Quantum Field Theory: Exercise Session 5

26 June 2012

Lecturer: Olaf Lechtenfeld

Assistant: Susha Parameswaran

Problem 1: Decay of a scalar particle

Consider the following Lagrangian, involving two real scalar fields, Φ and φ :

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\Phi \,\partial^{\mu}\Phi - \frac{1}{2}M^{2}\Phi^{2} + \frac{1}{2}\partial_{\mu}\varphi \,\partial^{\mu}\varphi - \frac{1}{2}m^{2}\varphi^{2} - \mu \,\Phi\varphi\varphi. \tag{1}$$

The last term is an interaction term, with coupling constant μ , which allows the particle Φ to decay into two φ 's.

- (a) Write down the momentum space Feynman rules for this theory, and hence the Feynman diagram for the decay of Φ to lowest order in μ .
- (b) Obtain the invariant matrix element \mathcal{M} , defined from the scattering matrix S=1+iT by:

$$\langle k_{\varphi_1} k_{\varphi_2} | iT | k_{\Phi} \rangle = (2\pi)^4 \delta^{(4)} (k_{\Phi} - k_{\varphi_1} - k_{\varphi_2}) i\mathcal{M}(k_{\Phi} \to k_{\varphi_1}, k_{\varphi_2}), \qquad (2)$$

and given diagrammatically by:

$$i\mathcal{M} = \{\text{the sum of all connected amputated Feynman diagrams.}\}$$
 (3)

(c) Compute the decay rate of the Φ particles in their rest frame, to lowest order in μ , using the relation:

$$\Gamma = \frac{1}{2M} \prod_{f=\varphi_1, \varphi_2} \int d\tilde{k}_f |\mathcal{M}(k_{\Phi} \to k_{\varphi_1}, k_{\varphi_2})|^2 (2\pi)^4 \delta^{(4)}(k_{\Phi} - k_{\varphi_1} - k_{\varphi_2}). \tag{4}$$

Hint: A change of variables $\delta(f(x))dx = \frac{dx}{dy}\delta(y)dy$ with y = f(x) shows that:

$$\frac{\delta\left(\sqrt{|\vec{k}|^2 + m_1^2} + \sqrt{|\vec{k}|^2 + m_2^2} - M\right)}{\sqrt{|\vec{k}|^2 + m_1^2}\sqrt{|\vec{k}|^2 + m_2^2}} |\vec{k}|^2 d|\vec{k}| = \frac{|\vec{k}|}{M}\delta(y)dy$$
 (5)

with
$$y = \sqrt{|\vec{k}|^2 + m_1^2} + \sqrt{|\vec{k}|^2 + m_2^2} - M$$
.

- (d) Compute the lifetime $\tau = \Gamma^{-1}$ of Φ to lowest order in μ .
- (e) What is the lower bound for M in order for a decay to be possible?

Problem 2: Decay of the charged pion

The negatively charged pion can be represented by a complex scalar field φ , the muon by a Dirac field ψ and the muon neutrino by a helicity-projected left-handed Dirac field $(1-\gamma^5)\chi$. The pion decays almost exclusively into a muon and muon antineutrino, and this process can be described by a Lagrangian density:

$$\mathcal{L} = \partial_{\nu} \varphi^* \partial^{\nu} \varphi - m_{\pi}^2 |\varphi|^2 + \bar{\psi} (i \partial \!\!\!/ - m_{\mu}) \psi + \bar{\chi} i \partial \!\!\!/ \chi + \frac{G}{\sqrt{2}} f_{\pi} \left[\partial_{\nu} \varphi \bar{\psi} \gamma^{\nu} (1 - \gamma^5) \chi + h.c. \right]$$
 (6)

where G and f_{π} are coupling constants. The momentum space Feynman rules for this theory read:

$$\langle \vec{p}, s | \bar{\psi} =$$
 $= \bar{u}^s(p)$ fermion (7)

$$\langle \vec{p}, r | \chi =$$
 $= v^r(p)$ antifermion (8)

$$\varphi|\bar{p}\rangle = = 1 \tag{9}$$

$$= \frac{G}{\sqrt{2}} f_{\pi} p_{\nu} \gamma^{\nu} (1 - \gamma^{5}), \qquad (10)$$

(a) Compute the lifetime of the pions.

Hint: When computing the mod squared of the invariant matrix element, $|\mathcal{M}|^2$, you should sum over all possible final spin states, using the completeness relations:

$$\sum_{s=\pm} u_a^s(p)\bar{u}_b^s(p) = (\not p + m_\mu)_{ab} \quad \text{where} \quad (\not p - m_\mu)u^s(p) = 0, \quad (11)$$

$$\sum_{r=\pm} v_a^r(p)\bar{v}_b^r(p) = \not p_{ab} \quad \text{where} \quad \not p \, v^r(p) = 0.$$
 (12)

The gamma-trace identities are:

Tr(any odd number of
$$\gamma$$
's) = 0 (13)

$$Tr(\gamma^{\mu}\gamma^{\nu}) = 4\eta^{\mu\nu} \tag{14}$$

$$Tr(\gamma^{\mu}\gamma^{\nu}\gamma^5) = 0 \tag{15}$$

$$Tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})$$
 (16)

$$\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5}) = 4i\epsilon^{\mu\nu\rho\sigma}.$$
 (17)

(b) Why is the process $\pi^- \to e^- + \bar{\nu}_e$ suppressed?