PD Dr. Michael Flohr

Prof. Dr. Olaf Lechtenfeld

MEHRDIMENSIONALE INTEGRATION & KOORDINATENWECHSEL

Wir betrachten noch einmal ein Beispiel für mehrdimensionale Integration und studieren in Vorbereitung auf krummlinige Koordinaten einen Koordinatenwechsel.

[P29] Stromfluss

Berechnen Sie für eine Stromdichte $\vec{j}=\alpha\frac{\vec{r}}{r^3}$ den Strom $I=\int_S \mathrm{d}\vec{A}\cdot\vec{j}(\vec{r})$ nach außen durch die Fläche $S=\{\vec{r}\doteq(x,y,z)\,|\,\vec{r}\cdot\vec{m}=1\,,\;\vec{m}\doteq(1,1,1)\,,\;x,y,z>0\}.$ Die angegebene Fläche ist ein Dreieck im ersten Oktanten mit den Ecken $(\vec{e}_x,\vec{e}_y,\vec{e}_z)$.

- (a) Skizzieren Sie die Fläche.
- (b) Parametrisieren Sie die Fläche über ihre Projektion auf die xy-Ebene, also $(t,s) \equiv (x,y)$ und $\vec{r}(x,y) \doteq (x,y,h(x,y))$.
- (c) Über welchen Wertebereich F laufen x und y?
- (d) Bestimmen Sie den (nicht normierten) Normalenvektor $\dot{\vec{r}} \times \vec{r}'$. Stimmt die Orientierung?
- (e) Setzen Sie alles ein in die Formel $I=\int_F \mathrm{d}x\,\mathrm{d}y\,(\dot{\vec{r}}\times\vec{r}')\cdot\vec{j}(\vec{r})|_{\vec{r}(x,y)}$ und vereinfachen Sie. Lassen Sie das endgültige xy-Integral stehen.

[P30] Koordinatenwechsel

Zwei feste nicht kollineare und nicht normierte Vektoren \vec{a} und \vec{b} in der Ebene definieren Parallelogramm-Koordinaten (u,v) über $\vec{r}(u,v)=\vec{a}\,u+\vec{b}\,v\doteq(a_1u+b_1v,a_2u+b_2v)$.

- (a) Skizzieren Sie die Kurvenscharen $\vec{r}(u, v_0)$ und $\vec{r}(u_0, v)$ mit festem v_0 bzw. u_0 .
- (b) Berechnen Sie die Jacobi-Matrix $J=\frac{\partial(x,y)}{\partial(u,v)}$, ihre Determinante sowie die Metrik $G=J^{\mathsf{T}}J$.
- (c) Geben Sie Linien- und Flächenelement sowie $v^2 = \dot{\vec{r}} \cdot \dot{\vec{r}}$ in den neuen Koordinaten an.
- (d) Formulieren Sie für eine Bahnkurve $\mathcal{C}\ni\vec{r}(u(t),v(t))$ die Bogenlänge $s(1,2)=\int_1^2\mathrm{d}s$ und die Wirkung $w(1,2)=\int_1^2\mathrm{d}\vec{r}\cdot\vec{p}$ mit $\vec{p}=m\dot{\vec{r}}$.