KRAFTFELDER UND POTENTIALE

Kraftfelder und Potentiale gehören zu den grundlegenden Konzepten der Physik. Wir studieren einige ihrer Eigenschaften und wie sie beide zusammenhängen.

[P9] Vom Kraftfeld zum Potential

Wir betrachten das Kraftfeld $\vec{F}(x,y) \doteq (\alpha x, -\alpha y)$.

- (a) Wie sieht das Kraftfeld anschaulich aus? Erstellen Sie eine Skizze mit Pfeilen in der Ebene.
- (b) Finden Sie das zugehörige Potential V(x,y), so dass $\vec{F} = -\vec{\nabla}V$ ist.
- (c) Wie sieht eine Landschaft aus, deren Höhenfunktion h gerade das in (b) ausgerechnete Potential ist, h(x,y) = V(x,y)?

[P10] Gradient

Der Gradient einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ zeigt immer in Richtung des stärksten Anstiegs der Funktion.

- (a) Wie berechnet man für eine durch $\phi(x,y,z)=\mathrm{const}$ definierte Fläche im dreidimensionalen Raum den Normaleneinheitsvektor \vec{n} in einem Punkt der Fläche? Welche Bedingung erfüllt eine Bahnkurve, die *innerhalb* der Fläche verläuft?
 - Bemerkung: der normierte Gradient von ϕ existiert im ganzen Raum, die Einschränkung auf die Fläche erfordert die Verwendung der Konstanten const.
- (b) Ermitteln Sie den Gradienten für die Funktionen

$$x\sin(yz)$$
, r , $\frac{1}{r}$, $\ln r$,

wobei $r^2=x^2+y^2+z^2$ ist. Was können Sie allgemein über den Gradienten einer Funktion f(r) allein des Abstandes r sagen?

[P11] Vom Potential zum Kraftfeld

Bestimmen Sie das Kraftfeld zum Potential $V(\vec{r}) = \frac{m}{2} \left[(\vec{\omega} \cdot \vec{r})^2 - \vec{\omega}^2 \vec{r}^2 \right]$ für konstantes $\vec{\omega}$. Verwenden Sie Index-Notation!