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In this tutorial class we explore three fundamental steps towards the so-called Higgs mechanism.
Firstly, you will study spontaneous symmetry breaking for a discrete symmetry. Secondly, we consider a
continuous (global) symmetry and stumble upon an example of the Goldstone theorem. Lastly, you
delve into the simplest example of the abelian Higgs effect.

Problem 5: spontaneous symmetry breaking I — discrete symmetry Consider the Lagrangian

L = T − V =
1
2
∂σϕ∂

σϕ−

(
1
2
µ2ϕ2 +

1
4
λϕ4

)
, (1)

which is invariant under the Z2 symmetry ϕ→ −ϕ.

a) Find the minimum v of the total energy T + V for a constant field ϕ(x) ≡ ϕ. Sketch the potential for
µ > 0 and µ < 0.

b) Expand the theory around the minima (i) v = 0 for µ > 0 and (ii) v =
√
−µ2/λ for µ < 0. By that we

mean to perform the replacement ϕ(x) 7→ v+ η(x) in L.

c) Is the original Z2 symmetry visible in the re-written L? What are the masses of the scalar field η(x) in
both cases?

To this end, the choice of one of the two equivalent vacua v = ±
√
−µ2/λ for µ < 0 breaks the original

Z2 symmetry. This means that the vacua do not have the symmetry of the original Lagrangian, which is
called spontaneous symmetry breaking.

Problem 6: spontaneous symmetry breaking II — Goldstone theorem For the complex scalar field
φ = (ϕ1 + iϕ2)/

√
2 the Lagrangian takes the form

L = (∂σφ)
∗(∂σφ) − µ2φ∗φ− λ(φ∗φ)2 , (2)

which has a continuous global U(1) ∼= SO(2) symmetry given by φ(x) 7→ exp(iχ)φ(x).

a) Find the minima for the total energy for constant scalar field and sketch the potential in the ϕ1 − ϕ2
plane.

b) Now, there is an entire circle of equivalent vacua, and we may select any point arbitrarily, say ϕ1 = v,
ϕ2 = 0 with v2 = −µ2/λ. Thus, we now expand the Lagrangian as

φ(x) 7→ (v+ η(x) + iρ(x))√
2

(3)

around η = 0 and ρ = 0. What are the mass terms for the two real scalar fields η(x) and ρ(x)?

As you should have seen in this example, spontaneously breaking of the continuous globalU(1) symme-
try leads to a massless scalar field, called the Goldstone boson. Intuitively, the arising massless spin-zero
particle corresponds to the flat direction of the potential in the vicinity of a chosen vacuum. The massive
scalar field describes excitations in the radial direction.
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Problem 7: spontaneous symmetry breaking III — abelian Higgs effect Now, we promote the global
U(1) symmetry to a local symmetry or gauge symmetry. This is done in three steps: (i) introduce local
gauge transformations φ(x) 7→ exp(iχ(x))φ(x), (ii) replace the partial derivative by the gauge covariant
derivative ∂σ → Dσ = ∂σ − igAσ, and (iii) introduce the kinetic term FσρF

σρ for the abelian gauge field
Aσ. The resulting Lagrangian reads

L = (Dσφ)
∗(Dσφ) − µ2φ∗φ− λ(φ∗φ)2 −

1
4
FσρF

σρ . (4)

As the situation becomes more evolved, we employ the insights gained in Problem 6. As the minima of
the scalar potential remain the same, the minima for µ < 0 are given by v2 = −µ2/λ, and the complex
scalar is re-written as in (3). Employing a suitable gauge transformation, this can be expressed as

φ(x) 7→ (v+ h(x))√
2

. (5)

a) Insert (5) into the Lagrangian and sort the terms corresponding to kinetic terms, mass terms and
interaction terms.

b) What do you observe for the scalar field h and for the gauge field A? Do they have masses?

c) Since we broke a continuous symmetry, one may ask the following: Where is the Goldstone boson?

In conclusion, breaking a local symmetry evades the Goldstone theorem, i.e. there is no massless scalar
field. In addition, the gauge field has acquired a mass term due to the symmetry breaking. Note that
a mass term for gauge fields is not gauge invariant, but can be introduced by spontaneous symmetry
breaking. The encountered phenomenon is the celebrated Higgs effect.
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