Theoretische Physik C

(10. November 2020)

Präsenzübung 4

Prof. Dr. Olaf Lechtenfeld, Daniel Westerfeld

Aufgabe 1: Polarisationsmessungen

Wie in der Vorlesung gesehen werden in der Quantenmechanik Messungen mithilfe von Messoperatoren beschrieben. Wir studieren hier weiter ein in der Vorlesung kennengelerntes, einfaches Quantensystem, die Polarisation eines Photons.

 $[P\ddot{U} \ 1.1]$ Beantworten Sie zunächst folgende Fragen:

- Wie beschreibt man in der Quantenmechanik den Polarisationszustand eines Photons?
- Wodurch werden Pol-Filter und Messungen beschrieben?
- Welche Messwerte sind bei einem gegebenen Messoperator A möglich?
- Mit welcher Wahrscheinlichkeit tritt ein Messwert a auf, wenn ein Photon im Zustand $|\psi\rangle$ präpariert wurde?

Wir betrachten nun als Beispiel einen Messoperator, der durch seine Wirkung auf der $\{|x\rangle, |y\rangle\}$ Basis definiert ist:

$$A|x\rangle = \frac{1}{3}|x\rangle + \frac{2}{3}(1+i)|y\rangle$$
$$A|y\rangle = \frac{2}{3}(1-i)|x\rangle - \frac{1}{3}|y\rangle$$

 $[P\ddot{\mathbf{U}} \ \mathbf{1.2}]$ Bestimmen Sie die Matrixdarstellung bezüglich der $\{|x\rangle, |y\rangle\}$ Basis.

[**PÜ** 1.3] Welche Messwerte a sind möglich? Man bestimme die zugehörigen Eigenzustände $|a\rangle$.

 $[\mathbf{P}\ddot{\mathbf{U}}\ \mathbf{1.4}]$ Mit welcher Wahrscheinlichkeit W_a werden die Werte agemessen, wenn das Photon unmittelbar vor der Messung im Zustand

$$|\psi\rangle = \frac{1}{\sqrt{2}}(\mathrm{i}|x\rangle + |y\rangle)$$

präpariert wurde?

– Präsenzübung 4

Aufgabe 2: Langlebige und kurzlebige Kaonen

Die in einem Experiment zur Zeit t=0 erzeugten neutralen Kaonen und Anti-Kaonen sind verschiedene Linearkombinationen der Zustände $|K_L\rangle$ und $|K_S\rangle$ (langlebige bzw. kurzlebige Kaonen), genauer:

$$|K^{0}\rangle = \frac{1}{\sqrt{2}}(|K_{S}\rangle + |K_{L}\rangle) \text{ und } |\overline{K}^{0}\rangle = \frac{1}{\sqrt{2}}(|K_{S}\rangle - |K_{L}\rangle).$$

Zu einem späteren Zeitpunkt t>0 hat sich ein langlebiger bzw. kurzlebiger Kaon-Zustand entwickelt gemäß

$$|K_S(t)\rangle = e^{-i\omega_S t}|K_S\rangle$$
 bzw. $|K_L(t)\rangle = e^{-i\omega_L t}|K_L\rangle$

wobei $\omega_S < \omega_L$. Hierbei bleibt der Zerfall der Kaonen unberücksichtigt! Der Anfangszustand sei nun $|\psi(t=0)\rangle = |K^0\rangle$. Bestimmen Sie $|\psi(t)\rangle$. Berechnen Sie die Wahrscheinlichkeit W(t), zum Zeitpunkt t ein \overline{K}^0 zu finden und skizzieren Sie den Verlauf.