Tutorial 5 - Fundamental Interactions

Olaf Lechtenfeld, Gabriel Picanço

Jun 2023

1 Gamma matrices

1.1 Useful properties

Let $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and $\not p=p_{\mu} \gamma^{\mu}$. Using those definitions and the algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$, without any explicit matrix forms, prove the following statements:
a) $\operatorname{Tr}\left(\gamma^{\mu}\right)=0$
b) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}$
c) $\left(\gamma^{5}\right)^{2}=1$
d) $\operatorname{Tr}\left(\gamma^{5}\right)=0$
e) $\operatorname{Tr}(\not p q)=4 p \cdot q$
f) $\operatorname{Tr}\left(\not p_{1} \ldots \not p_{n}\right)=0$ if n is odd
g) $\gamma_{\mu} \not p \gamma^{\mu}=-2 \not p$
h) $\gamma_{\mu} \not p_{1} \not p_{2} \gamma^{\mu}=4 p_{1} \cdot p_{2}$

It is also true that

$$
\begin{equation*}
\operatorname{Tr}\left(\not p_{1} \not p_{2} \not p_{3} \not p_{4}\right)=4\left[\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)+\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)-\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Tr}\left(\gamma^{5} \not p_{1} \not{ }_{2} \not p_{3} \not p_{4}\right)=4 i \epsilon_{\mu \nu \rho \sigma} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\sigma} \tag{2}
\end{equation*}
$$

Feel free to try to show those if you'd like.

1.2 Construction in any dimension

For this part let us work in d dimensions and use the Euclidian signature such that $\left\{\gamma^{i}, \gamma^{j}\right\}=2 \delta^{i j}$ (to obtain these we just need to redefine the gamma matrices that square to -1 with an extra factor of $-i$). Let σ_{1}, σ_{2} and σ_{3} be the usual Pauli matrices. We can always use them to construct $d\lfloor d / 2\rfloor \times\lfloor d / 2\rfloor$ gamma matrices that form a representation of the algebra.
a) For $d=4$, take $\gamma^{1}=\sigma_{1} \otimes 1$ and $\gamma^{2}=\sigma_{2} \otimes 1$. Find γ^{3} and γ^{4}.
b) Add one more tensor factor and extend the above idea to guess how to generate the gamma matrices for $d=6$. Then generalize it for any even dimension, $d=2 n$, and write the expressions for the gamma matrices.
c) Finally, let us construct the representations for any odd d. Find how to add one more matrix $\gamma^{2 n+1}$ in the set $\left\{\gamma^{1}, \ldots, \gamma^{2 n}\right\}$ that represents the algebra for $d=2 n$ such that the set $\left\{\gamma^{1}, \ldots, \gamma^{2 n}, \gamma^{2 n+1}\right\}$ represents it for $d=2 n+1$.

2 Covariant Derivative of a Dirac field

The Lagrangian for the free Dirac field reads

$$
\begin{equation*}
\mathcal{L}_{0}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi . \tag{3}
\end{equation*}
$$

This Lagrangian has a global symmetry with $\psi \rightarrow \mathrm{e}^{-i \lambda} \psi$ (and $\bar{\psi} \rightarrow \mathrm{e}^{i \lambda} \bar{\psi}$), for q and $\lambda \in \mathbb{R}$, forming a global $U(1)$ symmetry group.
a) Check if the Lagrangian is invariant by a local $U(1)$ transformation, that is, with $\psi \rightarrow \mathrm{e}^{-i \lambda(x)} \psi$.

As you were able to check, if we want to impose a (gauge) local $U(1)$ symmetry we need to make other changes such that the Lagrangian becomes symmetric. The way to do this is to insert a vector field $A_{\mu}(x)$, defining a covariant derivative operator $D_{\mu}=\partial_{\mu}+i q A_{\mu}(x)$. This is similar to what we do in General Relativity when we use the Christoffel symbols (connection) to define a covariant derivative operator.
b) Find how the connection/vector field $A_{\mu}(x)$ transforms as a function of $\lambda(x)$ such that $D_{\mu} \psi \rightarrow \mathrm{e}^{-i q \lambda(x)} D_{\mu} \psi$ (which makes the Lagrangian symmetric).
c) Write the Lagrangian \mathcal{L}_{1} including in \mathcal{L}_{0} the kinetic term associated with the vector field $A_{\mu}(x)$. Can we insert a mass term for $A_{\mu}(x)$ as well while preserving the gauge symmetry?
d) Use the action associated with \mathcal{L}_{1} to find the equations of motion for both fields.

