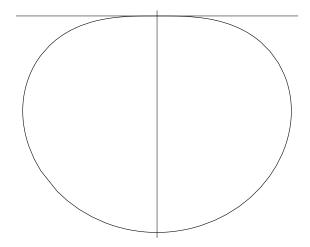
Präsenzübung zu den Rechenmethoden der Physik

22. 6. 2000 SS 2000

1. Asteroiden-Engineering — "Lechtenfeld's Surface"

Gesucht ist ein Körper mit homogener Massenverteilung und fester Gesamtmasse M aber noch unbekannter Gestalt mit der Eigenschaft, dass an einem Punkt der Oberfläche die Gravitation maximal wird.



- (a) Legen Sie den Oberflächenpunkt in den Ursprung. Überzeugen Sie sich durch ein Symmetrieargument davon, dass die Oberfläche rotationssymmetrisch um die z-Achse ist. Es genügt also, einen Schnitt mit der xz-Ebene zu betrachten. Setzen Sie die Randkurve als $R(\theta)$ an, wobei θ den Winkel gegen die negative z-Achse bezeichnet.
- (b) Durch welches Integral F[R] wird die im Punkt 0 wirkende Gravitationskraft beschrieben? Mit welchem Integral M[R] berechnet sich die Gesamtmasse M?
- (c) Gesucht ist also eine Randkurve $\bar{R}(\theta)$, die das Funktional F[R] maximiert, wobei nur solche Kurven zur Variation zugelassen sind, die auf die Gesamtmasse M führen. Beide Bedingungen lassen sich gleichzeitig erfüllen, indem man nach einem Extremum von $U[R] = F[R] \lambda M[R]$ sucht, wobei λ eine (noch offene) reelle Konstante darstellt.
- (d) Welche Gleichung ergibt sich für $\bar{R}(\theta)$ aus der Forderung nach einer verschwindenden Variation $\delta U=0$? Die Lösung $\bar{R}_{\lambda}(\theta)$ enthält noch die Unbekannte λ . Bestimmen Sie diese Konstante λ , indem Sie mit dem erhaltenen $\bar{R}_{\lambda}(\theta)$ die Nebenbedingung auswerten.
- (e) Wie hoch ist der Wert der der Oberflächen-Gravitation $F[\bar{R}]$? Vergleichen Sie mit einer Kugel gleicher Masse: $R_{\text{Kugel}}(\theta) = 2R\cos\theta$ mit $M = \frac{4\pi}{3}\rho R^3$ ergibt $F_{\text{Kugel}} = \gamma m M/R^2 = \gamma m M \left(\frac{3M}{4\pi}\rho\right)^{-\frac{2}{3}}$.

Ergebnis: $F[\bar{R}] \approx 1.028F_{Kugel}$

(f) Rechnen Sie $\bar{R}(\theta)$ in kartesische Koordinaten um. Sie erhalten eine Kurve K(x,z)=0 welchen Grades?