10. Präsenzübung zur Theoretischen Physik für Lehramt, WS 2010/11

(zu bearbeiten am Dienstag, 11.01.2010)

Aufgabe P16 Eigenfunktionen zum Drehimpuls

Da die Kugeloberfläche S^2 kompakt ist, lässt sich jede anständige Funktion $f(\vec{r}|\vec{r}^2=1)=g(\vartheta,\varphi)$ mit $(x,y,z)=r\left(\sin\vartheta\sin\varphi,\sin\vartheta\cos\varphi,\cos\vartheta\right)$ dort in eine abzählbare Basis entwickeln. Setze $\hbar=1$. Eine extrem nützliche Basis kann man durch drei Eigenschaften definieren:

- 1. <u>Homogenität</u>: $f = \sum_{\ell=0}^{\infty} f_{\ell}$ mit $f_{\ell}(\alpha \vec{r}) = \alpha^{\ell} f_{\ell}(\vec{r})$ für $\ell = 0, 1, 2, ...$ und $\vec{r} \in \mathbb{R}^{3}$. Entsprechend ist außerhalb S^{2} fortgesetzt $g(r, \vartheta, \varphi) = \sum_{\ell} r^{\ell} g_{\ell}(\vartheta, \varphi)$.
- 2. <u>Harmonizität</u>: $\Delta f_{\ell} \equiv (\partial_x^2 + \partial_y^2 + \partial_z^2) f_{\ell} = 0$, was in sphärischen Koordinaten bedeutet $\Delta(r^{\ell}g_{\ell}) \equiv (\frac{1}{r}\partial_r^2 r \frac{1}{r^2}\vec{L}^2) r^{\ell}g_{\ell} = r^{\ell-2}(\ell(\ell+1) \vec{L}^2) g_{\ell} = 0 \quad (*) \quad \text{oder auch}$ "Funktionen g_{ℓ} sind Eigenfunktionen von \vec{L}^2 mit Eigenwert $\ell(\ell+1)$."
- 3. <u>z-Orientierung:</u> Funktionen f_{ℓ} bzw. g_{ℓ} lassen sich noch sortieren nach Eigenfunktionen von $L_z = \frac{1}{\mathrm{i}}(x\partial_y y\partial_x) = \frac{1}{\mathrm{i}}\partial_{\varphi}$, also $L_z f_{\ell m} = m f_{\ell m}$ und genauso für $g_{\ell m}$.

Nach Normierung werden die Eigenfunktionen $g_{\ell m}$ mit $Y_{\ell m}$ bezeichnet. Demnach lässt sich jede Funktion auf der Sphäre entwickeln als $g(\vartheta,\varphi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\vartheta,\varphi)$ mit $a_{\ell m} \in \mathbb{C}$. Anders gesagt: $Y_{\ell m}(\vartheta,\varphi) = \langle \vartheta,\varphi | \ell,m \rangle$ für $\vec{L}^2 | \ell,m \rangle = \ell(\ell+1) | \ell,m \rangle$ und $L_z | \ell,m \rangle = m | \ell,m \rangle$.

- (a) Rechnen Sie Gleichung (*) nach.
- (b) Konstruieren Sie in kartesischen Koordinaten die Polynome $Y_{\ell m}(x,y,z)$ für $\ell=1$ und 2. Sortieren Sie dazu um: $f_1=a_xx+a_yy+a_zz=a_{11}(x+\mathrm{i}y)+a_{10}z+a_{1-1}(x-\mathrm{i}y)$ und berechnen Sie die L_z -Eigenwerte für diese Terme. Wiederholen Sie die Strategie für $f_2=\ldots+a_{20}[(x+\mathrm{i}y)(x-\mathrm{i}y)+\lambda z^2]+\ldots$ und fixieren Sie λ mit der Forderung $\Delta f_2=0$.
- (c) Rechnen Sie nun in sphärische Koordinaten um und lesen Sie die (unnormierten) $Y_{\ell m}$ ab.
- (d) Besseres Verfahren: Auf- und Absteigen im m-Wert. Wir haben

$$L_{+} \equiv L_{x} + iL_{y} = -(x + iy)\partial_{z} + z(\partial_{x} + i\partial_{y}) = e^{+i\varphi}(+\partial_{\vartheta} + i\cot\vartheta \partial_{\varphi}),$$

$$L_{-} \equiv L_{x} - iL_{y} = +(x - iy)\partial_{z} - z(\partial_{x} - i\partial_{y}) = e^{-i\varphi}(-\partial_{\vartheta} + i\cot\vartheta \partial_{\varphi}),$$

Die Funktion $f_{\ell\ell} = (x+iy)^{\ell} \leftrightarrow g_{\ell\ell} = \sin^{\ell}\vartheta e^{\ell i\varphi}$ erfüllt offenbar $L_+f_{\ell\ell} = 0 = L_+g_{\ell\ell}$. Also entspricht dieses Polynom dem Zustand $|\ell,\ell\rangle$ mit "höchstem Gewicht." Wegen $L_-f_{\ell m} = f_{\ell m-1}$ (oder genauso für $g_{\ell m}$) können wir nun im m-Wert absteigen:

$$f_{\ell\ell} \xrightarrow{L_{-}} f_{\ell\ell-1} \xrightarrow{L_{-}} \dots \xrightarrow{L_{-}} f_{\ell0} \xrightarrow{L_{-}} \dots \xrightarrow{L_{-}} f_{\ell-\ell} \xrightarrow{L_{-}} 0$$

und erhalten alle $f_{\ell m}$ für ein festes ℓ . Wegen $f_{\ell m}^* = f_{\ell - m}$ ist also $m \in \{-\ell, \dots, +\ell\}$. Berechnen Sie auf diese Weise erneut die Y_{2m} (unnormiert).