7. Hausübung zur Quantentheorie II, SS 2007

(abzugeben am Donnerstag, 07.06.2007)

Aufgabe H18 Maximale Verletzung der CHSH-Ungleichung (6 Punkte)

In der Präsenzübung P11 haben Sie die CHSH-Ungleichung kennengelernt. Beobachter 1 seien die Observablen $A = \vec{\alpha} \cdot \vec{\sigma}_1$ und $C = \vec{\gamma} \cdot \vec{\sigma}_1$ zugeordnet, Beobachter 2 die Observablen B und D (Spinmessung in Richtung der Einheitsvektoren $\vec{\beta}$ bzw. $\vec{\delta}$). Die Meßergebnisse seien a, b, c, d. Zeigen Sie, daß die maximale Verletzung dieser Ungleichung für ein Singlett zweier Spin- $\frac{1}{2}$ -Teilchen erreicht wird, wenn die aufeinanderfolgenden Meßrichtungen $\vec{\alpha}, \vec{\beta}, \vec{\gamma}, \vec{\delta}$ in einer Ebene liegen und sich jeweils um 45° unterscheiden.

a) Zeigen Sie dazu zunächst, daß mit der Definition des Operators O

$$O = AB + BC + CD - DA$$

folgt:

$$O^2 = 4 + [A, C] \cdot [B, D]$$
.

b) Die Norm eines Operators M ist definiert durch

$$||M|| = \sup_{|\psi\rangle} \frac{||M|\psi\rangle||}{|||\psi\rangle||},$$

mit $||\psi\rangle|^2 = \langle\psi|\psi\rangle$. Diese Operatornorm hat die Eigenschaften

$$||MN|| \le ||M|| \cdot ||N||,$$

 $||M+N|| \le ||M|| + ||N||.$

Für diagonalisierbare Operatoren gilt ferner $||M^2|| = ||M||^2$. Geben Sie damit eine Obergrenze für die Norm des Operators O an (Cirel'son-Ungleichung). Zeigen Sie, daß diese Obergrenze durch die angegebenen Winkel erreicht wird.

Aufgabe H19 Das "No-Cloning"-Theorem (4 Punkte)

Nehmen Sie an, man könne einen unbekannten Quantenzustand von einem System in ein zweites kopieren, d.h. es gäbe eine unitäre Transformation U auf dem Produktraum mit $U |\psi\rangle |0\rangle = |\psi\rangle |\psi\rangle$ für jeden Zustand $|\psi\rangle$ eines Spin- $\frac{1}{2}$ -Systems. Führen Sie diese Annahme mit zwei verschiedenen Argumenten zum Widerspruch (Wootters und Zurek 1982):

- a) Linearität von U: Betrachten Sie die Wirkung von U auf die Basiszustände $|0\rangle |0\rangle$ und $|1\rangle |0\rangle$, sodann auf die Linearkombination $\alpha |0\rangle |0\rangle + \beta |1\rangle |0\rangle$.
- b) Erhaltung des Skalarprodukts: Eine unitäre Transformation erhält bekanntlich das Skalarprodukt. Nehmen Sie an, daß zwei nicht-orthogonale Zustände kopiert werden können und betrachten Sie deren Skalarprodukt vor und nach Anwendung der hypothetischen Transformation U.

Anmerkung: Der Anfangszustand des zweiten Systems wird vorgegeben und kann willkürlich gewählt werden, in diesem Fall als $|0\rangle$.

Aufgabe H20 Entropie als Maß für Verschränkung? (5 Punkte)

Die Entropie eines quantenmechanischen Zwei-Zustands-Systems ist gegeben durch

$$S = -\operatorname{tr}(\varrho \log_2 \varrho) ,$$

wobei der Logarithmus einer Matrix über ihre Darstellung in der Eigenbasis definiert ist. Überlegen Sie sich, ob die Entropie der reduzierten Dichtematrix eines Zwei-Teilchen-Systems ein gutes Maß für die Verschränkung des Gesamtsystems ist: Gegeben seien

- a) $|\psi_a\rangle = |00\rangle$,
- b) $|\psi_b\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$,
- c) $\varrho_c = \frac{1}{2} \mathbb{1} \otimes \frac{1}{2} \mathbb{1}$.

Wie groß ist in jedem der drei Fälle die Entropie der reduzierten Dichtematrix des ersten Teilsystems? Begründen Sie, warum Sie die Entropie als Verschränkungsmaß akzeptieren oder nicht akzeptieren.