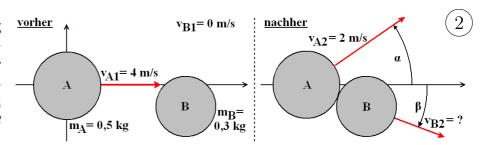
3

5

5

Aufgabe 21: Die Abbildung zeigt einen elastischen Stoß zwischen zwei Scheiben auf einer reibungsfreien Unterlage. Berechnen Sie die Geschwindigkeit von B und die Winkel α und β nach dem Stoß.



<u>Aufgabe 22:</u> In der Vorlesung wurde mit einer Kugel auf ein Pendel geschossen. Hier nochmal die Eckdaten des Versuchs: Masse der Kugel 0.5 g, Masse des Pendels 168 g, 5 Schwingungsperioden in 21.6 s. Horizontale Auslenkung des Körpers im Schattenwurf: 8.6 willkürliche Einheiten, Größe des 11 cm Pendelkörpers im Schattenwurf: 5 willkührliche Einheiten. Wie groß war die Geschwindigkeit der Pistolenkugel vor dem Auftreffen?

Aufgabe 23: Ein auf der x-Achse bewegliches Teilchen (Masse m, Ladung q) sei harmonisch gebunden, so dass es bei Auslenkung eine rücktreibende Kraft $F_1 = -kx = -m\Omega^2 x$ erfährt. Zu Zeiten t < 0 ruht das Teilchen in seiner Gleichgewichtslage am Ursprung. Ab t = 0 wird es von einer vertikal einfallenden elektromagnetischen Welle getroffen, was zu einer zusätzlichen Kraft $F_2 = m\gamma \sin \omega t$ auf das Teilchen führt. Formulieren Sie einen Ansatz zur Lösung der Newtonschen Gleichung und bestimmen Sie x(t) zunächst für $\omega \neq \Omega$. Wie vereinfacht sich x(t) für $\Omega \to 0$? Testen Sie das Ergebnis durch Einsetzen in die Newtonsche Gleichung. Um das Verhalten bei "Resonanz" zu untersuchen, setzen Sie $\omega = \Omega + \epsilon$ und führen den Limes $\epsilon \to 0$ aus. Welcher Ansatz wäre genau bei $\omega = \Omega$ erfolgreich gewesen?

Hinweise: Ansatz mit zwei Schwingungen, $\sin(\omega + \epsilon)t = ?$, $\sin \epsilon t = \epsilon t + O(\epsilon^3)$, $\cos \epsilon t = 1 + O(\epsilon^2)$.

Aufgabe 24: Der dreidimensionale harmonische Oszillator ist gegeben durch das Potenzial $\overline{V(r)} = \frac{1}{2}\omega^2r^2 = \frac{1}{2}\omega^2(x_1^2 + x_2^2 + x_3^2)$, wobei m=1 gesetzt wurde. Wie lauten die Newtonschen Bewegungsgleichungen? Anstatt diese zu lösen, gehen wir über die Erhaltungssätze. Wie beim Kepler-Problem gibt es ungewöhnlich viele erhaltene Größen, nämlich neun an der Zahl:

$$\ell_i = \varepsilon_{ijk} x_j \dot{x}_k \quad \text{und} \quad q_{ij} = \dot{x}_i \dot{x}_j + \omega^2 x_i x_j \quad \text{für} \quad i, j, k = 1, 2, 3 .$$
 (*)

Identifizieren Sie die physikalische Bedeutung von ℓ_i und $e := \frac{1}{2}q_{ii} = ?$ und verifizieren Sie die Erhaltung $\dot{\ell}_i = 0$ und $\dot{q}_{ij} = 0$ unter Benutzung der Bewegungsgleichungen. Als nächstes drücken Sie $q_{ij}\ell_j$ und $\ell^2 = \ell_i\ell_i$ durch \vec{r} und $\dot{\vec{r}}$ aus. Beweisen Sie damit, dass

$$Q(\vec{r}) := x_i \left(2e \, \delta_{ij} - q_{ij}\right) x_j = \ell^2 = \text{konstant} .$$

Im folgenden notieren wir $(x_1, x_2, x_3) = (x, y, z)$. Da eine Zentralkraft vorliegt, bleibt die Bahnkurve in einer Ebene, und wir wählen unsere Koordinaten so, dass z(t) = 0. Welche der Größen in (*) sind dann noch ungleich Null? Schreiben Sie $Q(x, y) = ? = \ell^2$ aus. Was für eine Bahn beschreibt diese Gleichung? (Hilfe: durch Achsen-Wahl kann man stets $q_{12}=0$ erreichen.) Hinweis: Der Index-Kalkül spart enorm an Schreibarbeit. Alternativ können Sie aber auch alle Komponenten ausschreiben: $\ell_1 = x_2\dot{x}_3 - x_3\dot{x}_2$, $q_{12} = \dot{x}_1\dot{x}_2 + \omega^2 x_1x_2$, $q_{ii} = q_{11} + q_{22} + q_{33}$, $q_{2j}\ell_j = q_{21}\ell_1 + q_{22}\ell_2 + q_{23}\ell_3$, $Q(\vec{r}) = ?$.