Aspects of Classical Physics - Tutorial 3

Olaf Lechtenfeld, Gabriel Picanço

19 Nov 2021

Dilatation in field theory

Scale invariance plays a very important role in many physical systems, for example in Statistical Mechanics or Conformal Field Theory. Let us study some of its features on scalar fields on *d*-dimensional Minkowski spacetime under the light of Noether's theorem.

A scalar field ϕ is said to have weight w with respect to dilatations if $x' = \lambda x$ induces a transformation on ϕ such that $\phi'(x') = \lambda^w \phi(x)$.

a) Express $\phi'(x)$ in terms of ϕ, x, λ and w. Use this to compute $\delta\phi(x) := \phi'(x) - \phi(x)$.

b) Take the Lagrangian $\mathcal{L}_m = \frac{1}{2} \partial_\rho \phi \partial^\rho \phi - \frac{m^2}{2} \phi^2$. How is $S[\phi']$ related to $S[\phi]$? Under which conditions on m, d and w is $\delta \phi$ a symmetry of the action?

c) In the following we set m = 0. Consider an infinitesimal dilatation $\lambda = 1 + \epsilon$ with $\epsilon \ll 1$, expand $\delta\phi$ to first order in ϵ and compute $\delta\mathcal{L}_0$. Rederive the condition of b) for the infinitesimal $\delta\phi$ to be a symmetry of the (massless) Lagrangian. Hint: $K^{\mu} = -\epsilon x^{\mu} \mathcal{L}_0$.

d) Write the Noether current j^{μ} associated with this symmetry for a general Lagrangian \mathcal{L} , then specialize to \mathcal{L}_0 . Writing $j^{\mu} =: -\epsilon J^{\mu}$ defines the "dilatation current". For $\mathcal{L} = \mathcal{L}_0$ check the condition under which J^{μ} becomes divergence-free, i.e. $\partial_{\mu}J^{\mu} = 0$. Hint: You must use the equation of motion $\Box \phi = 0$.

e) Write explicitly the energy-momentum tensor T^{μ}_{ν} for \mathcal{L}_0 and compute its trace T^{μ}_{μ} . Now express $J^{\mu} = x^{\rho} T^{\mu}_{\ \rho} + R^{\mu}$ and determine the "remainder" R^{μ} .

f) We want to employ the ambiguity in the definition of the Noether currents to remove the remainder R. For this we should "improve" both currents T and J to \hat{T} and \hat{J} in such a way that they obey just $\hat{J}^{\mu} = x^{\rho} \hat{T}^{\mu}_{\ \rho}$. Show that this requires \hat{T} to be traceless. Hint: The energy-momentum conservation $\partial_{\mu} \hat{T}^{\mu}_{\ \rho} = 0$ must be assumed.

g) We firstly improve $\hat{T}^{\mu}_{\ \rho} = T^{\mu}_{\ \rho} + a(\partial^{\mu}\partial_{\rho} - \delta^{\mu}_{\ \rho}\Box)\phi^2$. Check that \hat{T} is still divergence-free. Which choice for a renders \hat{T} traceless? Hint: Use $\Box \phi^2 = 2\phi \Box \phi + 2\partial \phi \cdot \partial \phi$ and $\Box \phi = 0$.

h) Secondly, compute the improved current $\widehat{J}^{\mu} =: J^{\mu} + S^{\mu}$ by combining the above relations. Show that $\partial_{\mu}S^{\mu} = 0$ so that the improvement does not ruin the conservation of the dilatation current. On general grounds, you should find that $S^{\mu} = \partial_{\rho}f^{\rho\mu}$ with $f^{\rho\mu} = -f^{\mu\rho}$. Do you?