Olaf Lechtenfeld Marcus Sperling Fundamental Interactions Tutorial #3 Thursday, May 12

In this tutorial class we explore three fundamental steps towards the so-called Higgs mechanism. Firstly, you will study *spontaneous symmetry breaking* for a discrete symmetry. Secondly, we consider a continuous (global) symmetry and stumble upon an example of the Goldstone theorem. Lastly, you delve into the simplest example of the abelian Higgs effect.

Problem 5: spontaneous symmetry breaking I — discrete symmetry Consider the Lagrangian

$$L = T - V = \frac{1}{2} \partial_{\sigma} \phi \, \partial^{\sigma} \phi - \left(\frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda \phi^4\right) , \qquad (1)$$

which is invariant under the \mathbb{Z}_2 symmetry $\phi \to -\phi$.

- a) Find the minimum ν of the total energy T + V for a constant field $\varphi(x) \equiv \varphi$. Sketch the potential for $\mu > 0$ and $\mu < 0$.
- b) Expand the theory around the minima (i) $\nu = 0$ for $\mu > 0$ and (ii) $\nu = \sqrt{-\mu^2/\lambda}$ for $\mu < 0$. By that we mean to perform the replacement $\varphi(x) \mapsto \nu + \eta(x)$ in L.
- c) Is the original \mathbb{Z}_2 symmetry visible in the re-written L? What are the masses of the scalar field $\eta(x)$ in both cases?

To this end, the choice of one of the two equivalent vacua $v = \pm \sqrt{-\mu^2/\lambda}$ for $\mu < 0$ breaks the original \mathbb{Z}_2 symmetry. This means that the vacua do not have the symmetry of the original Lagrangian, which is called *spontaneous symmetry breaking*.

Problem 6: spontaneous symmetry breaking II — Goldstone theorem For the complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ the Lagrangian takes the form

$$\mathbf{L} = (\partial_{\sigma} \phi)^* (\partial^{\sigma} \phi) - \mu^2 \phi^* \phi - \lambda (\phi^* \phi)^2 , \qquad (2)$$

which has a continuous global $U(1) \cong SO(2)$ symmetry given by $\phi(x) \mapsto \exp(i\chi)\phi(x)$.

- a) Find the minima for the total energy for constant scalar field and sketch the potential in the $\varphi_1 \varphi_2$ plane.
- b) Now, there is an entire circle of equivalent vacua, and we may select any point arbitrarily, say $\varphi_1 = v$, $\varphi_2 = 0$ with $v^2 = -\mu^2/\lambda$. Thus, we now expand the Lagrangian as

$$\phi(\mathbf{x}) \mapsto \frac{(\nu + \eta(\mathbf{x}) + i\rho(\mathbf{x}))}{\sqrt{2}} \tag{3}$$

around $\eta = 0$ and $\rho = 0$. What are the mass terms for the two real scalar fields $\eta(x)$ and $\rho(x)$?

As you should have seen in this example, spontaneously breaking of the continuous global U(1) symmetry leads to a massless scalar field, called the *Goldstone boson*. Intuitively, the arising massless spin-zero particle corresponds to the flat direction of the potential in the vicinity of a chosen vacuum. The massive scalar field describes excitations in the radial direction.

Problem 7: spontaneous symmetry breaking III — **abelian Higgs effect** Now, we promote the global U(1) symmetry to a local symmetry or gauge symmetry. This is done in three steps: (i) introduce local gauge transformations $\phi(x) \mapsto \exp(i\chi(x))\phi(x)$, (ii) replace the partial derivative by the gauge covariant derivative $\partial_{\sigma} \rightarrow D_{\sigma} = \partial_{\sigma} - igA_{\sigma}$, and (iii) introduce the kinetic term $F_{\sigma\rho}F^{\sigma\rho}$ for the abelian gauge field A_{σ} . The resulting Lagrangian reads

$$L = (D_{\sigma}\varphi)^{*}(D^{\sigma}\varphi) - \mu^{2}\varphi^{*}\varphi - \lambda(\varphi^{*}\varphi)^{2} - \frac{1}{4}F_{\sigma\rho}F^{\sigma\rho} .$$
(4)

As the situation becomes more evolved, we employ the insights gained in Problem 6. As the minima of the scalar potential remain the same, the minima for $\mu < 0$ are given by $\nu^2 = -\mu^2/\lambda$, and the complex scalar is re-written as in (3). Employing a suitable gauge transformation, this can be expressed as

$$\phi(\mathbf{x}) \mapsto \frac{(\mathbf{v} + \mathbf{h}(\mathbf{x}))}{\sqrt{2}} \,. \tag{5}$$

- a) Insert (5) into the Lagrangian and sort the terms corresponding to kinetic terms, mass terms and interaction terms.
- b) What do you observe for the scalar field h and for the gauge field A? Do they have masses?
- c) Since we broke a continuous symmetry, one may ask the following: Where is the Goldstone boson?

In conclusion, breaking a *local* symmetry evades the Goldstone theorem, i.e. there is no massless scalar field. In addition, the gauge field has acquired a mass term due to the symmetry breaking. Note that a mass term for gauge fields is not gauge invariant, but can be introduced by spontaneous symmetry breaking. The encountered phenomenon is the celebrated *Higgs effect*.