Olaf Lechtenfeld, Gabriel Picanço

 $21 \ \mathrm{Jan} \ 2022$

1 Charged Particle in a Magnetic Monopole Field

The Newton equation of motion for an electrically charged point particle (mass m, electric charge q, position \vec{r} , velocity $\vec{v} = \vec{r}$) in the field of a magnetic monopole (charge g) located at the origin is as follows:

$$m\ddot{\vec{r}} = q\,\vec{v}\times\vec{B} = \kappa\,\vec{v}\times\frac{\vec{r}}{r^3}$$
 with $\kappa = \frac{qg}{4\pi}$

- a) Show that the kinetic energy $T = \frac{1}{2}m\vec{v}^2$ is conserved.
- b) Compute the time change of the angular momentum $\vec{L} = m \vec{r} \times \vec{v}$. Use that to define a quantity \vec{J} which is conserved. Interpret your result. Hint: computing the time derivative of $\vec{e_r} = \frac{\vec{r}}{r}$ may be useful.
- c) Show that $\vec{J} \cdot \vec{e_r} = -\kappa = \text{constant}$. What is the geometric implication on the particle's trajectory?
- d) Compute \vec{J}^2 and prove that \vec{L}^2 is conserved, too. What does that mean for the time evolution of \vec{L} ? And what does the fact that \vec{L}^2 is constant imply for the trajectory of the particle?
- e) Prove that $\frac{d^2}{dt^2}r^2 = \frac{d^2}{dt^2}(\vec{r}\cdot\vec{r}) = 2v^2 = \text{constant.}$ Solve for r(t).

2 The modular group $SL(2, \mathbb{Z})$

In the next lecture you'll see that the group $SL(2, \mathbb{Z})$ appears naturally in the discussion of dyons, that is, monopoles with both electric and magnetic charges. Let's discuss some of its properties now. Define the projective action of $SL(2, \mathbb{Z})$ on the upper half of the complex plane $\mathbb{C} \ni \tau$ with $Im\tau > 0$ as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d} \quad \text{with} \quad a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1.$$

- a) Show that this action preserves the upper half plane, that is, if the imaginary part of τ is positive, so is its image by any $SL(2, \mathbb{Z})$ transformation acting as above.
- b) This action is not faithful, i.e., there are elements that act trivially. Show that the elements which act trivially are only $\{\mathbb{1}_2, -\mathbb{1}_2\}$. It follows that the action of the projective group $PSL(2, \mathbb{Z}) = SL(2, \mathbb{Z})/\{\pm\mathbb{1}_2\}$, in turn, is faithful.
- c) Two very important special maps are $T: \tau \to \tau + 1$ and $S: \tau \to -\frac{1}{\tau}$. Show that they indeed preserve the sign of Im τ . Show that they satisfy $S^2 = (ST)^3 = \text{id}$ (identity map).
- d) Exhibit a pair of $SL(2, \mathbb{Z})$ matrices \hat{S} and \hat{T} corresponding to the maps S and T. Show that they satisfy the matrix identities $\hat{S}^2 = -\mathbb{1}_2$ and $(\hat{S}\hat{T})^3 = \mathbb{1}_2$ or $-\mathbb{1}_2$.
- e) A fundamental region \mathcal{F} is a closed subset of the upper half plane (including the real axis plus infinity) which contains exactly one point of each orbit under the PSL(2, \mathbb{Z}) action above. In other words, every point in the upper half plane can be mapped uniquely into \mathcal{F} . Try to identify such a region \mathcal{F} .
- f) Show that \hat{S} and \hat{T} generate the whole group $SL(2, \mathbb{Z})$. This implies that S and T generate $PSL(2, \mathbb{Z})$.