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Abstract

In this thesis we construct a class of noncommutative quantum field theories on Minkowski spacetime via
an analytical continuation of the Euclidean Grosse-Wulkenhaar and LSZ models, which are defined by a
perturbative setting based on modified Feynman diagrams. Characterstic of these theories is the presence
of a constant, external electromagnetic field, which renders their ultraviolet and infrared regimes indistin-
guishable. This feature is known as LS-duality and is believed to be responsible for their renormalizability
and the vanishing of their S-functions in the Euclidean case.

We introduce an alternative to the ie-prescription of these Minkowskian models, which will be shown
to lead to causal propagators. This regularization allows us to map the LS-covariant theories onto matrix
models via a generalization of the Landau basis, and to impose a simultaneous UV- and IR-regularization
of the Feynman diagrams, while keeping the LS-duality manifestly. A new quality on Minkowski spacetime
is the instability of the vacuum with respect to pair production, which is due to the lack of translation
invariance caused by the electromagnetic field. We discuss its implication on the perturbative expansion and
the unitarity of the scattering matrix. As a first step towards a renormalization of these theories, we derive
the corresponding propagators in Minkowski spacetime in position and matrix representation and discuss
their asymptotics.
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Kurzbeschreibung

In dieser Arbeit konstruieren wir eine Klasse nichtkommutativer Quantenfeldtheorien auf Minkowski Raumzeit
iber analytische Fortsetzungen der euklidischen Grosse-Wulkenhaar und LSZ Modelle, welche iiber einen
perturbativen Ansatz mit Hilfe von modifizierten Feynman Diagrammen definiert sind. Charakteristisch
fiir diese Theorien ist die Anwesenheit eines konstanten, duferen elektromagnetischen Feldes, welches ihre
infrarot und ultraviolet Bereiche ununterscheidbar macht. Diese Symmetrie ist bekannt als LS-Dualitdit,
und scheint verantwortlich zu sein fiir ihre Renormierbarkeit und das Verschwinden ihrer S-Funktion im
Euklidischen Fall.

Wir fiithren eine Alternative zur ie-Vorschrift fiir diese Modelle auf Minkowski Raumzeit ein, die, wie wir
zeigen werden, ebenfalls zu kausalen Propagatoren fiihrt. Diese Regularisierung erlaubt uns mit Hilfe einer
Verallgemeinerung der Landau Basis die LS-kovarianten Modelle auf Matrix Modelle abzubilden, und eine
gleichzeitige UV- und IR-Regularisierung der Feynman Diagramme durchzufiihren, welche die LS-Dualitét
manifest erhélt. Eine neue Qualitdt auf Minkowski-Raumzeit ist die Instabilitit des Vakuums beziiglich
Paar-Produktion, welche aus einem von dem elektromagnetischen Feld verursachten Fehlen der Translation-
sinvarianz folgt. Wir diskutieren deren Auswirkungen auf die Stérungsentwicklung und die Unitaritit der
Streumatrix. Als einen ersten Schritt in Richtung Renormierung dieser Theorien leiten wir die zugehorigen
Propagatoren in Minkowski-Raumzeit in Orts- und Matrix-Darstellung her und diskutieren ihr asymptotis-
ches Verhalten.
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1 Introduction

1.1 Motivation

Quantum field theory is a powerful framework for the description of physical phenomena, providing an
astonishing agreement of theory and experiment. But despite its success, the reconciliation of quantum
theory and gravity remains an open issue. A long-held belief is that an underlying theory of quantum
gravity should manifest itself in a modification of the fundamental geometry at very short distances and may
be accompanied by a quantization of spacetime itself.

The idea to consider theories on quantum spacetime goes back to the early days of quantum field theory.
The need for a regularization at high energies led people to doubt the ordinary concept of spacetime at small
scales. Inspired by quantum mechanics, where single points in phase space loose their meaning, uncertainty
relations for spacetime coordinates induced by the commutation relations

[z#, 2" = 10" (x), (1.1)

should prevent the resolution of arbitrary small scales and effectively regularize the high energy divergences.
However, the papers by Snyder [Sny47a, Sny47b], who published the first systematic analysis on this subject,
were largely ignored, due to the enormous success of the renormalization program.

The mathematical foundation of noncommutative spacetimes has been developed by Alain Connes in form
of his noncommutative geometry. As a surprise, the standard model fits quite naturally into the frame of
noncommutative geometry. Using the notion of a spectral action principle, Connes et al. were able to deduce
the standard model of particles including the Higgs mechanism (with a prediction for the Higgs mass around
170 + 10 GeV [Sch07]) and gravitation from first principles (see e.g. [Con94, GB02, CC10]). Though it
still suffers from several shortcomings, as it is (up to now) only a classical but not a quantum theory, these
investigations finally directed peoples attention to noncommutative quantum field theory. A first application
was found in condensed matter systems, as it seems to be the right framework to describe the fractional
quantum Hall effect (see e.g. [HVRO1]). After it was realized that NCQFT arises in string and M-theory
[CDS98, DHI8, CH99, Sch99, SW99] it gained huge popularity. It was shown that certain low-energy limits
lead to an effective noncommutative Yang-Mills theory

Sym = /d4:c <éFM *F‘“’) (1.2)

with
Fo=0,A —0,A,—1(A,«A, —A, xA,). (1.3)

The product denoted by * is the Groenewold-Moyal product, realizing the commutation relation (1.1) with
constant, deformation matriz " and noncommuting space coordinates. Recently it has been shown that
noncommutative quantum field theory also appears as a low-energy limit in another popular approach to
quantum gravity, namely loop quantum gravity [FL06, JMN09]. NCQFT might thus well be seen as a first
step towards a full theory of quantum gravity.

Inspired by the noncommutative YM action, several noncommutative versions of quantum field theories
have been proposed by taking the usual classical action defined on some commutative spacetime and replac-
ing the ordinary product by the star-product with constant deformation matrix. The quantum theory is
defined perturbatively via modified Feynman rules, which in momentum space amounts to using the ordinary
Feynman propagator but with modified interaction vertices, which carry momentum depending phase factors
[Fil96]. The original hope of Snyder and contemporaries, that the fuzziness of spacetime would regulate all
UV divergences, soon turned out to be too optimistic. Filk showed that Feynman diagrams for the noncom-
mutative ¢*-theory can be classified into planar and non-planar diagrams [Fil96]. The planar diagrams turn
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out to be identical to their commutative counterpart and have to be renormalized accordingly. The non-
planar diagrams, on the other side, suffer from what is called UV/IR mizing [MVRS00], which ultimately
leads to infinitely many non-renormalizable diagrams.

Soon the lack of unitarity of the corresponding S-matrix was discovered [GMO00], which manifests itself in
a violation of the cutting rules. It was traced back to the noncommutativity of space and time ©% # 0 and
has found to be absent for pure space/space noncommutativity ©% = 0. This seemed to be in concordance
with the fact that theories with noncommuting time and space coordinates should arise from open strings
moving in an external electric background which, however, have no low energy effective field theory limit.
As has been shown in [BDFP02], the violation of unitarity is not present in a perturbative setting using
the Dyson series, involving time ordered products of the interaction Hamiltonian in the context of canonical
quantization, or the Yang-Feldman formalism. The transition from the Dyson series to Feynman diagrams
is usually performed with help of Wick’s theorem, which necessitates reversing the order of time ordering
and field multiplication. These two operation, however, do not commute if ©% # 0, which shows that in
this case path integral quantization and canonical quantization are simply not equivalent.

Despite its apparent drawbacks, the “traditional” NCQFT on Euclidean space based on the path integral
quantization has received an increased attention since the advent of the Grosse-Wulkenhaar (GW) model.
The GW model was the first noncommutative model which proved to be renormalizable to all orders in
perturbation theory in two [GWO03] and four dimensions [GWO05b]. Grosse and Wulkenhaar realized that
the UV/IR mixing problem, which is the reason for the non-renormalizability of the usual noncommutative
¢** model, is due to a missing term in the action. By adding an harmonic oscillator term and treating it
non-perturbatively, the asymptotic behavior of the propagator improved such as to overcome the UV /IR
mixing problem and even rendered the GW model renormalizable.

A particular surprising feature of this model is the vanishing of the S-function [GW04, DR07, DGMRO07].
In four dimensions, both, the bare and the renormalized coupling constant remain bounded and non-zero
after removing the UV cutoff. Thus the model has no Landau ghost (or triviality problem) and is not
asymptotically free but asymptotically safe. This is contrary to the commutative case, where the only
models without Landau ghost are non-Abelian gauge theories. Roughly, the problem is that even after
successful renormalization some coupling parameters still may diverge at small but finite scales. Simple
renormalizable theories in commutative QFT, like QED or ¢* theory in 4 dimensions, are affected by this
problem. It became clear that QED had to be incorporated into a larger theory where this problem no
longer persist. Up to now the only commutative theories which do not suffer from the Landau problem are
non-abelian gauge theories [GW73, Pol73]. The GW model is the first rigorous four dimensional field theory
without unnatural cutoff, which is expected to exist non-perturbatively [Riv07a] and is not asymptotically
free.

The GW breakthrough paved the way for a construction of various renormalizable NCQFT defined on
Euclidean space. The crucial ingredient turned out to be the invariance under Fourier transformation plus
a rescaling of the fields, known as LS-duality [LS02a]. Tt was incorporated into the GW model through the
enhancement of the action by the extra harmonic oscillator term. The procedure of making a theory LS-
covariant is now known as vulcanization! and has successfully been applied to other models, rendering them
renormalizable. Among these are the ¢*3-model [GS06b, GS06a, GS08|, the Gross-Neveu model [VT07a]
and the LSZ model [LSZ03, LSZ04].

The vulcanization of the Euclidean models had the convenient side-effect that the corresponding free parts
of the action get diagonalized by a countable infinite set of functions, known as Landau functions. With
help of this basis the LS-duality covariant models are mapped onto matrix models. The matrix approach
permits an easy way of regularizing the model while keeping the LS-duality manifestly at quantum level.
In this way, Grosse and Wulkenhaar were able to show the renormalizability of their model to all order in
perturbation theory. In addition, it has been used to solve the LSZ model exactly and prove the vanishing
of the S-function.

In this thesis we wish to answer the question: do the LS-duality covariant models have a counterpart
on noncommutative Minkowski spacetime, and if yes, are they renormalizable? Up to now there exist only
partial results in this direction. In [WWO07] a complex model in three dimensions, i.e. with degenerated
deformation matriz and thus with one commuting coordinate, based on a complex version of the Grosse

Vulcanization alludes to a technological operation with the same name, which adds sulphur to rubber to improve its mechanical
properties and its resistance to temperature change [Riv07b].
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Waulkenhaar model with a (¢7¢)*3-potential has been considered and proven to be renormalizable. A real ¢**
model in 4 dimensions with two commuting coordinates has been proven to be renormalizable in [GVTO08].
A renormalizable NCQFT on Minkowski spacetime might thus be constructed by using renormalizable
Euclidean theories equipped with a commutative time dimension, in which case the modified Feynman rules
apply. We will go one step further and consider the full noncommutative Minkowski spacetime. Irrespective
of the fact that the path integral quantization has been spotted to be responsible for the violation of
unitarity, we will work in the usual perturbation theory. The purpose is to sound the possibility to construct
a renormalizable and non-trivial four-dimensional quantum field theory in Minkowski spacetime with the
help of the noncommutative deformation.

We define bosonic LS-duality covariant models in Minkowski spacetime, the LSZ and GW model, based on
the work [FS09, FS10]. While for all frequently investigated Euclidean models the vulcanization procedure
produces discrete “harmonic oscillator like” spectra for the wave operators which are involved, the Minkowski
signature turns them to be continuous and unbounded from below. The discrete spectrum is the main
ingredient for a reasonable application of the matrix basis. In the course of this thesis we will demonstrate
how to overcome this barrier by a proper regularization of the model, which will be called ¥-regularization
and is a replacement for Feynman’s ie-prescription. As will turn out, this regularization is also connected
to causality and leads to the Feynman propagator. The Feynman graphs are analytically continuations of
the Euclidean ones. Comparing to recent results on the Minkowskian Grosse-Wulkenhaar model [Zah10],
based on the usual ie-regularization, we find that the strange divergences found in [Zah10] are absent in the
matrix approach. The ¥-regularization thus seems to be necessary to define LS-duality covariant models in
Minkowski spacetime. We will also discuss the problem of unitarity of these models, which require a more
careful analysis due to the lack of translation invariance and the occurrence of pair creation. The propagators
of these models will be calculated and their asymptotics discussed. The ¥-regularization turns out to improve
their asymptotic behaviour and may thus turn out to be crucial for the renormalization program.

The thesis is structured as follows: In chapter 2 we give a brief introduction to path integral quantization
of noncommutative field theories in Euclidean and Minkowski spacetime. We derive its modified Feynman
rules and illustrate the appearance UV /IR mixing problem. Chapter 3 is devoted to the origin of the UV /IR
mixing and the question how to tame it. We introduce Euclidean versions of the LS-covariant models and the
translation-invariant model as examples of NCQFT without UV/IR mixing problem. In chapter 4 we give
a brief account on the matrix basis, which has been an invaluable tool in the investigation of LS-covariant
models on Euclidean space. A proof for LS-covariance at quantum level will be given. In chapter 5 we
introduce the Minkowskian versions of bosonic LS-covariant models, the LSZ and GW model. We investigate
its spectral structure and sound the possibility of a matrix representation. We point out the differences
to the Euclidean models and find a representation in terms of a continuous set of eigenfunctions and a
matrix representation in terms of resonances. Both approaches are related to different ways to establish the
corresponding quantum field theory. In chapter 6 we give an account on the new matrix basis and derive the
matrix model representation of the LS-covariant models on Minkowski spacetime. Chapter 7 is devoted to the
application of the methods introduced before. We show that the matrix approach leads to causal propagators
and is a natural representation to implement, LS-covariance at quantum level. The unitarity problem for LS-
covariant theories is touched afterwards. Finally we investigate their renormalization properties in chapter
8 by calculating the corresponding propagators and scrutinizing their asymptotic behavior.

1.2 Notation

We will shortly comment on the notation and conventions we will use in the forthcoming chapters. We will

work in D-dimensional Euclidean or Minkowskian space with D = 2n and n € N, with signatures (1,...,1)
and (1,—1,...,—1), respectively. Euclidean vectors are denoted as
a=(a')=(a*,...,a") (1.4)
and are indicated by Latin indices 7, j, ... running from 1 to D. Minkowskian vectors are denoted by
a=(a")=(d,...,a%, (1.5)

indicated by Greek indices pu,v,... which take values in {0,1,...,d = D — 1}. The D = 2n-dimensional
coordinate vector & will occasionally be split up into two-dimensional subvectors

x=(x1,...,T,), (1.6)
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with @ = (2271 22%) in Euclidean space and x; = (2272 22*~1) in Minkowskian spacetime. In two

dimensional Euclidean space the coordinates are often denoted as @ = (z,y), whereas in two-dimensional
Minkowski spacetime we write & = (¢, x).

The usual Einstein convention is used to describe the scalar products with a;b" and a,b" denoting the
products in the respective cases. If the specific signature is irrelevant or follows from the context we will
simply write a - b. In order to avoid notational clutter, we will introduce a special notation for the square of
a vector a with respect to the different signatures. Performed with respect to Euclidean signature it reads

a?i=aa' =a} +...a%. (1.7)

This allows us to distinguish it easily from its Minkowskian counterpart denoted as

2. wo_ 2 2 2
a, = aya =a5—ai —...—ay. (1.8)

Integrations will partly be abbreviated as

[ [ o mi [ [ a 0o

We will often switch between functions f(x) defined on some space and abstract “kets” |f), where according
to Dirac’s bra-ket notation we define

(x|f) = f(x), (1.10)

where the specific representation will be clear in the given context. The L2-scalar product of two functions
f,g € L*(RP) is then defined by

o) = | 4% fla)’ ate). (11)

where f(x)* is the complex conjugated function of f(x), sometimes also denote as f(x). As is common
practice in the physical literature, this definition will freely be extended to objects like tempered distributions
etc, whenever it is clear what is meant by the pairing (1.11).

The hermitian conjugation of a matrix M is designated by a dagger with MT = (M,,,)T = (M, )*

We will also use the notation

z-E-a' =a'E, 2"
) . (1.12)
X - B . (1]‘/ = JElBijZL'/j y

for z,x’ € R? and E,, and B;; are the two-dimensional electric and magnetic field strengths, respectively,
defined as

E==( " o) B=wa=( % 1) (113

with E, B > 0.
The Fourier transformation of a function f is defined as

; 1 D_ . —ika

f(k)—w/ﬂwd xe f(=), (1.14)
where the signature within the scalar product will be clear from the context. It will sometimes also be

denoted as F[f].

Furthermore we define
Ry ={zeR|z>0}

R% ={z=(a',...,2") € R | 2" > 0V} (1.15)
Ci ={2€C| Re(z) > 0}.
We define the map (-,-)y : R? x R? — C for ¥ € [-m/2,7/2] by

(x,x")y = cos(V) (z,2') g + isin(d) (z, 2" ), (1.16)
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where (-,-)as is the two dimensional Minkowskian and (-, -)g the two dimensional Euclidean scalar product.
In addition we define the map | - || : R? — C by

=5 = ()
= cos(¥)||z||% + isin(d)| |3, (1.17)
with || - ||z the two dimensional Euclidean and || - [|a; the two dimensional Minkowskian norm.
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2 Noncommutative Quantum Field Theories

This chapter is intended as a brief introduction to “ordinary”, i.e. non-LS-covariant, noncommutative quan-
tum field theories in the path integral framework and their shortcomings. The definition of NCQFTs consists
of two independent steps, the introduction of a noncommutative spacetime and the quantization of physical
fields. These two steps do not commute, so there are initially two different ways to proceed. The standard
procedure amounts to first define functions on a deformed spacetime which in our case will be the Moyal
space. The way we do this is known as Weyl “quantization” illustrated in the next section. Path integral
quantization of the classical noncommutative field theory will be defined in section 2.2. We will discuss the
problems of ordinary theories in the path integral framework using the example of the bosonic ¢**-theory. We
derive the related modified Feynman rules in Euclidean and Minkowskian case, explain the UV /IR mixing
problem and the unitarity problem in Minkowski spacetime.

2.1 Moyal Space and Weyl Quantization

The following discussion is valid for both Minkowskian and Euclidean signature. For convenience we will
stick to D-dimensional Minkowski spacetime with D even. The Euclidean version may be obtained by using
Euclidean instead of Minkowskian scalar products.

We are searching for a realization of a classical field theory defined a noncommutative space where the
noncommuting coordinates obey the commutation relations

[zH, 2] = 10", (2.1)

In the following ©#* will be fixed to a constant, real-valued and antisymmetric and non-degenerate D x D
matrix, known as Moyal deformation.! Its entries have the dimension of (length)?. A constant deformation
matrix distinguishes several directions in spacetime and thus implies the breaking of Lorentz invariance
(or SO(D)-invariance in case of Euclidean metric).? Similar to the electromagnetic field tensor in Maxwell
theory the deformation parameter in the Minkowski case has a “magnetic part” given by ©% for i,j =
1,...,d measuring space/space noncommutativity and an “electric part” ©% for i = 1,...,d responsible for
time/space noncommutativity. New phenomena like the loss of unitarity and the inequivalence of different
quantization methods can be traced back to the latter.

A natural way of implementing a noncommutative space is to replace spacetime coordinates z* in R” by
Hermitian operators &* defined on some Hilbert space H. The &* generate a Banach *-algebra which is
isomorphic to RE, which is the ring of formal power series C[[x1,...,zp]] modulo the ideal generated by
zhzY — z¥z — O, In order to define field theories on RE we need functions on this space. The Schwartz
space S(RP) is defined as the set of all smooth and complex-valued functions f : RP — C obeying

sup(1 -+ []) ot o - O fl)| < o0 (2:2)

for every set of integers k,n; € N. The transition from ordinary Schwartz functions to functions on R
demands an ordering prescription for products of operators. The so called Weyl ordering is imposed by
Fourier expanding the function and replacing the occurring plane waves by its operator counterpart U (k) =

'In general ©® might be any function depending on the coordinates with ©,, = —0,,, satisfying the Jacobi identity. The
“Lie-algebra case” ©@"¥ = \E¥x% with complex structure constant A4" leads to fuzzy and x-deformed spaces. A third popular
choice is the “quadratic case” with ©#¥ = —1i (%R‘;},’ - 65‘6;) zPx? which leads to the definition of quantum groups.

2There are approaches to noncommutative field theories which avoid the breaking of Loorentz invariance at this level by choosing
OHY to be a central operator encompassed by a whole spectrum of matrices connected by Lorentz transformations. In these
models, known as DFR models [DFR95, Bah04, Pial0], however, Lorentz invariance gets broken by the definition of the
interactions.
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o ihud"

relation

This procedure is called Weyl quantization [Wey50]. At the heart of this quantization lies the

ik, &t e ipu&t = e i(ky+pu) &" e—%lw@“”p,, , (23)

which can easily be obtained from the Campbell-Baker-Hausdorff-formula and equation (2.1). The Weyl-
Heisenberg group is generated by the elements U(k) = e k.2 and the exponential e ~1%1:©""Pv ig referred
to as twisting.

Given a Schwartz function f its Weyl symbol is thus given by

va]aiptéDdeﬂk%*“@” (2.4)

where f denotes the Fourier transformed field defined as in (1.14). The mapping (2.4) depends on the
deformation matrix © through the relation (2.3). One can write (2.4) as

Wir = [ a7 f(@) Ae). (2.5)
where we introduced the Hermitian operator A(a)
A Pk s
_ ik (2" —zH)
A(x) / @)D e . (2.6)

The A(az) serve as a mixed basis for operators and fields on spacetime. In the commutative case, i.e. O = 0,
the exponential factorizes leading to the simple relation A(z) = §”(#* — 2#). The usual integral is replaced
by the trace on the Hilbert space H. Normalized as

T [f] = / Pz f(z), (2.7)

the A(m) form an orthonormal set with respect to this trace
TrA(x)A(y)] = 67 (x —y). (2.8)

The Weyl-Heisenberg algebra has a faithful representation on the space of Weyl symbols. However, we will
also need a representation in terms of the original Schwartz functions. Due to (2.8) the transformation
f = WIf] is invertible with inverse given by

f(@) = Tr[W[TA(@)] = WV [fl}(z) , (2.9)

dubbed as Wigner distribution function of the operator W [f] [Wig32]. We will especially need the the explicit
form of Wigner transformation in 141 dimensions corresponding to the deformation parameter ©°! = 4,
which for an operator p is given by

W [p] :/dkeikwl/9<z0+k/2|ﬁ|z0—k/2>. (2.10)
One can show that [Sza03]
A A 1 A —2i(x—2)-0" (y—=z
A(z)A(y) = m/d% A(z)e 2i(@=2)00""(y=2) (2.11)

from which we immediately conclude

WIW 9] = / dPz (f 0 9)(2)A(z) = W [f %o 4] - (2.12)

with
1

—2iy-© 1
~D[det O] RDdDydsz(m+y)g(a:+z)e 2iy© = (2.13)

(fxe 9)(x) :==



2.1 Moyal Space and Weyl Quantization

The product g of arbitrary Schwartz functions f(x), g(x) is known as Groenewold-Moyal product [Gro46,
Moy49]. We will simply call it star-product and often suppress the dependence on © by using * instead of xg.
We thus have a one-to-one correspondence between the space of Wigner distributions and its Weyl symbols
such that the operator product of Weyl symbols is equivalent to the star product of their corresponding
Wigner distributions:

WIfIWlg] = W(fregl and  W[F]xeWI[g = WIfg] (2.14)
for arbitrary Weyl symbols f, §. One can show that it is associative, but not commutative

(f*e (gxe h)) = ((f *e g) *e h)

2.15
freg#g*e f (2.15)

As can be seen by (2.13), the product depends on the functions in a non-local manner, which has far-reaching
physical consequences. Very important is the trace property of the integral given by

/ Pa (f x0 g)(a) = / AP () g ) = / 4Pz (g %0 f)(@). (2.16)

For analytic functions, the star product can be written in a perturbative way, called Moyal expansion

(70 9)(@) = oxp (56"9,0, ) f(@lg(a)

: (2.17)

r=x'

with 9, = 0/0z" and 9;, = 0/dx™. Tt should be noted that for arbitrary functions the product (2.17) is
generally not equivalent to (2.13). For a thorough investigation on the equivalence of both definitions see
[EGBVS&9].

The space S(RP) equipped with the star-product is denoted by Ag. With the involution f +— f* this is
an associative *-algebra. By duality we can extend the star product to the space of tempered distributions
S’(RP), which is the dual space of S(RP), consisting of all continuous functionals on S(R?). For T € &' (R?)
and f € S(RP) we set

(T, f)=T(f). (2.18)
Then for any g € S(RP) we define the products T'x f and f T through

(T'x f,g)=(T,f*g)
(f*T,9)=(T,g*f)

In this way we can deal with distributions, which naturally appear in quantum field theory.

(2.19)

Applications to quantum field theory necessitates a relaxation of the restriction to Schwartz functions.
The multiplier algebra M = My N Mg with M, and Mg defined by

M ={T S RP):VfeSRP),TxfecSR")}

Mp={T e S'(RP) : VfecSRP), f+T ecSR")}. (2.20)

is a natural enhancement of Ag. One can show that M is an associative *-algebra, containing the identity,
polynomials, the delta-function and its derivatives such as plane waves [GBV88]. Since the coordinates x*
are not elements of Ao the commutator relation

at xg x¥ — a¥ xg xt = 101, (2.21)

does not hold in Ag but in M. It should be noted that an axiomatic construction of noncommutative
quantum field theories analogously to the case of ordinary quantum field theory in terms of Wightman
axioms is not available yet. There are hints that the framework of tempered distributions is too restrictive
for the non-perturbative study of NCQFT [AGVMO03]. In [Sol07b, CMTV08] the Gel’fand-Shilov spaces
SP(RP) have been proposed for a enlarged framework (see appendix C.1 for a brief introduction). The
corresponding multiplier algebra has been investigated in [Sol10]. In the following we will not be concerned
about the right domain for a mathematical rigorous definition of NCQFTs. Nevertheless we will discuss



2 Noncommutative Quantum Field Theories

these spaces in the context of expansion theorems for the generalized matrix basis which will be constructed
in chapter 6.

In order to define physical quantities like an action we need to define integral and differentiation operations
on M and the space of Weyl operators. The usual integral can be defined on M which has the trace (2.7)
on H as its counterpart on the Weyl side. Concerning the derivatives we have at least two different natural
possibilities. The ordinary derivatives defined on usual differentiable functions also define derivatives on M

au(f *O 9) = (auf) *o g+ f*e (aug) . (2-22)
Note that they have the representation®
Ouf = [1(O7 ) wa”, fl. (2.23)

This gives us a derivative on the Weyl side through 9, := W [~1(67"),,2"] which is an anti-Hermitian
linear derivation with

0, 8] =07 , [04,0,]=0. (2.24)
One can then show that
[0 A)] = =0, A(w) (2.25)
and hence by partial integration
B, W [J]] = /dD:cauf(:c) Alx) = W(a,f] , (2.26)

which proves the compatibility of both derivatives.

An interesting and in retrospective very important alternative to the usual differentiation was proposed
by Filk in [Fil90]. The Weyl-Heisenberg group defined by (2.3) is a central extension of the D-dimensional
group of translations:

Uk)U(p) = e 2*®""P 1 (k + p) (2.27)

with U(k) = e iku@" Filk now proposes to consider the U’s as translation operators on the deformed space
and mimic the definition of a derivative in terms of the U’s. The deformed translation operation on the
symbol A(x) defined by (2.6) is given by

Uk)A _ AP (e —er 10R )+
( ) (:B) - (271_)De "
: " 1
e Ru A(x — 50 k). (2.28)

and gives rise to a “covariant derivative” of A(m) into the direction j

A Ulcen) —U(—cey) 4

DyA(x) = lim o= A(z)
_ ei”ﬂA(az—E%@-eﬂ)—e_i”ﬂA(m—i—E%@-eﬂ)
o al—I>I(1) 2¢e
Alx —clo-e;) — A 19.e; A
= lm (@~ e“)2 Cha °) _ipA), (2.29)
[ 9

with ey being the unit vector in this direction. In terms of Wigner distributions and in Fourier space this
construction yields a covariant derivative 9/0k; — 2i(©71!);,k”. This may not be surprising, as one can
think of the operators U as the parallel transport operators acting on the line bundle of fields ¢ over the
plane with connection form 2(071),, k".

We thus have two different possibilities to define a classical action on a noncommutative space, using
the star-product instead of the usual pointwise product but leaving the derivatives unaltered, or using the
star-product and the covariant derivatives. The former approach has been the first choice, but led to severe
difficulties as UV /IR mixing and nonrenormalizability, as will be explained in the next section. The second
approach is a special case of a variety of renormalizable, noncommutative Euclidean quantum field theories,
in the following called LS-covariant models and introduced in chapter 3.

3Infinitesimal translations are thus given by inner derivatives, which is in clear distinction to commutative field theories.
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2.2 Quantum Field Theory

2.2 Quantum Field Theory

If space and time do not commute, canonical quantization, path integral quantization and Yang-Feldman
quantization are no longer equivalent [BDFP02]. In the following we will give an introduction to the “tra-
ditional” Euclidean NCQFT defined through path integrals. It is certainly the most studied setup and has
achieved a lot of progress in the last ten years. Afterwards we will explain its counterpart on Minkowski
spacetime, outline its disadvantages and differences to other popular approaches.

2.2.1 Standard Perturbative Setting in Euclidean Space

The standard way to obtain a field theory on noncommutative Euclidean spacetime is to start with a classical
action and to substitute the usual pointwise products by the star-product keeping the usual derivatives. As
a simple model one may consider the ¢** model given by

1 ) 2 A
S:/I (§az¢*81¢+m7¢*¢+5¢*¢*¢*¢) (w) (230)

for real fields ¢(x) and [ = [;, dPx. The trace property (2.16) implies that the free part, i.e the part of
the action quadratic in the fields, is identical to the commutative one. We are thus working with an ordinary
commutative field theory with “strange” interactions. Functional integral quantization will be performed by
introducing a generating functional

2l =N / D exp <5+ / J(m)¢(x)) (2.31)

with normalization constant A" and D¢ being the ordinary path integral measure of the commutative case.
In the following we will show, that the generating functional defined through (2.31) can be expressed in a
similar perturbative expansion as in the commutative case, leading to the usual Feynman diagrams with the
star-product standing in for the ordinary pointwise product.

The free part of the generating functional
ZolJ] := Z[J]x=0 (2.32)

fulfills the same differential equation as in the commutative case. The construction is as follows. Since the
integrand vanishes at the boundaries, by partial integration we get the identity

0 = [pogten (-5 [s@ota)
. / Do < 52‘?;) +J(y)) {exp <50+ /I J(a:)gb(a:))} . (2.33)

with So = S|x—0. Noticing that for a generic functional F

/ Do F(6) exp <50+ /I J(m)gb(a:)) —F (%) / D exp <50+ /I J(x)¢(x)> (2.34)

we arrive at the differential equation for the free generating functional

§Zo]J

—_ 2 2 frd
(=07 +m )6J(:n) J(x)Zp[J] (2.35)
As can easily be checked this equation is solved by
1
al=eo (5 [ [1@a@-9iw) (2.36)
zJy

with the usual free propagator A(z) = (z|(—9? + m?)~1|0).

11



2 Noncommutative Quantum Field Theories

Now we consider the full interacting theory. By partial integration we find

0 = / Do (—% + Iy )) |:eXp (—s+ / J(:B)qb(:c))] . (2.37)

We would like to pull out the terms in the first bracket in (2.37) to obtain a functional equation for Z[J]
analogously to (2.35). So we need an expression for the functional derivative of S which now contains
star-products. Using the trace property and associativity of the star-product one easily shows that

S A
o) = (08 me(a) + G(exoxo)@) (239)
while pulling this out of the functional integral leads to the differential equation [MSJ01]
L 0Z10] N[ 8 5 5
24 2 Z1J] = ZI[J]. 2.
(= )5J( ) (5J(a:) *5d@) * 5J(m)) 7] = J(@)Z1J] (2:39)

The star-product of functional derivatives is a short-hand notation for

i g ) ) )
3010, 0y, o 307 0a 6% Z J‘ 2.40
e e » : .
dJ(x+&)dJ(x+n+a)dJ(x+n+B) | ]gzn:a:ﬁzo (2.40)
We will now show, that analogously to the commutative case, the solution is given by
)
Z[J] =N exp | —Sint 57 Zo|J] (2.41)

with Sine[¢] = 2 [ ¢* the interaction term and [ (6/6J)**Z[J] defined through (2.40) and the trace prop-
erty. Using the trace property one finds

Uy <%(y)>*4"](m>] - <5J(z:c)>*3 ' (2.42)

e“Be " =B+ [A, B

Now Campbell-Baker-Hausdorff
1
+ —=[A,[A,B]]+... (2.43)

and the fact that [[(6/6.J)**,(6/6J)*3] = 0 imply

oo (5[] sorens (s [ 2] ) = 001+ 2 2] s

where [ Lint[¢] = Sint[¢] is the interaction Lagrangian. Putting (2.41) into (2.39) we find

(=07 +m ):ssf([i] +£. (&]ia:) * Mi ) 5J(zw)) g

(241 ( Sint { ’ D <(a§ “ﬁﬁiw) + Lip [é]) ZolJ]
@) exp( S |57 ) (7@ + £ | 5] ) 2l

2 g e (s [ 5]) 2

(2:39)

J(@)Z[J], (2.45)

which proves that (2.41) is indeed a solution for the generating functional. This can be evaluated pertur-
batively in terms of Feynman diagrams corresponding to Sj¢. Contrary to the usual commutative theories,
the propagators are multiplied with respect to the star-product, for which this diagrammatic expansion is
known as modified Feynman rules. These are illustrated in the next section.

12



2.2 Quantum Field Theory

2.2.2 Feynman Diagrams, UV/IR Mixing and Renormalization

Using Fourier transformation and the Campbell-Baker-Hausdorff relation, one can deduce the following
momentum space representation for the ¢** interaction part

/dDa: A H </ dDIZ/Q) o (k)0 (k

2)0(k3)p(ka) V (K1, ... k) (2.46)

with

Viki,... kn)=(2m)Ps <Zk>exp Z ki x k) (2.47)

1<j=1

the interaction vertex and p x ¢ = p;©%q;/2. The interaction is real, positive and translation invariant,
but has an additional phase factor relative to the commutative theory. Due to momentum conservation
the propagator in momentum representation only depends on the difference of the momenta A(k, k') =
6P (k — K')A(k). As in the commutative case each contraction can thus be represented by an oriented line
with definite momentum. The modified Feynman rules in momentum space are given by

k _ 1
T k24m?
kl k4
.4
— A o1 i kixky
4!
kz k3

The additional mixing factor breaks the permutation symmetry of the lines at each vertex one is used to in
the commutative case. The vertex is only invariant under cyclic permutations of the fields, which leads to
two different kind of Feynman diagrams. Those which can be drawn on a sheet of paper without crossing
of lines are called planar diagrams. Those which have crossed internal lines are called non-planar diagrams.
Simple examples are given by the planar and non-planar tadpole:

Q. >

Planar tadpole. Non-planar tadpole.

Filk has shown [Fil96] that the vertex of a general Feynman diagram in this ¢** theory can be simplified
through the following two contractions

V(kla ey kn1ap)V(kn1+1a sy knza _p)

(2m)Ps (Zk) (ki,... kn,) (2.48)

Viki,....kn, Diknyits s kny—p) = Vi(ki,... kpn,) for Z k;=0. (2.49)

1=n1+1

The first of these Filk moves reduces a line by gluing together two vertices into bigger a one. Applying this
move n — 1 times to an n-vertex graph, one obtains a graph with all lines starting and ending at the same
vertex, called a rosette. Planarity then describes the absence of crossing loop lines, for which the phase can
be shown to cancel out using the second Filk move. Planar diagrams are thus identical to their commutative

13



2 Noncommutative Quantum Field Theories

counterparts and have to be renormalized accordingly. Noncommutativity alone is thus not able to tame all
UV divergences. However, the situation is even worse.

The non-planar diagrams carry additional phase factors coupling the internal and external lines. The
initial hope that NCQFTs might be better behaved due to a natural UV cut-off however turned out to be
too optimistic. Minwalla, Van Raamsdonk and Seiberg found an intriguing mixing of UV and IR degrees of
freedom [MVRS00]. A famous example is the non-planar tadpole in 4 space dimensions which is given by

(2.50)

7 )

A d4k — e 1Pi©®7k; \ 2 .
12 = K 2(Q . p)2) Vil pT2
12 / (271-)4 kf +m2 4872 (@ -p)2 1( m ( p) ) P

where K is a modified Bessel function of the second kind. Contrary to the commutative case this diagram
is finite for finite p due to the extra phase factor, however diverges as p; 2 for p; — 0. A chain of these
diagrams inserted into a bigger graph will inevitably lead to divergent integrals. A natural regularization in
this plane wave basis is given by the restriction of the momenta to the annulus |Ag| < |p| < |A|. However,
the oscillations imply that a UV cutoff A generates an effective IR cutoff A; = 1/|0|A, which is the root
of the UV/IR mixing. This makes the Wilsonian renormalization impossible, since it would require a clear
separation of high and low momentum scales. A general investigation of the renormalizability has been
performed in [CRO1]. Since divergences coming from non-planar diagrams cannot be absorbed by planar
counterterms, renormalizable theories have to have finite non-planar diagrams.

2.2.3 NCQFT on Minkowski Spacetime and Unitarity

The transition to NCQFTs on Minkowski spacetime is formally straightforward. The classical action of the
¢** theory in Minkowski spacetime reads

s= [ (30u020%— 640 - Jonon600) (0) @251

while its quantum theory is formally given by

:N'/Dqﬁ exp <iS+/$J(a:)¢(a:)> . (2.52)

with some normalization /. The precise form of the path integral measure is not needed to determine Z[J]
perturbatively, since only the vanishing of the integrand for |¢| — oo is needed to find a differential equation
for the generating functional. This is however not fulfilled, since the action is real and the integrand badly
oscillating. This is usually remedied by adding for the time being the damping factor ie [ ¢* to the action

with € > 0
ZJ :€£%+N/D¢exp(18—e/¢ +/ Jo(x )), (2.53)

which at the same time regularizes the singularity of the free propagator (9 +m?)~'. Analoguesly to (2.35)
we can derive for the free part of the generating functional Zy[J] = Z[J]r=0

oo o 20Z0J]
Jim (9 +m® —2ie) M(Ew) = —iJ(x)Z]J], (2.54)

ZolJ) = Nexp( / / AF:c—y)J(y)) (2.55)

with Ap the Feynman propagator

which has the solution

de e ik, xt
A = 1i . 2.56
rl@)=lim [ 555 K2 —m? ie (2.56)

14



2.2 Quantum Field Theory

Using identical arguments as in section 2.2.1 the full generating functional is given by

Z[J] = N exp (iS;nt [%D ZolJ] (2.57)

leading to a perturbative expansion in terms of Feynman diagrams corresponding to Sj¢ and the usual
Feynman propagators.

However, as has been found in [GMO00], this perturbative setting leads to a violation of unitarity if space
and time do not commute. The authors of [GMO00] showed, that the cutting rule for the ¢** two-point
function and for the ¢** four-point function are not fulfilled at one-loop order. As a necessary condition for
a unitary S-matrix they found the positive definiteness of the expression

- pu(_)uy@mfpa ) (258)

which is not fulfilled for time/space noncommutative theories. In this case the analytical continuation of
Euclidean Feynman diagrams produces new branch cuts that are responsible for the failure of the cutting
rules.

This seems to contradict the common knowledge that a Hermitian interaction Hamiltonian H; leads to
a unitary S-matrix. And indeed, this remains true in the time/space noncommutative case [Bah04]. But,
the Lagrangian formulation of the quantum theory in terms of the path integral is no longer equivalent to
the Hamiltonian approach using the Dyson series and the interaction Hamiltonian H;. As was pointed out
in [BDFP02| the usual Wick theorem does not apply to non-local interactions. The contributions to the
n-point function are given by
(=D"

Gi(x1,...,x,) = o O|Téd(x1) - d(an)Hy(t1) - Hr(tx)|0) (2.59)

where T' denotes the time ordering with respect to the time variables z9,...,2% and t1,...,#;. The Wick
theorem now tells us that all two-point functions A (x) = (0]¢(z)¢(0)|0) and Heaviside step functions (x°)
coming from the time ordering can be combined to give a Feynman diagram in terms of Feynman propagators

Ap(x) = 0(x0) Ay () + 0(—20) Ay (—) . (2.60)

This is not true for time/space-noncommutativity. The ¢*™ interaction Hamiltonian has the general form

Hi(t) = /Hd4ai Gi(ar,...,an) : #lar) - dlan) : . (2.61)

In this case the time ordering is with respect to the time variable ¢, called interaction point, and has no
relation to the a; at all. The perturbative analysis based on this “true” time ordering is known as interaction
point time ordering prescription [LS02b, LS02c, BT03|. The Heaviside functions in the Feynman propagator,
however, come from an ordering of the “time” coordinates of the fields. Thus with time-space noncommuting
coordinates the star-product and the time ordering no longer commute as is clearly visible from

0(2°)A2(@) + 0(—2*)A(~a) # Af(a) (2.62)
due to
Ox0+£0. (2.63)

Actually, as has been pointed out in [DS03, Pia04], the Wick reduction does lead to the usual Feynman
diagrams also for non-local theories, however with propagators given by

D(x,7) = % (O(1) A4 (®) +0(—7)Ay () (2.64)

where 7 depends on the interaction points of the H(t)s. The star-products are performed with respect to
the x occurring in two-point functions. For local interactions we find 7 = ¢.

There are approaches towards a formulation of unitary NCQFTs in Minkowski spacetime with time-like
noncommutativity. For models build on the Hamiltonian approach see e.g. [DFR95, Bah04] and [Pial0]
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2 Noncommutative Quantum Field Theories

for a nice review. UV/IR mixing is absent in this framework to lowest orders. Since perturbation theory
gets complicated already at lower loops it is not clear whether it is completely free of UV /IR-mixing and
might still be present in this framework. It has the disadvantage, or advantage, that different ways to define
the interaction Hamiltonian are possible. A drawback is that the free fields do not obey the field equation
even at tree level leading to a violation of current conservation. Yet another perturbative ansatz which
is equivalent to the others on commutative, but not on noncommutative spacetime is the Yang-Feldman
equation [BDFP02, Bah04].

The perturbative setup in the Hamiltonian approach is quite complicated such that it would be desirable
to have an equivalent Euclidean path integral setup simplifying the combinatorial aspect of perturbation
theory. The question is, what kind of Euclidean theory arises from a given Minkowskian theory and vice
versa. In [Bah09] it has been shown that the Euclidean counterparts of the n-point functions for the Klein-
Gordon theory on noncommutative Minkowski spacetime are not those following from the standard Euclidean
setting, but appear with on-shell twisting factors, that is involving only on-shell momenta p, = (wp,pa) for

a=1,...,D—1and wp = /p2 +m?2.

We are interested in the other direction, starting with a Euclidean theory in a path integral setup. We
will show that there exist models which allow for well-defined analytically continuations to Minkowski space-
time with help of a special regularization. These models are the LS-covariant models such as the Grosse-
Waulkenhaar model and LSZ model, which at the same time have no UV /IR-mixing problem and are renor-
malizable to all orders in perturbation theory in Euclidean space. We are interested in the renormalization
properties of their Minkowskian counterparts and the question, whether the unitarity problem still persists
and in if yes in which sense. In the next chapter we will give a brief introduction to the LS-covariant models
in Euclidean space and explain, how they are able to circumvent the UV /IR-mixing problem.
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3 How to cure the UV /IR Mixing Problem

The UV/IR mixing poses severe problems to the renormalization program of NCQFTs. As was pointed out
in [GWO05b],

the message of the UV/IR entanglement is that noncommutativity relevant at short distances
modifies the physics of the model at very large distances.

The question is how to modify the theory? Nowadays there are two different approaches on the market which
give an answer to this question, both defined on Euclidean space. The LS-covariant models are defined in
section 3.2. We will demonstrate their covariance under the Langmann-Szabo duality (LS-duality) in section
3.3, which is seen to be responsible for their renormalizability and vanishing of their g-functions. In section
3.4 we will give a brief overview of the results which have been achieved in the last seven years. As an
alternative to the LS-covariant models we briefly discuss another renormalizable model based on a different
approach to cure the UV/IR mixing problem in section 3.5.

3.1 UV and IR Behavior of NCQFTs

The UV/IR mixing can be traced back to the non-locality of the theory. Let f and g be two fields, which are
located in a small region A < V6. Then one can show that contrary the star product of both is non-zero
over a large region of size §/A. As an extreme example one can take two delta functions, whose star product
is constant throughout space

1
0(x) *x0(x) = ———. 3.1
(@) *0) = Goimg (31)
This shows that the interaction of noncommutative field theory is mediated by non-local extended objects
instead of the point-like particles of ordinary quantum field theory. By exponentiation of the infinitesimal
translations given by (2.23) to global translations we find

e kT f@)x e B = fx+ O k). (3.2)

One is thus tempted to imagine that a plane wave does not correspond to a particle, but to a “dipole”, whose
length is proportional to its transverse momentum [SJ99, BS00, DNO1, Rey02]. For a dipole of momentum k,
its dipole moment is © - k and the position coordinate of the scalar field is Bopp shifted to the commutative
coordinate

r=z+0-k. (3.3)
The ultraviolet dynamics in the regime F > ©~1/2
interact by joining at their ends:

are mediated through interactions of these dipoles who
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3 How to cure the UV/IR Mixing Problem

Since the length of the dipoles is given by |© - k|, a sharp ultraviolet cutoff A in momentum space induces
an infrared cutoff at 1/(|©|A), the inverse of the maximal dipole length.

On the other hand, the infrared dynamics in the regime E < ©~/2, where noncommutativity is negligible,
are governed by the elementary quantum fields ¢g, which create pointlike quanta of momentum k. This
suggests that the UV /IR mixing problem may be understood as a mismatch between the dressed coordinates
(3.3) and the elementary momenta k, thus by the asymmetry between extended and pointlike degrees of
freedom governing the different regimes. In order to cure this mismatch one can make the UV and IR regime
symmetric via substitution of the generalized momenta

k—k+B x, (3.4)

where the real constant D x D antisymmetric matrix B can be interpreted as an electromagnetic background.
In terms of field theory, the natural implementation of this symmetrization is the replacement of usual
derivatives by covariant derivatives

0; — 0; + iBijacj. (35)

with (B;;) a D x D real, non-degenerated antisymmetric matrix. This is a generalization of the covariant
derivative introduced by Filk [Fil90], as was illustrated at the end of section 2.1 where B = (©/2)~!. Contrary
to (2.30), the free part now describes a Klein-Gordon field moving in a constant magnetic field perpendicular
to the plane. Filk’s action has not attracted any attention for more than ten years, until it turned out to be the
crucial ingredient to successfully improve the renormalization properties of noncommutative quantum field
theories. The various motivations and mathematical interpretations for the background field are summarized
in [dG10].

3.2 LS-Covariant Models in Euclidean Space

Variations of the ansatz introduced above are the LSZ model [LSZ03, LSZ04], the Grosse-Wulkenhaar model
[GWO03, GWO05b] and the vulcanized Gross-Neveu model [VT07b], all of them defined in Euclidean space.
The symmetry of the position and momentum degrees of freedom is known as LS-duality, and manifests
itself in an invariance of the theory under Fourier transformation plus a special scaling [LS02a]. Rivasseau
et al. proposed to call the procedure of making a theory covariant under LS-duality (3.4) vulcanization
(see footnote 1). A proof that this symmetry holds at the classical level for Euclidean and Minkowskian
signature will be given in section 3.3 below. In order to prove the quantum version of this duality, we have
to distinguish both cases. This is because the wave operators under consideration will have different spectral
properties depending on the metric. The proof that this is a duality at quantum level will be handed in
after the introduction of the matrix basis in chapter 4. The extension to Minkowski spacetime will be done
in chapter 5.

3.2.1 LSZ Model

The general Langmann-Szabo-Zarembo model (LSZ model) in D = 2n dimensions is a complex ¢** theory.
It is defined by the action Sy sz = Sp + Sint With

Sy = /dDm ¢*(x) (O’K? +(1—o0)K2+ uQ) o(x)
. (3.6)
S =9 /d% [0 (6" % 6% 6 % B)(@) + B (6 % 6" % &% D) ()]

The parameters are restricted to o € [0,1], o, 3 € Ry and 1?2 > 0 is the mass parameter. The generalized
momenta K; and generalized dual momenta K; are given by

Ki = —10; + Bz’

_ . 3.7
KiifiaifBijSCJ ( )
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3.2 LS-Covariant Models in Euclidean Space

for i = 1,...D and obey the commutation relations
Ki, K] =2iBy; , [Ki,Kj]=—2iB,;. (3.8)

and [K;, Rj] = 0. Each of them describes a system in a constant magnetic field with field strength F2B;;,
respectively. The coordinate system will be chosen such that the D x D dimensional deformation matrix ©
takes the canonical skew-symmetric form

0 6
—60; 0

COE (3.9)
0 0 Op /2
—Ops2 0
with 0 > 0 and k =1,..., D/2. The electromagnetic field strength B is of the same form

0 B
-B1 0
(Bij) = (3.10)
0 Bpo
—Bp/2 0

with By > 0 and k = 1,...,D/2 and By = 20/, for all k and 0 < < 1. This implies that the wave
operator oK? + (1 — 0)K? of the LSZ model in D = 2n dimensions breaks down to a sum of n parts with

n

K:=> (P

e (3.11)
KZ = (P?)
k=1
and 2 2 2 2k 2k—1 2 2 2
(Pi)k = (02,1 + O33,) — 21 Bi(z™" Oog—1 — = " Oak) + Bj (w31 + 73y,) (3.12)

PPk = — (0351 + 03) + 21 Be(2®%0ap—1 — 2® 1 00k) + BR(a3,_1 + 23) -

In the next chapter we will be concerned with diagonalizing the free action. Since all operators (3.12)
commute with each other, the problem reduces to finding the eigenfunctions of one pair of operators (Pf);€
and (Isf) k- The interaction part consists of two inequivalent, noncommutative quartic interactions weighted
by real parameters a and (3. The a-part is known as oriented interaction while the (-part is called unoriented
interaction. Up to now, renormalizability has only been shown for the oriented part.

For generic o the free part can be rewritten as
So= [P0 (@) (Koo + 9222 + 1) () (3.13)

with B = (20 — 1)B = (20 — 1)(Byj), & = 2@%%& and Q = B0 /2. The free part describes a massive
complex scalar field coupled to a constant magnetic background and in a confining electric potential pro-
portional to Q27?. By adjusting the parameter o we can switch between purely magnetic background at
o = 0,1 or mixed magnetic and electric background.

The quantum theory will be defined by the generating functional for the LSZ model

Z[J,J*] = /D¢D¢ exp( SLsz-f-/w /qﬁ ) (3.14)

Compared to the usual ¢** model investigated in section 2.2.1 there are the additional terms in the free
part of the action (apart from the extra degrees of freedom due to having complex instead of real fields).
The external background will be treated exactly by using the dressed propagator of the field moving in this
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3 How to cure the UV/IR Mixing Problem

background, which is known as Furry picture [Fur51]. This is done by defining the free part of the action
through all terms depending quadratically on the fields. The corresponding “free” generating functional is
then a solution of

(oK? + (1= )R+ 1) S0 2] — @)zl ]
) (3.15)
(oK + (1= 0)K? +42) ] — @l )

given by

zprrl=en ([ [ r@aenim). (3.16)

zJYy

with dressed propagator A(x, ') determined by
(0K? + (1= 0)K? + p) A, y) = 6°(@ — y). (3.17)

It should be noted that translation invariance is broken. The momentum is thus not conserved and the
propagator A(zx,y), does not depend solely on the difference  — y.! This implies that contrary to the
usual ¢** theory investigated in section 2.2.2, planar diagrams will not be identical to its commutative
counterparts. The full interacting quantum theory is defined through

o2 D Zo[J, ], (3.18)

Z[J,J ] :N exp <_Sint [ﬁ, E

leading to modified Feynman diagrams with dressed propagator A(x,y). As will be shown in 3.3 the classical
action is covariant under LS-duality. The proof that this symmetry holds in the full quantum theory will be
given in section 4.5.

3.2.2 The Grosse-Wulkenhaar Model

The Grosse-Wulkenhaar model (in the following GW model for short) is a special case of the LSZ model
defined above for o = 1/2 and real fields. Because of its distinguished role it played in the process of
understanding renormalizable NCQFTs we will give a brief account on it. Compared to the usual Klein-
Gordon field, the free part moves in a harmonic oscillator potential, which amounts to replacing the Laplace
operator according to

07 — 07 - %, & =20;', (3.19)
with frequency Q = B0y /2. The action in D = 2n dimensions is given by
Sow = /d% %qﬁ(m) (=07 + Q%% + 1°) ¢(x) + Sint (3.20)
with interaction term
Sint :g/dDw((b*qﬁ*(b*(b)(az). (3.21)

Despite being a real model, it is still covariant under LS-duality, as will be shown below. The perturbative
setting for the GW model is defined through the partition function

ZlJ| =N /Dqﬁ exp (SGW + /I J(a:)d)(a:)) (3.22)

with real fields ¢(x). The only difference to the usual ¢** model investigated in section 2.2.1 is the additional
oscillator term in the free part of the action. In the Furry picture, the free generating functional is thus
given by

zoln = (5 [ / T (e, ) ) ) (3.23)

IFor ¢ = 1 we have invariance under magnetic translations, which is the invariance of translations plus a suitable gauge
transformation of the magnetic fields: ¢(z) — e ta-B-z4(x 4+ a). The free propagator then is of the form A(x,y) =
e 1By A(x — y). The same is true for ¢ = 0 with B — —B.
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3.3 Classical LS-Covariance

with dressed propagator A(x,x’) determined by
(=07 + Q%% + p?)A(z,y) = 0*(x — y) . (3.24)

The momentum is not conserved and the propagator A(x,y) thus depends on both variables x and y
independently. The perturbative setting for the full interacting theory is given

Z[J] = N exp (—sim [%D ZolJ]. (3.25)

leading to the modified Feynman diagrams for the ¢** vertex with the dressed propagator A(zx,y).

3.2.3 Vulcanized Gross-Neveu Model

As an example for a fermionic LS-covariant model we will shortly present the vulcanized Gross-Neveu model.
The usual Gross-Neveu model is a quantum field theory of two-dimensional Dirac fermions coupled through
(11))? interaction terms. The free part of the vulcanized Gross-Neveu model (vGN model) is the usual
fermionic Gross-Neveu model which has been made LS-covariant according to the prescription explained
above. The action of the noncommutative vulcanized version (with only one flavor) reads

Sen = /d%@(m) (Pt 1) (@) + Vo + Vio, (3.26)

with P = 7'P; and v',~? constituting a two-dimensional representation of the Clifford algebra
{777} = 25 (3.27)

The interaction terms are divided into orientable V, and non-orientable V,,, terms, given by

v, = %azb:/d%m%m%w(m) (3.28)
+£2/d2"mﬂmw*%%¢(m) (3.29)

4 a,b
+52/d2%%%¢*%%¢(m) (3.30)

4 a,b

and

JrﬁZ/dQ"mw*'yiﬂ*E*’yiw(m) (3.32)

4 a,b

)‘6 2n A

+ZZ/d T * Y5 * P * y51)(x) (3.33)

a,b

where v = i7%y!. Since there is no renormalization proof in matrix representation available we will not
further investigate this model in the forthcoming chapters.

3.3 Classical LS-Covariance

We will now introduce the LS-duality and show that the models introduced above are indeed LS-covariant
at the classical level. This result was initially proven in [LS02a] for the Euclidean space. We will reproduce
it at this point to show that the proof also holds for Minkowskian signature.

For the interaction term we will need the following lemma
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3 How to cure the UV/IR Mixing Problem

Lemma 3.1. The multiple star product of functions fi, € S(RP) for k = 1,...4 has the following momentum
and position space representations

Dw
[ e foe e ) @) = T ( [ 5o ) Flen) f@a) fl@) f(a) Vienan.as, )

(3.34)

IS] IS]
Il |l ~
= =

with vertex functions given by

_ (27T)D (SD(IE1 —®y + @3 _$4)efim1/\m27im3/\24
| det(©/2)] (3.35)

Vi(ky, ko, ks, k) = (2m) P00 (ky + ko + ks + ky) e~ HRrxkaikaxks

V(:El, L2, L3, w4)

where p x ¢ =27 'p;©0Yq; and p A q = 2p;(©071)"g;.

Proof: is given in appendix A.

The spacetime metric does not play any role in this proof, since only Fourier expansions and Gaussian
integrals were needed. Changing from Euclidean to Minkowskian metric amounts to interchanging Euclidean
and Minkowsk@{l scalar products in the expressions above. We will need a simple variation of this lemma.
Using relation f*(k) = f*(—k) we find

/dDng (ff % fax f5 % fa) (@) = ]| (/ %) (k1) fa(ka) f5 (Ks) fa(ka) V(=K ko, —ks, ka)

/de‘IB (ff * f5 x fax fa) (x) = H (/ %) fi (k1) f5 (k2) fa(ks) fa(ka) V(—k1, —k2, ks, ka)

a=1

(3.36)
Note that these results are in clear contrast to the commutative case, in which the position and momentum
vertices are very different. There we have a local position-space interaction vertex V(x1, @2, x3,Ts)
6P (21 — 2o + 3 — 24)0P (21 — X2)6” (T2 — 3) and a non-local interaction vertex in momentum space
V(kl, ko, k3, k) o< 0P (k1 + ko + k3 + k4). The noncommutative action possess a duality between the UV
and IR regime. In contrast to the usual free scalar action this manifests itself in a symmetry of the whole
LSZ action. In the following we will reproduce the proof given in [L.S02a], in order to show that the duality
holds irrespectively of the signature of the metric.

Lemma 3.2 (Classical duality). The general LSZ action
Sisz = So + Sint = Siszl¢; B, g, O] (3.37)
defined above obeys
Sisz[#; B, g, 0] = Sisz[¢; B, 3, 6], (3.38)
where
¢(x) = /| det Bl$(B - z), (3.39)

qg(k:) the Fourier transform of ¢(x), and the scalar product may have Euclidean or Minkowskian signature.
The transformed coupling parameters are

©=—-4B'O07'B7!, §=|det(BO/2)['yg. (3.40)

Moreover, the transformation (¢; B, g,0) — (¢;B,§,0) is a duality of the field theory, i.e. it generates a
cyclic group of order two.
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3.3 Classical LS-Covariance

Proof: For the following we define the derivatives &7 = 8/k; and 8; = 8/0k' = —B"9; with k = B! - k.
We start with the mass term. Using the Parseval relation we get

i [ dag@o@) = [Pk k) (k)
= u?/dDIZ;|detB|¢3*(B-1;)q3(B-1;)
— 1 [P (@) i), (3.41)
where in the last we renamed k = @. Furthermore we get
Pid = (ki + i B;07)d(k) = (—id; + Bi;k?) (k). (3.42)

Thus defining Q; = i0; — Bijlzzj we can proceed as before using again the Parseval relation
/dDw (Pig)'(x) (P'9)(x) = /dD’% | det B| (Q:0)'(B - k) (Q'¢)(B - k)
= [aPe Qi) @ @) (3.43)

which has the same form as before with ¢ substituted for ¢. The same analysis holds for the part containing

P;, which proves the duality for the free part. Surely, these considerations are independent of the particular
choice of the metric.

The symmetry of the interaction term S, follows immediately from lemma 3.1 and relations (3.36). Up
to the term |det(©/2)|7!, they have the same form in momentum and position space but with (©/2)7!
substituted for ©/2. Changing ¢ — ¢ and k — k this implies

g — |det(BO/2)[ g,

0 — —4B7'e7'B7!, (3.44)

which finally proves the lemma. O

At the special points © = +2B7! the field theory is completely invariant under Fourier transformation
(up to the sign of #), and it is said to be self-dual. It is important to notice that everything we needed to
prove this theorem were Fourier and Gaussian integrals. This implies that this classical duality holds for
Euclidean as well as for Minkowskian metric.

The proof of the classical duality in the LSZ case is based on the fact that the Fourier transformed complex
conjugated fields get momenta with flipped sign. For real fields this has to be ensured artificially by using
the cyclic Fourier transformation instead of the usual Fourier transformation, defined by

n dD a i(—1)%k,, -
¢(ka) = / (271_)7:;/2 ¢(wa)e 1( 1) k. wa, (345)

where a = 1,2, 3,4 enumerates the momenta involved. It ensures that the sign of the momenta in the kinetic
and the interaction term is the same as in the LSZ case such that the integrations can be done in the same
way, proving the duality for the GW model. In the literature this duality is sometimes presented in the
equivalent form

Lemma 3.3. Under the exchange of position and momenta

pie i, o(k) < +/]det(0/2)[p(x) (3.46)

with qAﬁ the cyclic Fourier transformed field, the Grosse- Wulkenhaar model given by the action Sgw transforms
as

1 A
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3 How to cure the UV/IR Mixing Problem

At Q = £1 the theory is again invariant under LS duality.

The interaction terms of the vGN model are identical to those of the scalar models given by the relations
(3.36). Using

Py = (ki — 1By’ )i (k) (3.48)

it is clear that also the vGN model is covariant under Fourier transformation plus some appropriate rescaling
of the fields, namely the LS-duality.

3.4 LS-Covariance, Renormalizability and Vanishing of the
(-Function

The LS-duality covariance has been turned out to be a crucial concept in the construction of renormalizable
noncommutative quantum field theories on Euclidean space. As a motivation for the search of corresponding
theories on Minkowski spacetime, we will now give a brief overview on established results.

For the LSZ model there are two independent interaction terms. However, only the oriented interaction,
i.e. the a-dependent part has been shown to be renormalizable. In the following [ is always assumed to be
0. The behavior of these models strongly depend on their parameters o and 2. There are four cases which
are generally distinguished:

e 0 =1,Q=1 (critical and self-dual)
e 0 <1,0=1 (self-dual)

e 0<1,0< Q<1 (ordinary)

e 0=10<0 <1 (critical)

Each model may be complex or real. A model is called critical if the corresponding propagator in position
space A(z,x’) decays if |z — x'| goes to infinity, but only oscillates as |z + x'| — 00.2

The critical and self-dual ¢** model was first introduced in [Fil90], while its invariance under LS-duality
has been pointed out [LS02a]. It has been shown to be exactly solvable [LSZ03, LSZ04] in general even
dimensions, in the sense that there is a closed formula for the partition function for the regularized theory.
The UV fixed point of the theory is, however, trivial, and the coupling constant vanishes if the UV cutoff is
removed. The self-dual ¢*3 theory in two, four and six dimensions, based on the real GW free action, has
been shown to be renormalizable, non-trivial and essentially solvable genus by genus,® while in six dimensions
this model is asymptotically free [GS06a, GS06b, GS08].

To improve the renormalization properties it was suggested in [L.SZ03, LSZ04] to slightly disturb the LSZ
model by choosing o < 1. In this case the model gets altered by a harmonic oscillator term (see equation
(3.13)), making the position-space propagator well behaved, with an exponential decay in | — '] — co and
|z + 2’| — oo separately. The first result was due to Grosse and Wulkenhaar for o = 1/2 and real fields.
Using the matrix basis they showed that in two and four dimensions this theory is renormalizable to all
orders in perturbation theory [GW03, GW05b]. While in two dimensions the harmonic oscillator frequency
vanishes if the cutoff is removed and the theory is superrenormalizable, in four dimensions the selfdual point
Q = 1 is a non-trivial fixed point of the theory. Their analysis relied on numerical determination of the
scaling behavior of the propagator. This gap has later been filled by Rivasseau et al. [RVITWO06], confirming
the renormalizability. In addition, in four dimensions and at the self-dual point, the g-functions for both
couplings 2 and g vanish to all orders in perturbation theory, and thus the renormalized couplings flows to
a finite bare coupling [GW04, DR07, DGMRO07|. This breakthrough has been possible due to certain Ward
identities the model fulfills at quantum level, which are believed to be related to the LS duality. It is argued
that the same is true for Q < 1, since the renormalization group flow of Q — 1 is very fast [DGMRO07]. These

2The designation critical is due to Rivasseau et al. [RT08]. In order to avoid confusion with “critical phenomena”, it has
been proposed to call them covariant models [Riv07b]. Since in this thesis we are already using the terminus LS-covariant
models for all of these models we will stick to the description critical.

3Feynman diagrams in the perturbative expansion of NCQFTs form a Riemannian surface using the double line formalism,
which we will introduce in section 4.4. The genus of a diagram is then identical to the genus of the surface.
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3.5 Translation-Invariant Model

results have been extended to all 0 < o < 1 for both real and complex fields in [GMRVT06, GGR09]. The
extension to bosons with N flavors, called color Grosse-Wulkenhaar model, have been studied in [GROS].
They have been shown to be renormalizable and asymptotic free for N > 1.

The LSZ model for 0 = 1 and 2 < 1 is more difficult to treat. It belongs to the category of critical
NCQFTs. It is shown to be renormalizable in 4 dimensions (see [RT08]). The vulcanized Gross-Neveu
model is also of this type. In [VT07a] it has been shown that the massless orientable LS-duality covariant
Gross-Neveu model is renormalizable to all orders in perturbation theory. Interestingly, the UV /IR mixing
is partly still present, which, however, does not prevent the theory to be renormalizable. This seems to
indicate that the precise role of LS-duality and the vulcanization procedure has not been fully understood
yet. Furthermore it has been shown, that at one-loop level this theory is asymptotically “free” but not
asymptotically safe [LVTWO07], just like its commutative counterpart.

The scalar LS-covariant models have a vanishing -function and thus contain no Landau ghost, contrary to
the commutative ¢} theory. Unlike non-abelian gauge theories, this elimination is achieved without asymp-
totic freedom, but instead with asymptotic safety. For these reasons, a full non-perturbative construction
of the quantum field theory without any cut-off is believed possible [Riv07a, MR08], which would be the
first known model in four dimensions. However, while the vanishing of the -function was blessing from the
constructive field theory point of view, it might turn out to be a problem from the physical perspective,
as its connection to the commutative regime ©® — 0 may not exist. For this reason another renormalizable
models has been suggested, called the translation-invariant model, briefly exposed in the next section.

3.5 Translation-Invariant Model

We will not keep quite about yet another concept which has successfully overcome the UV/IR mixing
problem, but which at the same time avoids the breaking of translation invariance. It still keeps the UV /IR
mixing under control and is renormalizable to all orders in perturbation theory [GMRT09]. It is called
translation-invariant model and defined by the action

Supe = [ e g (00@)0'0(0) + 176 (@) - 0(o) 5 g wola) ) +  [dleo (@), a9

with a a dimensionless constant and 9; % regarded as the Green function of d2. The momentum space
propagator, given by

1

Gh)= 5> (3.50)
k2 +m2 + Z_Z

does not affect the UV behavior, but has a nice damping in the IR regime. Putting n one-loop diagrams

into one big loop has a nice IR behavior and thus solves the UV /IR mixing problem. It is renormalizable to

all orders in perturbation theory [GMRT09].

The 1/p?-modified propagator can be seen as the usual propagator dressed by quantum corrections. Indeed,
the 1/p? corrections appear at every order in perturbation theory of the usual ¢** theory. Its S-function is
a rational multiple of the S-function of the commutative model [GT08]. It follows that contrary to the LS-
covariant models it might not be realizable non-perturbatively, but it might have a meaningful commutative
limit. In [MRTO09] a commutative limit mechanism has been proposed, in which the 1/p-terms get traded
in for mass and wave function counterterms in the limit 6 — 0. It is also argued that the extension to gauge
theories is easier than in the LS-covariant models [GTO08], since this extension preserves its trivial vacuum
[BGK'08]. In this thesis we will not further follow this direction and restrict ourselves to the investigation
of LS-covariant models. For more information see [Tan08, Tan10, BKSW10] and references therein.
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4 Matrix Model Representation of Euclidean
LS-Covariant NCQFTs

An invaluable tool in the investigation of the LS-covariant models has been the Landau basis, which allows
to map them onto matrix models. It has been used to solve the critical, self-dual LSZ model exactly, to prove
the renormalizability of the GW model and the vanishing of its g-functions. Though the renormalizability of
these models have already been proven in position space, it will give us the possibility to define a well-defined
analytical continuation to Minkowski spacetime.

From a physicist’s point of view, the Landau basis is a very natural basis for the Hilbert space L*(R?),
since it is made of (Wigner transformations of) the products of two copies of harmonic oscillator states.
Furthermore, its elements are functions, which can be described as “best localized states” with respect to
the star-product. The analog of Heisenberg’s uncertainty relation for noncommuting coordinates forbids
the simultaneous localization of conjugated coordinates x* and 27 with #% = @ # 0. If we try to localize
Gaussian wave packets in two dimensions through a multiplication with itself one finds

—a?ja® ,  —a?/a?

e *g € = ce /T (4.1)

02 at + 02
c:1+¥ and d=/ 5z (4.2)

This implies that for a > V0 we get d < a and for a < v/# we find d > a with a fixed point at a = v/0 and a
best focused Gaussian given by

with

foo(m) ~2e"5/0 (4.3)

The Landau functions fp,, € S(R?) with m,n € N are build on this Gaussian as a ground state via appli-
cation of “ladder operators”, and form an countable infinite orthonormal basis for L?(R?). They are energy
eigenfunctions of the Landau Hamiltonian, which describes the motion of a charged particle, moving in a
two-dimensional plane exposed to a perpendicular magnetic field, namely the (P}); and (P?). Expand-
ing the fields in this basis, the theory gets mapped onto a matrix model, simplifying the interaction part
considerably through the relation

fmn * fkl ~ 5nkfml . (44)

With help of this basis we get rid of the twisting factors showing up in the vertex functions in the plane
wave basis, trading the noncommutative star-product in for the noncommutative matrix-product.

In the following we will derive the matrix model representation for Euclidean LS-covariant theories. This
will be done in a fashion which will make it easy to capture the generalization to Minkowski spacetime. In
section 4.1 we use the Weyl-Wigner transformation to map the eigenvalue equation for the operators (P?);,
and (Isf) k to the harmonic oscillator problem. Using its Fock space representation we construct the Landau
functions in 4.2, which brings us immediately to the matrix model representation in section 4.3. Afterwards
we will introduce the modified Feynman rules in terms of ribbon graphs and prove the LS-covariance at
quantum level. In the following we will work in two dimensions. The generalization to higher dimensions is
straightforward and will be given in section 4.6.

4.1 Mapping onto the Harmonic Oscillator

The Euclidean LS-covariant models introduced in the last chapter are special in the sense that there exists
a matrix representation which diagonalizes the free part of the actions. This is implied by the fact that the
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4 Matrix Model Representation of Euclidean LS-Covariant NCQF'Ts

operators (P2); and (P?);, for each k = 1,...D/2 have discrete spectra resembling the harmonic oscillator
spectrum. In the following we will show how to see this and how to construct the eigenbasis.

We will skip the index k and work with the 2 dimensional wave operators P7 and P2 acting on functions
on S(R?) depending on = = (z,y). Since P? and P? commute, we can find simultaneous eigenfunctions such

that

with /\mn,S\mn € R and some indices m and n. The action of P? and IE’Z2 on some function g(x) can be
represented as

(4.5)

PZg(x) = B*(2” + y*) %2/ g(x)
P?g(z) = g(z) xo/p B*(2* +y°),

where x,p is the usual Moyal product with ¢ = 2/B. This can be verified by using the perturbative
representation of the star product to get

(4.6)

B 4 %) (@) = (B 4 97) 4 1570000, — 0,) - {5+ 09)) (o). (4.7)

Setting 6§ = 2/B the rhs yields exactly P? g(z) since
P? = —0? — 2i B(y0, — x0,) + B%z?, (4.8)

compare (3.12). Now interchanging the order of the two factors of the lhs of (4.7) flips the sign of 6 on the
rhs. This is equivalent to interchanging P? and P?.

The action of P? and P? can thus be represented as a star product with the classical Hamiltonian B2 (22 4
y?), which is the harmonic oscillator if we interpret y as the momentum conjugated to z. We can exploit
this fact, by using the Weyl-Wigner transformation, which maps the star product of two functions onto the
operator product of its Weyl symbols (2.14). The symbols

W [\/in} —§ and W [\/EBy} —p (4.9)
obey the Heisenberg algebra
@8] = 282, y.,,, = i4B. (4.10)
Noting that W [22] = W [2]® and W [y?] = W [y]* we find

P2 fyn () = W [ﬂhofmn} = Amn frnn (T)

B R R ~ (4.11)
P?fmn(w) =W {fmthoi| = )\mnfmn(w)
with
~ 1 . R
o = 262+ @) (112

the harmonic oscillator and f,,,, = W [fmn]- Clearly, the left /right-eigenfunctions of Hy,, are tensor products
of the form

frun = Ctldm)(¢nl (4.13)

with Cf being some constant and ¢,, denoting the harmonic oscillator eigenstates. Working in the represen-
tation

Wlala) = V3Ba(gla) = (W Ipla) = i 57 ). (a.19

the harmonic oscillator is given by

(@'|Hholg) = 4(=04++*%) (d']a) (4.15)
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4.2 Landau Functions

with v = B/2. Tt is a self-adjoint operator on L?(R) with a discrete spectrum given by {8y (n+1/2), n € N}.
Its eigenfunctions are known as harmonic oscillator wavefunctions and are given by

1/2
y —242
00 = (5hz) e F A, (1.16)
They form a Hilbert space basis for L?(R) and obey
(Gm|dn) = Smn - (4.17)

In summary, the simultaneous eigenvalue equations for P? and P? are equivalent to two harmonic oscillator
problems with eigenvalues given by

1 ~ 1
Amn = 4B (m + 5) and \,,, =4B (n + 5) , (4.18)

and eigenfunctions being Wigner transformations of two harmonic oscillator states

P (@) = CsW [[6m) (¢n] (@) (4.19)

known as Landau functions. We use the superscript (B) to distinguish the Landau functions with different
magnetic field strengths B.

4.2 Landau Functions

We will now construct the Landau functions and prove those properties which will be needed to find the
matrix model representation of the LS-covariant models. In the following we will set § = 2/B, thus x = x /5.
Using the explicit representation for the Wigner transformation (2.10) with § = 2/B one gets

[ W (on)en) @) /dz [ [ ake 5 b k2iom) Gule — 172

= 7 [ analon) 6ala)
4
= —. 4.2
= (4.20)
Thus demanding the normalization
2. #(B) 47
d :Bf ( ) _6mn (4'21)
B
we find with (4.19)
B B
z) =\ W [16m) (9nl] (). (422)
™
Using again the explicit expression for the Wigner transformation we can immediately deduce
1B (x ,/ /dk e T B (0 4 k/20hn ) (bm|r — k/2) = FB) (). (4.23)

An important property can be proven by using the star-product relations for Wigner distributions (2.14) for
the product of two Landau functions

(#2512 (@) = W6 {nln) o] (2) = \/gankf;? (). (4.24)

which is called the projector property and allows us to map the noncommutative models to matrix models.
Note that the definition of the Landau functions with field strength B implies the projector property only
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4 Matrix Model Representation of Euclidean LS-Covariant NCQF'Ts

for x = y/p thus for § = 2/B." Combining the identities (4.21) and (4.24) we find that the f,(nli) are
orthonormal with respect to the L2 scalar product

FBIEY = / de 8 () 112 ()
- / da () « ) (@)

B
\/;/da: O fif)(a:)

= YmnOke . (4.25)

The Landau functions have a simple form in terms of generalized Laguerre polynomials:

Lemma 4.1. We define the radial coordinates x = rcosp and y = rsing. The Landau functions fpn(r, @)
are given by

; B [ min(m!,n!) Im—nl/2 i o(n_ 276 1 |m—n|
B min(m,n ’ 2 ip(n—m r=/0 2
f7(nn)(ra ¢) =(-1) ( )\/ —4/ 7{”(( ) (Br ) e 1ol Ve /0L in(n.m) (Br ) (4.26)

where L (x) are associated Laguerre polynomials.

A proof of this lemma will be given in section E.

The ladder operator representation of the harmonic oscillator states has an analog on the Wigner side,
which will be useful to determine the matrix model representation of the NCQFTs. Observe that

W llém) (@nl] = %w [(31)™ o) (o] (8)"]

m!n!

- ——w [aT])*™ « W [Igo) (o] * (W [a])™" . (4.27)

m!n!

The Fock space ladder operators for the harmonic oscillator with frequency 4B are defined by linear combi-
nations & = (§ + ip)/V8B. Using W [V2Bz] = @ and W [V2By| = p we find for the Wigner transformed

ladder operators
W[a] = \/g(:w iy) ., W]Ial] \/?(x iy) (4.28)

which are proportional to the complex coordinates z = x + iy and Z = x — iy. We define new ladder
operators a,a’ and b, b through

<\/§z> *g(x) =ag(x) , (\/?2> *g(x) = a' ()

(4.29)
B /B
9(@*( ZZ> =bg(z) , g(z)* ( ZZ> = ng(fB)-
Defining 0, = 0, — 10, and 0; = 0, + 10, one notes that
i / _ / _ L / _ 9/
B(away 0,0,,) = 5B (0,0; — 0:0.) . (4.30)

Using 0,z = 0:Z = 2 one easily finds

<\/§z> *g(x) = (\/?Z) g(x) + 2\/?%@9@3) = % <\/§z + \/%(L) g(x) (4.31)

We should remark that the f,,, also obey the projector property

B
(f'r(an) *(~2/B) f,if)) (x) =/ E5mzf,£f)(w) .

which follows from fx_g g =g*g f.
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4.3 Matrix Model Representation

‘e %([a +\/_z> | af:%<_\/%az+¢§z>

and similarly

(4.32)
b= (/Lo 4+ vBz =1 (/Lo +vE
“2\VB* o ) B =)
These operators indeed generate two commuting copies of the harmonic oscillator algebra
[a,aT] = [b, bT] =1
(4.33)

[a,b] = [a,bw =0.

A common vacuum state is defined by af(B) = bf(B) = 0. Demanding the normalization (4.21) one can use
the explicit expressions (4.32) to solve for the ground state function

B _np,
5 (x z) =4[ —e . (4.34)

Applying the ladder operators we generate the Landau functions

_ (@)™ ) (b*) <B>( ). (4.35)

and one easily finds

afB) (@)= vmfD (@) , a fE(@)=vVm 112 (@)
b fB)(x) = ff;Bz (@) b*fmn<m>:¢— 0 ().

which will be important in the next section.

(4.36)

4.3 Matrix Model Representation

The Landau functions fr(n%) fulfill the projector property with respect to the star-product x = x5 thus with
6 = 2/B. However, the deformation parameters 6 occurring in the interaction terms of the LS-covariant
theories are not equal to 2/B in general. In this case we can either simplify the interaction or the free part
of the action. Since we are able to find the matrix propagator even for 6 # 2/B, see section 8.2, we choose

f( /0)

the first option and expand in , which obey the projector property with x = x¢ for 6 # 2/B.

For the following we assume the fields to be well-behaved functions which allow for an expansion in the
Landau basis, like Schwartz functions (we will come back to this issue in section 6.2). From the action we
can read off the perturbative definition of the correlation functions of the corresponding quantum theory.
However, these will in general consist of products of distributions, and have to be regularized. An appro-
priate regularization is the matrix cutoff introduced in section 4.5. Removing this regularization is part
of the renormalization program, and necessitates a good decay behavior of the propagator in the matrix
representation for large indices (see section 8).

We start with the interaction part of the two-dimensional LSZ model given by?

s.ntfg/ T [0 (§° % dx 6 % 0)() + (67 % & 6% 6) ()] (4.37)

The scalar fields are expanded in Landau basis read

$(w) = Zﬂ”“( ) Gmn
m (4.38)

o(x)* Zﬂ””( -

mn

2The generalization to higher dimensions is straightforward and given in section 4.6.
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4 Matrix Model Representation of Euclidean LS-Covariant NCQF'Ts

with coefficients given by

G = (F2LO]6) = / L [0 (@) o)

(4.39)
B = 010 = [ e 120 @) o)
Note that ¢,,,, = ¢nm = (Pnm)* = (¢mn)!. Using
1
2/6 2/6 2/ 2/6 2/6
f7(n1/n3 * f7(712/n2 * f7(ng,/ng * f7(n4/nz = mg 57117"267127”367137”4 7(711/712 ’ (440)
the general ¢** interaction term of the LSZ model simplifies to
_ 9 - = 7 =7
= n;g p (0 Brun O Gedtm + B GGk Sredem) (4.41)
For the Grosse-Wulkenhaar model this simply reads
g
int = 5 _, mnPn m 4.42
Sim =5 5 > Smndnrdredr (4.42)

mnkl

We already know that at the self-dual points § = +2/B the Landau functions diagonalizes also the free
part of the actions. The wave operator P? becomes

1
P? = 4B <aTa+ 5) for = +2/B
1 (4.43)
P? = 4B <bTb+§> for = —2/B,
and analogously for IE’Z2 with a,a’ < b, b" interchanged. Their matrix representations at = 2/B then simply

read
1
mn ke = /f(2/6 (2/0)( ) =4B (k + 5) 6m¢6nk

5 1
BB = [ S347(@) P2 15/”(@) = 45 (f + 5) Ot

For generic 6 the expressions are more complicated:

(4.44)

Lemma 4.2. The wave operator of the two-dimensional LSZ model in matriz representation is given by
1+ 02 40
Gmn;k@ — <N2 + 2(0%(771 + 1+ 1)0meOnk + 7(77, — m)) OmeOnk

021
(\/_nm St Onsesr + /(0 + D)(m+ 1) Ot 5,17,@,1) , (4.45)

with frequencies Q = BO/2 and Q = (20 — 1)Q

Proof: The wave operator in matrix representation is given by
Gunnta = [ $217@) (P2 + (1= )P+ 1) £2/7(@). (4.40)
We show the following relation:

p2_ L

{=op {(2 + BY)? (aTa + %) + (2 — BY)? (bTb+ %) +(0°B* —4) (a'b" + abd) | . (4.47)
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4.3 Matrix Model Representation

This can be verified by inserting the explicit expressions (4.32) for a and b with 2/6 substituted for B. Noting

that
1/2 0
Tpt — Z(Z2.,5.Z _
a'b" 4+ ab 5 <ezz+28282>
1 1 1/2 0
i - i - — Z(Z.,s_Z _
<a a+2>+<b b+2> 2<9ZZ 2826Z>

1 1 1
T ) [ pt - - Z(zH. —
(a a+ 2) (b b+ 2) 2(,28Z 20,) .

we indeed find

2
0

1 1 0 1/2 0 1
2 _ - 292\ = “.5_ 2 _ 2p2 - ‘.5 Z B (59 _
P} = 5 [(4+B9)2 (ezz Qazaz>+(39 4)2< zz+2<9zaz)+4392(zaz 20,)

1 1

= = |B2202% — 200.0 + ABO= (20- — 20.)
20 2

= B’z -0} +2iB(xd, — yd,)

= (—i0;+ Bia?)}.

(4.48)

(4.49)

The corresponding expression for Isf are obtained by interchanging a, a' < b, b. Using (4.36) one can easily

read off the matrix versions of the wave operators P? and P?

1 1 1
(P?)mn;ké = @ |:(2 + 39)2 (n + 5) Ot Onk + (2 — 39)2 (m + 5) Omet Onk

(6287 — 4) (w/—nmam,e+1 Snir + /(0 + D) (m+ 1) mes 5,1,,@,1)}

and

~ 1 1 1
(P?)mn;ké = 2—9 [(2 + 39)2 <m + 5) Ot Onk + (2 — 39)2 (n —+ §> Ot Onk

+ (9232 — 4) (\/nm 5myg+1 5n,k+1 + (TL + 1)(m + 1) 5myg,1 5n,k71):| .

These can be combined to give

O’(P?)mn;ké + (1 - U)(Pf)mn;ké

1 1 1
= 3° [(2 + BO)? (n + 5) Sme Ok + (2 — BO)? (m + 5) Ome 6nk:|

1 1 1
+@(1 —0) [(2 + B)? (m + 5) Sme Ok + (2 — BO)? (n + 5) Ome 674
o (0282 = 4) (Vim b1 Sn s + /(0 F D+ 1) b1 6
20 m,l+1 On,k+1 n m m,l—19n,k—1
2

] [(1 + (39/2)2)(7’)7, +n+ 1)6mZ6nk + (20’ — 1)B(9(7’L — m)émg(snk
+(08/2)* = 1) (Vi 1 Gners + V0 F D+ 1) b1 Gnpe )|

which proves the theorem.

The two-dimensional general LSZ model then has the matrix model representation

SLSZ = Z amnGmn;kfd)ék

mnkl

+% (& Prn®nk Grtdem + B Grn PPt Gem) -

mnkl

(4.50)

(4.51)

(4.52)

(4.53)
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4 Matrix Model Representation of Euclidean LS-Covariant NCQF'Ts

Note that at ¢ = 1 the infinite Landau level degeneracy, i.e. the dependence on only one of the two Landau
indices, manifests itself in a U(oo) symmetry

op—U-¢ , ¢ — o' U (4.54)

This is the maximal symmetry-group of area-preserving diffeomorphisms, and it acts through rotations of
the magnetic quantum numbers n. The phase space becomes degenerate and the wave functions depend
only on one half of the position space coordinates, leading to a reduction of the quantum Hilbert space
at 0 = 2/B [LSZ04]. In position space, this implies an oscillatory behavior of the propagator in the long
variable |x + x| — oo, making the renormalization procedure more involved [RT08].

From lemma 4.2 we can easily follow for o = 1/2

Lemma 4.3. The two-dimensional Grosse-Wulkenhaar wave operator in matriz representation is given by

, 0241
Gmn;ké == 1% +2 (m +n+ 1) 5m€ 5nk
021
2 (\/nmému1 Ssr + /(0 + 1) (m+ 1)5m,€715n,k71) (4.55)

with frequency 2 = B6/2.
The corresponding action reads

SGW = Z <%¢anmn;kl¢ké + QL;‘_H(bmnd)nkd)k@Wm) . (456)

mn;kl

4.4 Perturbative Quantum Field Theory in Matrix Representation

In the following we will demonstrate how the LS-covariant quantum field theories can be defined perturba-
tively in the matrix representation. The matrix representation of GW model is straightforwardly obtained
using the perturbative solution of the generating functional (3.25) and the expansion of the GW action as
in (4.56), which leads to the generating functional

ot 1
717 = _ E — g A 4.
[J] Nexp ( gmnk@ az]mlajékajkna:]nm> b (2 Jmn andJké) ( 57)

mnkl

The propagator solves the equation

Z Gmn;kéAlk;sr = Z Anm;lkal;rs = 5m7"5ns . (458)
ke ke

A precise expression for Ay,,.;¢ will be determined in section 8.2.2. The modified Feynman rules are conve-
niently presented in the double line formalism. The vertex is diagonal and given by

DT = — g mpOngdkrOs
Vi
and the double line for the propagator
L —— .k = A'rm%;ék .
m 14
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4.5 LS-Duality at Quantum Level

Since the GW model considers real fields the Feynman diagrams are unoriented. The double lines have
no distinguished direction, with arrows showing in both directions. They are usually kept for bookkeeping
purposes.

For complex fields each double line has arrows directed in the same direction, either incoming or outgoing.
The matrix representation of the LSZ model reads

o1 &
Z[J] = Nexp | - % T Tin0J

mnkl mnkl

(4.59)
X exp ( Z jmnAmn;kéJk€> )
mnkl
The double lines are now oriented from ¢* to ¢ :
TL_’_IC = Anm‘ék )
m oy ’

The two interaction terms ¢* x ¢ x ¢* x @ and ¢* x ¢* x ¢ x ¢ are represented by different diagrams

i vy

IR Nt kPR P R IEIIIINI N~ R xR D
A id

having vertices —g dppdnqOrrdes times o or 3. Restricting to one of these interactions reduces the number
possible diagrams for the complex matrix model.

Every Feynman diagram is represented by a ribbon graph. Its topological data is now decisive for the
question whether it is divergent or not. The power counting theorem for general non-local matrix models
has been proven by Grosse and Wulkenhaar in [GWO05a].?> More on this in chapter 8

4.5 LS-Duality at Quantum Level

To ensure the LS-duality at the quantum level, we have to find a regularization scheme for the model, which
suppresses possible divergences and at the same time keeps the duality manifestly. We demonstrate the
procedure at the GW model. Using this regularization scheme, Grosse and Wulkenhaar were able to prove
the renormalizability of the GW model in two and four dimensions [GWO03, GWO05b].

Connected Green functions with M external legs are given by

M
1)
i=1 ‘ J=0
with
N0 —

the generating functional of connected graphs. Since the path integral measure is formally invariant under
¢ — ¢, the duality symmetry of the classical action plus the identity

/m o) J(z) = / H(w) J() (4.62)

3 A matrix model is thereby called local if Apmioke = A(m, n)0medpg for some function A(m,n) and non-local otherwise.
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4 Matrix Model Representation of Euclidean LS-Covariant NCQF'Ts

formally yields the identity

WJ;B,g,0] = W[J; B,§,0]. (4.63)
Hence any connected Green function with M external legs formally obeys the identity

G (k... ks B, g, ©) = |det(B)[M/ Gy (12;1, ... ks B, g, é) (4.64)

with GM the Fourier transform of G,; and as before k=B k.

However, to nail this symmetry down, one has to regularize possible divergences while keeping this duality
manifestly at any step in perturbation theory. Note that the propagator for the two-dimensional GW model
reads

S (@) i ()

Alw, ) = 2B (mAn+ 1)+ (4.65)
Since for real B we have
FUEIR) = 2 f0(B k), (466)
which is proven in appendix H, and
FIPIENE) =48 (m + 5 ) FUEIR),
(4.67)

FPEN) =4 (n+ 5 ) FLAEIR),

we find that Fourier transformation relates the propagator in position space to the momentum space prop-
agator

Alk, k') = %A(k, i) (4.68)

This is just the reflection of the classical LS-covariance proven in section 3.3 and coincides with the general
expression (4.64) for g = 0. Following [L.S02a], an appropriate regularization scheme which cuts off simulta-
neously short distances and low momenta in a duality invariant way is to modify the propagator with the
help of the operator P2 4 P2 = —9? + Q%32 Let A € R, be a cut-off parameter and L a smooth cut-off
function which is monotonically decreasing with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. The modified
propagator in position space is thus given by

An(@,a) = (| L(A72P? +P2)) [2!) (4.69)

W=

P} + 3PF + u?

o=

Since P? + IE’Z2 is LS-duality covariant, this is a covariant regularization of the propagator. One expects —9?
to cut off high momenta and Z? to regulate possible infrared divergences. This gets substantiated with help
of the matrix representation.

Contrary to the previous section we adjust the matrix functions such as to diagonalize the propagator

5m€5nk _92
A ; = L(A™“[4B 1
A(mn; k0) e ES R ( [4B(m +n+ 1)])

= OmednrAn(m,n). (4.70)

The interaction vertex in matrix representation is now given by

wtmssmcesmasng) = [ (580,50 5800 2 w0 1550, @), 7
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4.6 Generalization to Higher Dimensions

The Landau functions are elements of a subspace of S(R?), the so called Gel’fand-Shilov space S (R?) with
a > 1/2 (see e.g. appendix C.1), which is closed under the star-product. We thus follow that the interaction
vertex v is well-defined. All Feynman diagrams are now of the form

K
> JT2x0mn) ) (4.72)

mini,...mgng i=1

where (---) is a product of interaction vertex v, depending on the regularized propagator A, and external
vertices mi,ni,...,my,nar. Since the Ay is only nonzero for 4B(m +n+1) < 2A2, all Feynman diagrams
are represented by finite sums, and thus constitute well-defined and LS-duality covariant Green functions
gM(ml, Niy..., MM, 7’LM) in matrix basis.

By multiplying these expression with fT(nle (x;) for i =1,..., M and summing over all m;,n; we get back
the position space Green functions. They are also well-defined and LS-duality covariant, since they are build
by finite sums of well-defined covariant objects. This ends the proof of the LS-duality of the GW model at
quantum level. The proof for the LSZ model is identical.

4.6 Generalization to Higher Dimensions

The D = 2n-dimensional LS-covariant theories are linear combinations of the operators (P?); and (P?)y, for
k=1,...,n,see (3.11). Since all of them commute with each other, the generalization to higher dimensions is

remarkable simple. Taking D/2 = n copies of the Landau functions f\2%), (z),) with @), = (z2*~1, 22%) € R2,
the products

B @) = T A2, (@) (4.73)
k=1

for all multi-dimensional indices m = (my),n = (ng) € N*, B = (B,) € R} and = = (2') € R”, obviously
form an orthonormal basis for L2(R”) and are eigenfunctions of K? and K2. The deformation matrix © is
assumed to be in its canonical form

0 6
—6; 0

(©) = (4.74)
0

with 6; € R. The star product of two such multi-dimensional Landau functions with respect to (4.74)
decouples into products of Landau functions depending on (zog_1,w2r) for &k = 1,...,n. If in addition
By, = 2/0y, for all k, then

(155) %0 Fann ) (@) = G Fins () (4.75)

with 6m’n = HZ:l 6m;€nk

The generalization of the matrix model representation is straightforward. The scalar fields living on R”
expanded in Landau basis read

o)=Y f20(@) pmn

m,n € N"

- (4.76)
o@) = Y 150 (@) n
m,n € N*
where the coefficients are given by
b = (7528.10) = [ @ £287(@) o(a)
(4.77)

o = (F207I[G) = / 0Pz £27) () §(ax)”
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4 Matrix Model Representation of Euclidean LS-Covariant NCQF'Ts

and fﬁiﬁl)(m) given by (4.73) with By, = 20, '. The matrix representation of the D-dimensional LSZ model
away from the self-dual point is given by

SLSZ = Z amnGmn;kl ¢£k

m,n,k,£cN"

+- 9 Z (O Prmn Pk Predem + B Grrr Pt Pt Pem) - (4.78)

276
m,n, k£ eN"
with D-dimensional wave operator
n
Gmn;ke = nginﬁki‘ei 4+ M25ml5nk (479)
i=1

and each Gpy,n,:k; ¢, given by the massless, two-dimensional wave operator (4.45). Any result of this chapter
can now formally be generalized to higher dimensions by substituting multi-indices m,n,... € N” for usual
one-dimensional indices m,n, ... € N.
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5 LS-Covariant NCQFTs in Minkowski
Spacetime

The introduction of an external background field proved very useful in Euclidean NCQFT, making the theory
covariant under LS-duality. Furthermore the occurring wave operators K? and R? have discrete spectra such
that the corresponding models can be handled properly with help of the matrix basis. However, in passing
from the Euclidean LS-covariant NCQFTs to Minkowski signature, the main feature of the wave operators
changes dramatically. The same background field, being magnetic in Euclidean metric, now plays the role
as an electric field.

The presence of an electric-like external field implies a qualitative change compared to the magnetic field
case, due to the work which is done on the particles by the field. The electric field accelerates and splits
virtual dipole pairs leading to pair production. This is reflected in the spectra of the Hamiltonian and of the
wave operators, being now the whole real axis and unbounded from below. The main problem for us is, that
the discrete spectrum of the wave operator was essential for the model to have a matrix representation in
form of a countable infinite set of eigenfunctions which solve the projector property. Surely the Landau basis
can again be used to map this model onto a matrix model, however the free part will not be diagonalized,
which was part of the proof of the LS-covariance at quantum level. A different matrix basis has to be found,
which is tailored for the Minkowskian version of the LS-covariant noncommutative field theories.

In the following we will introduce the LS-covariant models in Minkowski spacetime. We derive their relation
to the inverted harmonic oscillator which possesses the conjectured continuous spectrum. By computing its
eigenfunctions a possible matrix expansion is identified with a resonance expansion. Finally we define the
quantum field theories for both approaches, the continuous and the discrete one. To make the latter well-
defined a special regularization will be introduced.

5.1 LS-Covariant Models in Minkowski Spacetime

We will again work in D = 2n dimensions. Vectors will now be indicated by Greek indices p, v, ... ranging

from 0 to d = D — 1. The signature is given by (1,—1,...,—1).
The general LSZ-model in D dimensional spacetime is given by the action Sy + Sine with
Sy = /dD:B o (x) (aKi +(1- O’)Ri - ,u2) o(x) (5.1)
Sw = =g [P0 a(6" 56w 0" w0)(@) + (6" 6" bx ) (e) (5.2)

with generalized momenta
Ky = 10, — Fa"
R# =10, + Fua”,
obeying the commutation relations
Ku K] =2iF, , [Ku K= —2iF,. (5.4)
and [K,,, K,] = 0. The coordinate system will be chosen such that the D x D dimensional deformation matrix

O takes the canonical skew-symmetric form

0 6
—60; 0

(0 = (5.5)
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5 LS-Covariant NCQF'Ts in Minkowski Spacetime

with @ > 0 for all k. The electromagnetic tensor F},, is given by

0 F
-E 0
0 By

(Fu) = B 0 (5.6)

0 By,
-B, 0

for E, By, > 0 and E6,/2 = B0 /2 = Q for all k and 0 < < 1. The 2n-dimensional wave operators again
break up into n parts

e (5.7)
K: = (P
k=1
The negative of the operators
(Pi)k = (03— + 03y,_1) + 21 Bp(¢® 1 0ap_2 — 2 200k1) — BR(a3)_o + 75_1)
52 2 2 : 2k—1 2k—2 2.2 2 (5:8)
(Pi)k = (035 —o + O3p,_1) — 2i Bi(z Osk—2 — T Oak—1) — Bi(w3_o + 23, _1)
for k = 2,...,n describe two dimensional Fuclidean Klein-Gordon fields moving in an external magnetic
background, already investigated in chapter 4, while
(Pi)l = (03 —0}) —2iE(x' 0 + 2°0y) — E*(x} — x3) (5.9)

(ﬁg)l = —(02 — 0} + 21 E(x0y + 2°01) — E*(x2 — 2?)

describe 1+1 dimensional KG fields moving in a constant electric background with field strengths £2F,
respectively. Again, all two-dimensional operators (P?); and (Isi);€ mutually commute such that diagonal-
ization of the full wave operators amounts to diagonalizing each of its 2 dimensional parts independently.
Eigenfunctions of the operators (5.8) are the Landau functions. What is missing are the eigenfunctions of
(5.9).

The first important observation is that the operators (5.9) can not be obtained from its Euclidean coun-
terpart by an ordinary Wick rotation t — it. Some additional signs have changed, showing that for our
theories the rotation of time has to be accompanied by the transformations B — — i E. This is not surprising,
since this model can be viewed as field theory on a curved, non-static spacetime, for which this is a generic
feature [DeW75]. Another characteristic of those theories is that the degeneracy of the different equivalent
definitions of the Feynman propagator is resolved [CR77]. We will come back to this problem in section 7.1.
The eigenfunctions of (5.9) will be determined in section 5.3.

The extra transformation of the magnetic field strength is in concordance with the fact, that in order to
ensure the relation

[2Y, 2'] = i@% (5.10)

for Euclidean and Minkowskian space, the deformation parameter ©% has to transform accordingly to
compensate the phase coming from the Wick rotation. For LS-invariant theories, the deformation matrix is
related to the field strength, which in turn implies a rotation of the field strength.

The Minkowskian Grosse-Wulkenhaar model in D spacetime dimensions is again the general LSZ model
for ¢ = 1/2 involving real fields. Exactly as in the LSZ case, the D dimensional wave operator reduces
to a sum of n — 1 Euclidean GW wave operators plus a two dimensional GW wave operator in Minkowski
signature

1 1~

S(P2)+ S(B)1 — 2 = — (08 — %) — @ (af — o) — 4 (5.11)
with frequency Q@ = E0/2. The main difference, beside the Minkowskian signature, is an extra minus sign in
front of the Q-term. The corresponding wave operator is an harmonic oscillator with imaginary frequency,
known as inverted harmonic oscillator. We will come across this oscillator in the next section.
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5.2 Mapping onto the Inverted Harmonic Oscillator

5.2 Mapping onto the Inverted Harmonic Oscillator

We need to find the eigenfunctions of the part of the action depending on the coordinates x; := (20, 21) =
(t,x), given by the wave operator o(P2); + (1 — 0)(P2)1 — p*. In the following, we work in 141 dimensions
and drop the index “1” at the wave operators, the coordinates and the deformation parameter. As in section

4.1, we use the Weyl-Wigner correspondence to solve the simultaneous eigenvalue equations

i . (5.12)

Noting that

E?a” xg f(x) = <E2$2 — 1 E*020, — %E2928t2> f(=),
(5.13)

1
E*? xg f(x) = (E2t2 + 1 E%0t0, — ZE2926£) f(),

we find that in the Minkowski case the action of Pﬁ and Isi can be represented as a left- and right-star action
of the classical function E?(z? — ¢2):

E?*(2® —t*) g g(x) = [EQ(:EQ — %) — i B20(x0; + t0y) — £E292(8t2 - 83)} g(x)

0=2/E

=" Plg(x). (5.14)
Analogously one finds P2 g(z) = g(x) 2/ E?(2? — ?). To compare to the Euclidean version we have to
identify B = F and the ordered coordinate pairs (z,y) puc = (¢, ) prink and find

P? f()
E?(2® £1%) %o/ f(x) = { ) : (5.15)
P f(x)
Defining the Weyl symbols
W {\@Et] —q ., W [\/ﬁE:p] —p and W[fn] = Frn . (5.16)
we find the Heisenberg algebra
[@,p] = 2E°[t,].,,, = i4E, (5.17)
and the eigenvalue equation (5.12) can be expressed as
(5.18)

- B :oal s
P2 Fron(@) = W [Franl| = X frun (@)
The operator H, = %(f)Q —§?) is known as inverted harmonic oscillator. In § eigenbasis it has the form

Hi~ 5(-0; —7¢°) (5.19)

N | =

thus it is a harmonic oscillator with imaginary frequency +i~y. Due to the minus sign in front of the
potential ¢2, it describes a one dimensional quantum mechanical particle in a potential which is unbounded
from below! This is an unbounded operator in L?(R) and has a continuous spectrum extending over the
whole real axis o(H;) = R as already anticipated above. This shows that the necessary ingredients which
led to the matrix basis in Euclidean space are not given. In the following section we will investigate the

continuous eigenfunctions and demonstrate, how to squeeze out the matrix nature of the model.
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5 LS-Covariant NCQF'Ts in Minkowski Spacetime

5.3 Eigenfunction Expansion and Resonances

In order to figure out which possibilities we have to describe the LS-covariant models, we will now find
the eigenfunctions of the inverted harmonic oscillator. An analytical continuation of the eigenvectors to
the complex energy plane will reveal a discrete pole structure, which allows us to construct a matrix basis
expansion in terms of resonances. These two competing approaches, based on the continuous an the discrete
resonance expansion, are analyzed and compared afterwards.

The inverted harmonic oscillator is parity invariant, thus each eigenvalue is two-fold degenerated as indi-
cated through an additional index + carried by the eigenfunctions. The eigenvalue equation

(=02 = va*)xi(q) = x4 (0) (5.20)

2 122\ ¢
O: +v+g - | xz(2) =0, (5.21)
where
1
”:*é*i' (5.22)

The differential equation (5.21) is solved by parabolic cylinder functions D, (z) which are defined by

1 2 [ )
Dy (z) == e*iZ/ dte e 2t t—v1, (5.23)
0

In particular, every solution is a linear combination of the functions D, (z), D,(—z), D_,_1(iz) and
D_,_1(—1iz). Only two of them are linearly independent. One such complete set of eigenfunctions are
given by [Chr04]

C L4l .
Y&(q) = iztir(w+1)D_, (:F 7217(]) , (5.24)

\/ 21y

where C' = (y/272)'/4. Taking the other two parabolic cylinder functions, we get the complex conjugated
of the x£. These functions satisfy the orthonormality and completeness relations [Chr04]

/ dgx& (@) x5 (@) = 0sw0(E1 — &) and Y / A€ x5 (@) xS (d) = (g — ') (5.25)
R e

and belong to the space of tempered distributions S’(R). The Gel’fand-Maurin theorem now ensures that
the operator H; can be decomposed on S(R) into these eigenfunctions.! This means each field in ¢ € S(R)
is given by

= dEYEXE) with ¢&= [ d €(q)*, 5.26
) 2/ SEINE) with /RW@XS@ (5.26)

and H; has the spectral decomposition

o= / a4 £ ) (KE | (5.27)

IThe eigenfunctions Xf are not in the Hilbert space L2?(R), which is a characteristic feature of unbounded operators. The
mathematical framework for dealing with unbounded operators is given by the Gel'fand-Maurin theorem. Let A be an
unbounded self-adjoint operator defined on an infinite-dimensional Hilbert space H. Roughly it says that if a rigged Hilbert
space can be found, that is a triplet of spaces ® C ‘H C @', where ® is a dense, topological vector subspace of H and ®' its
topological dual, then, having for each value from the spectrum of A an eigenvector F' € &', we can expand A (restricted to
®) and each ¢ € ® in this eigenbasis. This theorem is the mathematical basis for quantum mechanics. See [dIM05] for an
introduction.
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5.3 Eigenfunction Expansion and Resonances

with abuse of Dirac’s bra-ket notation.

Now the eigenfunctions x¢ possess a peculiar analytical structure, if the energy € gets analytically con-
tinued to the complex plane. It has poles on the negative imaginary axis, and furthermore, its residues at
these poles are harmonic oscillator eigenfunctions corresponding to imaginary “eigenvalues”™ To see this let’s
state the following lemma proved in [Chr04]

Lemma 5.1. The parabolic cylinder functions Dy(z) are analytic functions of A € C.

The analytical structure of the functions (5.24) is thus entirely governed by the gamma-functions. Since

the only singularities of I'(A) are simple poles at A = —n,n € Ny with residues
-1\
Resy=—n (T'(A)) = ( |) (5.28)
mn.

and £ = iy (1/ + %), we see that Xfc has poles at £ = —iv (n + %) with residues

Resg— i (nt 1) () ~ (711!)71 i~#71D, (Fv/=2170) - (5.29)
Now using
Dp(z) =272 = /41, (2/V/2) (5.30)
for n € Ny, we find
Rese_ i (ns1) (@) ~ (FD)"f7 (a) (5.31)

with

— vz
e = (e ) e (). 5:32)

One should note that starting with the complex conjugated functions (Xi)* we would have found poles in
the upper complex half plane, with residues proportional to f,,| =: fF. The interpretation of the
different sets of functions will become clear shortly.

Y—==

One might be reminded of the eigenfunctions of the ordinary harmonic oscillator, which are given by

A vz
_ ~3q
0ul) = (e ) e HLAD). (5.39)
and show up in the Euclidean case. As said before, the inverted harmonic oscillator emerges by inserting an
imaginary frequency +1i~ into the usual harmonic oscillator, which also transforms the harmonic oscillator
functions (5.33) into f¥. Though these are not eigenfunctions in the usual sense, they appear as residues of
the proper eigenfunctions 4. One can easily verify that the fi© are not ordinary eigenfunctions of H; by
looking at the “eigenvalue equation”

. ) 1
AL =+ (n+ 3 ) 120, (5.31)
which follows directly from the defining equation for Hermite polynomials. This equation seems to contradict

the well-known fact that Hermitian operators have real eigenvalues. But the fZ are in &'(R) and H; is not
Hermitian on these states:

(FEIRGFE) # (R fEIFE) (5.35)

due to non-vanishing boundary terms. Apart from this, the f* are not normalizable in L?-norm:

FEIE) = / dq FF () F2(0)
R

~ /quHn( Fivg) Ho(v/£iyg) =o0. (5.36)
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5 LS-Covariant NCQF'Ts in Minkowski Spacetime

Such states are known as resonance states or Gamow states, which were first introduced to describe decay
phenomena in nuclei. They correspond to complex eigenvalues of the Hamiltonian and are a characteristic
feature of open quantum systems. The imaginary part of the “Hamiltonian expectation value” of the resonant
state determines the momentum flux out of the system, which is proportional to (fF|f¥). This expression
is infinite, which mirrors the fact that in an infinite volume an infinite amount of real particle/anti-particle
pairs are produced per unit time. Resonant states always occur as resonant/anti-resonant pairs, which in
our case are the pairs of poles £i+(n + 1/2). For an overview see [CG04, HSNPO0S].

How can these functions nevertheless help us constructing a diagonal matrix expansion of our models?
First of all note that the L? scalar product of f,” with f, can be defined as

(falfm) = Onm (5.37)

by an analytical continuation of the identity (¢, |¢m) = dnm to imaginary frequencies. Thus they form a
mathematical structure called bi-orthogonal system. The naive answer is then that by closing the integration
contour of (5.26) and (5.27) in the lower complex half plane we pick up the poles with help of the residue
theorem. This technique is well known in the physics literature, called resonance expansion. Using

(F1)" D1 (—V/2179) + D—po1(V2i79) = {1—2!7( 22 130, (\/=1qg) (5.38)
we find
—2mi Y Rese—_p, ((dx5)(Ed) = £ (@) (@) (5.39)
s=+
and thus get the following formal expansions
Z £ ) (1)
. (5.40)
Hi =Y (=i + 1255
n=0

Note that in both expansions different functions appear in the kets and bras. This is in concordance with
the pairing defined in (5.37), which is only well-defined for f~-kets with f*-bras or vice versa.

The resonance expansion should be allowed for those functions, for which the integrand of the eigenvector
expansion vanishes faster than 1/r in the lower complex half plane, if 7 determines the distance to the origin.
Secondly, since there are infinitely many poles scattered over a non-compact region, we have to make sure
that the arising sum converges. The ordinary Landau basis were naturally defined on the Schwartz space,
which as its most prominent representative has the Gaussian ¥ (q) = —b¢’  Since this Gaussian already
features all the problems we will encounter, we will try to expand it in the f basis. Instead of verifying
that the integrand vanishes faster than 1/r in the complex plane (which is possible), we will expand this
function directly in f, -basis and check whether

£ Z (@) (FF 1) (5.41)

Though we will find that the resulting series is not absolutely convergent, it inevitably tells us how to overcome
these problems.

As is shown in proposition B.1 the f,; can be represented as?

1 1/2 0 .
= (35E) e [ dacyra@ersi (5.42)

with S(z,a) = La? — \/2yza + “—22 and v > 0. The coefficients 1), = fq f(@)(q) are given by

- in/2 , )
m( ; ) /d:c/da 1) (a) e 15@@) g —b7 (5.43)

2In the notation used in the appendix we have f;, = fr(f 1) with v > 0.
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5.3 Eigenfunction Expansion and Resonances

The z-integration is Gaussian and can be performed

i%zz—i\/ﬂza—k%lf—bzz — ™ l 2 b+ 17/2 5.44
/me \/bm/2eXp{2“ b—in/2 (544)

o (GB) e () faom.

The a integration follows from

/5(a)age02 = e

leading to

n!
{ (()n/2)! n even , (5.46)

hence

v <m>1/2 in/2 T (ibJr w/z)””( n! (5.47)

N3 Vol Vo—1iy/2 \2b—ivy/2 n/2)!"

Putting this back into the expansion yields

2% fr (@)
- LA e

o v=i7\"* i2 s ib+iq/2 ") 1 neven
N3 Vil b—iy/2 \2b—ivy/2 (n/2)! | 0 nodd

_ Z _Tiy () <M> k!ei%rzﬂzk(mz). (5.48)

b— 17/2 b—ivy/2

The sum can be performed using equation (49.4.4) from [Han75]:

H 71/2 4t22
ok (2) = (1 + 4¢) exp | T ] - (5.49)

This formula is clearly not valid for all ¢ € C. Using the asymptotic behavior of the Hermite function for
n — oo [MOS66]

Hy(z) ~ #’2)' e V2n|Imal (5.50)

and Stirling’s formula n! ~ n™e ™" we find

k'HQk( )| ~ |t|k o 2k In2k—2k lnke\/@\jmm\ ~ (4|t|)ke\/@\jmz| (5.51)

In order to get an absolutely convergent series we have to ensure that |t| < 1/4. This is however not fulfilled
in our case, since we have |t| = 1/4. This shows us that the Schwartz space is too big for our purpose.

The problem might be circumvented by considering an even smaller space, like the space of smooth
functions with compact support. The expansion on S(R) might then be defined in some limiting procedure.
But, since we are lying exactly at the edge of the convergence radius, a natural procedure is to make =y
slightly imaginary such that |t| < 1/4 and we can proceed with summing up. We have

=/ t=———1= D2
z ivxr b—iy/2’ (5.52)
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5 LS-Covariant NCQF'Ts in Minkowski Spacetime

which gives us the relevant combinations

1o —b+ivy/2+b+iv/2 iy
4t B b+ ivy/2 C b+ iv/2
4t22 b+ i7/2)(—iy)a?
SN (PSS, 1C NSO 55)
1+4t iy 2
L+t = —b717/2'+b71'y/2: f'l’y .
b—ivy/2 b—ivy/2

Inserting into the sum yields

Dt @)
n=0
fes) . .\ 2k . k
—ix i b+ iv/2 1 2,2 ( . )
— _ — R — . H _
;}\/b—m/2<2) (b—m/Q R N At
_ —iy —1/2 | iZa? | —iZa?—ba?
= — (1 +4¢
\/b—w/2( AT et e
ba?

= e (554)

giving us back the Gaussian we started with. Most importantly, this result is independent of ~y, thus putting
~v back on the real line is no problem at the end. The resonance expansion can thus be understood with
help of the regularization iy — e 'Yy with 0 < 9 < 7/2, while —7/2 < 9 < 0 corresponds to the analog
regularized expansion in f;F-basis. The case 9 = 0 is exactly the harmonic oscillator case (5.33).

This regularization seems to be natural, as it is a well-known procedure in QFT defined on Minkowski
spacetime. There one often encounters pseudo-Gaussian integrals like

—n+1 1
/d:mc"e fas® \/I r (n—i— ) ) (5.55)
R a 2

which have a meaning if regularized in the same way as above. The same integral appears in the scalar
product (f;f|f~) = 6um and has to be understood in this way. The regularized f& will be denoted in the
following by

1/2 ,
o = (54%) e ) (5.50

using the compact notation
v9 = e iV (5.57)

with v > 0. For ¢ € (—7/2,7/2) they possess an exponential decay due to the Gaussian factor, and are thus
Schwartz functions.? Apparently, they are eigenfunction of the harmonic oscillator with complex frequency
~9 which is known as complez harmonic oscillator. In appendix C.2 we show that their linear span is dense
in L2(R). But the occurring sums are not convergent with respect to L?-norm and thus do not build a Riesz
basis [Dav99, DK04]|. Its general applicability will be scrutinized in section 6.2.

To summarize, we have (at least) two different concepts at our disposal to treat the Minkowskian LS-

covariant models. There is the continuous approach based on the eigenfunctions ¢ and the matrix approach

(7o)

using the regularized functions f5'"’. The eigenfunctions of the wave operators are given by

@ = W 0G| @) (5.58)
fE0@ = CW [IF0) 07| (@) (5.59)

with some normalization constants C, and Cy, where the (bi-)orthogonality of Xf and f,(f”) will ensure the

simplification of the ¢** through (2.14) analog to the Euclidean Landau functions. In the next section we
will show how to implement the regularized matrix basis.

3This is in contradistinction to the original functions fr(Li) =limy_4 /2 fr(ﬂﬂ), whose modulus increases polynomially. They

are tempered distributions.
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5.4 LS-Covariant NCQFT and the v-Regularization

5.4 LS-Covariant NCQFT and the ¥-Regularization

We have seen that a regularization is needed to endow the functions f,(zi) with nice properties. Since these
regularized functions, or rather their Wigner transformed counterparts (5.59), will not diagonalize the free
actions we are concerned with, it raises the question how to exploit the regularized functions to find a
matrix representation for the LS-covariant models on Minkowski spacetime? The answer is that we have to
regularize the action anyway to define the corresponding quantum field theory. In section 2.2.3 we enhanced
the action by an additional term ie f ¢?, which ensured the correct asymptotic decay of the integrand within
the generating functional at |¢| — oo and at the same time imposed causality. We will now introduce a
regularization of the model, which will be called ¥-regularization and corresponds to the regularization of
the matrix function above. In case of vanishing background field this turns out to be the ie-prescription.

We know that the f,(ﬂ”) are analytical continuations of the harmonic oscillator functions. So a natural
guess for a corresponding generalization of the free LS-covariant models is

1So[v] = 1 sin(9)SY! — cos(9)SE (5.60)

where S stands for the Minkowskian version and S for its Euclidean counterpart. Obviously this action
relates both signatures, with ¥ = 0 corresponding to the Euclidean and ¢ = +m/2 to the Minkowskian case.
The combinations of the wave operators showing up in Sy[¥] for the different models are given by

e K (9) = cos(9)KF — i sin(¥)K?

g _ N (5.61)
e T 1K(0) == cos(9)K? — i sin(¥) 3,
where the phase factor has been factored out such that
K2(£r/2) = K2 | K3*(+71/2) =K?,
(£m/2) =K, R(kr/2) =K 562)

KA0)=K! . K*(0)=K}.
As will be shown below, the wave operators K(9) and K(19) have discrete spectra with eigenfunctions given
by

E B2 B
iy (@) £330, (2) - f07), () (5.63)
with @), = (22%2,22k=1), B (z,) the usual Landau functions and f\°%) (1) given by (5.59). The
quantum field theory is defined by the generating functional

2zl = iifi/z / D¢ exp (i sin(9)Sy" — cos(9)SF + 1Sine + / J¢) (5.64)
for the GW model and analogously for the complex LSZ model, where one of the two options ¢ — +m/2
has to be chosen. The free action in the exponent of (5.64) can be expanded in the ¥-regularized matrix
basis. Remember that SF is a positive functional on the fields, thus for 9 # 0 this can be interpreted as a
path integral in Minkowski space with an additional convergence factor, corresponding to the — f €p? term
in the free case (2.53). Not really surprising, in the limit £ — 0 the modification (5.60) turns out to be the
ie prescription of the free case:

oe VK2 + (1 —o)e TRW) 4+ e 2 B2 —e T 1092 — e 1992 4 o172 (5.65)

which holds for all o. The ¥-regularization is hence a generalization of the ie-prescription to the external
electromagnetic field case! One is thus tempted to interpret the two different models near +m/2 is —7/2
analogously to the situation in the free case. There, flipping the sign in the exponential of the path integral
interchanges the particle and anti-particle description, by interchanging the Feynman- and Dyson-propagator
(also known as anti-causal propagator) which correspond to different ways of circumventing the poles. It will
be shown in section 7.1.1 that this interpretation indeed holds for E # 0. Without restriction of generality
we will choose in the following always ¢ > 0 and define ¢ = 7/2 — e > 0 for a small € > 0. Denoting

(K?
2

(K:

~

Je = e KEm/2—¢€)— e P (5.66)

_M2 €
—p?)e = eiCRQ(ﬂ/Qfe)fe*iEMQ (5.67)
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5 LS-Covariant NCQF'Ts in Minkowski Spacetime

the regularized LSZ model is defined by the classical action

5(5 = [ 0°(@) (o106 = 1) + (1= ) (K = 42).) o(a)

(5.68)
g (a/w*ww*w)(m) G w*ww)(w))
and the regularized GW model by
S = [ 50t (506~ i)+ 58 ). ) 6@ -5 [ (0x0x050) (@), (5.69)

What remains is to show that these actions get indeed diagonalized by the functions (5.63) in some space of
functions. This will be shown in the next chapter.

Note that the usual ie-prescription amounts to adding the constant ie to the continuous spectrum of the
wave operators, but leaves its continuous character unaltered. A perturbative quantum theory amenable for
the continuous basis approach with functions (5.58) is the generating functional

Z[J] = lim /m exp (isy - e/¢2 + iSint +/J¢> . (5.70)

e—0t

We thus have two possible definitions for a generating functional, while it is not obvious that both are
equivalent.

The perturbation theory of the Minkowskian LS-covariant NCQFT can be derived quite similar to the
usual ¢** theory 2.2.3, where the background field is treated exactly in the Furry representation as in section
3.2. For real fields we write the regularized free actions as

st = / o(x) D o) (5.71)

where Dgf) is the wave operator, which has been regularized in one of two possible ways. The regularization
ensures the vanishing of the integrand in the path integrals for |¢| — oo leading to the free generating
functional

2=t oo (5 [ [ 5@ a0y 1) (5.72)

e—0+ y
with A(©) the propagator defined through one of the equations
(o(K2 = 12)c + (1= o) (KE = 12).) A€, 9) = 6(z — ), -
(JK3+(1*U)R3*M2+ ie) A(E)(m,y):é(mfy). -

This is the point where the regularization could make the difference, since it is not clear initially whether
these two propagators coincide in the limit ¢ — 07. We will come back to this point in chapter 7. The
formal setting of a perturbative analysis of the interacting NCQFTs is now given by

Z[J] :EIiI(I)1+NeXp [wm (%)] exp (%/Z/y J(x) A (x,y) J(y)> . (5.74)

with Si,¢ the interaction part and A/ some normalization constant. For complex fields we get

Z[J,J*]:EE%l+Nexp[iS;nt (%,%)}exp(i/z/y J*(:B)A(e)(a:,y)J(y)) . (5.75)

In the following chapter we will construct the matrix representations of the regularized LS-covariant models.
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6 Matrix Model Representation of
Minkowskian LS-Covariant NCQFT

In the previous chapter we showed that it is possible to find a matrix representation for the LS-covariant
models through a suitable regularization, which has been dubbed ¥-reqularization and is an alternative to
the usual ie-prescription. In this chapter we will try to nail this matrix representation down. In section 6.1
we will use the Weyl-Wigner transformation to map the eigenvalue problem of the regularized wave operators
(5.61) to the complex harmonic oscillator. Its spectrum and eigenfunctions are investigated in section 6.2, as
well as the possibility to expand functions and distributions in terms of these eigenfunctions. The generalized
Landau functions are constructed in section 6.3. Using their Fock space representation, we will finally arrive
at the matrix model representation for the two-dimensional classical models in 6.4 and their corresponding
quantum theories. The generalization to higher dimensions is illustrated in section 6.5.

6.1 Mapping onto the Complex Harmonic Oscillator

The first step is to find the corresponding Weyl symbols of the generalized operators
K*(9) = e ' (cos(9)K} — i sin(?)K?) |

RZ(ﬂ) — v (cos(ﬁ)Rf —i sin(ﬁ)Ri) , (6.1)

similar to the Euclidean and Minkowskian cases in section 4.1 and 5.2, which again split up into two-
dimensional wave operators defined by (3.12), (5.8) and (5.9). In D = 2n dimensions the components (P?);
and (P?)x, and likewise (P?),, and (Isi)k, differ only by a minus sign for k = 2,...,n up to a relabeling of
the coordinates. We thus find

K2(W) = e'? (cos(¥)(P)1 — isin(0)(P2)1) + e " (P})s,
h=2 (6.2)

K2() = e 7 (cos(#)(PE — i sin(@)(P2)1 ) + €27 3 (P).

k=2
What remains is to find the eigenfunctions of the remaining parts of the wave operators. We denote the
k =1 part as
P*(9)
P?(9)

el (cos(ﬂ)(P?)l —1i sin(ﬂ)(Pi)l) ,
ei? (cos(ﬂ)(ﬁf)l — i sin(d)(

Using (5.13), one easily confirms that
P?(0) f (@) = H(0) x2/p) f(2),

-, (6.4)
P=(0) f(x) = f(x) %2/ H(V),
with
H(Y) := E*(2* + ¢2174?). (6.5)
Allocating to each function H (1) a Weyl symbol H(9) we find
N 1 /.. 2 o 2
HW) = 3 (W [ﬁEw} +e?TW [\/EEt} )
1 .
_ - (ﬁ2+ 621196]2) , (66)

2
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6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT

where the symbols W [\/ﬁEx} =p and W [\/ﬁEt} = @ obey the Heisenberg algebra

[@,p] = 2E%[t,x],,,, = 14E. (6.7)

*2/E

The operators H(9) for ¥ € (—/2,7/2) are known as complex harmonic oscillators, and the eigenvalue
equations of our original operators are related to their correspondents on the Weyl side by

P2(0) S50 () = W [AW)FED | (2) = ANED 150 (=)

mn mn

(6.8)

mn

P20) [ (@) = W [FEDR)| () = NED £ (=)

with fsﬂf) = W[ 755{9)]. The spectrum of I:I(ﬂ) and its eigenfunctions f&ﬁf’ will be investigated in the next
section. The eigenvalues will turn out to depend on E and ¢ only through the combination

EelV .= Ey, (6.9)

whereas the eigenfunctions are tensor products of two generalized oscillator functions of frequency Ey/2,
which explains the (Ey)-superscript of the functions. The simultaneous eigenfunctions of P?(J) and P?(¢})
can afterwards be achieved with help of the Wigner transformation

L) (@) = W () - (6.10)

mn

The extension to the full D-dimensional case will be given in section 6.5.

6.2 Generalized Oscillator Basis

In this section investigate the complex harmonic oscillator I:I(19), which turns out to have a discrete spectrum

resembling the harmonic oscillator spectrum rotated into the complex plane by a factor e ?, and whose

eigenfunctions are found to be the regularized harmonic oscillator functions fﬁW) of section 5.3. In addition,

the general applicability of the generalized oscillator basis is scrutinized.
The complex harmonic oscillator in a representation independent form is given by

~ 1 . (0 A
o = 57 + €2176°) (6.11)

with commutation relation
[G,p] = i4F (6.12)

and positive real frequency £ € R,. Since § = W [ﬁEt], it is natural to work in a representation such
that

(d'lalg) = V2Eq(d'la) = (d'Ila) = _iaq?\/é ('la) (6.13)
thus
(dIHW)g) = 4(=04+754°)(dla) (6.14)
with the condensed notation
v9=elVy with y=E/2€cR,. (6.15)
Firstly note that the equation
=33+ 3)on(0) = 870 (4 3 ) onta) (6.16)
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6.2 Generalized Oscillator Basis

is fulfilled even for complex vy, if ¢, (q) is the oscillator function (4.16) with vy substituted for v. We define
the generalized harmonic oscillator functions

(v9) V) 1/2 19 2
Yo - —Faq Vo
as a generalization of the ¢, to complex frequencies, which coincide with the functions found in section
5.3. These possess an exponential decay and are thus Schwartz functions for || < 7/2. We expect that by
continuity, for || small enough, the eigenvalues of the complex harmonic oscillator are given by the set

{8v9 (n+1/2), n e N} . (6.18)
In fact, the values (6.18) are indeed the eigenvalues of H(¥J) for |0 < /2 [Dav99].

The generalized harmonic oscillator functions (6.17) are not orthogonal, and thus do not serve as a usual
Hilbert space basis for S(R). But together with its complex conjugated functions and for Re(yy) > 0,
they constitute a bi-orthogonal system with respect to the L?-norm. This means the two sets of functions

( éWﬂ))neN and ( 7(17’0)),161\; with nonzero 7y and Re(vyy) > 0 fulfill

U1 = [ a6 559 @) = b (6.19)

— 00

which follows immediately from the orthogonality of the Hermite functions by a deformation of the integration
contour to a straight line from —ocoe!? to +ooe'?. This is possible due to the factor e~ %7 in the
integrand, ensuring an exponential decay for SRe(yy) > 0. In addition their linear span is dense in L?(R),
which means that every square-integrable function can be approximated pointwise by a linear combination
of these functions. This is shown in appendix D. To ensure the applicability to arbitrary quantum field
theories, however, one has also to be able to deal with scalar products and distributions. In the following
we will first briefly explain how things work out in the usual oscillator basis ¢, (¢) with positive frequency
v € Ry. Afterwards we will present preliminary results concerning the generalized oscillator basis.

The usual oscillator basis provide a convenient tool in the investigation of tempered distributions and
similar objects. Characterizations of standard classes of functions, as Schwartz space S(R) and its dual
S’(R) and many others are easily given in terms of their expansion coefficients with respect to the oscillator
functions [Sim70], which in the following will be called the Hermite coefficients. Since the issue of how
to implement NCQFT into a mathematically rigorous formalism has still to be clarified, see e.g. [BN04,
Sol07b, Sol07a, CMTV08, Sol09, Sol10], we will only discuss the expansion of several spaces in terms of
the oscillator basis and its generalization. The characterization of Schwartz functions is as follows. For a
function ¢(z) € S(R) with Hermite coefficients

%zéw%@wm (6.20)
one finds [Sim70)]

el = lenl?(n+1)* < 00 (6.21)

for every £ € N. If on the other hand ||7|[x < oo for all k, then > ,¢,(x) converges in the Schwartz
topology to a function in S(R), establishing an isomorphism between the Schwartz space and the space of
fast falling sequences. Moreover convergence in the topology of S(R) is equivalent to convergence of their
Hermite coefficients with respect to the infinite set of norms || - || for k£ € N.

Now suppose that 7' € S’(R) is a tempered distribution with T;, = T'(¢,,) denoting its Hermite coefficients.
Then |T},| < C(1 + n)* for some C and k and

T(p) =Y Tuton, (6.22)
n=0

for any ¢ € S(R) with Hermite coefficients ¢,,. Conversely, if T}, < C(1 + n)* for some k and all n, then
@ — > T,p, defines a tempered distribution. By duality the usual oscillator basis thus provides a mean
to deal with tempered distributions.
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6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT

The extension to larger spaces of distributions, like the space S (R)’ with aw > 1/2, which is the dual of the
Gel’fand-Shilov space S&(R), is also possible in the same manner. The space S§(R) is dense in the Schwartz
space, closed under Fourier transformation and the star-product, which makes them to an appropriate test
function space for noncommutative field theories. For a short introduction see appendix C.1. In [LCPO07]
it has been shown that its elements are exactly those fast-falling functions ¢, whose Hermite coefficients
©n = {(¢n|p) fulfill the condition

> lenl? e @ <0. (6.23)
n=0

for some constant w > 0. Its dual space S (R)’ consists of those distributions 7', whose Hermite coefficients
T, = T(¢y) satisty

T, | < e (6.24)
for all w > 0, and T'(p) for every ¢ € S¥(R) has the representation
T((p) = Z Trn - (625)
n=0
Conversely, for any sequence (T}, )nen satisfying (6.24) for all w > 0, then ¢ — > T}, ¢, defines an element

of S%(R)'.

The question is, if a similar characterization holds if we continue « into the complex plane, thus for the
expansion in generalized oscillator functions. Analogously to the ordinary case described above, we would
like to define the action of a tempered distribution 7' € S’(R) on test functions ¢ by

T(p) =Y TTe), (6.26)
n=0
where
e = (7). (6.27)
and
Té’m) _ T(ffl’w)) (6.28)

for nonzero vy € C with Re(vy) > 0. The generalized Hermite coefficients T exists for every tempered

distribution since £\ € S (R). However, it is not clear for which functions ¢ the series (6.26) is well-defined.

Concerning this question we only have partial results. Note that for any tempered distribution (or Schwartz
function) ¢ we can formally switch between the usual Hermite coefficients, defined for nonzero frequency
~v € Ry, and rotated Hermite coefficients with frequency vy through

P{o) = i e AT (6.29)
m=0
where
Wi = [ da 707 (a) bm(a) (6.30)
is the transition matriz. This follows from equation (6.22) for ¢ = ,(17) and T' = ¢. In appendix B.3 we

show, that for arbitrary nonzero, distinct 3, € C with PRe(y + 3) > 0 the general transition matrix

B = / dq £ () £ (@) (6.31)
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6.2 Generalized Oscillator Basis

has the following asymptotic behavior for given m and large n:

B—
B+

n
B8 M0 =1/

(6.32)

We see that the transition matrix has an exponential decay if the angle between 3 and ~ is less than 7/2. To
answer the question whether there is are functions such that the expansion (6.26) of tempered distributions
is allowed, we have to find the asymptotics of the corresponding generalized Hermite functions. This can be
done using the transition matrix and relation (6.29), since the asymptotics of the usual Hermite coefficients
are known.

A space which is computationally feasible is the Gel’fand-Shilov space of type S$(R) € S(R) with o = 1/2.

In appendix C.2 we show that for this case the corresponding generalized Hermite coefficients <p,(]1’) have the
following asymptotic upper bound for large n

1+ eZr
(o) <2 = 6.33
] S o (6.33)
with
r = |tan(¥/2)]. (6.34)

Thus for a given r € [0, 1] there is a lower bound wy given by

1 1+7r
=1 6.35
o 2“(1r> (6:35)

such that every Gel’fand-Shilov function with w > wg has an exponential decay. However, this is not a
precise lower bound, since we used a rough estimation to obtain this result. The actual asymptotics for
those functions might be better. For fixed ¥ there is thus a space of functions which might serve as test
function space. If we allow r to become arbitrary close to 1, according to the asymptotics of the transition
matrix (6.32) we have to restrict to those functions whose usual Hermite coefficients decay faster than e ~"¢
for every w. The space of functions obeying this condition is space made up of all finite linear combinations
of harmonic oscillators, thus the space spanned by the ¢,. But this is obvious, since every finite linear
combination Z%:o dm(q)am gives rise to a function in the rotated oscillator basis with generalized Hermite
coefficients

N
al’ =" b am, (6.36)
m=0

which, according to the asymptotics of the transition matrix hS{i,{ given by (6.32), have an exponential decay

for || < m/2 in the limit n — oo. This space is obviously dense in L?(R) pointwise.

Using the same methods, analog results may be derived for tempered distributions giving exponential
divergences

n/2
1
+ T) (6.37)

TOw) | A~ 1)4
709~ (0 1) (5

for some ¢ > 0, which have been derived in appendix C.3. Using these upper bounds, one can find sufficient
conditions on the test functions such that the sum (6.26) converges. In order to get a decay which damps
the divergence of (6.37) we find the condition

2—(1—r)?

This has only finite solutions w for r < v/2 — 1 or equivalently ¥ < /4, ruling out test functions made up
of an infinite linear combination of oscillator functions. Again, we have to emphasize that these are rough
estimates and the actual decay behavior might be much better.
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6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT

The question for which spaces of functions this generalized oscillator basis makes sense is thus still open
and will be left for future work. For a specific theory, however, one only needs the asymptotics of the matrix
version of the corresponding propagator, to ensure the convergence of the sums in Feynman diagrams and to
proceed with the renormalization program. We will come back to this aspects in chapter 8 and comment on
the applicability to LS-covariant theories. In the forthcoming chapters, we will use the matrix basis to derive
the propagators of the various theories and find that they coincide with the position space propagators in all
those cases, where results are already known in the literature. In appendix F the one-loop effective action
of the Klein-Gordon theory in a constant electric field is calculated with help of the matrix basis and also
coincides with the known results. By picking up the regularization scheme imposed on the position space
propagator in the Euclidean case, which effectively cuts off the matrix summations at some finite N, the
occurring Feynman diagrams of the 9J-regularized LS-covariant theories are well-defined and LS-covariant.

6.3 Generalized Landau functions

In the following, we go back to the Wigner side, by constructing the generalized Landau functions f,gf;f),
defined by (4.19) through Wigner distribution of the tensor product of two generalized oscillator functions.
We will derive a “ladder operator”-construction, which allows us to obtain the matrix model representation
of the LS-covariant models. Temporarily we set 6 = 2/E and thus x = xy/5.

We can use a similar construction as in the Euclidean case in section 4.2 by relating the ordinary to the
complex harmonic oscillator functions using complez scaling methods. Introducing the Hermitian scaling
operator

N v o
V(9) = exp (—B(pq + qp)) (6.39)
and using
1
eXYe X =Xy =V 4 [X,V] + Sl X XY+ (6.40)
we see that ) ,
V@) gV@)t=elzq,
A( )qA( : _i' (6.41)
V(@) pV(0) ™ = e %p.
The complex harmonic oscillator is thus related to the ordinary one by
HW) = e'"V(®)Hy V()™
1 .
= 3 (p> + e?'7g?) , (6.42)

while the generalized eigenfunctions can now easily obtained by the oscillator functions |¢,,), where (¢|¢,,) =
®n(q) as in (4.16), by noting that

HW)V(9)|gn) = ¢ V(@) Hio[dn) = ¢ '8 (n +1/2) V() |¢,) (6.43)

and the corresponding eigenvectors are related to the oscillator wave functions by

F99(a) = (@l f07) = @V @)|on) = e o, (e17/2q) . (6.44)

From here on we can continue deriving the corresponding results for the generalized oscillator functions
similar to the Euclidean case, with generalized Landau function given by

(Eﬂ) \/7\,\/ )| dm) <¢,n|v( )}( ). (6.45)

where normalization constant has been chosen such that again

/da: FLED) () = %5,% : (6.46)
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6.3 Generalized Landau functions

Using the explicit representation for the Wigner transformation (2.10) we see that complex conjugation
yields

* E —iLkx  /  /
E @ = i [ ke B kAN Do 0n W@ - k/2) = 5 @) (647)
and the projector property takes the form

(550« 5E) (2) = LW (V) n) (60lon) (00 ()] () = @ o fr” (). (6.48)

Together with the normalization condition this implies the bi-orthogonality of the generalized Landau func-
tions with respect to the L? scalar product

<f7(n€10)|f1§570)> = /dm fég{ﬁ)@?) f}igEiﬁ)(?E)
_ /dm (fg;ﬂnfw*féffﬂ)) (@)

E E_
Vi [deomss @)

= Spne. (6.49)

The explicit expressions of the matrix basis functions are given by

Theorem 6.1. The generalized Landau functions fﬁgf)(:c) with m,n € Ny are given by

: [E  [min(m!, n!) _
(Ey) t _ 1 min(m,n) [~ ; E\m n|/2
S (1) =) 7\ max(m!,n!) ¥

By (9), (9) —n m—n
O G e gl (Eﬂ@z@) (6.50)

X € —sgn min(m,n)

with zf) =t+ie "z and L& (z) the generalized Laguerre Polynomials.

The proof is given in appendix E. Setting 9 = 0 this result proves the Euclidean counterpart given in lemma
4.1. Noting that

EgzV2” = E(e'? 4 e 172?)
= E{cos(9)(t* + %) + isin(9)(t* —z%)} . (6.51)
we see that similar to the f,(g ?) these functions are Schwartz functions only for |J| < 7/2. In particular they

are in S%(R?) for all > 1/2. At 9 = £7/2 we have a polynomial increase and thus tempered distributions.

The Fock space representation of the harmonic oscillator functions has a counterpart in the complex scaled
version, which will be very useful in the explicit determination of the matrix versions of the LS-covariant
models. Note that

Vo Yo — \ (5T)m (5)n 7—1
OO = )T ldo) ool =V (0)
= e (Y @) ) (Ve @) (6.52)

A(ﬂ)éTv_l(ﬂ): ei19/2€|_ ie—iﬂ/Q*)
N . -, (6.53)
V()aV (W) = e W2+ ie"19/%p.
Since W [ﬁEt] =q and W [ﬁE:ﬂ] = p we find
W {V(ﬂ)aTv—l(ﬁ)} === w [V(ﬂ)éV‘l(ﬁ)} = /=% (6.54)
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6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT

where we introduced generalized light cone coordinates

2 =ttie iy, (6.55)
The corresponding derivatives are given by

o) =8, Fiei?d,, (6.56)

with 85;9)z(f) = 2 and 8;19):0(;9) = 0. The matrix functions on R? can now be obtained via Weyl-Wigner
correspondence

D = Wi ]

mln!

1 E *7 E *7
B m(\/f%(—m) *W['févﬂ)“fé”)'}*(\/ fz(f’> - (6.57)

Analogue to section 4.2 we define ladder operators through'

(@x@> xg(®@) = ajp 9(@) (@ﬁ”) *g(®) = agp, 9(@),
g(m)*(\/%w@):b{mg(w) , g<w>*<@x@>=b(m>g<w>.

The operators on the rhs can most easily be obtained by expressing the star-product in terms of the gener-
alized light cone coordinates. Inverting the relations (6.56) we get

(6.58)

1 —iv
O =50+ o, = 62—1(8(_19) — oy, (6.59)
thus
i 1
é(ata; —9,0]) = E(a@a’j’” — oWy, (6.60)

The ladder operators are then given by

FE 1 1 1
+ Y () (W) _ (9) ()
“En TN (zﬂF Tap, 2% ) 2 (VE_“’%F V% > ’
(6.61)
By (@) 1 o) 1 () L )
bt =4/ =2 —20 == E —9
(Es) 4 (le: + 9F, U+ 5 \VEoTL F 95 )
and fulfill the relations
_ 1.9 9
|:a’(E19)’ aerg):| = 5[8(— )7 :C(— )] =1 ) (662)
- Low) (9

whereas all others are zero. We note that the equations derived above are formally identical to those obtained
in the Euclidean case in section 4.2, when substituting Ey for E. Of course both coincide for ¥ = 0. The
ground state is determined by

_ E _ B
aip Fon " (@) = b fi0 (@) = 0 (6.64)
plus the normalization condition
2 (By) L
4"z foo " (@) =/ & (6.65)

LSince (aE"Eﬁ))Jr #* a(_Eo) and (bE"Eﬁ))]L #+ b(_Eﬁ) they are strictly speaking not ladder operators, but we will nevertheless call
them as such.

56



6.4 Matrix Model Representation of the Regularized LS-covariant Models

which has the solution

E
50" (@)= Ze (6.66)

The functions fmn have the ladder operator representation

a+ m b+ n
Fi (@) = (% “j;%) b (@). (6.67)

It immediately follows that

A IS (@) = Vm ) (@), aly, JSE (@) = Vi 11 (),

(6.68)
b LoD (@) = Vafiis y(x) bl B (@) =Vt L ().

We will use these relations to obtain the matrix representation of the models in the next section.

Note that the problem of the right test function space is the same as in the generalized oscillator case.
The results of the previous section carry over directly to the Wigner transformed case, using the following
result [Teo06]:

Lemma 6.2. Let 1) € S2(R?), o € SE(R?)'. Then ¢ € SE(R?) if and only if W [|){¢|] € S¢(R??).

Following this lemma, we can relate the subspaces of Gel’fand-Shilov spaces S%(R) found in the previous
section to subspaces of S¢(R?) via Wigner transformation.

6.4 Matrix Model Representation of the Regularized LS-covariant
Models

Using the Fock space representation of the last section we will now derive the matrix representation of the
classical regularized actions (5.68) and (5.69). In the following we denote

€ — fr(r%@fﬂ) (6.69)

mn

with ¥ = 7/2 — €. In addition we set * = x¢ with § # 2/FE in general, which means that the generalized
Landau functions diagonalize the interaction part, but not necessarily the free part of the action. As in
section 4.3 we will assume the fields to be such that the expansion in generalized Landau functions are
well-defined.

We expand the scalar fields in terms of the generalized Landau basis

)= fon(@) S

o (6.70)
) =Y frn(®) Gun
where the coefficients given by
= [ P £ (@) 6(2)
(6.71)
= [ P fi(@) o)
Using the projector property (6.48) we find
1
N * f€ * f€ * f€ = ———30nymaOnamsOnsma frngn, - (6.72)

miny mana ms3ns mang
V270
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6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT

and thus the LSZ interaction
55 (a0 B Oius, Dt P + B Pin Pt DieePiom)
(6.73)

and GW interaction

57 O (Gndiu Shedin) (6.74)

mnkl

The free parts of the actions can be deduced from the following

Lemma 6.3. The wave operator of the two-dimensional LSZ model in matriz representation is given by

o ; C(1+0? 40
G'En;z;)ké = <_ e 16M2 + 21 %(m +n+ 1)6m€6nk + 7(774 — m)) 6m€6nk

02 —1
9 (\/nmé‘m’”l 5n,k+1 + v (TLJr 1)(m+ 1) 5m14,1 5n,k71) (6.75)
with frequencies Q@ = E0/2 and Q = (20 — 1)Q.

Proof: The wave operator is defined by

Gooihe = /fﬁm (e “Pm/2 =+ (1= 0)e “Pim/2— ) — e 7' p?) fiy(a). (6.76)

One finds

eiﬁ

P2(Y) = [(2 + E0)? <a+a + %) +(2- E9)° <b+b + %) + (02E% — 4) (a*b" + ab)] (6.77)

and a similar expression for |52(19) with a* and b* swapped. The verification of these expressions can be
done exactly as in the proof of lemma 4.2 by simply substituting 6_y for 0 and Ey for B. The matrix
representation of P2(1)) and P?()) away from the dual point can be obtained from (6.77) with help of (6.68)
leading to
2 el 2 1 2 1
Pmn;kl(ﬂ) = 20 |:(2 + E@) (m + 5) Ot Onk + (2 — EG) (n + 5) Omet Onk

1 (6°E% — 1) (,/_nm S b1 Ongst + /(0 + D)+ 1) Gmp1 5n,k_1)} (6.78)

and
N e i? 1
P?nn,kl(ﬁ) = 20 |: 2 + E9 ( _) ml 5nk + (2 - E9)2 (m + 5) 5m€ 5nk
+ (0°E* — ( MM Oy 041 O kr1 + /(R + 1) (M 4+ 1) 8y p—1 O ke 1)} . (6.79)
which can be combined to give (6.75). O

The regularized LSZ model in two-dimensional Minkowski spacetime then has the matrix model representa-
tion
€ €,0 g e € e € e e € €
S = Y GGk St g O (O FnGin G + B GBS Sin) - (6:80)
mnkl mnkl

A perturbative expansion of the generating functional in matrix basis is similarly obtained as in the Euclidean
case 4.4. The generating functional of the LSZ model reads

4
zZlJ] = eli%ﬂNeXp( 10492 0J5,,073,0J5,,0J5, )
94 (E o)
X exp | — i ﬁg € € Te Te J mn E ) (681)
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6.4 Matrix Model Representation of the Regularized LS-covariant Models

(e,0

mn; ké

Z Gmn ke lk sr Z Afzer:)lkael C;:s - 5 5 : (682)
ke

(e:0) .

defined as the inverse of G, * " ,:

with J¢, and J¢,, the sources in matrix basis and the propagator A ¢

The modified Feynman rules are presented in the double line formalism and are exactly as in the Euclidean
case. The double lines are oriented pointing from ¢* to ¢ :

b Al
m 4

The two interaction terms ¢* * ¢ x ¢* x ¢ and @* * ¢* *x ¢ x ¢ are represented by different diagrams

::::::::':: T~ kPP R ::::::;::: TNt R PR DR D

having vertices —1ig dmpdngdirdrs times a or 3, respectively.

The GW model can be treated identically. One can immediately follow from lemma (6.3) by setting
o=1/2:
Lemma 6.4. The reqularized Grosse-Wulkenhaar wave operator in two dimensions has the matriz represen-
tation given by
2

e P41
e = (—emto et

02 -1
~ (\/_nmam,@+1 Ssr + v/ (n+ D)(m+ 1)5,”,@_15”,,%1) (6.83)

(m +n+ 1)) Omet Onk

with frequency Q = E0/2.

The Minkowskian GW action then reads

€ 1 € g € € € €
Sé'Y)/V = Z (5 mn mn ke¢k€ + We(bmn nkd)kéd)ém) : (684)
mn;kl
The generating functional is given by
. ot i .
Z[J] = lim N exp( ig ) YA AR >exp (5 DN MJM> (6.85)
mnke tk mnkt

with the propagator A( ©) -y being the inverse of G( Y and being represented by the unoriented double line

k €
n_.__' = A’En)n k-
m /

The vertex of the ¢** interaction is given by the graph

R = - ig(smp(an(skr(sﬂs .

Since the vertex is oriented there will be as many diagrams as in the LSZ action with both parameters a
and 3 turned on.
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6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT

6.5 Generalization to Higher Dimensions

The generalization to higher dimensions can be obtained similarly as in section 4.6. By definition, the
D = 2n-dimensional operators K*(#9) and K2(9)) are given by

K2(9) = P2(0) + 21V i(Pf)k
k=2

n (6.86)
K@) = P2(@) + 17 Y (PP)s
k=2

according to equations (6.2) and (6.3). We found that the spectra of both operators are given by

{4Be (0, +1/2)+ > 4Bpe® (0, +1/2), f1,..., 0, €N}, (6.87)
k=2
where the eigenfunctions are products of generalized Landau functions from section 6.3 fn, (13:1791)1 and ordinary
Landau functions from section 4.2 fr(n%h)k

T (@) = S50 (@) 300, () - S50 (@) (6.88)

with ¢y = (22672 2%~1) ¢ R?, z = () € RP, m = (my),n = (n;) € N* and Fy = (Ey,Ba,...,B,) €
C4 x R}, where C; denotes the complex numbers with positive real part. The deformation matrix © is
assumed to be in its canonical form

0 6
—0; 0

with 6; € R. The star product of two such multi-dimensional, generalized Landau functions with respect to
(6.89) decouples into products of Landau functions depending on @y for k = 1,..., n. If in addition £ = 2/0
and By = 2/0y for all k, then

(15507 %0 fiwin ) (@) = b Fi (@) (6.90)

with 6m’n = HZ:l (Sm;cnk
The generalization of the matrix model representation is straightforward. To confirm with our previous
notation we set = w/2 — e > 0 and use the notation

(@) = Hfr(f,fnik (). (6.91)

k=1

The ff,,, are arranged such as to simplify the interaction part but not necessary the free part of the action.
The scalar fields living on R are expanded in the generalized Landau basis

Y fan(@)

e e (6.92)
Y Frn(®@) G
m,n € N"
where the coefficients are given by
o = [ 472 (@) 0(2)
(6.93)

Tonn = [ 472 fom(@) bla)"
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6.5 Generalization to Higher Dimensions

The matrix representation of the D = 2n-dimensional LSZ model away from the self-dual point can be
obtained by comparing the operators (6.86) with its two dimensional constituents and their matrix represen-
tations given by the equations (4.50), (4.51), (6.78) and (6.79). The matrix LSZ operator is thus the sum of
the two-dimensional Minkowskian case given by (6.75) plus n — 1 copies of the massless Euclidean operator
given by (4.45) times e ~'¢, where we set again ¢ = m/2 — e. Noting that the massless LSZ operators in
Euclidean and Minkowskian space differ only by a factor “i”, we can write

n

GS::;:,?IQZ - igfr(;)nl;kﬂl o eiiezgf:;)"i?kiei o eiie'LLQ (694)
=2

with m = (myg),n = (ng), k = (ki), € = (¢x) € N" and Gy ke the two dimensional, massless, Euclidean LSZ
matrix wave operators

" 02 +1 40
gfn'r)z;kl = (2 0 (m+n+1)+ 7(" - m)) Ome On k
02 -1
+2— (\/nmém,g+1 Snksr +V/(n+ D)(m+ 1)5m7g_15n7k_1) (6.95)

with Q = F/2 = B;#/2 and Q = (20 — 1)Q. The 2n-dimensional, regularized LSZ action is then given in
the usual form

Sisz = Z _:nnGS{Z?ke Dk
m,n,k.c N
—g A€ € e € e e € €
* 26 Z (O D ik PheePem + B Orrun Prate Dt Diom) - (6.96)
m,n,k,£cN?

Every other result of this chapter can now formally be generalized to higher dimensions by substituting
multi-indices m, n, ... € N for usual one-dimensional indices m,n,... € N.
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7 Aspects of the LS-Covariant Theories

In this chapter we will treat several questions concerning the LS-covariant models in Minkowski spacetime,
like the determination of the causal propagator, LS-covariance at quantum level and unitarity. Problematic
for the propagator and the unitarity issue turns out to be the lack of translation invariance, which manifests
itself in an instability of the vacuum with respect to pair production. We review how the ordinary procedures,
one is used to, have to be altered to take care of these features. In addition, the two different possibilities
to treat these models, the continuous and the matrix basis, will be compared. We will first comment, on
the corresponding propagators, which one obtains by removing the J-regularization. Afterwards we discuss
their applicability to Feynman diagrams in the case 2 = 1. The question of how to implement LS-duality at
quantum level is given in section 7.3. The unitarity of the LS-covariant models will be discussed in section
7.4.

7.1 Causal Propagator

It is a feature of all frequently considered physical theories on Minkowski spacetime that there is more than
one propagator, that means a function (or distribution) A which solves the equation D, A(x, x’) = §(x — ')
with D, being the wave operator of the theory. Any two of these differ by a solution of the equation of motion.
It is therefore necessary to impose further conditions as to make the solution of this problem unique. This
may be done by imposing boundary conditions, postulating a spectral representation or extending the wave
operator as to make the equation unique. We are mainly concerned with the question which propagators
show up in the generating functionals (5.74) and (5.75). The free generating functional Zy[J] is defined as
the vacuum-to-vacuum amplitude

Zo[J] = (Q, out|Q2, in)[J], (7.1)

where |Q2,in) and (2, out| are the vacua at time instances t;, and t,,: of the quantum theory defined by
So[] in presence of the source J. Using Schwinger’s action principle, one can show that causality implies

6% log Zo[J] _ (0, out| T ($(x) ' (y))[0, in) (72)
80J(x)6J(y) |, (0, out|0, in) ’ ’

where ¢ is the field operator and |0, in) and (0, out| the in- and out- vacua for .J = 0, which in the presence of
further interactions are supposed to be in the interaction picture with respect to So[p]. Note that for theories
which allow spontaneous pair production, which is the case for the LS-covariant models we are considering,
the in- and out- vacua are in general not dual to each other, thus |(0, out|0,in)| < 1 which has to be taken
into account. This is evident, since (0, out|0,in) measures the vacuum persistence and is equal to 1 only if
no spontaneous pair production occurs. The rhs is known as causal propagator and will be denoted as i A,
where the imaginary unit has been factored out for convenience. Quite generally, for a Klein-Gordon field,
which may be free or moving in an external background which preserves vacuum stability, the expression
(7.2) may be evaluated as

iA(ea) = 06 -2)Y 6D (@5 P (@)

+ 0@ =2 ¢ (2)p 7 (a) (7.3)

with ( %i)) being a complete set of solutions of the equation of motion with positive and negative frequency,
respectively, and n being an index comprising the quantum numbers. One can check that (7.2) propagates
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7 Aspects of the LS-Covariant Theories

particles (positive frequency solutions) forward in time and anti-particles (negative frequency solutions)
backward. This is the imprint of causality and lends the causal propagator its name.

The situation gets more complicated if the background field spoils vacuum persistence. Crucial for the
canonical quantization scheme and for equation (7.3) to be applicable is the existence of a complete set of
solutions, which allows for a distinction between positive or negative frequencies through all times. However,
such a set of solutions only exists if we are dealing with a “stationary spacetime”, which says that the
spacetime allows for a global timelike Killing vector field [DeW75]. In our case, there does not exist such
a vector field due to the lack of time translation symmetry. The methods to be used have been developed
in [Git77, FG81]. Since the asymptotic Hilbert spaces in the remote past and future, provided they exist,
are different, we have two sets of solutions, denoted as (¢, *)), and (én(+))n and being the equivalent to
positive/negative frequency solutions above in the infinite future and past, respectively. The generalization
of the sum over solutions (7.3) then reads

iA(m,2) = 0" -2 ¢m (@ wimTn®) Gy (@)

+ 0@ =2 guy (@) w(m™In7) 3, (@), (7.4)

with w(m*|n¥) being the relative probability for a particle/anti-particle to be scattered by vacuum (see

also section 7.4). For a theory with a stable vacuum this is just d,,, and in addition qﬁn(i) = ¢p(+)- This
procedure determines the propagator uniquely and is equal to the definition (7.2), but might at times be
quite complicated to perform, for which it is desirable to have another method at hand.

Such an equivalent method, which will proves profitable for us, is the eigenvalue representation. Let o, (x)
be an orthonormal and complete set of eigenfunctions of the wave operator D, with eigenvalues A, i.e.

with

S (@) pu(a’) = Sz — ') and / () P (&) = b (7.6)

Note that, contrary to the qﬁ%i) above, these eigenfunctions may not solve the equations of motion. Decom-
posing the propagator into these eigenfunctions gives formally

A, a') = Bu(@)\, eala), (7.7)

however singularities at A\, = 0 for any n pose problems to this definition, which reflects the fact of having
more than one propagator for a single theory. Usually one modifies the denominator by a small imaginary
part A, — A\, + ief(n) with small € > 0 and f(n) some function such that

A+ ief(n) #0 , Vn. (7.8)

A propagator for D, is finally obtained by taking the limit ¢ — 0. Equivalently one can regularize the

operator D, — D' with lim, .o D' = D, and solve the equation

DA (z,2") = §(x — 2'), (7.9)

where lim,_,o+ Al (z, ') is a propagator of the original operator D,. Hence any well-defined operator which
is continuously connected to the original operator and has no zero eigenvalue gives rise to a propagator for D,.
However, apart from the absence of zero eigenvalues of Dgf), or equivalently condition (7.8), the regularization
is arbitrary, and different regularizations may lead to different propagators. For example in the free Klein-
Gordon case f(k) = const. > 0 leads to the Feynman propagator, while f(k) = 2k° yields the retarded
propagator. In general one cannot be sure whether one got the causal propagator unless one compares it
to the result obtained from (7.2). This is the obvious problem of the eigenvalue method, and it is still not
solved for the general case of any propagator and any external field.
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7.1 Causal Propagator

For the LSZ model the two different regularized operators are

D\ ise = 0(KE =)+ (1= 0)(K2 = ) (7.10)
Déﬁ,)cont = O—Ki + (1 - O—)Ri - MQ + i€, (7].].)

introduced in section 5.4. The question to which propagator they lead in the limit ¢ — 0 has been answered
for the ie-prescription for several related models. For the KG field moving in crossed or parallel uniform
electric and magnetic fields, or in an electric field with an additional plane wave, this method gives the causal
propagator [Rit70, Rit78, BFS85]. Since an additional uniform, constant magnetic background should not
change the pole structure of the propagator, we do not doubt that the ie-prescription will also give the causal
propagator in the case of a pure electric field. In the next section we will confirm that the ¥-regularization
(7.10) gives the same propagator.

7.1.1 Propagator from Matrix Regularization

The equivalence of the propagators in the different representations have to be checked by hand, which is
easily done in the free case. For generic electromagnetic backgrounds this is still an open question, and in
order to make a comparison we have to restrict to cases where the propagators are already known. Using
the “sum over solutions method” (7.4), the causal propagator for a scalar field in four dimensions with a
constant, uniform electric field along one space direction has been calculated in [FGS91] (equation (6.2.40)):

E . e ’ > ds 1
Ac N — 6— L5z -Ex) / — T v
(ma z ) 1672 e 0 S Sil’lh(SE) (7 12)

i ! )2
X exp{—is;ﬂ — %eE(w” _mﬂ)Qcoth(SeE) + lw} ]

4s

Here we defined x = (z, 1) € R* with 2, denoting the two space components perpendicular to the electric
field and

.’BH -E - :L‘il = E(z”)#eﬂy(zﬂ)y y (713)

where €, is the two-dimensional Levi-Civita-tensor with g1 = 1 and £ > 0 the electric field strength. Below
we will start with this four-dimensional wave operator, where the electric part is regularized as in (7.10),
and calculate its (unique) propagator. For ¢ — 0 we find coincidence with (7.12) confirming that this is the
causal propagator. This result can easily be carried over to the two-dimensional case confirming that the
¥-regularization leads to causality for the LSZ model at 0 = 1. We conjecture that this also holds for o # 1.
The calculations done here using the matrix basis are comparable simple, such that the matrix basis can be
seen as a powerful computational tool.

We define the map (-,-)y : R? x R? — C for ¥ € [-7/2,7/2] by
(x,x")y = cos(V) (z, ') g + isin(?) (z, 2" ), (7.14)

where (-,)as is the two dimensional Minkowskian and (-, ) the two dimensional Euclidean scalar product.
In addition we define the map | - || : R? — C by

lely = (2, 2)
= cos(V)||x||g + 1sin(d)||x| rm (7.15)
with || - [|g the two dimensional Euclidean and || - |5 the two dimensional Minkowskian norm. For arbitrary

two-dimensional vectors «, 2’ € R? we denote as above
x-E- -2’ = Exte,a". (7.16)

We need the following lemma
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7 Aspects of the LS-Covariant Theories

Lemma 7.1. Let ¢ € R? and a € C — {0}. The following identity holds

E E
Z FLED () o) (2")a" = Zexp {—§|w — 2|3+ (a—1)B(x,x' )y —aiz-E- :B'}
T
X Ly (Elle—2'||j —a(l—a ")E(@, )y +(a—a ") iz -E-a') .
(7.17)
Proof: is given in appendix G.
An immediate corollary is
Corollary 7.2. The following relations hold
E / —1)2
S i@ e = Zetnretgnp, (—plg)s) (119
T a
n=0
E E
Z K@ IE @) = Zew{-Flo-ali-iz-B-o' b (Bla-o})  (119)
T
E
Z f(Eﬂ) (Eﬂ)(m) = . (7.20)
7r

Now we determine the propagator of the Klein-Gordon field in four dimensions exposed to a constant electric
field, where the wave operator parallel to the electric field is given by the two-dimensional, regularized
operator (Pﬁ - uQ)E. The coordinate vector is again written as @ = (z, 1) with x; being the components
perpendicular to the electric field, and analogously for the momenta p = (pj,p1) and derivatives J, =

(9),01).

Theorem 7.3. The propagator of the regularized wave operator Dgf) = (Pﬁ — /f)e +(10.)?% coincides in the
limit ¢ — 0 with the causal propagator (7.12).

Proof: The inverse of Dgf) is given by

! )
P2 2). 4 (10,2 ")

©w

A9z, x') = (x (7.21)

where (P? — p?)c + (101)* = e “P*(n/2 —€) — e 7 '“p® 4 (191)* with € > 0 fulfills the eigenvalue equation

—

(P2 — %)+ (181)? M( B (g ) o~ P

= {14E (m+§) +pL—e '€ 2} F3E) () e ~iPLTL (7.22)

with ¥ = 7/2 — e. We simply write 2 for e ~'¢u?, keeping in mind that p? is slightly imaginary. Using the
identity

1 o ;
—=—i / dse'*® |, Jm(a) >0, (7.23)
a 0
we obtain
1 d? pL S E Eg) (!
@l (grz) 1) / o[ GEE Y IE @) )
Pﬁ o ’u2 € m,n=0 H
715# efs4E(m+ ) isp? —i(zL—a' )pL ) (724)
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7.1 Causal Propagator

The sum over n is given by relation (7.19), leading to

B —izEx|—L|x—x||3 > dsz_ = /2
fI;e I 1~ e —zy [l i ds (2ﬁ)27;)Lm (E||a:H—a:”||19)

s 2 N 1 S em2 3 2.
% e ism e—‘s4E(m+2)el‘5pL i(xy acL)pL’ (7-25)

and the resulting sum over m follows from equation (48.4.1) of [Han75|:

= 1 t
S i = e {2}
m=0
1 yt1/2+t_1/2

which yields

E _ iz Bz [ 1
_ 1) - Ly ds——M
Yo ¢ /0 *Sinh(2sE)

1 32 (7.27)
Cio2 T 712 PL isp®—i(x,—a')p.L
X exp{ isp 2E19||m” + )% coth(2sE)} / @n)? e .
The integration over the momenta can be done using
/dpe ispz— i(z—y)p _ i e i —(IZE)Z (728)
s
yielding
— e - -
82 o S sinh(s2F)
1 )2
X exp {isu2 - EEﬂHa?” — x| |3 coth(2sE) + 1%} ) (7.29)

where the scalar products are understood to be Euclidean for the &, components. Taking the limit ¢ — 0,
thus ¥ — m/2, and substituting £ — e¢E/2 to conform to the conventions of [FGS91], this result is identical
to equation (7.12) and proves the lemma. O

The eigenfunctions for the full regularized operator Dgf) factorize into components perpendicular to the

electric field and the eigenfunctions of (Pﬁ — u?).. Since the eigenvalues of the perpendicular momenta do
not produce new singularities, we can neglect them in this calculation and also in the calculation leading to
(7.12). Again they perfectly agree, extending this result to the two dimensional LSZ model at o = 1. We
suspect that the ¥-regularization leads to the causal propagators for o # 1, too.

Note that the Schwinger parameter introduced in equation (7.23) only allows for the regularizations ¢ > 0
and p? — ie because of the condition Jm(a) > 0, where the latter is usually associated to the Feynman
boundary condition on the propagator. The other choices ¥ < 0 and p? + ie can be applied using

1 0 :
—=1i / dse'® | for Jm(a) <0. (7.30)
a — 00

The regularization ;2 + ie is known as Dyson boundary condition, which leads to an anti-causal propagator,
where anti-particles travel forward and particles backward in time. This suggests the conclusion that the

regularization ¥ < 0 leads to the Dyson propagator.
The regularization of the mass u?> — e ~1¢u? is actually irrelevant for the analysis above. Its only function
is to provide a continuous relation of the Minkowskian and the Euclidean wave operators with help of
parameter 9 alone, without the need to keep trace of additional minus signs in front of the mass term. This
means that the interpretation in terms Feynman/Dyson propagator for the cases ¢ — 9 4 /2 still holds by

regularizing just the operator Pi.
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7 Aspects of the LS-Covariant Theories

The derivation of the propagator with help matrix basis may be compared to the calculation with other
methods, such as Schwinger’s derivation in his proper time formalism [Sch51], the “sum over solutions
method” [FGS91] or the eigenvalue method using the continuous basis [Rit78]. Compared to the latter the
matrix basis involves only polynomials and sums instead of the complicated integral expressions and thus
brings along a strong simplification. As a further example how the matrix basis can be used serves the
one-loop effective action of the same model as above. It has been calculated in appendix F. It is proposed
that going beyond the constant field case might be possible using the ¥-regularization and the matrix basis.
This might help to probe QED in the non-perturbative regime (see e.g. [Rin01, HI09, Dun09, TLM10]).
We conclude that the matrix basis may serve as a computational tool to simplify otherwise cumbersome
calculations.

7.2 Continuous versus Matrix Basis

We now directly compare the continuous basis to the discrete matrix basis. The two-dimensional GW model
in continuous basis with ¢*3 interaction term at the self-dual point has been investigated in [Zah10]. We
will give a short exposition of the aspects of this work with relevance for us, with its problems and possible
solutions. The notation of [Zah10] compared to ours is such that § = A2, and E = 2/\2. Its perturbation
theory can be determined analogously to the matrix representation in the last section, with a different
interaction vertex and propagator as demonstrated below. In 141 dimensions the continuous basis are the
Wigner transformed tensor products

Xt () = W X9 (xil] () (7.31)

with s,t = 4+ and k,¢ € R. They can be represented in terms of confluent hypergeometric functions, but
their exact form is irrelevant for the following. They satisfy

P2 X4 (x) = 4Ek X% (x)

3 (7.32)
P2 Xot () = 4BL X (2)

and obey the projector property
X xXBE = 6,00(k — 0)XM . (7.33)
The real fields expanded in terms of x*{ read
o@) = 3 [ abaenti(a)off (7:34)
st
with
= [ Pait@) o). (73)
The GW wave operator takes the form
1 1= 00 s’
<§Pﬁ +5P - u2> M = QE(k +0) = 4)dw 60 (k — K)3( — 1) . (7.36)
Due to zero eigenvalues this operator can not simply be inverted. In [Zah10] this problem is solved by
adding the term ieogs(k,¢) with some constant ¢ > 0 and a sign function o4 (k,¢). Depending on the
explicit functional behavior of the sign function one gets different propagators. This function will be left

undetermined for the time being such that the results may be compared with different propagators at the
end. The double line notation is used with the propagator given by

Et Eltl o 71
ks > k’s’_ 2E(k+0)—p?+ieog(k,f) 6(k — K")6(L — £')dss Ot

and the vertex given by
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145
g/t/ ¥ jlul
ks <ju = 19055 0tt Ouur 6 (k — K" )0(€ = €)6(5 — 5')

k's'

with coupling constant g. It follows that the planar fish graph

0t o't

is given by

9%5(k — K)3(L — )51
1 1

dj dj’ s -7 (7.
: ;/ J ]4E(k+j)_ﬂ2+ieasu(kaj)élE(jl'i'[)_lﬂ"'ieatu(j/ag)[ G=5) (7.87)

This expression is divergent due to the squared §-function coming from the undetermined loop integration.
It is no UV divergence in the usual sense, as it occurs before performing loop integrals, and shows up in
every ¢*" theory with n > 3 for graphs with an unbroken internal line. A possible cure for this divergence
is a box regularization. Instead of using the ie regularization one puts the system into a box with finite
volume and imposes periodic boundary conditions. Instead of a continuous spectrum we get a discrete
one leading to Kronecker d-functions and sums instead of Dirac J-functions and integrals. Obviously this
procedure renders this diagram finite. However, the box regularization is an IR cutoff, which is likely to
destroy the LS-covariance at quantum level unless one imposes in addition a suitable UV-cutoff. In contrast,
the regularized matrix approach has the same effect on the vertex functions as the box regularization, but
at the same time keeps the model LS-covariant, as will be demonstrated in the next section.

7.3 LS-Duality at Quantum Level

The ¥-regularization allows us to regularize the LS-covariant theories such that the LS-duality is preserved
at quantum level. This is done in the same spirit as in section 4.5 with the J-regularization being a new
ingredient. In the following this will be demonstrated for the two-dimensional GW model. The general LSZ
case is exactly the same.

An important question is, how the ¥-regularization affects the behavior under LS-duality. The regularized
propagator with ¢ = /2 — e > 0 reads

-1

€ Too | 1ao 2
A( )(:B,:B/) = <w| (QP# + §P# — K )6 |:BI>
Fiun (@) fr” (')
B ZQiE(m—i—n—i—l)—e—ie/ﬂ' (7.38)

m,n
In appendix H we show that the Fourier transformation of matrix functions is given by

FIfED (k) = /o) (k) = wf(m)(fg) (7.39)

mn nm E mn
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7 Aspects of the LS-Covariant Theories

with k = E~' -k = —E~'(k', k°).! Since
FIP*(9) + P2 (0)) fi1:1(k) = 4Ey (m +n + 1) Ffi57] (k) (7.40)

we find that Fourier transformation relates the propagator in position space to the momentum space prop-
agator even in the regularized case:

AO(k, k) = é&d(i@; k. (7.41)

Analogously to the Euclidean case the UV /IR-regularization now amounts to cutting off the sums at some
finite V by modifying the regularized position space propagator as

AP (@, a) = (=] (%Pﬁ + %F}f - u2> Ny (A=2P2 @) + P2()1) I'), (7.42)

where A € R, is a cut-off parameter and L a smooth cut-off function which is monotonically decreasing,
with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. We adjust the matrix functions as to diagonalize the LSZ
propagator

. . 1 1- -t - . .
AN e = /nm@W§%+5%—ﬁ) L (AZ2P2(0) + P2W)]) fie(a)

6m€6nk _9
= - L (A “4F 1)) . 4
2iE(m+4+n+1)— e tep? ( (m+n+ )) (7.43)

The interaction vertices in matrix representation are now quite complicated, being proportional to

/(%mmmmmm%wﬁwmm (7.44)

with 0 # 2/F in general. Since for € > 0 the f£,, are in S¥(R?) with > 1/2, which is closed with respect
to the star-product, the interaction vertex (7.44) is well-defined. Feynman diagrams can now be produced
by suitable derivatives with respect to the external sources involving the regularized propagator. Denoting

AE\S,)mn;kl = 5mk 5"2 Cj(\e) (ma TL) ) (745)

they have the schematical form

K
> [T e tmiomi) (), (7.46)

ni,mi,...,nkx,mrg=0k=1

where (---) denotes the contributions from the noncommutative interaction vertices and combinatorial fac-
tors. Since the propagator is nonzero only if 4E(my 4+ ng + 1) < 2A, which at finite A is true solely for a
finite number of distinct values of (m,n) € N3, every Feynman amplitude is represented by a finite sum and
thus constitutes well-defined Green functions in the matrix basis circumventing the problem of the right test
function space for the time being. By multiplying these expression with fS . (x;) fori =1,...,M and M
the number of external vertices, we get back the position space Green functions by summing over all m;, n;.
They are also well-defined, since they are build by finite sums of well-defined objects. This establishes the
quantum duality in Minkowski spacetime for the case € > 0.

To prove the duality at ¢ = 0 in the same manner as above, one has to ensure that the interaction vertex
away from the dual point is well-defined, which is not obviously true. We conclude that, to be on the safe
side, the ¥-regularization should be kept unless the matrix cutoff has been removed and all summations and
integrations have been performed.

INote that there is a subtle difference between the Euclidean and Minkowskian case. Contrary to the ordinary Landau
case in Euclidean space, the (not yet rescaled) Fourier transformed generalized Landau functions have swapped indices
and an inverted regularization parameter ¥ — —. The former is equivalent to an inversion of time (or space) while the
latter corresponds to an interchange of particles and anti-particles. This follows from the results of section 7.1.1, where the
regularization 9 > 0 has been identified with the Feynman boundary condition and ¥ < 0 with the Dyson boundary condition.
The specific rescaling in both cases, which are formally identical but differ by the metric which is used, compensates for this
difference.
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As is usually the case, the limit A — oo may still be ill-defined and may require a renormalization. In
addition, the results from section 6.2 are not able to exclude that even at finite ¢ > 0 there might be extra
divergences at A — oo if we work in the matrix basis, stemming from the generalized matrix basis itself.
This, however, does not affect the LS-covariance of the theory, which has been achieved for the Green’s
functions in position space through a regularization of the propagators in equation (7.42). This result is
independent of the matrix basis.

7.4 Unitarity

The unitarity of the scattering matrix is one of the main pillars of commutative quantum field theory, in
which statements as analyticity, microscopic causality and unitarity are roughly interchangeable. These
concepts are expected to be disentangled in NCQFT due to the lack of locality and Lorentz invariance.
In [GMO00] new singularities in the correlation functions of the usual ¢*3 and ¢**-theories in the standard
perturbative setup have been observed, which imply a violation of the cutting rules and thus the breakdown
of unitarity. The question arises what happens to the analytical structure, if the NCQFT is put into a
background electromagnetic field, making the theory LS-duality covariant? The interesting new features of
the LS-covariant models in Minkowski spacetime are the duality between © and E and the vacuum instability.
Thus, there are new singularities due to pair creation even to zeroth order in the coupling g.

We shortly review the main aspects of unitarity starting from the Hamiltonian formalism in commutative
quantum field theory with stable vacuum. For simplicity we consider a theory with one species of real
bosons without external field. In a scattering experiment, an initial state |i,in) is assumed to consist of free
particles in the remote past. The state evolves in time in the presence of some interaction, while in the far
future the detectors are set up to detect a state | f, out), consisting of free particles of definite momenta and
maybe other quantum numbers. It will thereby assumed that the asymptotic initial and final Hilbert spaces
may be constructed as free particle Fock spaces, with ladder operators ay(in), al,(in) and ap(out), a},(out)
corresponding to particles with definite momenta acting on unique vacua |0,in) and |0, out), respectively.
Since the theory has a stable vacuum, these two spaces are equivalent with |0,in) = |0, out) up to a phase.

In the following we will mainly work in the interaction picture. For those few times we need to switch to
the the Heisenberg picture we will designate the states with a subscript H. In the interaction picture the
two Hilbert spaces are related by a unitary operator, the S-matrix operator S with

Stap(in)S = ap(out) S’Tai,(in)g = aL(out)
and .
S|p1, ..., Pnjin) = |pP1,...,Pn;out)
(p1,...,pn;out|S = (p1,...,pnsin

up to an irrelevant phase. The probability of the process to take place is given by the S-matrix element,

(7.47)

St = u(f,outli,in)y = (f,in|Sli,in) . (7.48)

S¢; is related to the n-point functions in a specific way, prescribed by the LSZ reduction formula. As an
example we consider the scattering process ki, ks — p1,p2, where the initial and final states have definite
momenta p; and k;. The corresponding S-matrix element reads

u(p1,palk1, ko) = disconnected terms

| <ﬁ>/ / / / U, (Y1), (92) (D5, + m*)(05, +m?)

X G(4) (131,102,’!/1,'!/2)(821 + m2)(5§2 + mz)uk‘l (ml)uk‘2 (122) (749)

where m is the physical mass and Z the field strength renormalization. The eigenstates up(x) and uj,(z) are
Klein-Gordon in-states and out-states, respectively, with definite momentum p, energy wp, and
1 1

P )= tiPE 7.50
() (2m)P2wp up() (2m)P2wp (7.50)
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The four-point function G*) can be expressed in the interaction picture as

(01T (S dl@1)d(@2)d(y1)d(y2))|0)
(01510)

G (@, 22, 91,92) = (7.51)

with ngS the field operators in the interaction picture and 7" the time ordering operator. The S-matrix operator
can be written as

S=Texp(—i [ dt H(t) (7.52)
(= foesmo)

with H 7(t) being the interaction Hamiltonian in the interaction picture. The perturbative expansion of
the S-matrix operator (7.52) plus Wick’s contraction theorem leads to a perturbative evaluation of this
expression in terms of Feynman diagrams.

Note that the n-point function does not know about which particle is incoming and which is outgoing.
This designation is imposed by projecting onto the respective eigenfunctions, which in the Klein-Gordon
case amounts to fixing the signs of the external momenta. At this step pair creating processes are excluded
through d-functions caused by translation invariance. Disconnected vacuum graphs factorize from all graphs
into a phase factor which is identical to (0[S|0) and thus get canceled by the normalization factor of the
n-point, function. Self-energy subgraphs connected to the external propagators, like the tadpole or the fish-
graph, simply turns the free external propagators into the full “interaction propagators” with shifted mass
pole and alternated residue. This corresponds to a mass and field strength renormalization. This has been
taken into account already in (7.49) by usage the physical mass m and by the insertion a factor Z~1/2 for
each external propagator. In Fourier space the probability amplitude is proportional to

(p} — m?)(p3 — m?*) (k] — m?) (k3 — m*)GY (p1,p2, —k1, —k2), (7.53)

with G being the Fourier transformed four-point function. The momenta k; and p; are “on mass-shell” and
would force the whole expression to vanish, if the n-point function had no poles at p? = p3 = k? = k3 = m>.
One can show that this is not the case and the factors cancel exactly the full interacting external propagator
of each diagram, which are now called amputated diagrams. One disregards the case of no actual scattering
by splitting up the T-matrix

(fISIi) = (i) — 1 (fIT}i) , (7.54)

where for translation invariant theories (f|T'|i) is proportional to an overall §-function imposing energy-
momentum conservation. In summary, the S-matrix elements are given by all connected and amputated
Feynman diagrams, which in turn may be evaluated in the usual way using Feynman rules.

Unitarity of the S-matrix now formally reads
SSt =815 =1 (7.55)

and implies relations between different transition probabilities. Sandwiching this relation between in- and
out-states with ¢ = f and inserting a complete set of asymptotic states |n), we find

20m(i[Ti) = = > |(n|Ti)]?, (7.56)

which is known as optical theorem. Verification of relation (7.56) for single processes |i) is thus a test for the
unitarity of the theory. The usual approach to verify (7.56) is to use the cutting rules to the corresponding
Feynman diagrams, which is as follows. A given graph consists of combinations of Feynman propagators
(p? —m? + ie)~! and constant vertices. It possess an imaginary part because of

1 1
=P— — imd(x). (7.57)

m .
e—oo r + 1€ x

The exact value of the imaginary part of a given diagram may be obtained as follows: drawing lines through
internal propagators such that the Feynman diagram splits up into two pieces, followed by a replacement of
each cut propagator (p? — m? + ie)~! through —27i6(p? — m?). This should be done in all possible ways,
where the imaginary part of the original graph is the sum of all contributions coming from the cut diagrams.
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In [GMO00], Gomis and Mehen checked the cutting rules for the two point function in ¢*3-theory and
four-point function in ¢**-theories to second order in perturbation theory. Since the theories are still trans-
lation invariant and the propagators are identical to the commutative case, the above procedure to find the
imaginary part of a given Feynman diagram also applies in noncommutative QFT. However, it was found
that the diagrams have additional branch cuts along

pop=—p,O0"0,.p7 <0, (7.58)

which are accessible for time/space noncommutative theories, and in these cases cause a violation of unitarity.
They resemble particle-production cuts. As has already been pointed out at the end of section 2.2.3, the
reason for this curiosity is the wrong application of Wick’s theorem in order to reduce the determination
of n-point functions to the evaluation of Feynman diagrams, which is not allowed since time derivatives
and time ordering do not commute [BDFP02, Bah04]. For the two-point function at second order of the
perturbative expansion in a ¢*3-theory the non-unitarity has been spotted to the nonvanishing of the terms

A7"et * Aa'u + Aa'u * A7"et # 0 (759)

for time/space-noncommutativity, which in turn is due to 6 x 6 # 6. Here A,, and A,.; are the advanced
and retarded propagators, respectively. The question arises, if it is possible to retain unitarity in some way,
but at the same time keep the Feynman diagrams as the main building blocks of the perturbative expansion.
In [AGBZ01] the singularities have been further investigated and assigned to the production of tachyonic
states. By adding new states to the Hilbert space the cutting rules are formally fulfilled, however, unitarity
is still absent due to the presence of tachyonic states in the asymptotic Hilbert space. What happens in the
LS-covariant case?

To give an answer, we first describe the situation for commutative theories where pair creation is allowed.
A typical example is the usual QED in a vacuum stability violating external field. The following exposition
is quite general and applies to complex scalars and spinors. We will leave aside the technical subtleties and
give only a sketchy overview of the general proceeding in these cases. For an extensive overview see [FGS91].
We start with an heuristic argument, assuming the asymptotic Hilbert spaces may be constructed as before
as Fock spaces. Due to the pairs which are created from the vacuum in the course of time, the probability
for an initial vacuum to stay the vacuum is not equal to one:

[72(0, out|0,in) | < 1. (7.60)

Going to the interaction picture, where the field operators now fulfill the equation of motion of the particles
moving in the external field, the vacuum-to-vacuum probability is given by

|7(0, out|0, in) 7| = |(0, out| )0, in)| < 1 (7.61)

with S the S-matrix operator (7.52). We follow that in contrast to the relations (7.47) of the ordinary case,
S10,in) # 10, out) and (0, out|S # (0,in|. The S-matrix element for an arbitrary process |i,in) — |f, out) is
defined similarly by

Sti = m{f,outli,in) g = (f,out|S|i,in) (7.62)

where we find contrary to (7.48) again an out-state to the left of the S-matrix operator. Thus the correlation
function can not be obtained by a reduction to normal form relative to one vacuum, but demands a reduction
to a generalized normal form relative to the two vacua (0, out| and |0,in). How to do this will be sketched
now.

On the level of solutions of the equation of motion, pair production manifests itself in an inevitable mixing
of positive and negative frequencies. This means that solutions which have definite positive or negative
frequency throughout all times are no longer available. Since those are necessary for the ordinary canonical
quantization scheme to apply one proceeds as follows [Git77]. One constructs two complete and orthog-
onal sets of solutions of the energy eigenvalue equation, one at each of the two finite time instances t;,
and t,,¢. At these time instances, these sets can be split into positive and negative frequency solutions
and canonical quantization of the fields applies as usual by quantizing the positive/negative energy solu-
tions in terms of ladder operators, which act on the respective Fock vacua. The limits ¢;, — —oo and
tout — 00 are taken afterwards, such that the solutions remain their character as positive/negative energy
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7 Aspects of the LS-Covariant Theories

solutions and the relations which characterize pair production processes (equations (7.64)-(7.71) below) re-
main well-defined.? The vacua |0,in) and |0, out) now differ from each other, as well as the ladder operators
an(in), al (in),b,(in), bl (in) representing particles/antiparticles of definite momenta at t;, which are dif-
ferent to a,(out),al (out), b, (out), bl (out) representing particles/antiparticles of definite momenta at ;.
The index n thereby compactly designates all the quantum numbers as momentum and spin. The usual
commutation relations hold among the in-operators and among the out-operators, as well as

an(in)]0,in) = b, (in)]0,in) =0

ap, (out)|0, out) = by, (out)|0, out) = 0. (7.63)
for all n. The mixing of frequencies imply relations among the ladder operators at different times
am(in) = G(4[F),,, anlout) + ZG +17),,., bl (out) (7.64)
b (in) = i G (*|2), al (out)  + ZG “|2). by(out), (7.65)
am(out) = i G (F|4),m anlin)  + ZG (*12),,,, bh(in), (7.66)

n

bm(out) =Y G (4| ) ah(in)  + ZG _17),ba(ing, (7.67)

where the Bogoliubov-coefficients G(-) are a measure for particle production. A stable vacuum thus implies
G (*|5) = G (£|F) = 0 with all others being equal to unity. A generalized Wick theorem with respect
to (0, out| and |0,in) can be realized by expressing all operators in terms of a,,(in), b, (in), al, (out), b} (out)
alone. The procedure is then to pull all creation operators to the left of the annihilation operators such that
the relations (7.63) apply as in the ordinary case. The occurring generalized contractions may be obtained
by exploiting the usual commutation relations and equations (7.64)-(7.67):

am (out)al,(in) = G ) = wm*n) (7.68)
b (out)b(in) = G (1) = wm™|n") (7.69)
am(outba(out) = [, G (411,00 G (+ )] = wlmn=[0) (7.70)
Bin)alin) =[S0 (1) G (1)) = w(Omn) (7.71)

While w(m™*|n™) and w(m™|n~) are the relative probabilities of particles and anti-particles to be scattered
by the external field (compare equation (7.4) for the causal propagator), the quantities w(m*n~|0) and
w(0lm~n*) measure the relative probabilities for pair creation and pair annihilation in the vacuum.

By expressing the field operators QAS in terms of the ladder operators, the S-matrix element
Spi = (f, out|S|i,in) (7.72)

can be now be calculated using the generalized Wick contractions. The matrix element may be obtained
as in equation (7.49), by substituting the Klein-Gordon operators by the wave operators of the model
and up(x) and uy(x) by the new in- and out-states of definite momenta. The S-matrix element is then
the amputated correlation function projected on these initial and final momentum states. Rearranging all
creation operators to the left of the annihilation operators, the correlation function can be expressed in terms
of the usual Feynman diagrams with the causal propagator given by

(0, out| T ()t ()]0, in)
(0, out|0, in) ’

iA(x,y) (7.73)

which may be calculated by one of the methods outlined in section 7.1. Sy; is still a sum of a unit matrix
and a T-matrix, where the overall §-function in front of the scattering part of (7.72) is absent due to the
lack of energy-momentum conservation. New transition channels must be taken into account, corresponding
to pairs created from the vacuum.

2Conditions on the solutions such that the Fock spaces exist may be found in [Git77].
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Apart from this, the usual cutting rules no longer hold. Demanding unitarity of the S-matrix as in equation
(7.54), we find the generalization of the optical theorem

23m(i, in|Ti,in) = — > [(n, out|T|i,in)|*. (7.74)

The contraction scheme discussed above leads to the usual Feynman diagrams on the rhs with additional
pair production diagrams. However, on the lhs one has diagrams involving the propagator

AT (@, y) = (0.in|T(@)d' (y)|0, in) (7.75)

instead of the Feynman propagator. These two propagators do not coincide in presence of an instable
vacuum. In order to check unitarity of the LS-covariant theories, one has to find a relation between A’ and
A.. Quite generally, by decomposing the state (0,in| in a complete set of out-states one finds

AMzy) = Aczy) + A%z, y), (7.76)
Ax,y) = —iZw(m_n+|0)*(0,0ut|am(out)bn(out)TqAﬁ(w)qAﬁT(93)|0,in>, (7.77)

where A“ is a solution of the equation of motion. It should be noted that the usage of the in-propagator
can not be circumvented by considering (i, out| instead of (i,in| in equation (7.74). This would lead to the
relation

i(i,out|(TT = T)|i,in) = — Z(O, out|T|n, in)(n,in|TT|0, in) (7.78)
= - Z(O, out|T'|n, out) (n, out|TT|0,in) . (7.79)

Since
(i, out|T|i,in)* = (i,in|TT|i, out) , (7.80)

the lhs of equation (7.78) is not the imaginary part of (i, out|T'|i,in). In addition, on the rhs we find Feynman
diagrams involving the propagator A" or

A2 (2, y) = (0, 0ut| Td(x)9! ()]0, out) (7.81)
depending on whether we insert a complete set of in-states (7.78) or out-states (7.79).

Now we come to the LS-covariant theories, where in addition to the instable vacuum we have a noncom-
mutative interaction term. The interaction Hamiltonian is symmetric such that formally the S-matrix is
unitary in the Hamiltonian formalism [Bah04]. As pointed out above, the proof for Wick’s theorem does not
apply anymore if the interaction is nonlocal in time, which is also true for the generalized contraction theo-
rem. Thus unless there are some “magic cancellations” the perturbative quantum theory based on modified
Feynman rules will lead to a non-unitary S-matrix. However, this may happen and has to be checked. But
even in the case of unitarity violation it is interesting to see how the non-unitarity violating terms look like,
and whether there is a possibility to retain unitarity by modifying the theory.

A first attempt towards an answer to the unitarity issue for LS-covariant theories in the standard pertur-
bation setup was made in [Zah10] for the self-dual GW model with ¢*3 interaction. The imaginary parts of
the contributions to the two-point function at second order in perturbation theory have been calculated and
compared to the expressions obtained from the cutting rules. The propagators which are used are determined
via i€ prescription:

1 -1

Ai?,lkfs/ - 2E(/{3 + [) . MQ + ieé(k - k/)(S([ - 61)555’5“’ . (782)
Thus the quantity which has been calculated is not the imaginary part of the Feynman diagrams corre-
sponding to (i,in|T®|i,in) but corresponding to (i, out|T®|i,in). These results have, however, then been
compared to diagrams coming from the rhs of (7.74), where the mismatch has been interpreted as a lack of
unitarity. From the discussion above we find that for a correct investigation we need the probability for pair
production w(-|0), in order to relate the propagators A. and A" Since for the models under consideration,
the free LSZ and GW model, these are unknown to the author, we cannot give a satisfactory answer at this
point and leave this issue for a future investigation.
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8 Renormalization of the LS-Covariant
Models

One of the most intriguing features of Euclidean LS-covariant models is their renormalizability. We will
not prove here the renormalizability of their Minkowskian counterparts, but start this program by deriving
their propagators in position and matrix representation. First, we give a brief account of the methods which
were successfully used in Euclidean space. After determining the propagators we will shortly discuss their
asymptotics.

8.1 Multiscale Analysis

Multiscale analysis has been used to prove renormalizability of the LSZ, GW, vGN model and the translation
invariant model. Though in their original proof Grosse and Wulkenhaar used Polchinski’s RG equation, we
will introduce the multiscale analysis in order to explain the relevant steps towards the renormalization of LS-
covariant models in Minkowski spacetime. Multiscale analysis is independent of the precise representation of
the model and has been successfully applied to both position- and matrix space. Multiscale analysis replaces
the sharp cutoffs in matrix space by smoother ones directly in the Schwinger parameter representation of
the propagator. For a general account of this method see [Riv91, Riv07b].

We will now give a sketchy illustration of how the asymptotic behavior of the propagator are used to prove
the renormalizability of the GW model in Euclidean space following [RVTWO06, Riv07b]. Feynman graphs
for matrix models are written using the double line formalism. These graphs can not be drawn on a plane,
but on two-dimensional Riemann surfaces with non-trivial topological structure. The power counting of a
matrix model depends essentially on this topological data. Let G be a graph with V vertices, I internal
(double) lines and F faces. To get F one has to amputate the external legs. Then F' is the number of closed
single lines and B the number of those closed lines which carry external legs. The Euler characteristic of the
Riemann surface defined by these graphs is given by

X=2-29g=V —-I+F (8.1)

which defines the genus g of the manifold. The genus g and the number B are a measure for non-planarity.
As an illustration how the topological data of a ribbon graph can be determined serve the following examples:

vi
V=3
= ‘ I'= = g=0
F=2 9=
B=2
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8 Renormalization of the LS-Covariant Models

In the Grosse-Wulkenhaar model the N-leg ribbon graph in four dimensions has the power counting degree
w(@ =4—-N)—4(2g+B—1). (8.2)

As a result, the only graphs which can be relevant or marginal, i.e. those which have power counting degree
w(@G) > 0, are planar two- and four-leg graphs. We will give a brief account on which role the propagator
role plays in the derivation of this power counting theorem.

Four indices {m,n;k,¢} € N? are associated to each internal line of a graph and two indices to each
external line, thus we get 41 + 2N = 8V indices for a graph of genus g = 1 — %(V — I + F). Since at each
vertex the left index of a ribbon is identified with the right index of its neighbor, we have 4V independent
identifications, so that we can write the indices of any propagator in terms of a set Z of 4V indices. In the
matrix basis the vertices are multi-dimensional Kronecker-delta functions. The amplitude of a graph G then
reads

AG = Z H Gm5(I),nJ(I);kJ(I),EJ(I)(Sm(;—Zé,né_ké ) (83)
T 6€G

where the four indices of the propagator A of the line § are functions of Z. Slicing of the propagator as

) 1 00 M—26-1)
A=) A’ through / da =" / ., da (8.4)
i=0 0 i=0 /M~

with M > 1 leads to a decomposition of the amplitude as

A = > Aayu, (8.5)

w
A = Z H A'erlg(z),ng(I);k,‘5(I),Z5(1)6m5_é57"5_k5 ) (8:6)
I éeG

where 1 = {i5} runs over all possible assignments of a positive integer is5 to each line §. The next important
step is to find appropriate bounds on the propagators.

The main bounds are given by [RVTWO06]!

e < K MTie =M Umlinl+ Ik (8.7)
Zm%XAjn,n;k,z < K'Mie¢M liml (8.8)
¢ "

for some constants K, K’ and c¢,c¢’. About half of the 4V indices are determined by the external indices
and the Kronecker-deltas in (8.3). The undetermined indices are summation indices. Perturbative power
counting amounts to finding which summations cost a factor M?* through (8.7)

S el Om! ) _ L _ M oM~ 8.9
Z € 7(1—6—CM_1')27 CQ( + ( )) ()

ml,m?2

LFor technical reasons these bounds where derived only for restricted values of Q. This limitation has been overcome in
[GMRVTO06] using direct space methods.
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and which cost O(1) due to the bound (8.8). Integrating out loops at higher scales of a graph then gives
effective coupling constants in powers of M. The important point is that the faster the propagator decays,
the smaller is the contribution of the integration over internal lines to effective coupling constants. This in
turn reduces the number of divergent graphs. One can prove that all relevant and marginal graphs are planar
four-leg and two-leg subgraphs with a single external face, which must be renormalized by counterterms. Due
to symmetries there are only four initial conditions which have to be fixed by “experiments”. All relevant and
marginal counterterms which are needed are of Moyal-type, thus of the same form as the initial Lagrangian
and can be absorbed in a redefinition of the coupling parameters €, g, 1 and a field strength renormalization.
The theory is renormalizable to all orders in perturbation theory.

8.2 Propagators

We start, the renormalization program by calculating the propagators for the different models. The purpose
of the first sections is to enhance the formulas given in [GRVT06] to the Minkowskian regime. In the following
the propagators for the general LSZ theorem in generic 2n dimensions in position and in matrix basis will
be given.

8.2.1 Position Space representation

The main theorem, from which all causal propagators in Minkowski space and its Euclidean counterparts

can be derived, is the following theorem. The coordinates in 2n dimensions are denoted by = = (2, ..., 2%)
and xj, = (2272 22¢~1) with k = 1,...,n. As in section 7.1.1 we define the map (-,)y : R2 x R? — C
through

(x,x")y = cos(V) (z, ') g + isin(?) (x, 2" ), (8.10)

where (-,-)as is the two dimensional Minkowskian and (-, -)g the two dimensional Euclidean scalar product.
In addition we define the map || - || : R? — C through

lels = (2, 2)
= cos(W)||z| g+ isin(d)| x| (8.11)
with || - ||z the two dimensional Euclidean and || - || 5s the two dimensional Minkowskian norm. Then we find:

Theorem 8.1. The propagator of the regqularized, general LSZ model in 2n dimensions is given by

inh(2sE_
sinh(2s ﬁ)iwl'E'Iﬂll}

'e_“9£ mds;ex —
o Jy ©Csinh(2sE_y) TP sinh(2sE_g)

A (g a') = —i

1 cosh(2sE_y)
X exp {5 coth(2sE_y)E(||@1]35 + |z} 1I5) + mE(mh )

(8.12)

. I:c[lz 2 sinh(2s By, B sinh(2sBy,)

B, 1 o { smh(2sBk)imk.Bk.m;€}

1 cosh(2sBy,)
X exp {5 coth(2sBy) Br. (||l [l + |2 [13) + sinh(TBk)Bk(mk’ T} )o
with 9 =7/2 — € >0, E= (20 — 1)E and By = (20 — 1) B,

The proof is given in appendix I.

We can now read off the causal propagators of the relevant cases for the four dimensional LSZ and GW
models. Noting that (-,-)r/o = i(-,-)as and thus || - [z/2 = i| - |[as, one finds for general o
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Corollary 8.2. The causal propagator of the general LSZ model in four-dimensional Minkowski spacetime
is given by

iEB [ 1 1
AM /. = ——1 / d — 2 A — B
Lsz(®, 3.0 2m2 J, ° sin(2sE) sinh(25B) exp {1 }
sin(2sE) | , sinh(2sB) . ,
_2ess) B — 222 .B- 1
8 exp{ sin(2sE) 1o 1 sinh(2sB) 1o 2 (8.13)
with
1 cos(2sE)
A= —5cot(2sE)E (Nl + l1l3,) + mE(ml,mi)?M (8.14)
and
1 cosh(2sB)

At o = 1 this reduces to

Corollary 8.3. The causal propagator of the four-dimensional LSZ model for o = 1 in Minkowski spacetime
s given by
iEB - Y 1 1
AM / -1 —_ 1 —ixy-E-x;—ixa-B-x, d
sz(@, @0 ) (2m)? ¢ 0 8 sin(2sE) sinh(2sB)

1 1
X exp {—s;ﬂ + §EH$1 — ) ||3, cot(s2F) — §B||IB2 —xh||% coth(sQB)}(S.lG)

The propagator of the four dimensional Grosse-Wulkenhaar model reads:

Lemma 8.4. The causal propagator of the Grosse-Wulkenhaar model in four-dimensional Minkowski space-
time is given by

iEB [ 2 1 1
AM N — 1 d —sp
cw(@, z') (2m)? /0 5 sin(2sE) sinh(2sB)
1 FE
< exp{ B cot@sE) (el + IolI3) — s on el 1)

1 B
X exp {—53 coth(2sB) (||z2|% + l25%) + m(iBmIBIQ)E} -

One should notice that the Euclidean results coincide with those determined in [GRVT06]. To conform
to their notation one has to substitute £ — —B/2 and E — /2 within the hyperbolic functions of the LSZ
model propagators.

8.2.2 Propagators in Matrix Space

Theorem 8.5. The matriz propagator for the 2n-dimensional reqularized LSZ model in Minkowski spacetime
is given by

(e,0)
Am,era;lJra,l
0 1 ) 02
i€ d —ie'“(ca1+1/2)+3 " ,(cai+1/2)—14+ %
= e 8Q A4 K
0

n

() H (E)
X ni,n1+arilitar,ly Aniani"rai?ei'i‘ahéi
1=2

(8.18)
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with Minkowskian part
(e)
Am,m—i—a;@-{-a,@

min(m,?)

Zﬁi e iéu(l o Z*ie ie)m+272u 4Q a+2u+1 1_ Q m—+£0—2u
- Z (1-9)2 jelie atme+1 ((1 + Q)2> <1_|_—Q) A(mvgvavu)
u=max(0,—a) (1 — (130)2 s—ie )

(8.19)
and Euclidean part
E
Afn,?era;lJra,l
min(m,?) Zu(l . z)m+¢_2u 40 a+2u+1 1-0Q m—+£—2u
= T O A aga ) )
_ Zo— T ((HQ)?) (HQ) )
u=max(0,—a) (1+Q)2Z
(8.20)
where
- a+n o+/ n l
st [ (D () (). -
and o = (1, ... ) € Z" and o; = n; — m;.

The proof can be found in appendix J. The respective special cases, like the four-dimensional Grosse-
Wulkenhaar model etc., can easily be read off from this expression.

8.2.3 Asymptotics

We have seen that the asymptotics of the propagators play an important role for the renormalization program.
But in addition we are also interested in the question whether the matrix basis makes sense at all for the
description of the perturbative analysis of the LS-covariant models. Also here do the asymptotics give us the
crucial information. However, the asymptotics of the Minkowskian part of the propagators are difficult to
investigate due to the oscillatory behavior of its integrand. Let us consider the two-dimensional Euclidean
GW operator

B [ e 1 B
AE N — d —ZBcoth(2sB) (22 2 -  _x.2V. 8.22
aw(@, ) (2m) /0 § sinh(2sB) exp{ 27 (25B) (7 +27°) + sinh(QSB)m v (8.22)

Introducing short variables u; = x; — «; and long variables v; = x; + 2 and using

1 = cosh?(y/2) — sinh?(y/2)
cosh(y) = cosh®(y/2) + sinh?(y/2) (8.23)
sinh(y) = 2sinh(y/2)cosh(y/2),

we can rearrange

B B
~Z coth(2sB) (22 + 22) + ————a -
2 (25B) (w7 + 277) + sinh(QSB)aj v

2 12 2 w2
_ B (cosh (sB) + sinh (sB)> (a2 +222) + B <cosh (sB) — sinh (sB)) S

4 cosh(sB)sinh(sB) 4 cosh(sB) sinh(sB)

B B
iy coth(sB)u? — ) tanh(sB)v? (8.24)

and thus

2
_sk

1 e B B B
AE = S —— coth(s)u? — = tanh(s)v? \ . 8.25
cw(u,v) o) /0 ds Sinh(2s) eXp{ : coth(s)u; 1 tanh(s)v; } (8.25)
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The integral is sliced in the usual way

—2(i—1) w2
B 1 (M —s'y B B
AGW(U” U) = % v ds m exXp *Z COth(S)U? — Z tEl,Ilh(S)’l)i2 (826)

with M > 1. This can easily be estimated from above by maximizing each factor in the integrand on the
interval [M~2 M~2(=1)]. The factor e~ 7 #nh()* takes its maximum at s = M2 at which tanh(s) ~
M=% — M~61/3 < ¢/ M~ for some constant ¢/, while ¢ =% (v} takes its maximum at s = M ~2(—1) with
coth(s) < M20=1 4 M~26=1) < ¢ M* and some constant ¢”. The sinh(2s)~! can be estimated from above

by M?! such that we get the very rough bound
Ag(u,v) < KM? e =MD (8.27)

for some constants K and c. This reproduces the first bound which is needed for the renormalization proof.

However, the four-dimensional Minkowski propagator in short and long variables reads

i B oS 2 1 1
AM nNoo— _1_/ ds e *F
ow (@, z') (2m)2 J, 5 sin(2sB) sinh(2sB)
B B
X exp {Z cot(s)uiu -7 tan(s)viﬂ}
B B
X exp {_Z coth(s)us ; — T tanh(s)vg,i} ) (8.28)

where we set £ = B. After the slicing we can estimate the Euclidean part from above exactly as before:

M —26G—1)

M,i i — B B —c(M'u? “iy2
|Agw (z, @) < KM? /Mim ds Sn(Z5E) exp {Z cot(s)u%# — tan(s)vi#} e ~e(MIuiHM "ty
(8.29)

but the behavior of the propagator remains unclear. The Minkowskian part of the integrand is oscillating
such that more sophisticated methods have to be used to estimate this integral.

There is a special case for which we can deduce the qualitative behavior. The propagator of the regularized,
massless LSZ model in two dimensions for ¢ = 1 can be written as

iE [ 1 ; / E
A(E,O’Zl) ! - _ ! / ds —M— —izEw — coth(2sFE)— —x'||3 .
@) = 12 [Tast e e ep oz Lo -1} (830

. 2
where the integration contour has been rotated as s — se . Substituting u = Z1Z==lls (coth(2sE) — 1),
we get

Y R L.
—_— u e
i s N PR E
i iome  [E
= Lok (-3 (8.31)

with Ky the modified Bessel function of the second kind of order 0. This implies that there is still a UV
singularity at @ = «’ due to the singular behavior of Ky(z) at z = 0. Using the identity 9.7.2 of [AS70]

Ko(z) ~ \/ge-z (1+0(:"Y), (8.32)

we also see that A(Lz)z has an exponential decay in the short variable |x — 2’| — oo only for
Re (|z — '(|3) >0, (8.33)

and thus only for || < /2.2 We are thus tempted to conjecture that for o < 1 the exponential decay in
|z + «'| — oo also persists as long || < m/2. We conclude that the propagator has a worse behavior in

2Note that || - lzy2 = ill - llas-
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Minkowski spacetime than in Euclidean spacetime, but, we can control its asymptotic behavior with help
of the parameter ¥. Considering the assumption |¢| < 7/2 as part of the regularization, one could try to
renormalize the Minkowskian LS-covariant models.

Concerning the matrix representation we have a similar problem, since the integrand in the expression
(8.18) is oscillating. Thus estimating the absolute value of the integral through an integral over the absolute
value of the integrand possibly produces a big error and might lead to bad estimates on the asymptotics.
Indeed, one can use this approximation to show that the Minkowskian GW propagator at || = 7/2 has an
exponential decay in each index separately. To find the other bounds, however, one has to take care of the
oscillating behavior of the integrand. At least the asymptotics of the special case (8.32) for || < /2 raises
the hope that the propagators at hand may have such an asymptotic behavior in position space such that
the matrix basis is applicable.?

We summarize that the questions whether the matrix representations of LS-covariant NCQFTs in terms
of generalized Landau functions are well-defined and whether they are renormalizable are still open issues,
but deserve a thorough investigation.

3Note that these propagators are LS-covariant, which implies a similar decay in momentum space.
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Conclusion and Outlook

The goal of this thesis was to define LS-covariant models on Minkowski spacetime, find their renormalization
properties and discuss the unitarity of the S-matrix. We briefly introduced these models on Euclidean
space and showed, how the Weyl-Wigner correspondence can be used to relate their wave operators to the
harmonic oscillator. Using their well-known eigenfunctions we were able to derive the eigenfunctions of the
wave operators and map the Euclidean LS-covariant models onto matrix models. On Minkowski spacetime,
the additional background field, which was supposed to render the models LS-covariant, spoils the vacuum
persistence with respect to pair creation. Contrary to the harmonic oscillator in the Euclidean case, the
Minkowskian models correspond to an inverted harmonic oscillator, implying that the wave operators do
not possess a countable infinite set of eigenfunctions, which could be used to map the models onto a matrix
model, but a continuously parameterized eigenbasis.

We derived the eigenfunctions of the inverted harmonic oscillator and discovered a countable infinite set of
poles through an analytically continuation of these functions to the complex energy plane. The corresponding
residues were identified as resonance states of the model. In order to employ an expansion of the actions in
terms of these resonances we regularized the models such that the resonances turn into genuine eigenfunctions
of the regularized wave operators. These operators correspond to the complex harmonic oscillator, which
mediates between the ordinary to the inverted harmonic oscillator and thus between the Euclidean with
the Minkowskian models, unifying both theories into one formulation related by a single parameter ¢. We
have shown that this regularized matrix basis is a bi-orthogonal system which spans the space of square-
integrable functions and derived upper bounds on the asymptotics of the corresponding Hermite coefficients
for tempered distributions and Gel’fand-Shilov functions. At the quantum level and in the limit of vanishing
background, this regularization turned into the usual ie-prescription. For the special case of a Klein-
Gordon theory in a constant, external field, where the different propagators are known, we recalculated the
propagator using the matrix basis and verified that the ¥-regularization leads to Feynman propagators and
thus confirmed the equivalence to the ie-prescription.

We gave a short overview of the unitarity problem for models with unstable vacuum and discussed the
steps which are needed to decide whether the S-matrix is unitary or not. The matrix basis was also compared
to the continuous basis approach. Special divergences which are present in the continuous approach at Q2 =1
are absent in the matrix representation. In turn, using the ¥-regularization we showed that a cutoff could
be employed to render the LS-covariant NCQFT finite at every step in perturbation theory and at the same
time keep the LS-covariance manifestly. We derived the propagators for the regularized LS-covariant models
which included the Euclidean propagators and the Minkowskian causal propagators as special cases. Due to
the oscillatory behavior of the occurring integrands in Minkowski spacetime the corresponding asymptotics
are much more difficult to derive than in the Euclidean case. For the special case of the massless LLSZ model
at 0 = 1 we found that the exponential decay of the short variable in the Euclidean space vanishes if one
goes to Minkowski spacetime, however persists in the near neighborhood of this case. The ¥-regularization
thus gives us a mean to control the decay behavior of the propagators. The applicability of the matrix basis
in this case, however, is still in question.

We propose the following interesting perspectives for future research:

e The construction of a renormalizable and non-trivial quantum field theory in four-dimensional Minkowski
spacetime is yet an unsolved problem. Encouraged by the results in Euclidean space we conclude that
the LS-covariant theories in Minkowski spacetime are natural candidates and deserve a closer inves-
tigation. To probe their renormalization properties, the derivation of the exact asymptotics of the
propagators is indispensable. Therefore the applicability of the matrix basis is of special interest
and deserves a thorough and systematic inquiry. But, even if the matrix basis turns out to be in-
adequate for the investigation of these theories, techniques for the renormalization in position space
are available and have already been successfully applied to LS-covariant theories in Euclidean space
[GMRVTO06, RVITWO06, RT08]. The d-regularization could then turn out to be a crucial ingredient.
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Conclusion and Outlook

e The question whether LS-covariant theories have a unitarity S-matrix has not been decided yet. Along

the lines explained in section 7.4 one could try to give an answer to this question. Even if the unitarity is
violated, the possibility to extend these models such as to retain unitarity is an interesting perspective,
which could shed light on the construction of unitary NCQFTs in the framework of modified Feynman
rules.

The possible applications of the matrix basis are not restricted to the noncommutative LS-covariant
theories. Comparing to analog calculations in a continuous eigenbasis [Rit78], calculations in the
matrix basis are surprisingly simple and can thus be seen as a computational tool simplifying otherwise
cumbersome calculations. It may find an application in QED and NCQED in strong external fields
[Rin01, HI09, Dun09, ILM10]. The former is of fundamental theoretical interest, since the experimental
observation of pair creation or other strong field phenomena would verify the validity of QED in the
superstrong field domain beyond perturbation theory. There has been a resurgence of interest in these
issues caused by new experiments as the “Extreme Light Infrastructure” (ELI) project *, which will
provide lasers with electromagnetic fields with unprecedented intensity, and may thus provide new
insights in the non-perturbative regime of QED and QFT in general. Theoretically new techniques will
be needed to realistically represent the experimental laser configurations. In this respect the effective
action plays a central role, which for the constant field case has been calculated using the matrix basis
in appendix F. The application to realistic experiments includes varying field configurations, which
could be handled perturbatively around the constant field, which might turn out to be computational
feasable with help of the ¥-regularization and the matrix basis. For this a knowledge of the general
applicability of the generalized Landau basis would be desirable.

4http://www.extreme-light-infrastructure.eu/
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Appendix A

Proof of Lemma 3.1

Lemma (3.1). The multiple star product of functions fr € S(RP) for k = 1,...4 we have the following
momentum and position space representations

[ i o fini @) = H( | &5 ) F(@1) f(@2) £ (@s) (@) V(@1,@2, 22, 24)

with vertex functions

27)%n L (e-1yii v L (@a) v
V($1,$2,$3,IB4) = Mit(ﬁyn(wl — T2 + T3 — $4)€_21(® DY l(@1)i(@2);+(@a)i(@a);] (AZ)
Viky ko ks, ka) = (2m)2762" (kg + ko + ks + ky) e~ 207 [(k1)i(k2)s (ko) (ka)s] (A.3)

Proof: Using the Fourier transformation

¢ P’z ke
f(k) = o 2D e f(z) (A.4)
we obtain the momentum space representation

/dDa: (fix fax f3x fa) (x)

2n
(/ d g/z) fl(kl)f2(k2)f3(k3)f4(k4) /danB (efikl'm* efikyz) (efiks'z* efikél'm)

1l

with vertex function
Vky, koksks) = (2m)2"6%" (k1 — ko + ks — ky) e 2@ [(k0)u(k2)ut(ka)u(ka)] (A.6)

In position space the star-product takes the same form

4

/dDiBfl*fg*f3*f4($): H

a=1

(/ %) fi(@1) fa(m2) f3(23) fa(@a) V (@1, T2, T3, 24) (A7)

but with vertex function given by the inverse Fourier transform

d2n ka

V(x1, @2, T3,%4) = e H(kr@itho@othks @atka @)V (o) foy, kg, key) . (A.8)

This is just a Gaussian integral and can easily be computed. Combining the k, and x, for a = 1,...,4 into
8n-component vectors

K = (ki ko, k3, ks) . X = (21,72, T3, T4), (A.9)
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Appendix A Proof of Lemma 3.1

defining the skew-symmetric 8n x 8n matrix

(A.10)

and using the representation (27)%"6%" (k1 + ko + k3 + k4) = [d*"t exp(iK - T) with T = (¢,¢,1,t) € R®"
the integral becomes

8n
V(X) _ dQnt A K e iK(T'i‘X)—%K‘A@'K — det(@/Q)_Q d2"t e_%(T+X)'(A®)71'(T+X) , (All)
(27r)4n

where the relation det(Ag) = det(©/2)* has been used. Since T - (Ag) ' T =0 and T - (4g)™! - X =
X (Ag)™ T =—i(z1 — T2 + 3 — x4) - (©/2)71 - t, the t-integral yields

(27‘(‘)2” 9 lx.(As) L.
V = 76 n — — 2 ( @) X
(%1, 2,3, 24) Tdet(0/2)] (1 — T2+ 23 —T4)C
= OO o oyt — ) e 21O (@0 @] (A 12)
| det(©/2)]
which proves the lemma. O
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Appendix B

Transition Matrix and its Asymptotics

In order to calculate the asymptotics of the generalized Hermite coefficients in appendix C and to show that
the generalized oscillator functions and generalized Landau functions span the space of square-integrable
functions in appendix D, we need to derive the transition matrix

B = / 19 1P() (B.1)
q

and to find its asymptotics.

B.1 Expression for the Generalized Oscillator Functions

We start with proving a convenient representation for the generalized oscillator functions defined in equation
(6.17) by

1/2 Y9 2
10 = (5022) e ) (8.2

We will need:
(v)

Proposition B.1. The generalized harmonic oscillator functions fn'’(q) can be represented as

1/2 0o
1@ = (55z) @0 [ daayanieets e ®3)

with SO (q,a) = i—;qQ —V2ivqa + %

Proof: We will show the identity

0 .\ n/2 )
/ da (—1)"6 (a) ¢ 157 @) — <5> e =47 H, (7q) (B.4)
with SO (g,a) = iQ—'Yq2 —V/2ivqa + % from which the lemma follows immediately. Defining
=4/—1/2a —
y /2a—\/7q (B.5)
0o = \/—1/20,

we get

: 2
15 (g,a) = i<1—q2\/2i'yqa+%
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Appendix B Transition Matrix and its Asymptotics

Using the definition for the Hermite polynomials

Hy(z) = (=1)"e” 07 (B.7)
and noting that
yla:O = _ﬁq (B 8)
Hy(—2) = (=1)"Hn(2)
we get
/ da( )n(s(n)( ) iS(q,a)
o0 1 n/2 5 Y 3
= / dad(a) (—5) e V24
i n/2  poco
- <§> / dad(a)e =Y (=1)"Hy (y)
i\"? 7 s
- (-3) om0 (B.9)
which proves the lemma. [l

B.2 Expression for the Transition Matrix

To switch between two sets of generalized oscillator functions ( f,gﬁ ))nEN and ( f,SV))neN we need the transition
matriz, whose explicit form will be derived in the next proposition:

Proposition B.2. Let 8,7 € C— {0} be two different complex numbers with Re(B + ) > 0. The transition
matrixc

W= [ " e £ () fO (@) (B.10)

s given by

h(%ﬁ):(\/’_y)l( ’Yﬂ
" 2mnly/m 2mm'\/_ Voy+p v + 6

|m/2]
nlm!(— 1667
8 2 k! (m —2k).(k+”2m)- (v = B)?

k:max(O, men )

jm—n|
x Lo g el (B.11)
0, Imnlenyl

Proof: Using proposition B.1 we have

= (5] ()

/// né(n) 1)m6(m)(al)eiS(V)(m,a)-i-iS(ﬁ)(z,a/) (B12)

with SO (z,a) = %zQ —V2iyza + % The exponential can then be rearranged to
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B.2 Expression for the Transition Matrix

1S (z,a) + 15D (z,a")
= —%.1'2 — §x2 —iy/2iyra— iy/2ifrad + %aQ + %a'Q

_ 1(7+5)<x+i\/ma+\/ﬁa’> Jri(a2+a'2)(7+ﬁ)—2(ﬁa+fa’)2

2 Y+ 8 2 v+ 08
7b:i2
_ e i(1=8 ﬂ] 1(v6>{ 478 ]
- 2(7+5>{a+ -7 ] T2\375 (7—5)2+1a
=:—y?
_ bi2y2+%<zi——g)a'2. (B.13)

Since we assumed Re(y + ) > 0 for i = 1,2 we can perform the Z-integration giving

b3 2T
/dze 7”—7+6' (B.14)

With the definition

' (ﬂ) {(H 2\/7_5“/]2 (B.15)

1
2\v+5 v-0

S

yﬂ_ozi(v—ﬁ)FVVngz 2098
. v+8) L =8 =g

2
We see that the a-integration leads to another Hermite polynomial

" i (75 2v78a' 1" i (248
/aé(a)a‘leXp{E (%LB) [a 7—6] +§<7—ﬁ)a2}

one gets

_ 2i
M) a’Q} Hy [ =225 o) (B.17)
v+ v =03
and our intermediate result is

i [ 2w /iv—ﬁ" N o L1 (278 o2 | 2i48
(21) v+ 2(v+6) /afé(a)aa/ [ep{2(7+ﬂ)a }H"< v262a>]' (B.18)

In the following we will perform the derivatives

am {eA“/QHn(Ba’)}

a’=0

= X (1))”

k=0

H(™=®)(Ba') : (B.19)

a’=0

a’=0
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Appendix B Transition Matrix and its Asymptotics

Using the explicit formula for the Hermite polynomials [AS70]

[n/2] )k |
k:' R (B-20)
one can derive the derivatives of the respective factors:
a2\ ®) k)2 k! 1, for k even
(e*”) TR 0, for b odd (B.21)
and
n/21 | ¢
m—Fk n(—l) nn—240
) —— (2B
% 2 E!(n—%)!( @)
=0 o
[n/2] | ¢
_ m—k n(—l) nn—20—m-+k 1 s for n >m — k
= @2B) — E!(n—%—m—i—kz)!@Ba) 0, for n<m-—k

a’=0
_ Mk qyRmmtk n! 1, for n—m+k even andn>m—k
= (2B) (=17 (nmeJrk)l { 0, for n—m-+k odd orn<m-—Fk |’ (B.22)

Taking care of the three conditions for non-vanishing derivatives, k even, m > n —k and m —n + k even, we
get

[eAa Hn(Ba/)}
(73

Lm/2J m nomi2k Qk) n'Ak(QB)m or | 1, for n—m+2k even andn >m —2k
2k ”m+2k) 0, for n—m+2k odd orn <m—2k

Au,/2

e H" P (Ba')

a’=0

“”/” (—1)3(=1)"%@B)™n!m! /[ A \*( 1. n—m even
- k! (m — 2k)! (k + 2521 T 4RB2 0, n—modd : (B.23)
k= mdx( ") ’ ’ 2 ’
Putting this into (B.18) with
4 - L (ﬂ)
2 \v+28

8ivs3

2B g (B.24)

A g(v6> <7262)1<(76)2)<76>2
4B2 2 \y+8 ging ) 2\ 8in8 ) \4/B
and assuming “even n — m” we get

8ivs " /2] i"nli™m! n: v—0 2w
7+6 V=P 2 k!(m—2kz)!(7n”g+2k)!(_) (4\/_)

k:max(O,%)

Lm/2J Ok m—2k
’y 6 nlm!(—1) 1653 (B.25)
\/7+ 7+6 o k! (m = 2k)! (k+ 252)1\ (v = 3)? ' '

0 m2n)

7+
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B.3 Asymptotics of the Transition Matrix

Putting this into (B.12) one finds

h(v,m:(ﬁ)l( [ 2 /76
nm 2nply/m 2mm'\/_ v+ v + 6

[m/2] ! (
nlm!( 1667
x > (B.26)
k! — 2k)! k; n_m)|
k:maX(O m;") ( ) ( 2 ) (7 ﬁ)
for “m — n even” and 0 otherwise. O

B.3 Asymptotics of the Transition Matrix
We need the asymptotic behavior of the transition matrix to determine estimations on the asymptotics of
the generalized Hermite coefficients. To prove the asymptotics we bring (B.11) into a more compact form.

Lemma B.3. The generalized transition matrix WD with, B,7 € C—{0} and Re(B+~) > 0 can be brought
into the form

48~
(v+B)?

h(%ﬁ):( 46y )1/4 ml g
SNCEEEY R TR

1, MeN
(1 .
’ 2 2

where P is the Legendre function of first kind.

Proof: We start with

BB ( el )1/< /
o I 2mm'f ﬂ+v 6+v

—2k
2l nim!(—1)* 166’)/

k! (m — 2k)! (k + 252 )1\ (8 — )2

(B.28)

It is not self-evident, but this result is invariant under exchange of (m,3) < (n,7), as it should be. The
following table shows, which values the different factors can depending on k and on whether we have m < n
or m > n:

|| m<n | m>n
k 0,1,...,[m/2] mon Mt 1., m)/2]
m — 2k m,m—2,...,m— |m] nn—2,...,n—...,m-—|m|
k4 o5m || 25 s 41, [n/2] 0,1,...,[n/2]

Thus in terms of a new variable k defined by

F=k+ = (B.29)
2
the sum gets an extra factor (—1)“2"
m m—2k
ij nlm!(—1)* 1603y
k' (m — 2k)! (k + 257! —7)?
k:max(o,%) (m ) ( + 2 ) (6 ,Y)
n m—n I 77,—2]76
12 alml(—1)"7 (—1)F 1653y
_ Z ) - _ . (B.30)
i kY (n =2k (B + e\ (B —7)
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The exchange of 3 and 7 has the converse effect. The two factors depending on 3 — v earn extra factors

m—+n m—2k
\/ <67> 165y
B+ (B—7)?
m—+n m—
_ s | (B 163~y
= 0 \/ <ﬁ+7) \/(6—7)2 (B:31)

which cancel exactly the contribution of the redefinition in terms of k. We can use equation (B.30) to rewrite
the sum as

m m m—2k
Lm/2] niml(—1)"=2 166y

Z k! (m —2k)! (k4 2520\ (iy — 13)2

k:max(O, e ) 2

S 171G 106
- kzzo k! (min(m, n) — 2k)! (k+ 2521\ (i — 16)2 (B.32)
Using
Lp/2] ) o D1y
Z kN (p — 2k £+k)!c =2k (—5,7,1+£,4C) (B.33)
one gets

min(m,n)
(1.8) _ al P2 [y-8 / 166~y
i’ = <2"”'\/_) (Wm'\/_ ﬁ+7 ﬁ+7 (iy—1B)? (B:34)

(-~ n—m 1vun>

1+
43~

X

max(m!, n!) _min(m,n) 1—min(m,n)
241 ) ) 9 )

|M|!

which is totally symmetric in m and n.

Now we want to get rid of the minimum and maximum functions by relating the hypergeometric functions
to Legendre functions P!'. The following formulas will be of use for us:

P, 1(2) = P)(2)
L (v —p)! 2 T (B.35)
Pyt = (*U“m Py(z) = — sin(pm) QY (2)
with QF Legendre functions of the second kind. However, since in the following we will have “u = =5
even” the second equation will simplify to
_ (v —p)!
Pt = (=1)F—=PH(2). (B.36)

v+w”

The important identity relating our hypergeometric function to a Legendre function is (15.4.10) of [AS70]!

QFl(a,ﬁ%;c;@:zﬂr(c)(%)%*% (1 z)bee-dpl-e [(1%)*1/2} . (B.37)

2a—c

The factors of (B.34) depending on minimum and maximum functions are

gmin(m.n) (_ )~ min(m.n) max(m!, n!) (1 —min(m,n)  min(m,n) ’m -n

(z2pr = 2 2

z) . (B.38)

n [AST70] is a factor (—1)%_%C missing which I included. This can also be seen from equation (15.4.11) in [AS70], which is
exactly the same formula for real z, where this factor is present.
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with
(iv— 1)
=" B.39
7 (B.39)
For m < n we identify
m n—m
a:—g , c=1+ 5
(B.40)
c-1 ~n4m 9g—c—_1__Mm
2 ‘T a1 - 2 2

and use equation (B.37) to get

. 2 2 2
1 mj{n
I <Z > Pz [(1—2)71/2}. (B.41)
z 2
For m > n we have
n m-—n
a=-3 c=1+ 5
(B.42)
c—1 n+m n o m
—a= , 20—c=-1——-——
2 4 2 2

and thus

2 Fl
1 mjl»'n.
= 2™ (z - ) p.z [(1 - z)—l/ﬂ . (B.43)
z 2
Now we can use equation (B.36) with
m-—n m-+n

—p = , V=
2 2 (B.44)

(-l =m , (4 pl=n!

to see that that the expressions in terms of Legendre function coincide. Inserting the explicit expression for
z and

iv—ip)?
Z—l (74[3.Yﬁ) _1:(7_’_5)2

T (iv—ip)? —
i pYCa V=0 (B.45)
1— 2= 0 +8)?
40y
we get
min(m.n)
(71)7min(2m,n> 163~ max(m!, n!)
(7~ 17 (2=
1 —min(m,n) min(m,n) m—n| (iy—ip)?
F - 1
X g 1< 5 ) 5 1+ 5 ) 154
g 13
nim [y n-m y
= 2t 22 pER S B.46
oy BT N ey (40)
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This simplifies the matrix hio).

1/2 1/2 m—+n m—+n
G2 — < val > < VB > 2m Y-8 mia™s [0 +0 ps 45~
"m 2mnly/m 2mmly/m VB+~\ B+~ y-3 (v+ 6)?
_ 48y )1/4 mi e 48y B.47
- ((6+7)2 nt” == |\ (v +0)? (B.47)
and proves the lemma. O

It is easy to see that the argument of the transition matrix takes values between 1 and /2, with its
minimum at $ = v and its maximum at |y| = |3| and v/3 = +i. Below /2, the transition matrix decays
exponentially in each index, as will be shown in the next lemma:

Lemma B.4. Let 3,7y € C—{0}. Then for large n the transition matriz behaves as

B=7|"

hﬁ;f) n—1/2
B4y

(B.48)

Proof: The Legendre function has the following integral representation (equation 14.12.8 of [OLBC10])

Pl(z) = Quﬂ(( ] (H) (2" — 1) /077 do (:c + V2?2 —1cos (b) o (sin ¢)?*

n—m nWL

_ = ("Em)'"'(x —L 5 [T (Ve Teose) oy, (Ba9)
0

(n —m)!m!r

where in our case 2 =n —m and 2v = n + m and

x = ﬂ (B.50)

(B+7)?

The integral can be estimated via the saddle point method for large n. Writing the integral in the form

/7T do (:L' + V2?2 —1cos (b)m (sing)"~™

0

_ /ﬂdqﬁe”ln(sinaﬁ) <$+V$2—1cos¢>
0

N sin ¢

/2
_ / dg e () (B.51)
0

the exponential has one saddle point at ¢ = /2. Expanding around /2 gives w(¢) = 1— % (sin(r/2)) (¢ —
m/2)2+...=1—3(¢—7/2)® + ..., which gives the saddle point approximation [Cop65]|

2T

/2 _ 1/2
/0 dg e™ () = p(m/2)e" /) (W) (1+0(n™)
\ /2
= ™ (%) (1+0(n™)) (B.52)

for some 0 < e < £ and n large enough. We thus find for x as in (B.50)

m

noMm n—m 2 no
pon®) 12 ()l — 1) P it (B.53)
e m! (n —m)!mr n '
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B.3 Asymptotics of the Transition Matrix

Stirling’s formula n! ~ n™e =" can be used yielding

25 (252,
vl (n—m)!
~ exp(n;mln(n—m)—(n—m)ln(n—m)—n;m—i-(n—m)—i—gln(n)—g)
~ 1 (B.54)

which gives us the final result

2 n/2
BB @ =02 i

n

The transition matrix possesses an exponential decay unless the angle between 5 and + is less than /2.
Note that this ensures the pointwise convergence of the sum »_° fﬂ%q)hﬁ%ﬁ ) in these cases since

vn!
——H
27722y T VY )
~ e V2n[Im(y7 ) (B.56)

)

due to Stirling’s formula and the asymptotic behavior of the Hermite polynomial (see equation (5.50)).
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Appendix C

Asymptotics of Generalized Hermite
Coefficients

In the following we will determine the asymptotics of the generalized Hermite coefficients of various classes
of objects, as presented in section 6.2. We first introduce Gel’fand-Shilov spaces, whose asymptotics will be
estimated from above afterwards. Tempered distributions are considered afterwards.

C.1 Gel’'fand-Shilov Spaces

In the following we will give a brief account on Gel’fand-Shilov spaces. The Gel'fand-Shilov space S?(R) for
some «, 3 € Ry is defined to be the space of smooth functions ¢(x) € C°°(R), which obey the inequalities
[GS64]

|2k oD ()] < CA*F BIkFe 9P (C.1)
for all # € R with constants A, B,C' > 0 depending on ¢ and k,q = 0,1,2,....! The conditions pose
restrictions on the behavior of the functions and its derivatives for || — co. The smaller the parameters «
and (3 are, the faster do the functions and their derivatives decay for |x| — oco. These spaces are non-trivial
only for

a>0,6>0 , a+0>1
a=0,8>1 (C.2)
a>1,6=0

They are invariant under multiplication with polynomials and differentiation, while Fourier transformation

interchanges « and 3. For 5 < 1 the functions possess analytical continuations into the whole complex plane.
A characterization which is equivalent to (C.1) is

|Sp([1; i 1y)| S Ce_alzll/a_,’_blyll/(lfﬁ) (C?))

_ .
where @ = —= and b > %(Be)lfﬂ.

A topology is given through the subspaces Si’f (R) € S?(R) consisting of all those functions which obey
|2k (@ (z)| < CA* BIEFq9P (C.4)

for all A > A and B > B. One then defines the set of norms on Sg:f (R)

= s lp())|
P aeRkpeN, (A+ 6)F(B + p)akakqgba’

(C.5)

el

which defines a topology on these spaces. For A; < As and By < By we have Sg:fll (R) C Sg:f; (R) and if
{en(2)} is a convergent series in Sg:fll (R) it is also convergent in Sg:fj (R). The space S?(R) can then be

I The generalization to higher dimensions is straightforward but not important for us.
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Appendix C Asymptotics of Generalized Hermite Coefficients

defined as the countable-infinite conjunction of all Sg’f (R) with A, B =1,2,..., and the topology on S?(R)
is the induced limit topology. For o > 0,4 > 0 and o+ B =1 these spaces are nontrivial only if AB > ~ for
some 7 > 0, where the admissible values for A and B are bounded from below by the hyperbola AB = ~.
One can show that if ¢(z) € Sg:f (R) then o(Azx) € Sg:z?/\ (R). Thus if the former space is nontrivial then
also the latter.

Of special interest is the case a = @ with « € [1/2, 1] of quasi-analytic functions, which are subspaces of
the space of entire functions on C restricted to R. They are closed under Fourier transformation and form
an algebra under the star-product, and might thus be a suitable test function space for noncommutative
quantum field theories [Sol07b, Sol07a]. In [Sol10] it has been shown that every element in the multiplier
algebra of S¥(R) can be approximated by functions in S¢(R) in the operator topology.>

The space S(R) have been characterized in terms of their Hermite coefficients [LCP07]. A function ¢
with Hermite coefficients {¢,} is in S$(R) iff

- 1/2
a1 1
[{en}llo = (Z IwnIQGXp{2gn2a6’a}> <0 (C.6)
n=0

for some 6§ > 0.2 One defines the spaces 54,6, Which consists of those sequences {¢n} with finite norm with
respect to (C.6) for all § > 0. The sequences of ultrafast fall-off s, are then defined as the inductive limit
of the family of spaces {sq0,0 € Ry }.

The dual space S (R)" has a similar characterization in terms of Hermite coefficients. A distribution T is
in 8% (R)’ iff its Hermite coefficients T, = (T'|¢,,) obey the relation

T| < exp{2%nieé} (C.9)

for all & > 0. In the following we will use these asymptotics to estimate the asymptotic behavior of the
generalized Hermite coefficients, i.e. the coefficients in the generalized matrix basis.

C.2 Asymptotics for Generalized Hermite Coefficients of
Gel’'fand-Shilov Functions

For a general application of the generalized matrix basis it is important to know, how the asymptotics of the
generalized Hermite functions for various classes of functions and distributions look like. As an example, we
pick the Gel’fand-Shilov space of type S$(R) with aw = 1/2, which is dense in Schwartz space. We will show
that (at least) the functions of a subset of it have Hermite coefficients with an exponential decay.

We determine bounds on the asymptotic behavior of the generalized Hermite coefficients 1/)7(,;9 ) = ( f,(f )|7,/1>
for ¢ € 811//22(]R) and ¥ € S'(R). Their corresponding Hermite coefficients 1, are characterized by the
existence of a parameter 6 > 0 such that [LCP07]

> fhmle™ < o0 (C.10)

m=0

2This is actually true for all S5 (RP) with 8 > .
3In [LCPO7] the norm for any Gel’fand-Shilov space of Romieu type S{Mp} | where S& is a special case of, is defined to be

. 1/2
I{entllo = <Z sonQexp{2M(9\/ﬁ)}> (C.7)
n=0
with M the function
= sup lo L\/ﬁ)
M (0+/n) 7PEI\;])01 g( M, ) . (C.8)

In the case S2(R) one has (M, = (p*P),en, and one can show that M(6y/n) = Qnﬁ@ﬁ.
a p)peN, P~ )peNg

e
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C.2 Asymptotics for Generalized Hermite Coefficients of Gel’fand-Shilov Functions

We use the representation (B.11) of the transition matrix

h(v,m:(ﬁ)l( / /75
o 2nnl\/7 2mm'\/_ v+8 7 + ﬂ

[n/2]

nlm!(—1 —1)k 1667
k! (n — 2k). (k: + mz"). (8—")?

k:max(O,";m)
1, Imnlen
“ o, mmlengl
! 2 2
[n/2]
= > G(m, k,n). (C.11)

k:max(O, no )

for which in our case § € R.. We give a bound on the generalized Hermite coefficient by the following
estimation

[0 = |Zlh£%’f)¢m| (C.12)

n/2]
Z > |G(m, k)| (C.13)

k= max(O," Zm)

IN

where >~ >°’ denotes the sum over even or odd m > 0 depending on whether n is even or odd. This estimation
affects the accuracy of the resulting bounds, since the k-sum of hgl,’f ) consists of terms with alternating sign.
Better bounds might be found by keeping the k-sum within the modulus of RSP . We have to swap the

summations. The following table should make clear which combinations (k,n) correspond to non-vanishing
terms:

k | m
- - - - n n+2 n+4
1 - - - n—2 n n+2 n+4
[n/2] | n—2k n—-2k+2 ... n—4 n—-2 n n+2 n+4

For given k we can thus characterize the non-vanishing terms by m = 2p +n — 2k and all integers p € Nj.
For the case at hand, the sum over the different factors depending on n become

Ln/2] [n/2] oo
Z > G, k)| = Y > |G(2p+n— 2k, k, n) Yoy n—2] - (C.14)
k= max(O n 2m) k=0 p=0

In the following we denote z = L;g and r = |z|. For simplicity we set |3] = |y| which implies z = i tan(¥/2)
and thus

1603 _ 1472
(6_73)2:4(1—2 %) =4

(C.15)
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Appendix C Asymptotics of Generalized Hermite Coefficients

We then have

|G (m, k,n)m|
n—2k
_ C(n_!)1/2\/zm+n 41+r2 2-m/2/ml(—1)"z ( 1)k s
2n r? k! (n —2k)! (k + Z52)r o™
1/2 72 ptk—n)2
m—2p+n—2k n! nt2ptn—2k | 147 2 (2p +n — 2k)!
g - 4 e
¢ (2") Vr r2 k!l (n — 2k)!p! [2p+n2i
2k . _
hk=n/2—k nI\Y? _piopior [ 1412 277k /(2p + 2k)I(—1)P
= ¢ on Vr 4— - o [Vopt2] (C.16)
r (20! (252 ) 1p!
for some constant C. Since
/20 (22) = 22710 (2)D(z 4 1/2) (C.17)
we have
(2p +n — 2k)! < g~ 1/29p+n/2-k (p+k)! _ 7T71/22p+n/27k(p +1);. (C.18)

p! p!
with (p + 1)z the Pochhammer symbol. The Hermite coefficients of the Gel’fand-Shilov function may not
show a decay already at m > 0 but only at m > N for some finite N. Since for any given m the transition
matrix decays exponentially for n — oo these first N/2 terms of (C.12) can be neglected and we can safely
assume |1y, o5 | ~ e ~9PF2R) for some 6 > 0. We thus find

i 1/2 [n/2] 1 o k
(v9) LI R go-20117
< o) Y ey e

x Y (p+ Dgre ). (C.19)
p=0
Using
N+ Dglre )P = (1—re )71, (C.20)
p=0
and
[n/2] k
k(4 1 1
Z ( yzy; - '2F1 (_Eala_a_y) (021)
-~ i) et U2
we find
2~ "/2\/_ n 1
()]~ Fl—-=1.2- _
|1/Jn | ( /2> 2 1( 2a 725 y)
1
~ 2, F (—%,1;5,—y) (C.22)
with
14 (C.23)
4 r(e2f —r) '
Using 15.8.6 and 15.8.1 of [OLBC10], we find
e (2l Y o W ey e (0L
T 2F1< 2;1,25 y> (1/2)n/2 1+ Fl 27 a 51+y
(Dn/2 /2 2 ( )
= LM /(1) C.24
/2 Ty (C.24)
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C.3 Asymptotics for Tempered Distributions

where 2F7(0,b,c) = 1 has been used. The factor (1),/2/(1/2),/2 goes as y/n/2 for large n. The asymptotic
behavior is thus determined by the factor

n/2
1402
7’"/2(1+y>n/2 = <T+ Wgﬂ)

20,.\ /2
— (M) _ (C.25)

e20 —

Note that for » = 0 we get back the exponential decay of the original Hermite coefficients. Though, in order
to have a decay for a given r € [0, 1], we have to restrict on those Gel’fand-Shilov functions for which

29>ln(1+r) (C.26)
1—r

In the notation of section C.1 these functions form the space s; /2,0 for some 6 proportional to the rhs of
(C.26). The larger we choose r the more do we have to restrict to Gel’fand-Shilov space. We emphasize that
these bounds are not exact but rely on the estimation (C.13). The space of “good” functions might be larger
than the one we found.

One should note that this estimation can not directly be applied to the dual space (811 //22 (R))’, which obeys

equation (C.10) for all < 0. A case which can be handled analogously is the space of tempered distribution,
which will investigated in the next section.

C.3 Asymptotics for Tempered Distributions

Now we consider a tempered distributions 7' € S(R)". We know that its Hermite coefficients T;,, are bounded
by

Ton| < C(m + 1) (C.27)

for some constant C' and all ¢ € N. For technical reasons we will substitute (m + 1)? by (m + 1),, which is
the Pochhammer symbol defined by

T(m+q+1)

(m+Ds = —FG

(C.28)

We can then start at equation (C.20) in the previous section by substituting (2p + 2k + 1),7? for (re —20)p,
where again m = 2p + 2k with p € Ng. The sum over p then gives

ST+ Dp@p+2k+ 1)gr? ~ 293 (p+ Dg(p+k + 1)gr”
p=0 p=0
= 291 — ) F RNk + 1), (C.29)

which leads to the k-sum
[n/2]
Rk+1), o5 g n o,
REF ey S N LA .
2 G W) T et ey (€30

with ¢/ = (1 +r2)/(r — r?). Using 15.8.6 of [OLBC10] we find

n 1
o F1 <5,1 + g; E;y')

14+ q)n " no 1 n_ 1
_ Ut Dup 214y R (— 5 Ge— >

(1/2)n/2 279 2°1—y//4
(1+ C])n/z , Y 1/2+a 1 n
— L vn/en n/2 Fol—g - —qg—g— —:—1/' 31
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Appendix C Asymptotics of Generalized Hermite Coefficients

The Hypergeometric function approaches 1 for large n and the asymptotic behavior is given by
(L4 Dny2 o Jn/2 147\"?
— =" (1 + ~ (n)2+ q)it1 /2 [ —— C.32

which diverges exponentially for all » € (0,1). For » = 0 we get back the usual polynomial divergence of
tempered distributions.

One could now ask the question, for which r = tan(1/2) it is still possible to find Gel’fand-Shilov functions

P e 811//22 (R) such that the series

> e (C.33)
n=0

converges for all tempered distributions ¢ € §’'(R). Convergence requires

20

1—r e20 —p

which can be rearranged to

1+(i;:)r_2—(r—1)2
(l—r)_r 2 (r+1)2°

(C.35)

This is only possible for r 4+ 1 < v/2 and thus for ¥ < /4. Again these results are only approximately, since
the bounds on the asymptotics are only upper bounds and might not reflect the true asymptotic behavior
of the corresponding Hermite sequences.
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Appendix D

Expansion Theorem for Generalized Oscillator
States

Using the results of appendix B we can now prove

Theorem D.1. The linear span of the generalized oscillator functions (fn (re ))’I’IENO is dense in L*(R).

Proof: We will use the usual oscillator basis (¢, )nen, as an intermediate basis. Each ¢ € L?(R) can be
approximated pointwise by the limit limy_ o Zg:o ®n(q)Yn, which means that the linear span of the usual

oscillator functions is dense in L?(R). In turn, each oscillator function can be expanded in the f,(ﬂ)—basis for
MRe(7y) > 0, which is a corollary of the next lemma and proves that their span is also dense in L?(R). O

More generally we prove that

Lemma D.2. Let o, € C— {0} with Re(a+ ) > 0 and

a—pf
o< |25

Then any function f,g?) can be expanded in terms of f,(f‘), i.e. the following sum

9 (q Z fle)(q) nles (D.2)

<1. (D.1)

converges pointwise for every q € R, with transition matriz given by

B = / £ (@) 1P (). (D.3)
q

Proof: Due to proposition B.2 we are able to do the sum ) f,(ﬂ)(x) h%’f) explicitly. Keeping in mind that
each term with “n —m odd” is zero we find

Z £ () h(P)

- 3 (2717?\/7?)1/2 o TH Hn ()

n

. <2;ﬁﬁ) <2mm'f M\/ g+f

ez nim!(—1 1667
~ 2 k! (m —2k:).(k:+%)- (8 —7)?2

k:maX(O,g)

- /B 1/2 oo [m/2] ml(—1)F 163y 2k v—8 "
= (W) Z Zm n)k!(m—ka)! (v - B)? (ﬁ—ﬂ)

k=max OT
2y 1 L(1=BY -3
V B+ (k+ 25m)! Z(BJW) i (v7e) (D-4)
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Appendix D Expansion Theorem for Generalized Oscillator States

where >’ denotes the sum over even or odd n > 0 depending on whether m is even or odd. We have to
swap the summations. The double sum

[m/2]

> > (D.5)

k:max(O, e )

can be rearranged such that k runs from 0 to [m/2]. The following table should make clear which combina-
tions (k,n) correspond to non-vanishing terms:

| n
- - - - m m+2 m+4
1 - - - m—2 m m+2 m+4
[m/2] | m—2k m—-2k+2 ... m—4 m—-2 m m+2 m+4

For given k we can thus characterize the non-vanishing terms by n = 2¢ + m — 2k and all integers ¢ € Ny.
For the case at hand, the sum over the different factors depending on n become

(]
M
=
+
:lb—‘
Tk
>
=

= Z%Gﬂ-{-m ok () . (D.6)

For (D.4) this means

S 0 HG)

n=0

- \/B 1/2 |m/2] m!(—l)k 163~ 2k v—-3 "
B (2mm!ﬁ) kZ:O R (m —=2k)'\ (v = B)? (B—H)

20+m—2k

2’7 1 2.2
Vﬂ+726' 1(6+v) e Hatem—ak (v17) (D.7)

Here we can use equation (49.4.4) [Han75]

Ltk 4t 22 z
—H = (1+44t)" @D/ 2ex ( )H ( ) |t < 1/4 D.8
kok' 2k+p(2) ( ) p 11 p T4z It] / (D.8)
with the identification
L(y=8
z = T, =m-2k, t=- D.9
NI (352 09)
and thus
4t2° Y2 B oo 2y 1
—_l2_ 14+ 4t = =/= . D.10
Tra 2% ot M= e Ve (D-10)
We get

2 1,
\/6:720 (5+V) @ H Hatsmak (V)
5 —m+2k 0 1
”ﬁ—‘:V e 27 Hm2k< E(ﬂJr’y)z) . (D.11)
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and (D.7) thus becomes

Z £ () P

1/2 [m/2) m—2k m
_ VB m!(=1)* 160y 7-8
N <TWMWJ g;kﬂm—2ml(v—m2 <6+7>
—m+2k m—2k
[ 1 8,2 1
6+7 Z 6+7 e = Hm—%( 5(54-7)55)

- (2mm!f) ng

[m/2] m! 25 m—2k o -
' o e 2 D.12
X l;) El(m —2k)\ 8 —~ e 2 2k< 2(5+’y)z> ( )
Now we have to make a case study. For “m even” we will use equation (49.4.12) from [Han75]!
n »
(2n)! . -1
P (R Hy(2) = (—1— )" Hy, |2 (14 , D.14

for “m odd” equation (49.4.14) from [Han75]

i n n+3 -1/2
Z o +21 +1)! 7 (—t)* Hapqr (2) = (—t)" (1 + %) Hopi1 <z (1 + %) ) (D.15)

k:O

m even: Substituting in (D.12)

¢ = m/2—k
k' —  (m/2-10)! (D.16)
(m—2k)! — (20)!
we get
™m/2 ¢
VB \'* _ m! 23 1
— H. - D.17
<wmm¢E ¢ 5+7 ;%f% Tma— 01 |57 T\ Y2+ (D-17)
Comparing to (D.14) we identify
20
m/2 = n, t=-———. D.18
/ 5 (D.18)
Hence
1 —1/2 —1/2 1 —1
<1+;> <1—%6 w) =\/3B+7)
26 (D.19)
i, _—B=v+28 _B+v
B+ B—=n
! The formulas (49.4.12) and (49.4.14) given in [Han75] are expressed in terms of the Pochhammer symbol (—n). T used the
relation
) = (L
(=) = (=1 EyaT (D.13)

to bring them into the given form (D.14) and (D.15).
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and we find for “even m”

— 1/2 m
Dy aod — (VBN ga [Bn
m/2 ,
m)! 28 1
” ;(%)!(m/%ﬁ)! {57} Hae (5(54—7)30)
1/2

= () o F A

B (D.20)
m odd: Substituting in (D.12)
g = Mmoo,
2

. (mT_l_ﬂ)! (D.21)

(m—2k) — (20+1)!

we get

—1

VB )" B2 ﬁ—vm 2 m! 28 1 1
(Wm!ﬁ) ‘ B+7 6*72(2#&)!(’%1—[)! {67} e (5(5”)‘“)

Comparing to (D.15) we identify

Hence

1\""? - "
-
and we find for “odd m”
00 1/2 m
D () D) — VB _) g2 (B [ 28
Sroome - ()" B
Z m! ¢

£=0
1/2
= (P ) )
2mmly/m
= fB(x). (D.25)
which proves the theorem. O
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Appendix E

Expression for the Generalized Landau
Functions

Theorem (6.1). The generalized Landau functions fmn*’)( ) with m,n € Ny are given by

min(m,n E mln(m'vn') m—n|/2
O a) = (e [ = [

max(m!, n!)

_E z(ﬁ)x(m m—n m—-n
x e~ 3oyl (x (_i)gn(m n))| |L]‘mm(w‘ln) (quzf)z(_ﬂ)) (E.1)

with x(f) =t+ie Yz and L%(2) the generalized Laguerre Polynomials.

Proof: The generalized Landau functions are build on the generalized oscillator functions fy, () with v=EFE/2

and
(Eﬂ) ‘/ W f(w) f(v 19)| () (E.2)

Using the definition of the generalized oscillator functions (6.17) we get
FED) = g [ake e 0 k) 50 y2)
T JRr
[ ()2 ivka , —dvo [(t+k/2)2+(t—k/22] (1 v
- 2 (7) /]de ¢ ¢ (2m+”m!n!)

X Hp (Vo (t+k/2)) Hu (V7o (E = k/2)) . (E.3)

The generating function of the Hermite polynomials
@20 _ 5 L geym
‘ V= 3 (a8 Hnfa). (E4)

will be used to obtain the generating function for the generalized matrix basis:

oo

2m 2m+n
(v9) . . (E)
KO0 (g mit, @) S m;) — (V)™ (V)" f ()
_ (_)1/2/dkze”’” — Ly [(t+k/2)2+(t—k/2)?]
m R
w006 —26(t+k/2) 40 —2n(t—k/2)) (E.5)
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Appendix E Expression for the Generalized Landau Functions

The exponential is a Gaussian. Rearranging it yields
—iw (% +4k(n— & —ie™ W) +4(¢ + & + 0 — 26t — 2nt)]
— —i’}/ﬂ [k—|—2(77—§— ie_mgc)}2
+ye [(n—€&—ie ) — (12 + & +n? — 26t — 2t)]
= 73%9 [k+2(n—¢&— ie_m:cﬂ2
+ 79 [(1 e_iﬂ:ﬂ)2 —t2 4+ 2ni e_m:c—in e_iﬁm+2£t+2nt—2n£}
— —iw [k+2(n—¢—ie )] e [rea_ + 260 + 2z, — 2n€] . (E.6)

where we rediscover the generalized light cone coordinates xf ) = ¢+ ie Yz of section 6.3. One can see
how the complex combinations ¢ + iz used in the Euclidean setting for © = 0 become light cone coordinates

t + x for 9 = +x/2. In the following we will simply write x4 for the zf). The k integration cancels the
constant, prefactor up to a factor of 2 leading to

K(’W)(g nit,z) = 9 ¢ Vo (—T 4o +2Ex 42024 —2n¢)
Tix 1 14
S ; iy (2192-9)" o)’ (<23m6)" (E.7)
k,¢,p

The generalized matrix functions can now be obtained by taking suitable derivatives with respect to the
variables ¢ and #:

m+4n
(g ) = K (& nt,x . E.8
6 = Vo (an)  serapEmtn)| (E8)
Let m > n. Then the derivatives of K are of the following form
om o kbfcpgk-i-p L+p
oEm dnr k'f' !
§=n=0
1 kept (k+p)! (£ +p)!
= a b Cp 6 m6 n
,; (m—p)!(¢ = p)'p! (k+p—m)! ((+p—n)l oHmmi0tes
n mln!
amPpn PP E.9
> (m =P~ )7l (59

with a = 2y9x_, b = 2y9x4 and ¢ = —27y. This leads to
f(Eﬂ) / ‘/ 'TL 2%9 e e TYITHT— pm—n

- (_1);)
X ;) (2vprpm_)" CEDIEDE (E.10)

This last sum can be identified with the associated Laguerre function by substituting p — n — p and

n

k q
Z (n+ i )y' (E.11)
= (n— )k +q)q!
We finally get
2 ! m—n
FE (tx) = (~1)" [y (2y0) T e g LI (2 ) (B.12)
m m:
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A similar calculation for n > m leads to this result with + < — and m < n. Substituting v — E/2 solves
this lemma. O

The generalized Landau functions have certain symmetries which will be useful in appendix H.

Corollary E.1. The generalized Landau functions given by equation (E.1) fulfill the relations

L (BB ) = BGE0(t ) (E.13)
(E“( tix) = ()" () (E.14)

( —x) = fin(ta) (E.15)

() (=)™ " i (b ). (E.16)

Proof: Equation (E.13) follows directly from the explicit expression (E.1) by noting that E and x(f ) only

occur in the combination \/E:c(f) and E:cf):c(_ﬂ). The inversion of time ¢ — —t only affects the term
(9) .

T with

—sign(m—n)

2P 2P (@)
757.gn(m n) - +szgn(m n) _‘rfsign(nfm) ’ (E17)

such that
Fa) (=t,@) = (=)™ " fiT0 (¢, ) (E.18)

The transformation x — —x yields

) -z =z (E.19)

—sign(m—n) +sign(m—mn) —sign(n—m) "’

which shows equation (E.15). Under the exchange of ¢t and x we find

e =txie s s tie Wt Fie ) =xie V2l (E.20)
and thus
VEsa?) — JE_g(+ial"
@), .(9) (=9) _(=9) (B-21)
Eyx 'x" — E gz “xl .
Putting these into the expression of the generalized Landau function we find
_ _ /E min(m!, n!) |m n| _H (=0) (=)
(Ey) E 1 E 1t _ mm(m n) /E 5Ty Tl
T “ ) max( m' n!)
_ lm—n| o) (-
8 (_Sgn(m - nﬁwisii(m,n)) Ly (B0 2§72 C7)
= ()" () (E-22)
which proves the corollary. O
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Appendix F

Relative Probability to Create a Pair

We will now reconstruct a classical result in QED using the ¥-regularization and the generalized Landau
basis, namely the effective action for a complex KG field and a Dirac spinor in a classical external electric
field. In his seminal paper [Sch51] Schwinger calculated the effective action for a Dirac field and a Klein-
Gordon field in a constant, uniform, external electromagnetic background in 4 spacetime dimensions. In a
pure electric field the one-loop correction to the Klein-Gordon field (before charge renormalization) is given
by

1 o0 2 1
E(l)z—/ dss2e ™ |eFs——— — 1 F.1
K6 1672 J, oo ‘ Ssin(eEs) ’ (F-1)
while the Dirac case reads
1 o0
E(Dl) =52 dss3eH's [eEscot(eEs) — 1] . (F.2)
™ Jo

By shifting the contour above the real axis one picks up the poles s = s,, = nw/eFE by the residue theorem.
The probability per unit time and unit volume to create a pair in the scalar theory is given by

2 00 n—1 2
fr @ o (2D np
2Jm£KG = 2—7‘_2E ; T exp | — oE (FS)
and for the fermionic case
2ImLy) = a—2E2 i n"2exp | — s (F.4)
D7 g2 — P el ' ’

We will now show that the regularized matrix basis approach leads to the same result quite effortless.

The generating functional of connected graphs W[J, J*] is defined via the vacuum-to-vacuum amplitude
in presence of a source J

(Q, out|Q, in)[J, J*] = e W], (F.5)

with |©2,4n) and |, out) the in- and out- vacua of the theory in presence of the external sources J and J*.
We first investigate the bosoninc case. In [Sch51] the following expression has been derived

Wi/, J*] = // J*AJ — ilndet (AZ'A,) (F.6)

with Ap = A.|g—o the usual Feynman propagator. Thus using the ¥-regularization we can write

82 *M2
WkelJ, J*| = // J*AcJ — ilIndet P’; — | (F.7)
w— K )

which has to be understood in the limit ¢ — 0 with
2 2 2 —ie, 2
(5; Mz) < ie 28# ~ “ie 2) : (F.8)
P:—u . eleP2(r/2 —¢) — e liey
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Appendix F Relative Probability to Create a Pair

The effective action is now defined as the Legendre transformed of Wxg[J, J*] with respect to the classical

fields ¢ () and ¢ (x)

Nialoe o] = Wialdo = [gor = [7oe, (F.9)
where ¢ (x) and ¢}, (x) are given by
SWIJ, J*
outw) = 0 = [ A a@)
! (F.10)
x _ oW J] (o /
sule) = Ty = [ ra)adala).
These may be inverted to give
J(x) = (Pi — 1) cha(x) and J*(x) = —(Pi — 1)t (), (F.11)
and inserting into (F.9) yields
2 _ 2
Naloat] = [[(P2 = 1)0u(@) A2 (PF - i) du@) — i Indet (P; - ‘2)
- 1Bz = )alotu+ [19F - )0t
. ] P2 o M2
= SO[¢CZ) ¢cl] +1 Indet (ag _ u2>€ (F12)

This is the full effective action of the theory, which means that the quantum content is completely given by
the one-loop correction

2

P2 —u
i Indet | =5— ) = Wke[0,0]. (F.13)
s €

The one-loop correction in the Dirac case is given by inverting the functional determinant

82 o MQ
. l,L _
iIndet P 2 6 = Wp]0,0]. (F.14)
In the following we will define Wxg,pl0,0] =: Wigp =: [d'z £|(<1G)/D’ with £|(<1G)/D the one-loop effective

Lagrangian. The probability that no pair gets produced out of the vacuum is given by
(0, 0ut|0, in) y_o|* = e ~2ImWkero ~ 1 — 23mWiep , (F.15)

and the relative probability to create a pair per unit time and unit volume is thus approximately given by
27mLxg /D.1 Since perturbation theory will always give real contributions, we see that pair production is a
non-perturbative effect, given by the imaginary part of the generating functional.

Starting with the 4-dimensional regularized bosonic case, the effective action is given by

P2 2
iIndet ; ,u2
F — .

P27 2
imn(a; “) . (F.16)

2
W M

Wke

LOf course in infinite time and in infinite volume there will be infinitely many pairs produced and Wkg/p will be infinite.
This manifests itself in the x-independence of Lkg/p, which is plausible, since the probability should not depend on time
or position. Restricting to finite space V' and a finite time interval T' we have Wxg,p = TV Lkg/D-
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The operator e 1“P2(0) — e ~i¢u? fulfills the eigenvalue equation
. 1
(e P2(W) — e 'p?) fi0)(x) = <i4E <m+5) —eie 2) f(). (F.17)

We will simply write p? instead e ~¢u?, keeping in mind that p? is slightly imaginary. Additionally we will
adhere to Schwinger’s convention by substituting F — eE /2. With the identity

ln(%):/ooo%(eisa—ewb) (F.18)

which is valid for Jm(a) > 0 and Jm(b) > 0, the effective Lagrangian can be obtained by

P2
(1) . H
Lyé(x) = i(x/ln (8; e ) |)

_ [ds [d’p. _; 2 ) ) —s2eE(m+1) / d? pH D] i sp’
as is s2eE(m+3) _ ispj isp
5 e (Zf e et )¢

_ ds d? b1 715}1, (19) —s2eB(m+1) 1 i sp?
_ 1/8( Z (x)e bo et (F.19)

where we denoted the momentum p* = (pj,pL) with p, denoting the momentum perpendicular to the
electric field, while all scalar products involving p, are understood to be Euclidean and those involving p
Minkowskian. We can now use corollary 7.2 to obtain

ds d? pJ_ —isp? el —seE = —s2eEm 1 isp?
/ (2w o ¢ Z ¢ dms ) ©
1

m=0

ds - ) 1
_ isu ! F.20
1672 ) 52 ¢ (sinh(eEs) s) ’ ( )

which is indeed independent of . The integral converges at infinity since p? has a small imaginary part,
and at 0 due to the 1/s subtraction of the free case. By deforming the integration contour as s +— —is this
coincides with Schwinger’s result (F.1).

The 4 dimensional spinor case can now be done in the same way, starting with

Wo = ilndet<_P“)
laflu’ €

“itrln ( iP@_MM)E : (F.21)

The trace is understood to run over both spin and spacetime degrees of freedom. One uses

ﬁg) = —itr<m|1n(P*H)€|x>
- —itr<m|%ln(92*lﬁ2)e|m>

1 .
= — itr(:c|§ In (Pﬁ]l — 21+ %aweF‘“’) |z) (F.22)

€

to boil down the spinor case to the scalar one. Here F),, = FEe,, is the electromagnetic field tensor and
0w = 5[V, Y] For the electric field case the matrix o, F**" has the form

10 0 0

cEl 01 0 o

S loo -1 o (F.23)
00 0 -1
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Appendix F Relative Probability to Create a Pair

Each eigenvalue £eF/2 is two-fold degenerated, leading to an overall factor of two. Incorporated into our
calculation this leads to

ds d2pJ_ s a2 el > 1,1 1_1 1 em?2
s “ —isp o= —s2eE(m+5+3) 7526E(m+57§)) - isp]
1/ s /(2#)26 2 Z (e e s )

m=0
. 1 dS —isu? €E - —s2eEm —s2el 1
= 71@ 8—26 ® <§7nz_oe (e +1)7E
1 ds s epy2 1
= —— | —e ¥ FEcoth(eEs) — — | . F.24
52 / ¢ (e coth(eFE's) s) ( )

By deforming the integration contour s — —is one obtains Schwinger’s result (F.2). This result supports
the conjecture of the physical relevance of this regularization.

The matrix basis provides an easy way of doing the otherwise cumbersome calculations.
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Appendix G

Proof of lemma 7.1

Lemma (7.1). Let x € R? and a € C — {0}. The following identity holds

> 150 @) S5 @ = 2o { -G~ 2 + (@~ VB2~ aiz-B-a')
n=0 & 2 (G]')
X Ly (Elz—2'|5—a(l—a "E(@,a)y+(a—a )iz - E-2'),
where
(z, ')y = cos(V) (xz,x') g + isin(I) (z,2")nr (G.2)

with (-,-)m the Minkowskian and (-,-)g the Buclidean scalar product and ||z — z'||? = (x — o',z — x')y.
Proof: In the case m > n explicit expression for the first eigenfunction is

@) = iy By B By ey e By (G3)
and a similar representation for the second factor

E TL' ro
f'r(zglﬂ)(wl) = (—1)n\/ ;\/ pou e_EW+z7/2( Eﬂxﬁr)m_" = (Eg xﬁrxi) . (G.4)

with 24 = t+ ie Yz and Ey = e!?E. These representations can also be used for n > m due to the
identity

(1)L ) = (e ). (@5)

The sum over n thus has the form

3 " £ E19$_£EI " - T — z! x’
Zf’r(nEnﬁ)(w) f,(lio)(:l:/)a = ;(Tﬁe Ey x4 7/2 Ey | 7/2
n=0 R ) (G6)
a
St () LBy wa )L (B o).
’ n:On (Eﬂx_xgr) n By xpr )Ly (By vy xl)

and can be done using the identity (48.23.11) from [HanT75]

> LI () = ec (1 = peyrhen gyt (U= 1) (.1
n=0

fork=m,{=FEyxiax_,n=Eyx/ 2’ and c=a/(Eyx_z’ ). We get

> #SE @) f5) (@)a" = ge “E/2n/2 gekmpm, (€ — et — Y (G.8)
n=0
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Appendix G Proof of lemma 7.1

The different combinations of x4 and 2/, can be written as

£/24+n/2 = Eyxzix_/2+ Egal 2’ /2
= %(m —al ) (e —2l) + %(xpc’, +x_al)
= Sle -} + B@a) (@.9)
where we defined
e, —ap )@l —22) = eV —t+ie U —a))(t' —t—ie [’ —a])

_ eiﬁ(tft/>2+ efiﬁ(zixl)Q
= cos()(x —x')? + isin(d)(x — 2)?

m
= |z—2|3 (G.10)
and
ezl +a_al) = 3¢ Wt + e 2! — et — at))
+3e Wt + e 2o 4 ie 1t — at'))
= cos(V) (tt' + xza') + isin(9) (tt' — x2’)
= (z,a)y. (G.11)
In addition we have
né = aByri iz’
= aBEy(tt' + e 22’ — ie 1V (ta — at’))
= a(E(z,2')y— iz -E-a'). (G.12)
and
¢! = o 'Bgr_a,
= o 'Ey(tt' + e 2 0a’ + eV (ta' — at)))
a ' (E(x, 2 )y +ixz-E-x') . (G.13)

Piecing all parts together gives the desired expression

R @) f () ar
n=0

E E
= —exp{—;”m—m’”%—i— (a—1)E(x,z')y +a i:c’-E-:n}
7r

X a™ Ly (E|lz—2'|5 —al—a ') E(®,2)y— (a—a ') iz’ -E-x) . (G.14)
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Appendix H

Fourier Transformed Matrix Functions

We need the Fourier transformation of the Landau functions as well as the generalized Landau functions.
Though the ordinary Landau functions are a special case of their generalizations, we have to distinguish
both cases, due to different signatures the Fourier transformation depends on in the different spaces. We
begin with Euclidean Fourier transformation of the ordinary Landau functions:

Theorem H.1. The FEuclidean Fourier transformation of f,(nljl)(w) is given by
FIFEN k) = FP) (k) = —— F2) (k). (H.1)
with k = B~' -k = B~ (—k2, k').

Proof: The Euclidean wave operators are given by

— (8% +03) — 21 B(220" — 2'0%) + B (2% + 23)

- H.2
P? = (07 +03) +2i B(2?0* — 2'0?%) + B*(a% + 23) . (H2)
Denoting (’9# = 0/0k*, the operator P? has the following form in Fourier space

JEE

— [o@prenike

- ((k% Y k2) + 21 B(k19? — k20Y) — BX(H? + 33)) (k)

- B (—(éf +82) — 2i BL(k29" — k16%) + B2(k2 + kg)) ")

= B*p? (H.3)

where P? has the same form as P? with 9, — 8,,, 2 — k" and B — B~'. On the other hand by substituting
¢ = f{B) we find

FIP2AE)| (k) = 4B ( ) FIEB k). (1L.4)
Thus renaming k — x we find
218 (x) = 4B~ ( ) FIFP (). (1.5)

Due to the Parseval equation the Fourier transformed functions have the same normalization as the original
ones, from which we conclude

Flfian (k) = £ (k). (H.6)

The relation f5,% (k) = Tf 5 (k) follows from
k=B ' k=B'(-k% k" (H.7)
and the symmetry relations (E.13)-(E.16) derived in appendix E. O

Now we come to the Minkowskian case:
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Appendix H Fourier Transformed Matrix Functions

Theorem H.2. The Fourier transformation of f( 19)( ) is given by
FIRE ) = 50 k) = T g . (1)
with k= E~' - k= —E~(k', k).

Proof: In Minkowski spacetime the wave operators can be written as

P} = —(95 +0%) — 21 B(2'0° +2°0") + E* (a5 + 1),
Fj2 —(03 —0}) —2i E(2'0" — 20") — E*(x3 — 2?), (9)
P2 = (02 +0%) +2i BE(x'0° 4+ 2°0") + F? (22 + 27),
F~’2 — (03 — 0}) +2i E(20° — 2°0") — E? (23 — )
The regularized wave operators then have the form
P29) = e'? (cos(ﬂ)P2 — isin(¥)P?)
= e (—(e O+ e0}) —2iB(e 210" + 72%0") + (e Y2l + e ~'2?)) , (H.10)
P2) = e'? (cos 9)P? — i sin(ﬂ)lsi)
= e (—(e75 + eO) + 21 E(e Va0 + a’0") + (e af + e T al)) . (H.11)

In Fourier space we find

[ Bo)@)e e

— [ otwprees

= ((k:o —k3) + 2i B(K°9" — K'0°) + B2(92 — é%)) (k)

= _E? (f(ég — ) + 21 BN (k1" — k08Y) — E2(k2 — kf)) (k) (H.12)
and

@@

— [ o) Pro ke

= (J(Ekg + k) + 21 E(K°0" + K'0°) — E*(82 + 612)) o(k)

= B (f(ég F82) 421 B (k190 + k08Y) — E2(k2 + kf)) (k). (H.13)
We thus find

FIP*(9)¢] (k)
_ eiﬂEQ (_(eiﬂé§+ e—i19512)+21E—1(ei19k/,130+ e_iﬂkoél)—f—(e_iﬁl{%-ﬁ- eiﬂk%)) (&(k)
= e2E2P(—0)(k), (H.14)

where P2(—4)) has the same form as P2(—9) with 9, — 9,,, * — k" and E — E~'. On the other hand by
substituting ¢ = f,gf”;f) we find

FIPOMENK) = 4Es (m+ 3 ) FILE 00 (H.15)
thus renaming k — x we find
PA-OFUE @) = 4 (it 3) FUE ) (H.16)
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Due to the Parseval equation the Fourier transformed functions have the same normalization as the original
ones, from which we conclude

FIUS (k) = £507) (k) . (H.17)
The relation fi, ") (k) = L2 f P00 (E-1 . k) with
E™'k=-E'(K K" (H.18)

follows from the symmetry relations (E.13)-(E.16). O
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Appendix |

Position Space Propagator

Theorem (8.1). The propagator of the regularized, general LSZ model in 2n dimensions is given by

. B[ 2 1 smh(2sE 9) .
A(e,a) AN id / d —Sp E.
(@) e e sinh(2sE_y) P " sinh(2sE_y) iz Bea

cosh(2sE_y)
X exp {—— coth(2sE_y) E(||1 |5 + [z} [15) + mE(ﬂﬂhiBﬁ)ﬂ}
By
27

(L.1)
= 1 sinh(2sBy) |
_— B
8 1;[ sinh( 25Bk) { sinh(2sBy) iz By - 2}
cosh(2sBy)
X exp {—coth 25By) Bi(||zk |3 + |25 ]|3) + mBk(mk,mz)o} .
with 9 =7/2 — ¢ >0, E= (20 — 1)E, By, = (20 — 1)By, and
(z, ')y = cos(V) (x, ') g + isin(V) (z, ") p (1.2)

with (-,-)a the Minkowskian and (-,-)g the Euclidean scalar product and ||z — z'||3 = (x — ', — a')y.

Proof: The coordinates are denoted by = (2°,...,29) and ), = (2272, 2%*~!) with k = 1,...,n. The
propagator is given by
. .~ . -1
A (g x') = (x] {ae FeR2(9) + (1 — o) e K2(0) — e_“uﬂ |z’
-1
= e 'z [UPQ(ﬂ) +(1-0)P?(@ MZ (0P7, + (1—0)P7)) + m;ﬁ] |2(1.3)

with ¥ = /2 — ¢ > 0, where the regularized wave operators fulfill the eigenvalue equations

(OP%0) + (1= )PP ONILER) 1) = 4By (o1 + (1= o + 3 ) £452) (o)

(I.4)
(0(PH)i + (1= o) (PH)) 0, (k) = 4By <0mk + (L —o)ny + ) Fo) (an)
with f5 ’“)(a:k) the usual Landau functions and By, € Ry. We set 6 = 1 — 0. With the identity
at= / ds e ™% (I.5)
0
which is valid for Re(a) > 0 we find
A(e,a) (.’1), .’B/)
= e [T 3 A B ) e e oy
0 miniy= =0
TS A 08 ) o tememsamssy 19

k=2 mpni=0
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Appendix I Position Space Propagator

Using lemma (7.1) the sum over ny, gives the factor

o0

ﬂ Z e_4SBkU(mk+1/2)e_4SBkmk5'
meO
B - _
X exp {—%Hmk — x|+ (e 7¥B — 1)By(ap, z))o — e P iz, - By IB;C}
% Lmk (BkHwk o w%”% o 6745316&(1 o e4SBk&)QBk($kaw;€)O + (67453166 o €4SBk&) iil:k . Bk :B;c)

oo
_ B o 4Bk (mx+1/2)

mp=0
B B, & _ 5 -
g eXp{?’“llmkx;n%He-“Bw1>Bk<mk,x;>oe BmBm}

X L, (BkHiL’k — :c;cHg — 4sinh(25By5)? By, (zh, @), )o — 2sinh(4sBy5) ixy, - By, - :c;c) ) (1.7)

while the sum over n; gives

A=

Z e*4SE,19(’ITL1+1/2)
m1:O
E ) )
) ex"{gllwl —@[§+ (e TP — By, @)y — e P07 fay Ew}
X L, (E||lz1 — 2|5 — 4sinh(2sE_y5)*E(xq, )y — 2sinh(4sE_y5) iz, - E-2) . (L8)

The sum over m; and my, can be performed using equation (48.4.1) of [Han75]

= 1 yt
Loyt = —— LA 1 I
S nor = hyen () < (19
with t = e =Bk

B B ) o
7k P {Tk“?k — |5+ (e TP — D) By(ar, )0 — e TP imy - By - mz}

e—QSBk e—4sBk o
X1z o —4sB exp{ o—4sB, _ | (Bkak —zilg

—4sinh(2sBy,5)? By, (xk, T} )o — 2sinh(4sByd) ixy - By - x),) }
By, cosh(2sBy) s
_r Y B —
27 sinh(2sBy,) . { 2sinh(2sBy,) kllze —2illo

_9.p, Sinh(25By5)?

+ |:(e4sBk5 o 1) 1+ %2e :| Bk(:ﬂk;m;c)o

sinh(2sBy,)
_ —4sByé —25By Slnh(4SBk5') . "B, . / 1.1
+ { e + e 7sinh(253k) 1Tk kL (1.10)
745E,19:

and t = e

. _ cosh(2sE_y)
27 sinh(2sE_y) *P 2sinh(2sE_y)
sinh(2sE_y5)? ,
Seem YY) I g
sinh(2sE_y) (@1, 1)y

_ —4sE_46 725E,1<,Sinh(45E7195) r B 11
* [ ¢ e sinh(2sE_y) | TV E ™ (I-11)

Ellz: — =3

4 |:(e4SE05 o 1) 4 2672SE,19
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The term proportional to (xx, ) )o can be simplified using sinh?(a) = 1(cosh(2a) — 1):
_9.p, Sinh(25B5)?
sinh(2sBy)
_9sp,, cosh(4sByo)
sinh(2sBy)
= —sinh(4sBy5) + coth(2sBy;) cosh(4sByd) — coth(2sBy,)
cosh(2sBj(1 — 25)) — cosh(2sBy;)
sinh(2sBy)
cosh(2sBy)  cosh(2sBy,)

= .12
sinh(2sBy)  sinh(2sBy) (I12)

(e 74547 1) 4 2e

= (e ®B9 _ 1)t e — coth(2sBy) + 1

where in the last step the addition theorem cosh(x —y) = cosh(z) cosh(y) — sinh(z) sinh(y) has been applied
and By := (1 — 26)By, = (20 — 1) By, has been defined. We find a similar result for terms proportional to
(:Bl, wll)gt

_9ep,SINh(2sE_y5)?

—4sE_y6 1 )
(e )+ 2e sinh(2sE_y)

_ cosh(2sE_y)  cosh(2sE_y) (1.13)
~ sinh(2sE_y)  sinh(2sE_y) )

with E_g := (1—26)FE_g = (20 —1)E_y. The triangle relation ||z — |3 = ||| + [|2[|2 — 2(z, =) allows
us to combine further terms

cosh(2sBy) 19 cosh(2sBy)  cosh(2sBy) ,
_ COSMESPE) Bylla — - B
2sinh(2sBy,) Kl — 2l + sinh(2sBy)  sinh(2sBy) k(@1 @1)o

~ cosh(2sBy)
2sinh(2sBy)

cosh(2sBy,)

Br(llea 1§ + Nl 115) + Sinh(2sBy)

Bi(z1,2))o. (1.14)

and

9) cosh(2sE_y) /
9) B Sinh(25Eﬂ)> E(xzi,x})y

cosh(2sE_y) ,
—F_ . I.1
sinh(2sE_y) o(@1, 1) (L.15)

cosh(2sFE_y) s cosh(2sE_
_PIETY) ol —

2sinh(sE_p) 1~ 2l + | e

cosh(2sE_y)

— E 2 /112
e Bl + ot 3) +

The terms proportional to ixj - By - @), can be rearranged to

_2sp,, 8inh(4sBy5)
sinh(2sBy,)
— cosh(4sByd) sinh(2sBy,) + sinh(4sBy6) sinh(2sBy,)
sinh(2sBy)
cosh(2sBy,) sinh(4sBy.6) — sinh(2sBy) sinh(4sBy5)
sinh(2sBy,)

767453]66 4 e

sinh(2sBy,)
- L1

sinh(2sBy,) (1.16)
where sinh(z — y) = sinh(x) cosh(y) — cosh(z) sinh(y) has been used, while iz, - E-x} and can be vet in the
same manner giving

_2ep_,SiMh(4sE_y5) _ sinh(2sE_y) (L.17)

- ° sinh(2sE_y) 7sinh(23E_19)

—4sE_yo& +oe
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Putting everything together we finally get

e E [ e 1 sinh(2sE_y) .
A(e,o) N 2i9 d sp o . E- !
(@, ') e 2 Jo e sinh(2sE_y) <P sinh(2sE_y) H o1

1 cosh(2sE_y)
X exp {—5 coth(2sE_y) E(||la1 |5 + ||} [15) + mE(iBhiBﬁ)ﬁ

§ o) (L18)
By, 1 sinh(2sBy,) . ,
Dk L _ PSS Tk) . B, -
x kl;[Q 97 sinh(25By) eXp{ sinh(2sBy) ok Tk w’“}
1 cosh(2sBy,)
X exp {5 coth(2sBy) B ([|lzx 1§ + |23 ]15) + sinh(TBk)Bk(mk’ T )o o -
(I
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Appendix J

Matrix Propagator

Theorem (8.5). The matriz propagator for the 2n dimensional reqularized LSZ model in Minkowski space-
time is given by

(e,0)
Am,era;lJra,l
.0 L . e n o n
_ ie —ie co1+1/2)4+3" (cai+1/2)—1+ 2" A (€) ()
- ¢ 8_Q 0 dzz (et = s An17n1+041;51+041,€1 EA’M‘,”H-W?ZH-M,&
(J.1)
with Minkowskian part
(€)
Am,era;lJra,l
- mirin,@) Z_ieieu(l _Z—ieif)m+€—2u ( 40 )a+2u+1 (1_Q)m+€—2uA(m £ o)
B ‘< 1 (1_9)2Z—iei€ a+m—+4+1 (1+Q)2 1+Q 5 Ty Ly
u=max(0,—a) [FE=)E]
(1.2)
and Euclidean part
(E)
Am,m—i—a;[-{-a,[
- min(z’rm@) Zu(l _ Z)m+272u 40) a+2u+1 1-0Q m+l—2u A(m . u)
- (1-0Q)2 at+m+4+1 (1 + Q)Q 1+Q N
u=max(0,—a) (1 — mz
(1.3)
where
B a+n a+/ n 14
st [ () (D (D) ”
and a = (aq,...,a,) €Z" and a; = n; —m;.
Proof: The 2n dimensional, regularized LSZ wave operator in matrix basis is given by equation 6.94:
G’E’:lj’(:b?kl = igfsl)nl;klél - e_i€ Zgﬁj}nl,klll - e_i€u2 (J‘5)
i=2

with m = (ma,...,ma),n = (n1,...,n0),k = (ki,....ka), £ = (01,...,6,) € N" and G7) |, the two
dimensional, massless, Euclidean LSZ matrix wave operators

o 02 +1 e
g7(n7)1;k€ = (2 9+ (m+n+1)+ 7(nm)> Ome On,k
Q-1
+2— (s/_nm5m74+1 Srsr + /(0 + D) (m+ 1)5m,e715n,k71) (1.6)
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with frequencies Q = E6, /2 = B;6;/2 and Q = (20 — 1)Q. Each of these operators are nonzero only for
nifmi:kif&::ai 5 VZ:L,TL (J?)

This is due to the SO(1,1) x SO(2)*(»~Y-symmetry of the action. We can thus get rid of n parameters and
write instead

n

(e,0) _ 62 : —ie, 2
Gm,m+a;€+a,€ lgml mitarilitarly gml mitailita;t; € H Omednk - (J‘S)
=2

with @ € Z". The n parts of G are independent and its eigenfunctions are thus a product of the eigenfunctions
of the individual G’s. The mass term is already diagonal and also the terms proportional to 2. Thus for
every « we are searching for solutions of the equations

Z gm,m+a;€+a,é|Q:0Ué:) = v Ur,(yf;,) . (Jg)
£=0

This equation has been solved in [GWO05b] with the solutions given by

= () () (B8) (58 (|t o

and eigenvalues

Q
for y =0,1,2,.... The Q term has to be added to the eigenvalues

v—v = %(2y+200¢+1). (J.12)

The complete matrix operator in 2n dimensions has the representation

n

. , -1
GgfliZLJraeJrae - ZU o (ivll n eﬂez”g - eleﬂ2> (Uég)) (J.13)

=2

where

Ul = H A (J.14)

mi, L

and

l’Ul—e 162 ’U —16 2
n

40 ) 40 .
= 17(2% + 2001 +1) — eflCZT(QyiJrQUaijL 1) — e tey?

i=2
-t iyg + i(oon +1/2) — efiezn: ; — efiei(aa' +1/2) — e '€ 2 6 (J.15)
- . ' i=2 v i=2 ' 8 82 ) -
with y; = 0,1,2,.... One can show that
() CORN e (o)
(Umllvl e Umnnvn) = Umnnvn T Umllvl . (JIG)
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jv)i =0, (al)(yl) where the relation between v; and y; is given by
(J.15). Using the Schwinger parameter this yields the propagator

In the following we will use the notation U,(T?

A(€)

m+oa,m;€+o,l
n

(Z z)/ dtexp{ i) — e lezv_eﬂf Q}H( U )L ()

y1=0 Yn=0 i=1
_ 7eiei Oodt o ite (oo t1/2)—t S (oait1/2) 1 %
80
(Z eltey “1)(y1)U§fl)(y1)> 11 (Z etyiUﬁ%i)(yi)Uﬁi)(yio (J.17)
y1=0 i=2 \y;=0

The only difference between the Euclidean and Minkowskian part is the additional factor “—ie '€’ in the
exponent of the y; part. We will consider the two factors depending on y; and y; for i = 2,..., n separately.
Using the explicit formula for the U’s (J.10) the respective sums are given by

> e mUeD (g UL (i)

- a1 +my a1 + 4 40 atlhpog\™mth
B mi 41 (1+Q)2 140
ar+y ) (el Ta—-92\"

Y1 (14+Q)?

. 40 F —l1, =1
(1-Q)2 201 1+ oy

X
iy

X
[\v}
~

%) (J.18)

and

> e UL (y) U (i)
y;=0

) () ) )
S () ()

49 F —Li, —yi
_7(1 79)2 2471 1+O[1

Now following Grosse & Wulkenhaar in [GW05b] we use the formula

X

—mi, =Y

1+ ay (1-Q)2

4 ) . (1.19)

X

[\)

T
N

y=0

(1—(1—bja)m+ —m, 1 ab?
(1 — a)otm+i+l 2F1( 1+a ’m)a la| <1,

S v oty —-m, —y l,—y
() ) (L )em (U )
1—

(J.20)
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which can be applied both for the Euclidean as for the Minkowskian case, with

eiteie(l 79)2

ap =

(1+0)?
40
"Taap
e = LEQP e Q)
(1—=b)a; = e ENDE = g
(1—(1=b)ag)™*r = (1— eite’ ymth
arb? _ (-9 ( 40 )2 eite‘f
1-(1-ba1)? (1+22\(1-D)2) (1— eite’)2
_a+9p ( 40 )2 pite’
1-Q)2\(1+Q)2) (1—elite’)2
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o e t(1-Q)2
A
, 40
S (1-9p
_ 04+ Pera -2
(1 — b)az = (1 — Q)2 (1 T Q)2 = (J22)
(1= (1= Db)a;)™ ™t = (1 — e Hymith
aib? _(1-97? ( 40 )2 et
(I-(1=0b)a;)? (1+922\(1-9)2) (1—-e~t)?
_ (1492 < 40 )2 et
(1= \1+0)?) 1-e7")?

Inserting the above expressions leads to
(1-— eiteie)ml“1 o1 +my o1 + 0
(1 B eitcie(1_9)2)a1+m1+f1+1 mi /1

1+9)? |
((1 erQQ)Q) G +S§)2) 1 fe :it)2> (7.23)

—msi, _gl
X 2F1 ( 1+a1

and

(1— e fymth Qg +my; a; +;
e*t(l—ﬂ)?)O"'J”’“Jre"Jr1 m; ¢

(1_ (1+9)2
A 40 \?/1+0\> et
x 2F1( 1+ a; ((1+Q)2) (19) (1et)2>' (7.24)

t

Now substituting z = e ~! (which gives a z~! from the differential) and using the expansion of the hypergeo-

metric functions

min(m,?)
—m, —1 B u m!llal
2k ( ‘A) N Z A (m —u)!l(f —u)l(a+ u)lu! (J.25)

u=max(0,—a)
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and recombining the binomials and faculties

\/( a—;n ) ( O‘Ze )(nu)!(émio)é'(ajLu)!ul

B (a4 n)l(a + £)InInlellalal
B nla!llla!(n — u)!(n — w)!(l — )l — u)!(a + u)l(a + u)ulu!

J i) () o) ()
JE GG

= A(m, !, a,u) (J.26)

this becomes

min(m1,41)

5 Zfi e ieul (1 o Z*ie ie)m1+8172u1 40 a1 +2ur+1 1-Q a0 —2u,
Z (1 (-2 . 1)a1+m1+€1+1 (1+Q)2 1+Q A(ml,fl,al,ul)

w1 =max(0,—a) 1792

(J.27)
and
min(ilf’ei) zui(l _ Z)mi+€¢—2ui ( 40 )ai+2ui+1 (1 _ Q)mri—@i—Qui A(m o u)
w;=max(0,—o;) (1 _ (=02 Z)aieriJrliJrl (14Q)? 1+ o
i=max(0,—as (FEOE
(J.28)
This proves the theorem. O
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