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1 Casimir Force

Figure 1: Source: https://en.wikipedia.org/wiki/Casimir effect

The (static) Casimir effect is a well-known effect arising from the vacuum
fluctuations of QFT. One approaches two parallel perfectly conducting and neu-
tral metal plates and it is possible to measure a force between the plates. Let
us derive the expression of the Casimir force.

One shows that the energy operator (Hamiltonian) can be written as

H =
∑
~k

h̄ω~k

(
a†~k
a~k +

1

2

)
, (1)

where a~k is the annihilation operator of the state labeled by ~k, and a†~k
is its

creation operator. Then the “vacuum energy” (vev: vacuum expectation value)
reads

〈0|H|0〉 =
1

2

∑
k

h̄ω~k, (2)

where ω~k = c
√
k2x + k2y + k2z . The momenta kx and ky in the plane of the plates

vary continuously, so we can work in polar coordinates in this plane. Let κ
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be the momentum-radius. The momentum kz is quantized by the boundary
conditions imposed by the plates. Let a be the distance between them.

a) Substituting
∑

kx,ky
by A

∫ dkxdky
(2π)2

, where A is the area of the plates

(A � a2), rewrite the VEV in terms of an integral in κ and a summation in a
natural label n.

Note that both the sum and the integral diverge. Let us now use one of the
methods to extract a finite physical quantity from this divergent expression.

b) Define VEV(s) changing the exponent of the argument from 1/2 (square
root) to (1− s)/2, then calculate the integral as a function of s.
(The integral only formally converges for Re(s) > 3, but we are going to use an
analytic continuation for s = 0.)

c) Using one of the expressions for the Riemann zeta function, ζ(s) =∑
n>0 n

−s (in principle only valid for Re(s) > 1) and the value of the analytical
continuation of this expression at −3, ζ(−3) = 1/120, compute VEV(0) = E.
Then, using F = −dE/da, compute the expression for the Casimir force.

2 Angular Momentum “Paradox”

Maxwell’s equations in Heaviside units:

∇×E = −1

c

∂B

∂t
,

∇ ·B = 0,

E = ρ,

∇×B =
j

c
+

1

c

∂E

∂t
.

a) Find the density of momentum ~̃p carried by electromagnetic fields in
vacuum is terms of the electric and magnetic field.

Now keep in mind that the density of angular momentum will be given by
~̃L = ~r× ~̃p. Consider the following setup: two coaxial nonconducting cylindrical
shells with very long lengths l. The smaller shell, “cylinder A”, has radius a
and a total uniformly distributed charge Q. The bigger shell, “cylinder B”, has
radius b and charge Q (also uniformly distributed). These two cylinders are free
to rotate around their axes. They are inside a equally long and coaxial solenoid
of radius R(R > b > a) which is carrying a constant current I, generating
a constant magnetic field B0 in the region of the cylinders. Both cylinders
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are initially at rest. From this initial static setup, imagine the current on the
solenoid is decreased to zero (without any external force applied to the system,
e.g. the solenoid is a superconductor slowly heating up, and suddenly becomes
a normal conductor above some critical temperature, which then starts to kill
the current by resistance).

b) Find the instantaneous eletric field induced by the changing field ~B at

radius r as a function of r, dB/dt and ϕ̂, where B = | ~B| and ϕ̂ is the counter-
clockwise direction in the figure above.

c) Find the angular momentum gained by each cylinder by the end, when the
solenoid magnetic field has decreased to zero. (Assume that the two cylinders
are rotating slowly enough that you can completely disregard the magnetic fields
generated by them).

d) Calculate the electric field in all regions of space in the initial static
situation.

e) Is angular momentum conserved? If so, show it quantitatively.

f) Now imagine we repeat the experiment without“cylinder B”. Discuss
angular momentum conservation in this case.
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