MATRIZEN UND DREHUNGEN

Mit diesen Aufgaben lernen wir Matrizen und insbesondere Drehungen kennen. Wie in der Vorlesung erklärt, unterscheiden wir ab jetzt zwischen einem abstrakten Vektor \vec{a} und seiner Komponentendarstellung $\underline{a}=(a_1,a_2,a_3)^{\mathsf{T}}$, die von der Wahl der Basis abhängt. Matrizen wenden wir auf Komponenten \underline{a} durch Multiplikation "Zeile mal Spalte" an, so dass $\underline{a}'=M\,\underline{a}$.

[P14] Beispiel einer Matrixgruppe

Wir wollen hier eine Matrixgruppe studieren. Die Verknüpfung ist die Matrixmultiplikation. Eine Menge \mathcal{M} von Matrizen bildet eine Gruppe, wenn gilt:

- (1) $M \cdot M' \in \mathcal{M}$ für alle $M, M' \in \mathcal{M}$,
- (2) es gibt ein Element $1 \in \mathcal{M}$ mit $1 \cdot M = M$ für alle $M \in \mathcal{M}$,
- (3) für alle $M \in \mathcal{M}$ gibt es ein Element M^{-1} mit $M^{-1} \cdot M = 1$.

Überprüfen Sie dies für das folgende Beispiel:

(a) Multiplizieren Sie Matrizen von der Form

$$M(r,\varphi) = r \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

und zeigen Sie, dass das Ergebnis wieder von dieser Form ist, $M(r_1, \varphi_1) \cdot M(r_2, \varphi_2) = M(r_3, \varphi_3)$. Wie sind r_3 und φ_3 also gegeben?

(b) Für welches r und welches φ ergibt sich für die Quadrate solcher Matrizen

$$(M(r,\varphi))^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
?

- (c) Welche linearen Abbildungen werden durch solche Matrizen wie in (a) beschrieben? Betrachten Sie dazu, wie solche Matrizen die Vektoren $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ transformieren.
- (d) Finden Sie eine Matrix $M(r',\varphi')$, so dass $M(r',\varphi')\cdot M(r,\varphi)=\mathbb{1}$ ist. Dies ist die zu $M(r,\varphi)$ inverse Matrix. Für welches r und φ ist $M(r,\varphi)=\mathbb{1}$?

[P15] Beispiel einer Drehmatrix

Untersuchen Sie eine lineare Transformation D, die die Standardbasis \vec{e}_1 , \vec{e}_2 , \vec{e}_3 eines dreidimensionalen Raumes zyklisch vertauscht, also $D(\vec{e}_1) = \vec{e}_2$, $D(\vec{e}_2) = \vec{e}_3$ und $D(\vec{e}_3) = \vec{e}_1$ abbildet.

- (a) Schreiben Sie die Komponenten von $\vec{a}' = D(\vec{a})$ als Produkt einer Matrix D mit den Komponenten \underline{a} von \vec{a} .
- (b) Zeigen Sie, dass D eine Drehung ist, also Längen unverändert lässt.
- (c) Überlegen Sie, dass eine lineare Abbildung, die alle Längen unverändert lässt, auch alle Winkel nicht ändert.
- (d) Bestimmen Sie einen normierten Vektor $\vec{n}, |\vec{n}| = 1$, den D nicht ändert, $D(\vec{n}) = \vec{n}$. Was gibt dieser Vektor an?
- (e) Geben Sie einen zur Drehachse senkrechten Vektor \vec{b} und sein Transformiertes $\vec{b}' = D(\vec{b})$ an. Berechnen Sie mit dem Skalarprodukt $\vec{b}' \cdot \vec{b}$ den Drehwinkel.

[P16] Projektoren

Wir greifen noch einmal die Zerlegung eines beliebigen Vektors \vec{a} bezüglich einer Richtung \vec{n} in dazu parallelen und senkrechten Anteil auf, wobei $|\vec{n}|=1$ ist. Es gilt

$$\begin{split} \vec{a} &= \vec{a}_{\parallel} + \vec{a}_{\perp} \\ &= (\vec{a} \cdot \vec{n}) \, \vec{n} + \left((\vec{n} \cdot \vec{n}) \, \vec{a} - (\vec{a} \cdot \vec{n}) \, \vec{n} \right) \\ &= (\vec{a} \cdot \vec{n}) \, \vec{n} - \vec{n} \times (\vec{n} \times \vec{a}) \, . \end{split}$$

- (a) Es sei die Matrix $P = \underline{n} \, \underline{n}^{\top}$ definiert. Geben Sie die Komponenten P_{ij} an. Zeigen Sie, dass $P \, \vec{a} = \vec{a}_{\parallel}$ ist.
- (b) Die Matrix P ist ein Projektor. Zeigen Sie, dass $P^2 = P$ gilt.
- (c) Zeigen Sie, dass auch $P_{\perp} = \mathbb{1} P$ ein Projektor ist, und dass $(\mathbb{1} P) \vec{a} = \vec{a}_{\perp}$ gilt. Wie lauten die Komponenten $(P_{\perp})_{ij}$?