzdem ist der nicht-triviale Zusammenhang Ursache für alle Trägheitskräfte, die im (sonst leeren) Minkowskiraum bei Bewegungen von Testmassen auftreten.

auf den Krümmungstensor angewandt natürlich ganz falsch. Ein solches unsachgemäßes Aussprechen des Äquivalenzprinzips hat daher bisweilen dazu geführt, es selbst physikalisch zu diskreditieren. So schreibt John Synge in der Einleitung zu seinem bekannten Buch über die Allgemeine Relativitätstheorie:

".. I have never been able to understand this [Equivalence–DG] Principle. [...] Does it mean that the effects of a gravitational field are indistinguishable from the effects of an observer's acceleration? If so, it is false. In Einstein's theory, either there is a gravitational field or there is none, according as the Riemann tensor does not or does vanish. This is an absolute property; it has nothing to do with any observer's world line. [...] The Principle of Equivalence performed the essential office of midwife at the birth of general relativity, but, as Einstein remarked, the infant would never have got beyond its long-clothes had it not been for Minkowski's concept. I suggest that the midwife be now buried with appropriate honours and the facts of absolute spacetime faced." (Synge, 1960, S. IX-X)

10 Anhang:

Mathematisches zu Langes Definitionen

Um den nicht-trivialen Gehalt von Langes Definition 1 einzusehen, gehen wir von folgender allgemeiner Fragestellung aus: Gegeben seien n Massenpunkte, die sich auf irgendwelchen Bahnen $\vec{x}_i(t), i=1,\ldots,n$ im dreidimensionalen Raum \mathbb{R}^3 bewegen. Gegeben seien ferner n Gerade $\vec{g}_i(s)=\vec{a}_i+s\,\vec{b}_i$, wobei s ein physikalisch bedeutungsloser Parameter ist. Wir fragen, unter welchen Bedingungen wir durch zeitabhängige euklidische Bewegungen, gegeben durch (orthogonale) Drehungen $\mathbf{R}(t)$ und Translationen $\vec{d}(t)$, die Bahnen \vec{x}_i auf die Geraden \vec{g}_i transformieren können. Dabei stellen wir aber keinerlei Forderungen an die Geschwindigkeit – wie z.B. Gleichförmigkeit –, mit der die Teilchen auf den Geraden fortschreiten. Dies führt zu folgendem Gleichungssystem:

$$\mathbf{R}(t) \cdot \vec{x}_i(t) + \vec{d}(t) = \vec{a}_i + \vec{b}_i \varphi_i(t), \qquad (18)$$

$$\mathbf{R}(t) \cdot \mathbf{R}^{\top}(t) = \mathbf{1}. \tag{19}$$

Von diesen drückt (19) die Orthogonalität der durch die 3×3 Matrizen $\mathbf{R}(t)$ hervorgerufenen Transformationen aus. Ferner mußten wir n unbekannte Funktionen φ_i einführen, die unsere Unkenntnis über die Geschwindigkeiten ausdrücken, mit denen sich die Teilchen auf den Geraden bewegen. Damit haben wir zu jedem Zeitpunkt $3 \times n$ Gleichungen von (18) und 6 Gleichungen von (19), insgesamt also $3 \times n + 6$ Gleichungen, für die 9+3+n=12+n Unbekannten $\mathbf{R}(t)$, $\vec{d}(t)$ und $\varphi_i(t)$. Die 3n+3+3 Größen $\vec{x}_i(t)$, \vec{a}_i und \vec{b}_i sind vorgegeben. Die Zahl der Gleichungen übersteigt also die Zahl der Unbekannten für n>3 und ist ihr gleich für n=3. Wir konzentrieren uns daher auf den Fall n=3.

Die allgemeine Lösungsstrategie für (18-19) ist nun wie folgt: Wir bezeichnen mit $\mathbf{X}(t)$ und $\mathbf{D}(t)$ die 3×3 Matrizen, deren i-te Spalten durch den Vektor $\vec{x}_i(t)$ bzw. \vec{d} gegeben sind. Genauso definieren wir Matrizen \mathbf{A} und \mathbf{B} , deren i-te Spalten durch die Vektoren \vec{a}_i bzw. \vec{b}_i gegeben sind und letztlich noch eine Matrix $\mathbf{\Phi}$, die aus der dreifachen Wiederholung der Zeile $(\varphi_1, \varphi_2, \varphi_3)$ besteht. Dann geht (18) über in die lineare Matrixgleichung

$$\mathbf{R}(t) \cdot \mathbf{X}(t) + \mathbf{D}(t) = \mathbf{A} + \mathbf{B} \cdot \mathbf{\Phi}(t), \qquad (20)$$

in der $\mathbf{X}(t)$, \mathbf{A} , \mathbf{B} die vorgegebenen und $\mathbf{D}(t)$, $\mathbf{R}(t)$ die gesuchten Größen sind. Auflösung nach $\mathbf{R}(t)$ ergibt:

$$\mathbf{R}(t) = (\mathbf{A} + \mathbf{B} \cdot \mathbf{\Phi}(t) - \mathbf{D}(t)) \cdot \mathbf{X}^{-1}(t), \qquad (21)$$

wobei die Invertierbarkeit von $\mathbf{X}(t)$, d.h. $\det{(\mathbf{X}(t))} \neq 0$, vorausgesetzt ist. Das ist genau dann der Fall, wenn die drei Punkte $\vec{x}_i(t)$ nicht in einer Ebene mit dem Ursprung des Ausgangskoordinatensystems liegen, was sich durch

Wahl des letzteren immer vermeiden läßt, sofern die drei Punkte $\vec{x}_i(t)$ nicht auf einer Geraden liegen, also kollinear sind. Bei kollinearer Konfiguration liegen Ursprung und Punkte natürlich immer in einer Ebene. Um (21) zu erhalten, müssen wir also kollineare Konfigurationen ausschließen.

In einem zweiten Schritt setzt man nun (21) in (19) ein und erhält 6 quadratisch polynomiale Gleichungen für die 6 in \mathbf{D} und $\mathbf{\Phi}$ auftretenden Funktionen \vec{d} und φ_i . Hat man eine Lösung zu diesen gefunden, so ergeben sich die restlichen gesuchten Funktionen \mathbf{R} in einem letzten und dritten Schritt durch Einsetzen der soeben gefundenen Ausdrücke für \mathbf{D} und $\mathbf{\Phi}$ in (21). Dies zeigt, daß man unter Voraussetzung der Durchführbarkeit des 2. Schrittes drei Bahnen $\vec{x}_i(t)$ stets auf drei vorgegebene Geraden transformieren kann.

Angenommen, die ursprünglichen Bahnen \vec{x}_i sind bereits in der Zeit tgleichförmig durchlaufene Geraden, die sich gleichzeitig in einem Raumpunkt treffen, so wie es nach Langes Definitionen zur Festlegung eines Inertialsystems und einer Inertialzeitskala gefordert ist. Wir setzen also $\vec{x}_i(t) = \vec{v}_i t$ bzw. in Matrixschreibweise $\mathbf{X} = \mathbf{V}t$, lassen also – ohne Beschränkung der Allgemeinheit – die Teilchen bei t=0 im Ursprung zusammentreffen. Die \vec{q}_i seien nun andere, sich ebenfalls im Ursprung bei t=0treffende Geraden, von denen wir aber nicht fordern, daß sie gleichförmig durchlaufen werden. Wir fragen nach den möglichen Transformationen der Geraden \vec{x}_i auf die \vec{g}_i gemäß obiger Formeln. Wir wollen zeigen, daß sie notwendig aus einer zeitunabhängigen Rotation R, einer in der Zeit linearen Translation d und ebenfalls linearen Zeitreparametrisierungen φ_i bestehen. Dann ist nämlich nachgewiesen, daß das neue Koordinatensystem wieder inertial ist und somit die Langesche Definition 1 notwendig ein Inertialsystem festlegt. Zum Beweis wenden wir (21) auf den vorliegenden Fall an und erhalten wegen $\mathbf{A} = 0$ und $\mathbf{X} = \mathbf{V}t$

$$\mathbf{R}(t) = (\mathbf{B} \cdot \mathbf{\Phi}(t)/t - \mathbf{D}(t)/t) \cdot \mathbf{V}^{-1}.$$
 (22)

Eingesetzt in (19) ergeben sich wieder sechs, diesmal quadratisch homogene Gleichungen in den sechs Größen $\varphi_i(t)/t$ und $\vec{d}(t)/t$ mit Koeffizienten, die von t unabhängig sind. Damit sind auch die Lösungen von t unabhängig, d.h. $\varphi_i(t)$ und $\vec{d}(t)$ ergeben sich proportional zu t. Eingesetzt in (22) ergibt sich dann eine von t unabhängige Drehung \mathbf{R} .

Literatur

Barbour, Julian / Pfister, Herbert. (Hg.), 1995, *Mach's Principle*, Einstein Studies Vol. 6, Birkhäuser Verlag, Basel.

Barbour, Julian, 1989, *Absolute or Relative Motion?*, Cambridge University Press, Cambridge.

Barbour, Julian / Bertotti, Bruno, 1977, "Gravity and Inertia in a Machian Framework", *Il Nuovo Cimento*, 38 B, 1-27.

Barbour, Julian / Bertotti, Bruno, 1982, "Mach's Principle and the Structure of Dynamical Theories", *Proceedings of the Royal Society (London)*, A 382, 295-306.

Born, Max, 2001, *Die Relativitätstheorie Einsteins*, kommentiert und erweitert von Jürgen Ehlers und Markus Pössel (Hg.), Springer Verlag, Berlin.

Brans, Carl, 1962, "Mach's Principle and the Locally Measured Gravitational Constant in General Relativity", *Physical Review*, 125, 388–396.

Carrier, Martin, 1978, "Passive Materie und bewegende Kraft: Newtons Philosophie der Natur", in: L. Schäfer und E. Ströker (Hg.), *Naturauffassungen in Philosophie, Wissenschaft, Technik*, Bd. II, Verlag Karl Alber, Freiburg.

Ciufolini, Ignazio et al., 1998, "Test of General Relativity and Measurement of the Lense-Thirring Effect with Two Earth Satellites", *Science*, 279, 2100-2103.

Ciufolini, Ignazio / Wheeler, John Archibald, 1995, *Gravitation and Inertia*, Princeton University Press, Princeton.

Einstein, Albert, 1912, "Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist?", Vierteljahreschrift für Gerichtliche Medizin und öffentliches Sanitätswesen, 44, 37–40.

Einstein, Albert, 1979, *Grundzüge der Relativitätstheorie*, Friedrich Vieweg & Sohn, Nachdruck der 5. Auflage.

Einstein, Albert, 1920 a, *Äther und Relativitätstheorie*, Rede gehalten am 5. Mai 1920 an der Reichs-Universität zu Leiden, Verlag von Julius Springer, Berlin.

Einstein, Albert, 1920 b, "Antwort auf die Betrachtung Ernst Reichenbächers "Inwiefern läßt sich die moderne Gravitationstheorie ohne die Relativität begründen", *Die Naturwissenschaften*, 8, 1008-1010, ebenda pp. 1010-1011.

Einstein, Albert, 1998, *Gesammelte Schriften Bd. 8A*, R. Schulman et al. (Hg.), Princeton University Press, Princeton.

Fierz, Markus, 1954, "Über den Ursprung und die Bedeutung der Lehre Isaac Newtons vom absoluten Raum", *Gesnerus*, 11. Jahrgang, 62-120.

Friedlaender, Benedict / Friedlaender, Immanuel, 1896, "Absolute oder Relative Bewegung?", Verlag von Leonhard Simion, Berlin.

Heisenberg, Werner, 1925, "Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen", Zeitschrift für Physik, 33, 879-893.

Hertz, Heinrich, 1910, *Die Prinzipien der Mechanik*, Ges. Abh. Bd. 3, Philipp Lenard (Hg.), Verlag Johann Ambrosius Barth, Leipzig.

Hertz, Heinrich, 1999, *Die Constitution der Materie*, Albrecht Fölsing (Hg.), Springer Verlag, Berlin.

Hughes, Vernon, 1964, "Mach's Principle and Experiments on Mass Anisotropy", in: H.-Y. Chiu und W. F. Hoffman (Hg.), *Gravitation and Relativity*, W.A. Benjamin Inc., New York.

Lämmerzahl, Claus et al. (Hg.), 2001, *Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space*, Lecture Notes in Physics, Bd. 562, Springer Verlag, Berlin.

Lamoreaux, Steve et al., 1986, "New Limits on Spatial Anisotropy from Optically Pumped ²⁰¹Hg and ¹⁹⁹Hg", *Physical Review Letters*, 57, 3125-3128.

Lange, Ludwig, 1885, "Über das Beharrungsgesetz", Berichte über die Verhandlungen der königlich-sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch-physikalische Classe, 7, 333-351.

von Laue, Max, 1948, "Dr. Ludwig Lange. (Ein zu Unrecht Vergessener)", *Die Naturwissenschaften*, 7, 193-196.

Leibniz, Gottfried Wilhelm, 1991, *Der Leibniz-Clarke Briefwechsel*, herausgegeben und übersetzt von Volkmar Schüller, Akademie Verlag, Berlin.

Lynden-Bell, Donald, 1995, "Classical Mechanics Without Absolute Space", *Physical Review D*, 52, 7322-7324.

Lynden-Bell, Donald et al., 1995, "Mach's Principle from the Relativistic Constraint Equations", *Monthly Notices of the Royal Astronomical Society*, 272, 150-160.

Mach, Ernst, 1988, *Die Mechanik in ihrer Entwicklung – historisch-kritisch dargestellt*, Nachdruck der 9. Auflage von 1933, Wissenschaftliche Buchgesellschaft, Darmstadt.

Neumann, Carl, 1870, Über die Principien der Galilei-Newton'schen Theorie, Teubner Verlag, Leipzig.

Newton, Isaac, 1988, *Mathematische Grundlagen der Naturphilosophie*, herausgegeben, übersetzt und ausgewählt von Ed Dellian, Felix Meiner Verlag, Hamburg.

Pauli, Wolfgang, 1996, Wissenschaftlicher Briefwechsel, Band IV, Teil I, Karl von Meyenn (Hg.), Springer Verlag, Berlin.

Reißner, Hans, 1914, "Uber die Relativität der Beschleunigung in der Mechanik", *Physikalische Zeitschrift*, XV, 371-375.

Reißner, Hans, 1915, "Uber eine Möglichkeit, die Gravitation als unmittelbare Folge der Relativität der Trägheit abzuleiten", *Physikalische Zeitschrift*, XVI, 179-185.

Schrödinger, Erwin, 1925, "Die Erfüllbarkeit der Relativitätsforderung in der klassischen Mechanik", *Annalen der Physik (Leipzig)*, 77, 325-336.

Synge, John, 1960, *Relativity: The General Theory*, North-Holland Pub. Comp., Amsterdam.

Tait, Peter, 1884, "Note on Reference Frames", *Proceedings of the Royal Society (Edinburgh)*, Session 1883-84, XII, 743-745.

Thomson, James, 1884, "On the Law of Inertia; the Principle of Chronometry; and the Principle of Absolute Clinural Rest, and of Absolute Rotation", *Proceedings of the Royal Society (Edinburgh)*, Session 1883-1884, XII, 568-578.

Turnbull, Herbert Westren (Hg.), 1961, *The Correspondence of Isaac Newton, Vol. III*, Cambridge University Press, Cambridge.

Weyl, Hermann, 1923, Raum, Zeit, Materie (5. Auflage), Springer Verlag, Berlin.