23. Hausübung zu den Rechenmethoden der Physik SS 2000

Abgabe am 29.5.2000 vor der Vorlesung

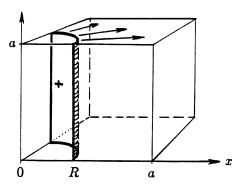
67. Stokesscher Integralsatz

Ein Magnetfeld sei durch $\vec{B} = \beta \begin{pmatrix} z \\ x \\ y \end{pmatrix}$ gegeben. Der Fluß der Stromdichte $\vec{j} = \vec{\nabla} \times \vec{B}$ durch eine Fläche Φ soll einmal direkt, d.h. als Flächenintegral, und einmal mit Hilfe des Stokes-

schen Integralsatzes berechnet werden. Dabei sei Φ ein kreisförmiges Stück einer Sattelfläche: $\vec{r}(u,v) \doteq (u,v,u^2-v^2)$ mit $u^2+v^2 \leq R^2$. (4)

68. Homogen geladene Kugel

Als Anwendung des Gaußschen Integralsatzes soll das elektrische Feld einer homogen geladenen Kugel im Ursprung mit Radius R und Gesamtladung Q berechnet werden. Der Zusammenhang zwischen der elektrischen Feldstärke \vec{E} und der Ladungsdichte ρ ist durch div $\vec{E}(\vec{r})=4\pi\rho(\vec{r})$ gegeben.


- (a) Integrieren Sie beide Seiten über eine Kugel im Ursprung mit dem Radius r. Das gewählte Integrationsvolumen trägt der Symmetrie des Problems Rechnung.
- (b) Wandeln Sie das Volumenintegral über div \vec{E} gemäß dem Gaußschen Satz in ein Oberflächenintegral um. Auf Grund der Kugelsymmetrie ist der Ansatz $\vec{E}(\vec{r}) = E(r)\vec{e}_r$ vernünftig, mit dem sich das Oberflächenintegral einfach auswerten lässt.
- (c) Bestimmen Sie anhand der Fallunterscheidung r < R und r > R das elektrische Feld innerhalb und ausserhalb der geladenen Kugel. Wie unterscheidet sich das Feld im Aussenraum von demjenigen einer Punktladung Q im Ursprung? (4)

69. Gaußscher Integralsatz

Der Gaußsche Integralsatz soll durch explizite Berechnung beider Seiten nachgeprüft werden am Beispiel des skizzierten Würfelvolumens V mit Kantenlänge a, in welchem das folgende elektrische Feld vorliegt:

$$\vec{\mathsf{E}} = \vec{e}_{\,\rho} \frac{\alpha}{\rho} \theta(\rho - \mathsf{R}) \quad \text{mit } \mathsf{R} < \alpha.$$

Anmerkung: Es handelt sich um das Feld eines Zylinder-Kondensators, dessen zweites, negativ geladenes Blech unendlich weit entfernt ist. (4)

