Quantum Field Theory: Exercise Session 4

12 June 2012

Lecturer: Olaf Lechtenfeld

Assistant: Susha Parameswaran

Perturbation theory for interacting ϕ^4 scalar field theory

Consider a scalar field theory with quartic self-interaction, described by:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4. \tag{1}$$

In quantum field theory, all n-point correlation functions can be encoded in a single object called the generating functional, Z[J], as:

$$G_n(x_1, x_2, \dots, x_n) = i^{-n} \left[\frac{\delta^n Z[J]}{\delta J(x_1) \delta J(x_2) \dots \delta J(x_n)} \right]_{J=0}.$$
 (2)

For the ϕ^4 theory, the generating functional is given by:

$$Z[J] = \frac{\exp\left[\left(-i\frac{\lambda}{4!}\right) \int d^4z \left(\frac{1}{i}\frac{\delta}{\delta J(z)}\right)^4\right] Z_0[J]}{\left\{\exp\left[\left(-i\frac{\lambda}{4!}\right) \int d^4z \left(\frac{1}{i}\frac{\delta}{\delta J(z)}\right)^4\right] Z_0[J]\right\}_{J=0}},$$
(3)

where Z_0 is the free generating functional:

$$Z_0[J] = Z_0[0] \exp\left[-\frac{1}{2} \int d^4x d^4y J(x) D_F(x-y) J(y)\right]. \tag{4}$$

Assuming small interaction coupling, $\lambda \ll 1$, we can use perturbation theory. The Feynman rules for the ϕ^4 theory read:

$$\frac{1}{x} = \int_{A^{+}z} D_{+}(x-y) i J(y)$$

$$\frac{1}{x} = \int_{A^{+}z} \int_{A^{+}y} i J(x) D_{+}(x-y) i J(y)$$

$$= \left(\frac{-i\lambda}{+1}\right) \int_{A^{+}z} d^{+}z$$

- 1 (a) Apply the functional derivative $\frac{1}{i} \frac{\delta}{\delta J(z)}$ to $Z_0[J]$, and draw the corresponding diagram. What does $\frac{1}{i} \frac{\delta}{\delta J(z)}$ do to a diagram?
 - (b) By expanding Z[J] to first order in λ , and applying $\frac{\delta}{i\delta J(z)}$ four times, show that to $\mathcal{O}(\lambda)$:

$$Z[J] = \frac{\left[1 - i\frac{\lambda}{4!} \int d^4x \left(3(D_F(0))^2 + 6D_F(0) \left(\int d^4y D_F(x-y)J(y)\right)^2 + \left(\int d^4y D_F(x-y)J(y)\right)^4\right)\right] Z_0}{\left[1 - i\frac{\lambda}{4!} \int d^4x \left(3(D_F(0))^2\right)\right] Z_0[0]}$$
(5)

You may choose whether to work explicitly or to use the Feyman diagrams.

- (c) Show that the vacuum diagrams, which diverge, cancel thanks to the normalization.
- 2 The four-point function reads:

What diagrams appear in $G_4(x_1, x_2, x_3, x_4)$ at $\mathcal{O}(\lambda^2)$? Take the symmetry factors into account!

3 Only the connected Feynman diagrams in a correlation function contribute to the non-trivial (off-diagonal) part of the S matrix. Show to $\mathcal{O}(\lambda)$ that the functional $W[J] = -i \ln Z[J]$ generates only the connected diagrams of $G_4(x_1, x_2, x_3, x_4)$.