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Abstra
tIn this thesis we 
onstru
t a 
lass of non
ommutative quantum �eld theories on Minkowski spa
etime viaan analyti
al 
ontinuation of the Eu
lidean Grosse-Wulkenhaar and LSZ models, whi
h are de�ned by aperturbative setting based on modi�ed Feynman diagrams. Chara
tersti
 of these theories is the presen
eof a 
onstant, external ele
tromagneti
 �eld, whi
h renders their ultraviolet and infrared regimes indistin-guishable. This feature is known as LS-duality and is believed to be responsible for their renormalizabilityand the vanishing of their β-fun
tions in the Eu
lidean 
ase.We introdu
e an alternative to the i ǫ-pres
ription of these Minkowskian models, whi
h will be shownto lead to 
ausal propagators. This regularization allows us to map the LS-
ovariant theories onto matrixmodels via a generalization of the Landau basis, and to impose a simultaneous UV- and IR-regularizationof the Feynman diagrams, while keeping the LS-duality manifestly. A new quality on Minkowski spa
etimeis the instability of the va
uum with respe
t to pair produ
tion, whi
h is due to the la
k of translationinvarian
e 
aused by the ele
tromagneti
 �eld. We dis
uss its impli
ation on the perturbative expansion andthe unitarity of the s
attering matrix. As a �rst step towards a renormalization of these theories, we derivethe 
orresponding propagators in Minkowski spa
etime in position and matrix representation and dis
usstheir asymptoti
s.
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Kurzbes
hreibungIn dieser Arbeit konstruieren wir eine Klasse ni
htkommutativer Quantenfeldtheorien auf Minkowski Raumzeitüber analytis
he Fortsetzungen der euklidis
hen Grosse-Wulkenhaar und LSZ Modelle, wel
he über einenperturbativen Ansatz mit Hilfe von modi�zierten Feynman Diagrammen de�niert sind. Charakteristis
hfür diese Theorien ist die Anwesenheit eines konstanten, äuÿeren elektromagnetis
hen Feldes, wel
hes ihreinfrarot und ultraviolet Berei
he ununters
heidbar ma
ht. Diese Symmetrie ist bekannt als LS-Dualität,und s
heint verantwortli
h zu sein für ihre Renormierbarkeit und das Vers
hwinden ihrer β-Funktion imEuklidis
hen Fall.Wir führen eine Alternative zur i ǫ-Vors
hrift für diese Modelle auf Minkowski Raumzeit ein, die, wie wirzeigen werden, ebenfalls zu kausalen Propagatoren führt. Diese Regularisierung erlaubt uns mit Hilfe einerVerallgemeinerung der Landau Basis die LS-kovarianten Modelle auf Matrix Modelle abzubilden, und eineglei
hzeitige UV- und IR-Regularisierung der Feynman Diagramme dur
hzuführen, wel
he die LS-Dualitätmanifest erhält. Eine neue Qualität auf Minkowski-Raumzeit ist die Instabilität des Vakuums bezügli
hPaar-Produktion, wel
he aus einem von dem elektromagnetis
hen Feld verursa
hten Fehlen der Translation-sinvarianz folgt. Wir diskutieren deren Auswirkungen auf die Störungsentwi
klung und die Unitarität derStreumatrix. Als einen ersten S
hritt in Ri
htung Renormierung dieser Theorien leiten wir die zugehörigenPropagatoren in Minkowski-Raumzeit in Orts- und Matrix-Darstellung her und diskutieren ihr asymptotis-
hes Verhalten.
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1 Introdu
tion1.1 MotivationQuantum �eld theory is a powerful framework for the des
ription of physi
al phenomena, providing anastonishing agreement of theory and experiment. But despite its su

ess, the re
on
iliation of quantumtheory and gravity remains an open issue. A long-held belief is that an underlying theory of quantumgravity should manifest itself in a modi�
ation of the fundamental geometry at very short distan
es and maybe a

ompanied by a quantization of spa
etime itself.The idea to 
onsider theories on quantum spa
etime goes ba
k to the early days of quantum �eld theory.The need for a regularization at high energies led people to doubt the ordinary 
on
ept of spa
etime at smalls
ales. Inspired by quantum me
hani
s, where single points in phase spa
e loose their meaning, un
ertaintyrelations for spa
etime 
oordinates indu
ed by the 
ommutation relations
[xµ, xν ] = i Θµν(x) , (1.1)should prevent the resolution of arbitrary small s
ales and e�e
tively regularize the high energy divergen
es.However, the papers by Snyder [Sny47a, Sny47b℄, who published the �rst systemati
 analysis on this subje
t,were largely ignored, due to the enormous su

ess of the renormalization program.The mathemati
al foundation of non
ommutative spa
etimes has been developed by Alain Connes in formof his non
ommutative geometry. As a surprise, the standard model �ts quite naturally into the frame ofnon
ommutative geometry. Using the notion of a spe
tral a
tion prin
iple, Connes et al. were able to dedu
ethe standard model of parti
les in
luding the Higgs me
hanism (with a predi
tion for the Higgs mass around

170 ± 10 GeV [S
h07℄) and gravitation from �rst prin
iples (see e.g. [Con94, GB02, CC10℄). Though itstill su�ers from several short
omings, as it is (up to now) only a 
lassi
al but not a quantum theory, theseinvestigations �nally dire
ted peoples attention to non
ommutative quantum �eld theory. A �rst appli
ationwas found in 
ondensed matter systems, as it seems to be the right framework to des
ribe the fra
tionalquantum Hall e�e
t (see e.g. [HVR01℄). After it was realized that NCQFT arises in string and M -theory[CDS98, DH98, CH99, S
h99, SW99℄ it gained huge popularity. It was shown that 
ertain low-energy limitslead to an e�e
tive non
ommutative Yang-Mills theory
SYM =

∫
d4x

(
1

4g2
Fµν ⋆ F

µν

) (1.2)with
Fµν = ∂µAν − ∂νAµ − i (Aµ ⋆ Aν −Aν ⋆ Aµ) . (1.3)The produ
t denoted by ⋆ is the Groenewold-Moyal produ
t, realizing the 
ommutation relation (1.1) with
onstant deformation matrix Θµν and non
ommuting spa
e 
oordinates. Re
ently it has been shown thatnon
ommutative quantum �eld theory also appears as a low-energy limit in another popular approa
h toquantum gravity, namely loop quantum gravity [FL06, JMN09℄. NCQFT might thus well be seen as a �rststep towards a full theory of quantum gravity.Inspired by the non
ommutative YM a
tion, several non
ommutative versions of quantum �eld theorieshave been proposed by taking the usual 
lassi
al a
tion de�ned on some 
ommutative spa
etime and repla
-ing the ordinary produ
t by the star-produ
t with 
onstant deformation matrix. The quantum theory isde�ned perturbatively via modi�ed Feynman rules, whi
h in momentum spa
e amounts to using the ordinaryFeynman propagator but with modi�ed intera
tion verti
es, whi
h 
arry momentum depending phase fa
tors[Fil96℄. The original hope of Snyder and 
ontemporaries, that the fuzziness of spa
etime would regulate allUV divergen
es, soon turned out to be too optimisti
. Filk showed that Feynman diagrams for the non
om-mutative φ4-theory 
an be 
lassi�ed into planar and non-planar diagrams [Fil96℄. The planar diagrams turn1



1 Introdu
tionout to be identi
al to their 
ommutative 
ounterpart and have to be renormalized a

ordingly. The non-planar diagrams, on the other side, su�er from what is 
alled UV/IR mixing [MVRS00℄, whi
h ultimatelyleads to in�nitely many non-renormalizable diagrams.Soon the la
k of unitarity of the 
orresponding S-matrix was dis
overed [GM00℄, whi
h manifests itself ina violation of the 
utting rules. It was tra
ed ba
k to the non
ommutativity of spa
e and time Θ0i 6= 0 andhas found to be absent for pure spa
e/spa
e non
ommutativity Θ0i = 0. This seemed to be in 
on
ordan
ewith the fa
t that theories with non
ommuting time and spa
e 
oordinates should arise from open stringsmoving in an external ele
tri
 ba
kground whi
h, however, have no low energy e�e
tive �eld theory limit.As has been shown in [BDFP02℄, the violation of unitarity is not present in a perturbative setting usingthe Dyson series, involving time ordered produ
ts of the intera
tion Hamiltonian in the 
ontext of 
anoni
alquantization, or the Yang-Feldman formalism. The transition from the Dyson series to Feynman diagramsis usually performed with help of Wi
k's theorem, whi
h ne
essitates reversing the order of time orderingand �eld multipli
ation. These two operation, however, do not 
ommute if Θ0i 6= 0, whi
h shows that inthis 
ase path integral quantization and 
anoni
al quantization are simply not equivalent.Despite its apparent drawba
ks, the �traditional� NCQFT on Eu
lidean spa
e based on the path integralquantization has re
eived an in
reased attention sin
e the advent of the Grosse-Wulkenhaar (GW) model.The GW model was the �rst non
ommutative model whi
h proved to be renormalizable to all orders inperturbation theory in two [GW03℄ and four dimensions [GW05b℄. Grosse and Wulkenhaar realized thatthe UV/IR mixing problem, whi
h is the reason for the non-renormalizability of the usual non
ommutative
φ⋆4 model, is due to a missing term in the a
tion. By adding an harmoni
 os
illator term and treating itnon-perturbatively, the asymptoti
 behavior of the propagator improved su
h as to over
ome the UV/IRmixing problem and even rendered the GW model renormalizable.A parti
ular surprising feature of this model is the vanishing of the β-fun
tion [GW04, DR07, DGMR07℄.In four dimensions, both, the bare and the renormalized 
oupling 
onstant remain bounded and non-zeroafter removing the UV 
uto�. Thus the model has no Landau ghost (or triviality problem) and is notasymptoti
ally free but asymptoti
ally safe. This is 
ontrary to the 
ommutative 
ase, where the onlymodels without Landau ghost are non-Abelian gauge theories. Roughly, the problem is that even aftersu

essful renormalization some 
oupling parameters still may diverge at small but �nite s
ales. Simplerenormalizable theories in 
ommutative QFT, like QED or φ4 theory in 4 dimensions, are a�e
ted by thisproblem. It be
ame 
lear that QED had to be in
orporated into a larger theory where this problem nolonger persist. Up to now the only 
ommutative theories whi
h do not su�er from the Landau problem arenon-abelian gauge theories [GW73, Pol73℄. The GW model is the �rst rigorous four dimensional �eld theorywithout unnatural 
uto�, whi
h is expe
ted to exist non-perturbatively [Riv07a℄ and is not asymptoti
allyfree.The GW breakthrough paved the way for a 
onstru
tion of various renormalizable NCQFT de�ned onEu
lidean spa
e. The 
ru
ial ingredient turned out to be the invarian
e under Fourier transformation plusa res
aling of the �elds, known as LS-duality [LS02a℄. It was in
orporated into the GW model through theenhan
ement of the a
tion by the extra harmoni
 os
illator term. The pro
edure of making a theory LS-
ovariant is now known as vul
anization1 and has su

essfully been applied to other models, rendering themrenormalizable. Among these are the φ⋆3-model [GS06b, GS06a, GS08℄, the Gross-Neveu model [VT07a℄and the LSZ model [LSZ03, LSZ04℄.The vul
anization of the Eu
lidean models had the 
onvenient side-e�e
t that the 
orresponding free partsof the a
tion get diagonalized by a 
ountable in�nite set of fun
tions, known as Landau fun
tions. Withhelp of this basis the LS-duality 
ovariant models are mapped onto matrix models. The matrix approa
hpermits an easy way of regularizing the model while keeping the LS-duality manifestly at quantum level.In this way, Grosse and Wulkenhaar were able to show the renormalizability of their model to all order inperturbation theory. In addition, it has been used to solve the LSZ model exa
tly and prove the vanishingof the β-fun
tion.In this thesis we wish to answer the question: do the LS-duality 
ovariant models have a 
ounterparton non
ommutative Minkowski spa
etime, and if yes, are they renormalizable? Up to now there exist onlypartial results in this dire
tion. In [WW07℄ a 
omplex model in three dimensions, i.e. with degenerateddeformation matrix and thus with one 
ommuting 
oordinate, based on a 
omplex version of the Grosse1Vul
anization alludes to a te
hnologi
al operation with the same name, whi
h adds sulphur to rubber to improve its me
hani
alproperties and its resistan
e to temperature 
hange [Riv07b℄.2



1.2 NotationWulkenhaar model with a (φ†φ)⋆3-potential has been 
onsidered and proven to be renormalizable. A real φ⋆4model in 4 dimensions with two 
ommuting 
oordinates has been proven to be renormalizable in [GVT08℄.A renormalizable NCQFT on Minkowski spa
etime might thus be 
onstru
ted by using renormalizableEu
lidean theories equipped with a 
ommutative time dimension, in whi
h 
ase the modi�ed Feynman rulesapply. We will go one step further and 
onsider the full non
ommutative Minkowski spa
etime. Irrespe
tiveof the fa
t that the path integral quantization has been spotted to be responsible for the violation ofunitarity, we will work in the usual perturbation theory. The purpose is to sound the possibility to 
onstru
ta renormalizable and non-trivial four-dimensional quantum �eld theory in Minkowski spa
etime with thehelp of the non
ommutative deformation.We de�ne bosoni
 LS-duality 
ovariant models in Minkowski spa
etime, the LSZ and GW model, based onthe work [FS09, FS10℄. While for all frequently investigated Eu
lidean models the vul
anization pro
edureprodu
es dis
rete �harmoni
 os
illator like� spe
tra for the wave operators whi
h are involved, the Minkowskisignature turns them to be 
ontinuous and unbounded from below. The dis
rete spe
trum is the mainingredient for a reasonable appli
ation of the matrix basis. In the 
ourse of this thesis we will demonstratehow to over
ome this barrier by a proper regularization of the model, whi
h will be 
alled ϑ-regularizationand is a repla
ement for Feynman's i ǫ-pres
ription. As will turn out, this regularization is also 
onne
tedto 
ausality and leads to the Feynman propagator. The Feynman graphs are analyti
ally 
ontinuations ofthe Eu
lidean ones. Comparing to re
ent results on the Minkowskian Grosse-Wulkenhaar model [Zah10℄,based on the usual i ǫ-regularization, we �nd that the strange divergen
es found in [Zah10℄ are absent in thematrix approa
h. The ϑ-regularization thus seems to be ne
essary to de�ne LS-duality 
ovariant models inMinkowski spa
etime. We will also dis
uss the problem of unitarity of these models, whi
h require a more
areful analysis due to the la
k of translation invarian
e and the o

urren
e of pair 
reation. The propagatorsof these models will be 
al
ulated and their asymptoti
s dis
ussed. The ϑ-regularization turns out to improvetheir asymptoti
 behaviour and may thus turn out to be 
ru
ial for the renormalization program.The thesis is stru
tured as follows: In 
hapter 2 we give a brief introdu
tion to path integral quantizationof non
ommutative �eld theories in Eu
lidean and Minkowski spa
etime. We derive its modi�ed Feynmanrules and illustrate the appearan
e UV/IR mixing problem. Chapter 3 is devoted to the origin of the UV/IRmixing and the question how to tame it. We introdu
e Eu
lidean versions of the LS-
ovariant models and thetranslation-invariant model as examples of NCQFT without UV/IR mixing problem. In 
hapter 4 we givea brief a

ount on the matrix basis, whi
h has been an invaluable tool in the investigation of LS-
ovariantmodels on Eu
lidean spa
e. A proof for LS-
ovarian
e at quantum level will be given. In 
hapter 5 weintrodu
e the Minkowskian versions of bosoni
 LS-
ovariant models, the LSZ and GW model. We investigateits spe
tral stru
ture and sound the possibility of a matrix representation. We point out the di�eren
esto the Eu
lidean models and �nd a representation in terms of a 
ontinuous set of eigenfun
tions and amatrix representation in terms of resonan
es. Both approa
hes are related to di�erent ways to establish the
orresponding quantum �eld theory. In 
hapter 6 we give an a

ount on the new matrix basis and derive thematrix model representation of the LS-
ovariant models on Minkowski spa
etime. Chapter 7 is devoted to theappli
ation of the methods introdu
ed before. We show that the matrix approa
h leads to 
ausal propagatorsand is a natural representation to implement LS-
ovarian
e at quantum level. The unitarity problem for LS-
ovariant theories is tou
hed afterwards. Finally we investigate their renormalization properties in 
hapter8 by 
al
ulating the 
orresponding propagators and s
rutinizing their asymptoti
 behavior.1.2 NotationWe will shortly 
omment on the notation and 
onventions we will use in the forth
oming 
hapters. We willwork in D-dimensional Eu
lidean or Minkowskian spa
e with D = 2n and n ∈ N, with signatures (1, . . . , 1)and (1,−1, . . . ,−1), respe
tively. Eu
lidean ve
tors are denoted as
a = (ai) = (a1, . . . , aD) (1.4)and are indi
ated by Latin indi
es i, j, . . . running from 1 to D. Minkowskian ve
tors are denoted by
a = (aµ) = (a0, . . . , ad) , (1.5)indi
ated by Greek indi
es µ, ν, . . . whi
h take values in {0, 1, . . . , d = D − 1}. The D = 2n-dimensional
oordinate ve
tor x will o

asionally be split up into two-dimensional subve
tors

x = (x1, . . . ,xn) , (1.6)3



1 Introdu
tionwith xk = (x2k−1, x2k) in Eu
lidean spa
e and xk = (x2k−2, x2k−1) in Minkowskian spa
etime. In twodimensional Eu
lidean spa
e the 
oordinates are often denoted as x = (x, y), whereas in two-dimensionalMinkowski spa
etime we write x = (t, x).The usual Einstein 
onvention is used to des
ribe the s
alar produ
ts with aib
i and aµb

µ denoting theprodu
ts in the respe
tive 
ases. If the spe
i�
 signature is irrelevant or follows from the 
ontext we willsimply write a · b. In order to avoid notational 
lutter, we will introdu
e a spe
ial notation for the square ofa ve
tor a with respe
t to the di�erent signatures. Performed with respe
t to Eu
lidean signature it reads
a2

i := aia
i = a2

1 + . . . a2
D . (1.7)This allows us to distinguish it easily from its Minkowskian 
ounterpart denoted as

a2
µ := aµa

µ = a2
0 − a2

1 − . . .− a2
d . (1.8)Integrations will partly be abbreviated as

∫

x

:=

∫

RD

dx and ∫

k

:=

∫

RD

dk . (1.9)We will often swit
h between fun
tions f(x) de�ned on some spa
e and abstra
t �kets� |f〉, where a

ordingto Dira
's bra-ket notation we de�ne
〈x|f〉 = f(x) , (1.10)where the spe
i�
 representation will be 
lear in the given 
ontext. The L2-s
alar produ
t of two fun
tions

f, g ∈ L2(RD) is then de�ned by
〈f |g〉 =

∫

RD

dDx f(x)∗ g(x) , (1.11)where f(x)∗ is the 
omplex 
onjugated fun
tion of f(x), sometimes also denote as f(x). As is 
ommonpra
ti
e in the physi
al literature, this de�nition will freely be extended to obje
ts like tempered distributionset
, whenever it is 
lear what is meant by the pairing (1.11).The hermitian 
onjugation of a matrix M is designated by a dagger with M † = (Mmn)† = (Mnm)∗.We will also use the notation
x ·E · x′ = xµEµνx

′ν

x ·B · x′ = xiBijx
′j ,

(1.12)for x,x′ ∈ R
2 and Eµν and Bij are the two-dimensional ele
tri
 and magneti
 �eld strengths, respe
tively,de�ned as

E = (Eµν) =

(
0 E
−E 0

)
, B = (Bij) =

(
0 B
−B 0

) (1.13)with E,B > 0.The Fourier transformation of a fun
tion f is de�ned as
f̂(k) =

1

(2π)D/2

∫

RD

dDx e− i k·xf(x) , (1.14)where the signature within the s
alar produ
t will be 
lear from the 
ontext. It will sometimes also bedenoted as F [f ].Furthermore we de�ne
R+ = {x ∈ R | x ≥ 0}
R

n
+ = {x = (x1, . . . , xn) ∈ R

n | xi ≥ 0 ∀ i}
C+ = {z ∈ C | Re(z) ≥ 0} .

(1.15)We de�ne the map (·, ·)ϑ : R2 × R2 → C for ϑ ∈ [−π/2, π/2] by
(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M , (1.16)4



1.2 Notationwhere (·, ·)M is the two dimensional Minkowskian and (·, ·)E the two dimensional Eu
lidean s
alar produ
t.In addition we de�ne the map ‖ · ‖ : R2 → C by
‖x‖2ϑ = (x,x)ϑ

= cos(ϑ)‖x‖2E + i sin(ϑ)‖x‖2M (1.17)with ‖ · ‖E the two dimensional Eu
lidean and ‖ · ‖M the two dimensional Minkowskian norm.
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2 Non
ommutative Quantum Field TheoriesThis 
hapter is intended as a brief introdu
tion to �ordinary�, i.e. non-LS-
ovariant, non
ommutative quan-tum �eld theories in the path integral framework and their short
omings. The de�nition of NCQFTs 
onsistsof two independent steps, the introdu
tion of a non
ommutative spa
etime and the quantization of physi
al�elds. These two steps do not 
ommute, so there are initially two di�erent ways to pro
eed. The standardpro
edure amounts to �rst de�ne fun
tions on a deformed spa
etime whi
h in our 
ase will be the Moyalspa
e. The way we do this is known as Weyl �quantization� illustrated in the next se
tion. Path integralquantization of the 
lassi
al non
ommutative �eld theory will be de�ned in se
tion 2.2. We will dis
uss theproblems of ordinary theories in the path integral framework using the example of the bosoni
 φ⋆4-theory. Wederive the related modi�ed Feynman rules in Eu
lidean and Minkowskian 
ase, explain the UV/IR mixingproblem and the unitarity problem in Minkowski spa
etime.2.1 Moyal Spa
e and Weyl QuantizationThe following dis
ussion is valid for both Minkowskian and Eu
lidean signature. For 
onvenien
e we willsti
k to D-dimensional Minkowski spa
etime with D even. The Eu
lidean version may be obtained by usingEu
lidean instead of Minkowskian s
alar produ
ts.We are sear
hing for a realization of a 
lassi
al �eld theory de�ned a non
ommutative spa
e where thenon
ommuting 
oordinates obey the 
ommutation relations
[xµ, xν ] = i Θµν . (2.1)In the following Θµν will be �xed to a 
onstant, real-valued and antisymmetri
 and non-degenerate D ×Dmatrix, known as Moyal deformation.1 Its entries have the dimension of (length)2. A 
onstant deformationmatrix distinguishes several dire
tions in spa
etime and thus implies the breaking of Lorentz invarian
e(or SO(D)-invarian
e in 
ase of Eu
lidean metri
).2 Similar to the ele
tromagneti
 �eld tensor in Maxwelltheory the deformation parameter in the Minkowski 
ase has a �magneti
 part� given by Θij for i, j =

1, . . . , d measuring spa
e/spa
e non
ommutativity and an �ele
tri
 part� Θ0i for i = 1, . . . , d responsible fortime/spa
e non
ommutativity. New phenomena like the loss of unitarity and the inequivalen
e of di�erentquantization methods 
an be tra
ed ba
k to the latter.A natural way of implementing a non
ommutative spa
e is to repla
e spa
etime 
oordinates xµ in RD byHermitian operators x̂µ de�ned on some Hilbert spa
e H. The x̂µ generate a Bana
h ∗-algebra whi
h isisomorphi
 to RD
Θ , whi
h is the ring of formal power series C[[x1, . . . , xD]] modulo the ideal generated by

xµxν − xνxµ − Θµν . In order to de�ne �eld theories on RD
Θ we need fun
tions on this spa
e. The S
hwartzspa
e S(RD) is de�ned as the set of all smooth and 
omplex-valued fun
tions f : RD → C obeying

sup
x

(1 + |x|)k+n0+···+nd |∂n0
0 · · · ∂nd

d f(x)|2 <∞ (2.2)for every set of integers k, ni ∈ N. The transition from ordinary S
hwartz fun
tions to fun
tions on RD
Θdemands an ordering pres
ription for produ
ts of operators. The so 
alled Weyl ordering is imposed byFourier expanding the fun
tion and repla
ing the o

urring plane waves by its operator 
ounterpart U(k) =1In general Θ might be any fun
tion depending on the 
oordinates with Θµν = −Θνµ, satisfying the Ja
obi identity. The�Lie-algebra 
ase� Θµν = λ

µν
σ xσ with 
omplex stru
ture 
onstant λ

µν
σ leads to fuzzy and κ-deformed spa
es. A third popular
hoi
e is the �quadrati
 
ase� with Θµν = − i

“

1
q
R

µν
ρσ − δ

µ
σδν

ρ

”

xρxσ whi
h leads to the de�nition of quantum groups.2There are approa
hes to non
ommutative �eld theories whi
h avoid the breaking of Lorentz invarian
e at this level by 
hoosing
Θµν to be a 
entral operator en
ompassed by a whole spe
trum of matri
es 
onne
ted by Lorentz transformations. In thesemodels, known as DFR models [DFR95, Bah04, Pia10℄, however, Lorentz invarian
e gets broken by the de�nition of theintera
tions. 7



2 Non
ommutative Quantum Field Theories
e i kµx̂µ . This pro
edure is 
alled Weyl quantization [Wey50℄. At the heart of this quantization lies therelation

e i kµx̂µ

e i pµx̂µ

= e i (kµ+pµ) x̂µ

e− i
2 kµΘµνpν , (2.3)whi
h 
an easily be obtained from the Campbell-Baker-Hausdor�-formula and equation (2.1). The Weyl-Heisenberg group is generated by the elements U(k) = e i kµx̂µ and the exponential e− i kµΘµνpν is referredto as twisting.Given a S
hwartz fun
tion f its Weyl symbol is thus given by

Ŵ [f ] =
1

(2π)D

∫

RD

dDk f̂(k) e i kµ x̂µ

. (2.4)where f̂ denotes the Fourier transformed �eld de�ned as in (1.14). The mapping (2.4) depends on thedeformation matrix Θ through the relation (2.3). One 
an write (2.4) as
Ŵ [f ] =

∫
dDx f(x) ∆̂(x) , (2.5)where we introdu
ed the Hermitian operator ∆̂(x)

∆̂(x) =

∫
dDk

(2π)D
e i kµ·(x̂µ−xµ) . (2.6)The ∆̂(x) serve as a mixed basis for operators and �elds on spa
etime. In the 
ommutative 
ase, i.e. Θµν = 0,the exponential fa
torizes leading to the simple relation ∆̂(x) = δD(x̂µ−xµ). The usual integral is repla
edby the tra
e on the Hilbert spa
e H. Normalized asTr Ŵ [f ] =

∫
dDx f(x) , (2.7)the ∆̂(x) form an orthonormal set with respe
t to this tra
eTr[∆̂(x)∆̂(y)] = δD(x− y) . (2.8)The Weyl-Heisenberg algebra has a faithful representation on the spa
e of Weyl symbols. However, we willalso need a representation in terms of the original S
hwartz fun
tions. Due to (2.8) the transformation

f 7→ Ŵ [f ] is invertible with inverse given by
f(x) = Tr [ Ŵ [f ] ∆̂(x) ] =: W[Ŵ [f ]](x) , (2.9)dubbed asWigner distribution fun
tion of the operator Ŵ [f ] [Wig32℄. We will espe
ially need the the expli
itform of Wigner transformation in 1+1 dimensions 
orresponding to the deformation parameter Θ01 = θ,whi
h for an operator ρ̂ is given by

W [ρ̂] =

∫
dk e i kx1/θ〈x0 + k/2|ρ̂|x0 − k/2〉 . (2.10)One 
an show that [Sza03℄

∆̂(x)∆̂(y) =
1

πD detΘ

∫
dDz ∆̂(z) e−2 i (x−z)·Θ−1·(y−z) . (2.11)from whi
h we immediately 
on
lude

Ŵ [f ] Ŵ [g] =

∫
dDz (f ⋆Θ g)(z)∆̂(z) = Ŵ [f ⋆Θ g] . (2.12)with

(f ⋆Θ g)(x) :=
1

πD| detΘ|

∫

RD

dDy dDz f(x + y) g(x + z) e−2 i y·Θ−1z . (2.13)8



2.1 Moyal Spa
e and Weyl QuantizationThe produ
t ⋆Θ of arbitrary S
hwartz fun
tions f(x), g(x) is known as Groenewold-Moyal produ
t [Gro46,Moy49℄. We will simply 
all it star-produ
t and often suppress the dependen
e on Θ by using ⋆ instead of ⋆Θ.We thus have a one-to-one 
orresponden
e between the spa
e of Wigner distributions and its Weyl symbolssu
h that the operator produ
t of Weyl symbols is equivalent to the star produ
t of their 
orrespondingWigner distributions:̂
W [f ] Ŵ [g] = Ŵ [f ⋆Θ g] and W[̂f ] ⋆Θ W [ĝ] = W[̂f ĝ] (2.14)for arbitrary Weyl symbols f̂ , ĝ. One 
an show that it is asso
iative, but not 
ommutative

(f ⋆Θ (g ⋆Θ h)) = ((f ⋆Θ g) ⋆Θ h)

f ⋆Θ g 6= g ⋆Θ f .
(2.15)As 
an be seen by (2.13), the produ
t depends on the fun
tions in a non-lo
al manner, whi
h has far-rea
hingphysi
al 
onsequen
es. Very important is the tra
e property of the integral given by

∫
dDx (f ⋆Θ g)(x) =

∫
dDx f(x) g(x) =

∫
dDx (g ⋆Θ f)(x) . (2.16)For analyti
 fun
tions, the star produ
t 
an be written in a perturbative way, 
alled Moyal expansion

(f ⋆Θ g)(x) = exp

(
i

2
Θµν∂µ∂

′
ν

)
f(x)g(x′)

∣∣∣∣
x=x′

, (2.17)with ∂µ = ∂/∂xµ and ∂′µ = ∂/∂x′µ. It should be noted that for arbitrary fun
tions the produ
t (2.17) isgenerally not equivalent to (2.13). For a thorough investigation on the equivalen
e of both de�nitions see[EGBV89℄.The spa
e S(RD) equipped with the star-produ
t is denoted by AΘ. With the involution f 7→ f∗ this isan asso
iative ∗-algebra. By duality we 
an extend the star produ
t to the spa
e of tempered distributions
S′(RD), whi
h is the dual spa
e of S(RD), 
onsisting of all 
ontinuous fun
tionals on S(RD). For T ∈ S′(RD)and f ∈ S(RD) we set

〈T, f〉 = T (f) . (2.18)Then for any g ∈ S(RD) we de�ne the produ
ts T ⋆ f and f ⋆ T through
〈T ⋆ f, g〉 = 〈T, f ⋆ g〉
〈f ⋆ T, g〉 = 〈T, g ⋆ f〉 (2.19)In this way we 
an deal with distributions, whi
h naturally appear in quantum �eld theory.Appli
ations to quantum �eld theory ne
essitates a relaxation of the restri
tion to S
hwartz fun
tions.The multiplier algebra M =ML ∩MR withML andMR de�ned by

ML = {T ∈ S′(RD) : ∀ f ∈ S(RD) , T ⋆ f ∈ S(RD)}
MR = {T ∈ S′(RD) : ∀ f ∈ S(RD) , f ⋆ T ∈ S(RD)} .

(2.20)is a natural enhan
ement of AΘ. One 
an show thatM is an asso
iative ∗-algebra, 
ontaining the identity,polynomials, the delta-fun
tion and its derivatives su
h as plane waves [GBV88℄. Sin
e the 
oordinates xµare not elements of AΘ the 
ommutator relation
xµ ⋆Θ x

ν − xν ⋆Θ x
µ = i Θµν . (2.21)does not hold in AΘ but in M. It should be noted that an axiomati
 
onstru
tion of non
ommutativequantum �eld theories analogously to the 
ase of ordinary quantum �eld theory in terms of Wightmanaxioms is not available yet. There are hints that the framework of tempered distributions is too restri
tivefor the non-perturbative study of NCQFT [AGVM03℄. In [Sol07b, CMTV08℄ the Gel'fand-Shilov spa
es

Sβ
α(RD) have been proposed for a enlarged framework (see appendix C.1 for a brief introdu
tion). The
orresponding multiplier algebra has been investigated in [Sol10℄. In the following we will not be 
on
ernedabout the right domain for a mathemati
al rigorous de�nition of NCQFTs. Nevertheless we will dis
uss9



2 Non
ommutative Quantum Field Theoriesthese spa
es in the 
ontext of expansion theorems for the generalized matrix basis whi
h will be 
onstru
tedin 
hapter 6.In order to de�ne physi
al quantities like an a
tion we need to de�ne integral and di�erentiation operationsonM and the spa
e of Weyl operators. The usual integral 
an be de�ned onM whi
h has the tra
e (2.7)on H as its 
ounterpart on the Weyl side. Con
erning the derivatives we have at least two di�erent naturalpossibilities. The ordinary derivatives de�ned on usual di�erentiable fun
tions also de�ne derivatives onM
∂µ(f ⋆Θ g) = (∂µf) ⋆Θ g + f ⋆Θ (∂µg) . (2.22)Note that they have the representation3

∂µf = [− i (Θ−1)µνx
ν , f ]⋆ . (2.23)This gives us a derivative on the Weyl side through ∂̂µ := Ŵ

[
− i (Θ−1)µνx

ν
] whi
h is an anti-Hermitianlinear derivation with

[∂̂µ, x̂
ν ] = δ ν

µ , [∂̂µ, ∂̂ν ] = 0 . (2.24)One 
an then show that
[∂̂µ, ∆̂(x)] = −∂µ∆̂(x) (2.25)and hen
e by partial integration

[∂̂µ, Ŵ [f ]] =

∫
dDx ∂µf(x) ∆̂(x) = Ŵ [∂µf ] , (2.26)whi
h proves the 
ompatibility of both derivatives.An interesting and in retrospe
tive very important alternative to the usual di�erentiation was proposedby Filk in [Fil90℄. The Weyl-Heisenberg group de�ned by (2.3) is a 
entral extension of the D-dimensionalgroup of translations:

U(k)U(p) = e− i
2 kµΘµνpνU(k + p) , (2.27)with U(k) = e i kµx̂µ . Filk now proposes to 
onsider the U 's as translation operators on the deformed spa
eand mimi
 the de�nition of a derivative in terms of the U 's. The deformed translation operation on thesymbol ∆̂(x) de�ned by (2.6) is given by

U(k)∆̂(x) =

∫
dDp′

(2π)D
e i p′

µ(x̂µ−xµ+ 1
2Θµνkν)+ i kµxµ

= e i kµxµ

∆̂(x− 1

2
Θ · k) . (2.28)and gives rise to a �
ovariant derivative� of ∆̂(x) into the dire
tion µ̄

D̂µ̄∆̂(x) = lim
ε→0

U(ε eµ̄)− U(−ε eµ̄)

2ε
∆̂(x)

= lim
ε→0

e i ε xµ̄∆̂(x− ε 1
2Θ · eµ̄)− e− i ε xµ̄∆̂(x + ε 1

2Θ · eµ̄)

2ε

= lim
ε→0

∆̂(x− ε 1
2Θ · eµ̄)− ∆̂(x + ε 1

2Θ · eµ̄)

2ε
− ixµ̄∆̂(x) , (2.29)with eµ̄ being the unit ve
tor in this dire
tion. In terms of Wigner distributions and in Fourier spa
e this
onstru
tion yields a 
ovariant derivative ∂/∂kµ̄ − 2 i (Θ−1)µ̄νk

ν . This may not be surprising, as one 
anthink of the operators U as the parallel transport operators a
ting on the line bundle of �elds φ over theplane with 
onne
tion form 2(Θ−1)µνk
ν .We thus have two di�erent possibilities to de�ne a 
lassi
al a
tion on a non
ommutative spa
e, usingthe star-produ
t instead of the usual pointwise produ
t but leaving the derivatives unaltered, or using thestar-produ
t and the 
ovariant derivatives. The former approa
h has been the �rst 
hoi
e, but led to severedi�
ulties as UV/IR mixing and nonrenormalizability, as will be explained in the next se
tion. The se
ondapproa
h is a spe
ial 
ase of a variety of renormalizable, non
ommutative Eu
lidean quantum �eld theories,in the following 
alled LS-
ovariant models and introdu
ed in 
hapter 3.3In�nitesimal translations are thus given by inner derivatives, whi
h is in 
lear distin
tion to 
ommutative �eld theories.10



2.2 Quantum Field Theory2.2 Quantum Field TheoryIf spa
e and time do not 
ommute, 
anoni
al quantization, path integral quantization and Yang-Feldmanquantization are no longer equivalent [BDFP02℄. In the following we will give an introdu
tion to the �tra-ditional� Eu
lidean NCQFT de�ned through path integrals. It is 
ertainly the most studied setup and hasa
hieved a lot of progress in the last ten years. Afterwards we will explain its 
ounterpart on Minkowskispa
etime, outline its disadvantages and di�eren
es to other popular approa
hes.2.2.1 Standard Perturbative Setting in Eu
lidean Spa
eThe standard way to obtain a �eld theory on non
ommutative Eu
lidean spa
etime is to start with a 
lassi
ala
tion and to substitute the usual pointwise produ
ts by the star-produ
t keeping the usual derivatives. Asa simple model one may 
onsider the φ⋆4 model given by
S =

∫

x

(
1

2
∂iφ ⋆ ∂

iφ+
m2

2
φ ⋆ φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)
(x) (2.30)for real �elds φ(x) and ∫

x
=
∫

RD dDx. The tra
e property (2.16) implies that the free part, i.e the part ofthe a
tion quadrati
 in the �elds, is identi
al to the 
ommutative one. We are thus working with an ordinary
ommutative �eld theory with �strange� intera
tions. Fun
tional integral quantization will be performed byintrodu
ing a generating fun
tional
Z[J ] = N

∫
Dφ exp

(
−S +

∫

x

J(x)φ(x)

) (2.31)with normalization 
onstant N and Dφ being the ordinary path integral measure of the 
ommutative 
ase.In the following we will show, that the generating fun
tional de�ned through (2.31) 
an be expressed in asimilar perturbative expansion as in the 
ommutative 
ase, leading to the usual Feynman diagrams with thestar-produ
t standing in for the ordinary pointwise produ
t.The free part of the generating fun
tional
Z0[J ] := Z[J ]λ=0 (2.32)ful�lls the same di�erential equation as in the 
ommutative 
ase. The 
onstru
tion is as follows. Sin
e theintegrand vanishes at the boundaries, by partial integration we get the identity

0 =

∫
Dφ δ

δφ(y)
exp

(
−S0 +

∫

x

J(x)φ(x)

)

=

∫
Dφ
(
− δS0

δφ(y)
+ J(y)

)[
exp

(
−S0 +

∫

x

J(x)φ(x)

)]
. (2.33)with S0 = S|λ=0. Noti
ing that for a generi
 fun
tional F

∫
DφF (φ) exp

(
−S0 +

∫

x

J(x)φ(x)

)
= F

(
δ

δJ

)∫
Dφ exp

(
−S0 +

∫

x

J(x)φ(x)

) (2.34)we arrive at the di�erential equation for the free generating fun
tional
(−∂2

i +m2)
δZ0[J ]

δJ(x)
= J(x)Z0[J ] (2.35)As 
an easily be 
he
ked this equation is solved by

Z0[J ] = exp

(
1

2

∫

x

∫

y

J(x)∆(x− y)J(y)

) (2.36)with the usual free propagator ∆(x) = 〈x|(−∂2
i +m2)−1|0〉. 11



2 Non
ommutative Quantum Field TheoriesNow we 
onsider the full intera
ting theory. By partial integration we �nd
0 =

∫
Dφ

(
− δS
δφ(y)

+ J(y)

)[
exp

(
−S +

∫

x

J(x)φ(x)

)]
. (2.37)We would like to pull out the terms in the �rst bra
ket in (2.37) to obtain a fun
tional equation for Z[J ]analogously to (2.35). So we need an expression for the fun
tional derivative of S whi
h now 
ontainsstar-produ
ts. Using the tra
e property and asso
iativity of the star-produ
t one easily shows that

δS
δφ(x)

= (−∂2
i +m2)φ(x) +

λ

3!
(φ ⋆ φ ⋆ φ)(x) (2.38)while pulling this out of the fun
tional integral leads to the di�erential equation [MSJ01℄

(−∂2
i +m2)

δZ[J ]

δJ(x)
+
λ

3!

(
δ

δJ(x)
⋆

δ

δJ(x)
⋆

δ

δJ(x)

)
Z[J ] = J(x)Z[J ] . (2.39)The star-produ
t of fun
tional derivatives is a short-hand notation for

e
i
2 Θµν∂ξµ ∂ην e

i
2 Θρσ∂αρ ∂βσ

δ

δJ(x + ξ)

δ

δJ(x + η + α)

δ

δJ(x + η + β)
Z[J ]

∣∣∣∣
ξ=η=α=β=0

. (2.40)We will now show, that analogously to the 
ommutative 
ase, the solution is given by
Z[J ] = N exp

(
−Sint

[
δ

δJ

])
Z0[J ] (2.41)with Sint[φ] = λ

4!

∫
x
φ⋆4 the intera
tion term and ∫

x
(δ/δJ)⋆4Z[J ] de�ned through (2.40) and the tra
e prop-erty. Using the tra
e property one �nds

[∫

y

(
δ

δJ(y)

)⋆4

, J(x)

]
=

(
δ

δJ(x)

)⋆3

. (2.42)Now Campbell-Baker-Hausdor�
e AB e−A = B + [A,B] +

1

2!
[A, [A,B]] + . . . (2.43)and the fa
t that [

∫
(δ/δJ)⋆4, (δ/δJ)⋆3] = 0 imply

exp

(
Sint

[
δ

δJ

])
J(x) exp

(
−Sint

[
δ

δJ

])
= J(x) + L′int

[
δ

δJ

] (2.44)where ∫
x
Lint[φ] = Sint[φ] is the intera
tion Lagrangian. Putting (2.41) into (2.39) we �nd

(−∂2
i +m2)

δZ[J ]

δJ(x)
+
λ

3!

(
δ

δJ(x)
⋆

δ

δJ(x)
⋆

δ

δJ(x)

)
Z[J ](2.41)

= N exp

(
−Sint

[
δ

δJ

])(
(−∂2

i +m2)
δ

δJ(x)
+ L′int

[
δ

δJ

])
Z0[J ](2.35)

= N exp

(
−Sint

[
δ

δJ

])(
J(x) + L′int

[
δ

δJ

])
Z0[J ](2.44)

= J(x)N exp

(
−Sint

[
δ

δJ

])
Z0[J ](2.39)

= J(x)Z[J ] , (2.45)whi
h proves that (2.41) is indeed a solution for the generating fun
tional. This 
an be evaluated pertur-batively in terms of Feynman diagrams 
orresponding to Sint. Contrary to the usual 
ommutative theories,the propagators are multiplied with respe
t to the star-produ
t, for whi
h this diagrammati
 expansion isknown as modi�ed Feynman rules. These are illustrated in the next se
tion.12



2.2 Quantum Field Theory2.2.2 Feynman Diagrams, UV/IR Mixing and RenormalizationUsing Fourier transformation and the Campbell-Baker-Hausdor� relation, one 
an dedu
e the followingmomentum spa
e representation for the φ⋆4 intera
tion part
∫

dDxφ⋆4(x) =

4∏

a=1

(∫
dDka

(2π)D/2

)
φ̂(k1)φ̂(k2)φ̂(k3)φ̂(k4) V̂ (k1, . . . ,k4) (2.46)with

V̂ (k1, . . . ,km) = (2π)Dδ

(
m∑

i=1

ki

)
exp(− i

m∑

i<j=1

ki × kj) (2.47)the intera
tion vertex and p × q = piΘ
ijqj/2. The intera
tion is real, positive and translation invariant,but has an additional phase fa
tor relative to the 
ommutative theory. Due to momentum 
onservationthe propagator in momentum representation only depends on the di�eren
e of the momenta ∆(k,k′) =

δD(k − k′)∆(k). As in the 
ommutative 
ase ea
h 
ontra
tion 
an thus be represented by an oriented linewith de�nite momentum. The modi�ed Feynman rules in momentum spa
e are given by
k

=
1

k2
i +m2

k2

k1 k4

k3

=
λ
4!

e
− i
P4

i<j=1 ki×kj

The additional mixing fa
tor breaks the permutation symmetry of the lines at ea
h vertex one is used to inthe 
ommutative 
ase. The vertex is only invariant under 
y
li
 permutations of the �elds, whi
h leads totwo di�erent kind of Feynman diagrams. Those whi
h 
an be drawn on a sheet of paper without 
rossingof lines are 
alled planar diagrams. Those whi
h have 
rossed internal lines are 
alled non-planar diagrams.Simple examples are given by the planar and non-planar tadpole:
p

k

pPlanar tadpole. p

k

pNon-planar tadpole.Filk has shown [Fil96℄ that the vertex of a general Feynman diagram in this φ⋆4 theory 
an be simpli�edthrough the following two 
ontra
tions
V̂ (k1, . . . ,kn1 ,p)V̂ (kn1+1, . . . ,kn2 ,−p) = (2π)Dδ

(
n1∑

i=1

ki

)
V̂ (k1, . . . ,kn2) (2.48)

V̂ (k1, . . . ,kn1 ,p,kn1+1, . . . ,kn2 ,−p) = V̂ (k1, . . . ,kn2) for n2∑

i=n1+1

ki = 0 . (2.49)The �rst of these Filk moves redu
es a line by gluing together two verti
es into bigger a one. Applying thismove n − 1 times to an n-vertex graph, one obtains a graph with all lines starting and ending at the samevertex, 
alled a rosette. Planarity then des
ribes the absen
e of 
rossing loop lines, for whi
h the phase 
anbe shown to 
an
el out using the se
ond Filk move. Planar diagrams are thus identi
al to their 
ommutative13



2 Non
ommutative Quantum Field Theories
ounterparts and have to be renormalized a

ordingly. Non
ommutativity alone is thus not able to tame allUV divergen
es. However, the situation is even worse.The non-planar diagrams 
arry additional phase fa
tors 
oupling the internal and external lines. Theinitial hope that NCQFTs might be better behaved due to a natural UV 
ut-o� however turned out to betoo optimisti
. Minwalla, Van Raamsdonk and Seiberg found an intriguing mixing of UV and IR degrees offreedom [MVRS00℄. A famous example is the non-planar tadpole in 4 spa
e dimensions whi
h is given by
λ

12

∫
d4k

(2π)4
− e i piΘ

ijkj

k2
i +m2

=
λ

48π2

√
m2

(Θ · p)2
K1(

√
m2(Θ · p)2)

pi→0∼ p−2
i , (2.50)where K1 is a modi�ed Bessel fun
tion of the se
ond kind. Contrary to the 
ommutative 
ase this diagramis �nite for �nite p due to the extra phase fa
tor, however diverges as p−2

i for pi → 0. A 
hain of thesediagrams inserted into a bigger graph will inevitably lead to divergent integrals. A natural regularization inthis plane wave basis is given by the restri
tion of the momenta to the annulus |Λ0| < |p| < |Λ|. However,the os
illations imply that a UV 
uto� Λ generates an e�e
tive IR 
uto� Λ1 = 1/|θ|Λ, whi
h is the rootof the UV/IR mixing. This makes the Wilsonian renormalization impossible, sin
e it would require a 
learseparation of high and low momentum s
ales. A general investigation of the renormalizability has beenperformed in [CR01℄. Sin
e divergen
es 
oming from non-planar diagrams 
annot be absorbed by planar
ounterterms, renormalizable theories have to have �nite non-planar diagrams.2.2.3 NCQFT on Minkowski Spa
etime and UnitarityThe transition to NCQFTs on Minkowski spa
etime is formally straightforward. The 
lassi
al a
tion of the
φ⋆4 theory in Minkowski spa
etime reads

S =

∫

x

(
1

2
∂µφ ⋆ ∂

µφ− m2

2
φ ⋆ φ− λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)
(x) (2.51)while its quantum theory is formally given by

Z[J ] = N
∫
Dφ exp

(
iS +

∫

x

J(x)φ(x)

)
. (2.52)with some normalization N . The pre
ise form of the path integral measure is not needed to determine Z[J ]perturbatively, sin
e only the vanishing of the integrand for |φ| → ∞ is needed to �nd a di�erential equationfor the generating fun
tional. This is however not ful�lled, sin
e the a
tion is real and the integrand badlyos
illating. This is usually remedied by adding for the time being the damping fa
tor i ǫ

∫
φ2 to the a
tionwith ǫ > 0

Z[J ] = lim
ǫ→0+

N
∫
Dφ exp

(
iS − ǫ

∫
φ2 +

∫

x

J(x)φ(x)

)
, (2.53)whi
h at the same time regularizes the singularity of the free propagator (∂2

µ +m2)−1. Analoguesly to (2.35)we 
an derive for the free part of the generating fun
tional Z0[J ] = Z[J ]λ=0

lim
ǫ→0+

(∂2
µ +m2 − 2 i ǫ)

δZ0[J ]

δJ(x)
= − i J(x)Z0[J ] , (2.54)whi
h has the solution

Z0[J ] = N exp

(
i

2

∫

x

∫

y

J(x)∆F (x− y)J(y)

) (2.55)with ∆F the Feynman propagator
∆F (x) = lim

ǫ→0+

∫
dDk

(2π)D

e i kµxµ

k2
µ −m2 + i ǫ

. (2.56)14



2.2 Quantum Field TheoryUsing identi
al arguments as in se
tion 2.2.1 the full generating fun
tional is given by
Z[J ] = N exp

(
iSint

[
δ

δJ

])
Z0[J ] (2.57)leading to a perturbative expansion in terms of Feynman diagrams 
orresponding to Sint and the usualFeynman propagators.However, as has been found in [GM00℄, this perturbative setting leads to a violation of unitarity if spa
eand time do not 
ommute. The authors of [GM00℄ showed, that the 
utting rule for the φ⋆3 two-pointfun
tion and for the φ⋆4 four-point fun
tion are not ful�lled at one-loop order. As a ne
essary 
ondition fora unitary S-matrix they found the positive de�niteness of the expression

− pµΘµνΘνσp
σ , (2.58)whi
h is not ful�lled for time/spa
e non
ommutative theories. In this 
ase the analyti
al 
ontinuation ofEu
lidean Feynman diagrams produ
es new bran
h 
uts that are responsible for the failure of the 
uttingrules.This seems to 
ontradi
t the 
ommon knowledge that a Hermitian intera
tion Hamiltonian HI leads toa unitary S-matrix. And indeed, this remains true in the time/spa
e non
ommutative 
ase [Bah04℄. But,the Lagrangian formulation of the quantum theory in terms of the path integral is no longer equivalent tothe Hamiltonian approa
h using the Dyson series and the intera
tion Hamiltonian HI . As was pointed outin [BDFP02℄ the usual Wi
k theorem does not apply to non-lo
al intera
tions. The 
ontributions to the

n-point fun
tion are given by
Gk(x1, . . . ,xn) =

(−1)n

n!
〈0|Tφ(x1) · · ·φ(xn)HI(t1) · · ·HI(tk)|0〉 (2.59)where T denotes the time ordering with respe
t to the time variables x0

1, . . . , x
0
n and t1, . . . , tk. The Wi
ktheorem now tells us that all two-point fun
tions ∆+(x) = 〈0|φ(x)φ(0)|0〉 and Heaviside step fun
tions θ(x0)
oming from the time ordering 
an be 
ombined to give a Feynman diagram in terms of Feynman propagators

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆+(−x) . (2.60)This is not true for time/spa
e-non
ommutativity. The φ⋆n intera
tion Hamiltonian has the general form
HI(t) =

∫ n∏

i=1

d4aiGt(a1, . . . , an) : φ(a1) · · ·φ(an) : . (2.61)In this 
ase the time ordering is with respe
t to the time variable t, 
alled intera
tion point, and has norelation to the ai at all. The perturbative analysis based on this �true� time ordering is known as intera
tionpoint time ordering pres
ription [LS02b, LS02
, B+03℄. The Heaviside fun
tions in the Feynman propagator,however, 
ome from an ordering of the �time� 
oordinates of the �elds. Thus with time-spa
e non
ommuting
oordinates the star-produ
t and the time ordering no longer 
ommute as is 
learly visible from
θ(x0)∆⋆2

+ (x) + θ(−x0)∆⋆2
+ (−x) 6= ∆⋆2

F (x) (2.62)due to
θ ⋆ θ 6= θ . (2.63)A
tually, as has been pointed out in [DS03, Pia04℄, the Wi
k redu
tion does lead to the usual Feynmandiagrams also for non-lo
al theories, however with propagators given by

D(x, τ) =
1

i
(θ(τ)∆+(x) + θ(−τ)∆+(−x)) (2.64)where τ depends on the intera
tion points of the HI(t)s. The star-produ
ts are performed with respe
t tothe x o

urring in two-point fun
tions. For lo
al intera
tions we �nd τ ≡ t.There are approa
hes towards a formulation of unitary NCQFTs in Minkowski spa
etime with time-likenon
ommutativity. For models build on the Hamiltonian approa
h see e.g. [DFR95, Bah04℄ and [Pia10℄15



2 Non
ommutative Quantum Field Theoriesfor a ni
e review. UV/IR mixing is absent in this framework to lowest orders. Sin
e perturbation theorygets 
ompli
ated already at lower loops it is not 
lear whether it is 
ompletely free of UV/IR-mixing andmight still be present in this framework. It has the disadvantage, or advantage, that di�erent ways to de�nethe intera
tion Hamiltonian are possible. A drawba
k is that the free �elds do not obey the �eld equationeven at tree level leading to a violation of 
urrent 
onservation. Yet another perturbative ansatz whi
his equivalent to the others on 
ommutative, but not on non
ommutative spa
etime is the Yang-Feldmanequation [BDFP02, Bah04℄.The perturbative setup in the Hamiltonian approa
h is quite 
ompli
ated su
h that it would be desirableto have an equivalent Eu
lidean path integral setup simplifying the 
ombinatorial aspe
t of perturbationtheory. The question is, what kind of Eu
lidean theory arises from a given Minkowskian theory and vi
eversa. In [Bah09℄ it has been shown that the Eu
lidean 
ounterparts of the n-point fun
tions for the Klein-Gordon theory on non
ommutative Minkowski spa
etime are not those following from the standard Eu
lideansetting, but appear with on-shell twisting fa
tors, that is involving only on-shell momenta pµ = (ωp, pa) for
a = 1, . . . , D − 1 and ωp =

√
p2

a +m2.We are interested in the other dire
tion, starting with a Eu
lidean theory in a path integral setup. Wewill show that there exist models whi
h allow for well-de�ned analyti
ally 
ontinuations to Minkowski spa
e-time with help of a spe
ial regularization. These models are the LS-
ovariant models su
h as the Grosse-Wulkenhaar model and LSZ model, whi
h at the same time have no UV/IR-mixing problem and are renor-malizable to all orders in perturbation theory in Eu
lidean spa
e. We are interested in the renormalizationproperties of their Minkowskian 
ounterparts and the question, whether the unitarity problem still persistsand in if yes in whi
h sense. In the next 
hapter we will give a brief introdu
tion to the LS-
ovariant modelsin Eu
lidean spa
e and explain, how they are able to 
ir
umvent the UV/IR-mixing problem.

16



3 How to 
ure the UV/IR Mixing ProblemThe UV/IR mixing poses severe problems to the renormalization program of NCQFTs. As was pointed outin [GW05b℄,the message of the UV/IR entanglement is that non
ommutativity relevant at short distan
esmodi�es the physi
s of the model at very large distan
es.The question is how to modify the theory? Nowadays there are two di�erent approa
hes on the market whi
hgive an answer to this question, both de�ned on Eu
lidean spa
e. The LS-
ovariant models are de�ned inse
tion 3.2. We will demonstrate their 
ovarian
e under the Langmann-Szabo duality (LS-duality) in se
tion3.3, whi
h is seen to be responsible for their renormalizability and vanishing of their β-fun
tions. In se
tion3.4 we will give a brief overview of the results whi
h have been a
hieved in the last seven years. As analternative to the LS-
ovariant models we brie�y dis
uss another renormalizable model based on a di�erentapproa
h to 
ure the UV/IR mixing problem in se
tion 3.5.3.1 UV and IR Behavior of NCQFTsThe UV/IR mixing 
an be tra
ed ba
k to the non-lo
ality of the theory. Let f and g be two �elds, whi
h arelo
ated in a small region ∆ ≪
√
θ. Then one 
an show that 
ontrary the star produ
t of both is non-zeroover a large region of size θ/∆. As an extreme example one 
an take two delta fun
tions, whose star produ
tis 
onstant throughout spa
e

δ(x) ⋆ δ(x) =
1

det(πθ)
. (3.1)This shows that the intera
tion of non
ommutative �eld theory is mediated by non-lo
al extended obje
tsinstead of the point-like parti
les of ordinary quantum �eld theory. By exponentiation of the in�nitesimaltranslations given by (2.23) to global translations we �nd

e− i kµxµ

⋆ f(x) ⋆ e i kµxµ

= f(x + Θ · k) . (3.2)One is thus tempted to imagine that a plane wave does not 
orrespond to a parti
le, but to a �dipole�, whoselength is proportional to its transverse momentum [SJ99, BS00, DN01, Rey02℄. For a dipole of momentum k,its dipole moment is Θ ·k and the position 
oordinate of the s
alar �eld is Bopp shifted to the 
ommutative
oordinate
r = x + Θ · k . (3.3)The ultraviolet dynami
s in the regime E ≫ Θ−1/2 are mediated through intera
tions of these dipoles whointera
t by joining at their ends:

e− i kx

f(x)

e i k·x

17



3 How to 
ure the UV/IR Mixing ProblemSin
e the length of the dipoles is given by |Θ · k|, a sharp ultraviolet 
uto� Λ in momentum spa
e indu
esan infrared 
uto� at 1/(|Θ|Λ), the inverse of the maximal dipole length.On the other hand, the infrared dynami
s in the regime E ≪ Θ−1/2, where non
ommutativity is negligible,are governed by the elementary quantum �elds φk, whi
h 
reate pointlike quanta of momentum k. Thissuggests that the UV/IR mixing problem may be understood as a mismat
h between the dressed 
oordinates(3.3) and the elementary momenta k, thus by the asymmetry between extended and pointlike degrees offreedom governing the di�erent regimes. In order to 
ure this mismat
h one 
an make the UV and IR regimesymmetri
 via substitution of the generalized momenta
k −→ k + B · x , (3.4)where the real 
onstant D×D antisymmetri
 matrix B 
an be interpreted as an ele
tromagneti
 ba
kground.In terms of �eld theory, the natural implementation of this symmetrization is the repla
ement of usualderivatives by 
ovariant derivatives
∂i −→ ∂i + iBijx

j . (3.5)with (Bij) a D × D real, non-degenerated antisymmetri
 matrix. This is a generalization of the 
ovariantderivative introdu
ed by Filk [Fil90℄, as was illustrated at the end of se
tion 2.1 whereB = (Θ/2)−1. Contraryto (2.30), the free part now des
ribes a Klein-Gordon �eld moving in a 
onstant magneti
 �eld perpendi
ularto the plane. Filk's a
tion has not attra
ted any attention for more than ten years, until it turned out to be the
ru
ial ingredient to su

essfully improve the renormalization properties of non
ommutative quantum �eldtheories. The various motivations and mathemati
al interpretations for the ba
kground �eld are summarizedin [dG10℄.3.2 LS-Covariant Models in Eu
lidean Spa
eVariations of the ansatz introdu
ed above are the LSZ model [LSZ03, LSZ04℄, the Grosse-Wulkenhaar model[GW03, GW05b℄ and the vul
anized Gross-Neveu model [VT07b℄, all of them de�ned in Eu
lidean spa
e.The symmetry of the position and momentum degrees of freedom is known as LS-duality, and manifestsitself in an invarian
e of the theory under Fourier transformation plus a spe
ial s
aling [LS02a℄. Rivasseauet al. proposed to 
all the pro
edure of making a theory 
ovariant under LS-duality (3.4) vul
anization(see footnote 1). A proof that this symmetry holds at the 
lassi
al level for Eu
lidean and Minkowskiansignature will be given in se
tion 3.3 below. In order to prove the quantum version of this duality, we haveto distinguish both 
ases. This is be
ause the wave operators under 
onsideration will have di�erent spe
tralproperties depending on the metri
. The proof that this is a duality at quantum level will be handed inafter the introdu
tion of the matrix basis in 
hapter 4. The extension to Minkowski spa
etime will be donein 
hapter 5.3.2.1 LSZ ModelThe general Langmann-Szabo-Zarembo model (LSZ model) in D = 2n dimensions is a 
omplex φ⋆4 theory.It is de�ned by the a
tion SLSZ = S0 + Sint with
S0 =

∫
dDxφ∗(x)

(
σK2

i + (1 − σ)K̃2
i + µ2

)
φ(x)

Sint = g

∫
dDx [α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)]

. (3.6)The parameters are restri
ted to σ ∈ [0, 1], α, β ∈ R+ and µ2 > 0 is the mass parameter. The generalizedmomenta Ki and generalized dual momenta K̃i are given byKi = − i ∂i +Bijx
jK̃i = − i ∂i −Bijx
j

(3.7)18



3.2 LS-Covariant Models in Eu
lidean Spa
efor i = 1, . . .D and obey the 
ommutation relations
[Ki,Kj ] = 2 iBij , [K̃i, K̃j ] = −2 iBij . (3.8)and [Ki, K̃j ] = 0. Ea
h of them des
ribes a system in a 
onstant magneti
 �eld with �eld strength ∓2Bij ,respe
tively. The 
oordinate system will be 
hosen su
h that the D×D dimensional deformation matrix Θtakes the 
anoni
al skew-symmetri
 form

(Θij) =




0 θ1
−θ1 0

0. . .
0

0 θD/2

−θD/2 0




(3.9)with θk > 0 and k = 1, . . . , D/2. The ele
tromagneti
 �eld strength B is of the same form
(Bij) =




0 B1

−B1 0
0. . .

0
0 BD/2

−BD/2 0




(3.10)with Bk > 0 and k = 1, . . . , D/2 and Bk = 2Ω/θℓ for all k and 0 < Ω ≤ 1. This implies that the waveoperator σK2
i + (1− σ)K̃2

i of the LSZ model in D = 2n dimensions breaks down to a sum of n parts withK2
i =

n∑

k=1

(P2
i )kK̃2

i =

n∑

k=1

(P̃2
i )k

(3.11)and
(P2

i )k = −(∂2
2k−1 + ∂2

2k)− 2 iBk(x2k∂2k−1 − x2k−1∂2k) + B2
k(x2

2k−1 + x2
2k)

(P̃2
i )k = −(∂2

2k−1 + ∂2
2k) + 2 iBk(x2k∂2k−1 − x2k−1∂2k) + B2

k(x2
2k−1 + x2

2k) .
(3.12)In the next 
hapter we will be 
on
erned with diagonalizing the free a
tion. Sin
e all operators (3.12)
ommute with ea
h other, the problem redu
es to �nding the eigenfun
tions of one pair of operators (P2

i )kand (P̃2
i )k. The intera
tion part 
onsists of two inequivalent, non
ommutative quarti
 intera
tions weightedby real parameters α and β. The α-part is known as oriented intera
tion while the β-part is 
alled unorientedintera
tion. Up to now, renormalizability has only been shown for the oriented part.For generi
 σ the free part 
an be rewritten as

S0 =

∫
dDxφ∗(x)

(K2
i |B→B̃ + Ω2x̃2

i + µ2
)
φ(x) (3.13)with B̃ = (2σ − 1)B = (2σ − 1)(Bij), x̃i = 2Θ−1

ij x
j and Ω = Bkθk/2. The free part des
ribes a massive
omplex s
alar �eld 
oupled to a 
onstant magneti
 ba
kground and in a 
on�ning ele
tri
 potential pro-portional to Ω2x̃2

i . By adjusting the parameter σ we 
an swit
h between purely magneti
 ba
kground at
σ = 0, 1 or mixed magneti
 and ele
tri
 ba
kground.The quantum theory will be de�ned by the generating fun
tional for the LSZ model

Z[J, J∗] = N
∫
DφDφ∗ exp

(
−SLSZ +

∫

x

J∗(x)φ(x) +

∫

x

φ∗(x)J(x)

)
. (3.14)Compared to the usual φ⋆4 model investigated in se
tion 2.2.1 there are the additional terms in the freepart of the a
tion (apart from the extra degrees of freedom due to having 
omplex instead of real �elds).The external ba
kground will be treated exa
tly by using the dressed propagator of the �eld moving in this19



3 How to 
ure the UV/IR Mixing Problemba
kground, whi
h is known as Furry pi
ture [Fur51℄. This is done by de�ning the free part of the a
tionthrough all terms depending quadrati
ally on the �elds. The 
orresponding �free� generating fun
tional isthen a solution of
(σK2

i + (1 − σ)K̃2
i + µ2)

δZ0[J, J
∗]

δJ∗(x)
= J(x)Z0[J, J

∗]

(σK2
i + (1 − σ)K̃2

i + µ2)
δZ0[J, J

∗]

δJ(x)
= J∗(x)Z0[J, J

∗] .

(3.15)given by
Z0[J, J

∗] = exp

(∫

x

∫

y

J∗(x)∆(x,y)J(y)

)
. (3.16)with dressed propagator ∆(x,x′) determined by

(σK2
i + (1− σ)K̃2

i + µ2)∆(x,y) = δ2(x− y) . (3.17)It should be noted that translation invarian
e is broken. The momentum is thus not 
onserved and thepropagator ∆(x,y), does not depend solely on the di�eren
e x − y.1 This implies that 
ontrary to theusual φ⋆4 theory investigated in se
tion 2.2.2, planar diagrams will not be identi
al to its 
ommutative
ounterparts. The full intera
ting quantum theory is de�ned through
Z[J, J∗] = N exp

(
−Sint

[
δ

δJ∗ ,
δ

δJ

])
Z0[J, J

∗] , (3.18)leading to modi�ed Feynman diagrams with dressed propagator ∆(x,y). As will be shown in 3.3 the 
lassi
ala
tion is 
ovariant under LS-duality. The proof that this symmetry holds in the full quantum theory will begiven in se
tion 4.5.3.2.2 The Grosse-Wulkenhaar ModelThe Grosse-Wulkenhaar model (in the following GW model for short) is a spe
ial 
ase of the LSZ modelde�ned above for σ = 1/2 and real �elds. Be
ause of its distinguished role it played in the pro
ess ofunderstanding renormalizable NCQFTs we will give a brief a

ount on it. Compared to the usual Klein-Gordon �eld, the free part moves in a harmoni
 os
illator potential, whi
h amounts to repla
ing the Lapla
eoperator a

ording to
∂2

i −→ ∂2
i − Ω2x̃2

i , x̃i = 2Θ−1
ij x

j , (3.19)with frequen
y Ω = Bkθk/2. The a
tion in D = 2n dimensions is given by
SGW =

∫
dDx

1

2
φ(x)

(
−∂2

i + Ω2x̃2
i + µ2

)
φ(x) + Sint (3.20)with intera
tion term

Sint = g

∫
dDx (φ ⋆ φ ⋆ φ ⋆ φ)(x) . (3.21)Despite being a real model, it is still 
ovariant under LS-duality, as will be shown below. The perturbativesetting for the GW model is de�ned through the partition fun
tion

Z[J ] = N
∫
Dφ exp

(
−SGW +

∫

x

J(x)φ(x)

) (3.22)with real �elds φ(x). The only di�eren
e to the usual φ⋆4 model investigated in se
tion 2.2.1 is the additionalos
illator term in the free part of the a
tion. In the Furry pi
ture, the free generating fun
tional is thusgiven by
Z0[J ] = exp

(
1

2

∫

x

∫

y

J(x)∆(x,y)J(y)

)
. (3.23)1For σ = 1 we have invarian
e under magneti
 translations, whi
h is the invarian
e of translations plus a suitable gaugetransformation of the magneti
 �elds: φ(x) 7→ e i a·B·xφ(x + a). The free propagator then is of the form ∆(x, y) =

e− i x·B·y ∆̄(x − y). The same is true for σ = 0 with B → −B.20



3.3 Classi
al LS-Covarian
ewith dressed propagator ∆(x,x′) determined by
(−∂2

i + Ω2x̃2
i + µ2)∆(x,y) = δ2(x− y) . (3.24)The momentum is not 
onserved and the propagator ∆(x,y) thus depends on both variables x and yindependently. The perturbative setting for the full intera
ting theory is given

Z[J ] = N exp

(
−Sint

[
δ

δJ

])
Z0[J ] , (3.25)leading to the modi�ed Feynman diagrams for the φ⋆4 vertex with the dressed propagator ∆(x,y).3.2.3 Vul
anized Gross-Neveu ModelAs an example for a fermioni
 LS-
ovariant model we will shortly present the vul
anized Gross-Neveu model.The usual Gross-Neveu model is a quantum �eld theory of two-dimensional Dira
 fermions 
oupled through

(ψψ)2 intera
tion terms. The free part of the vul
anized Gross-Neveu model (vGN model) is the usualfermioni
 Gross-Neveu model whi
h has been made LS-
ovariant a

ording to the pres
ription explainedabove. The a
tion of the non
ommutative vul
anized version (with only one �avor) reads
SGN =

∫
d2xψ(x)

(
/P+ µ

)
ψ(x) + Vo + Vno , (3.26)with /P = γiPi and γ1, γ2 
onstituting a two-dimensional representation of the Cli�ord algebra

{γi, γj} = 2δij . (3.27)The intera
tion terms are divided into orientable Vo and non-orientable Vno terms, given by
Vo =

λ1

4

∑

a,b

∫
d2nxψ ⋆ ψ ⋆ ψ ⋆ ψ(x) (3.28)

+
λ2

4

∑

a,b

∫
d2nxψ ⋆ γiψ ⋆ ψ ⋆ γiψ(x) (3.29)

+
λ3

4

∑

a,b

∫
d2nxψ ⋆ γ5ψ ⋆ ψ ⋆ γ5ψ(x) (3.30)and

Vno =
λ4

4

∑

a,b

∫
d2nxψ ⋆ ψ ⋆ ψ ⋆ ψ(x) (3.31)

+
λ5

4

∑

a,b

∫
d2nxψ ⋆ γiψ ⋆ ψ ⋆ γiψ(x) (3.32)

+
λ6

4

∑

a,b

∫
d2nxψ ⋆ γ5ψ ⋆ ψ ⋆ γ5ψ(x) (3.33)where γ5 = i γ0γ1. Sin
e there is no renormalization proof in matrix representation available we will notfurther investigate this model in the forth
oming 
hapters.3.3 Classi
al LS-Covarian
eWe will now introdu
e the LS-duality and show that the models introdu
ed above are indeed LS-
ovariantat the 
lassi
al level. This result was initially proven in [LS02a℄ for the Eu
lidean spa
e. We will reprodu
eit at this point to show that the proof also holds for Minkowskian signature.For the intera
tion term we will need the following lemma 21



3 How to 
ure the UV/IR Mixing ProblemLemma 3.1. The multiple star produ
t of fun
tions fk ∈ S(RD) for k = 1, . . . 4 has the following momentumand position spa
e representations
∫

dDx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x) =

4∏

a=1

(∫
dDxa

(2π)D/2

)
f(x1) f(x2) f(x3) f(x4)V (x1,x2,x3,x4)

=

4∏

a=1

(∫
dDka

(2π)D/2

)
f̂(k1) f̂(k2) f̂(k3) f̂(k4) V̂ (k1,k2,k3,k4)

(3.34)with vertex fun
tions given by
V (x1,x2,x3,x4) =

(2π)D

| det(Θ/2)|δ
D(x1 − x2 + x3 − x4) e− i x1∧x2− i x3∧x4

V̂ (k1,k2,k3,k4) = (2π)DδD(k1 + k2 + k3 + k4) e− i k1×k2− i k3×k4 .

(3.35)where p× q = 2−1piΘ
ijqj and p ∧ q = 2pi(Θ

−1)ijqj .Proof: is given in appendix A.The spa
etime metri
 does not play any role in this proof, sin
e only Fourier expansions and Gaussianintegrals were needed. Changing from Eu
lidean to Minkowskian metri
 amounts to inter
hanging Eu
lideanand Minkowskian s
alar produ
ts in the expressions above. We will need a simple variation of this lemma.Using relation f̂∗(k) = f̂∗(−k) we �nd
∫

dDx (f∗
1 ⋆ f2 ⋆ f

∗
3 ⋆ f4) (x) =

4∏

a=1

(∫
dDka

(2π)D/2

)
f̂∗
1 (k1) f̂2(k2) f̂

∗
3 (k3) f̂4(k4) V̂ (−k1,k2,−k3,k4)

∫
dDx (f∗

1 ⋆ f
∗
2 ⋆ f3 ⋆ f4) (x) =

4∏

a=1

(∫
dDka

(2π)D/2

)
f̂∗
1 (k1) f̂

∗
2 (k2) f̂3(k3) f̂4(k4) V̂ (−k1,−k2,k3,k4) .(3.36)Note that these results are in 
lear 
ontrast to the 
ommutative 
ase, in whi
h the position and momentumverti
es are very di�erent. There we have a lo
al position-spa
e intera
tion vertex V (x1,x2,x3,x4) ∝

δD(x1 − x2 + x3 − x4)δ
D(x1 − x2)δ

D(x2 − x3) and a non-lo
al intera
tion vertex in momentum spa
e
V̂ (k1,k2,k3,k4) ∝ δD(k1 + k2 + k3 + k4). The non
ommutative a
tion possess a duality between the UVand IR regime. In 
ontrast to the usual free s
alar a
tion this manifests itself in a symmetry of the wholeLSZ a
tion. In the following we will reprodu
e the proof given in [LS02a℄, in order to show that the dualityholds irrespe
tively of the signature of the metri
.Lemma 3.2 (Classi
al duality). The general LSZ a
tion

SLSZ = S0 + Sint ≡ SLSZ[φ;B, g,Θ] (3.37)de�ned above obeys
SLSZ[φ;B, g,Θ] = SLSZ[φ̃;B, g̃, Θ̃] , (3.38)where

φ̃(x) =
√
| detB|φ̂(B · x) , (3.39)

φ̂(k) the Fourier transform of φ(x), and the s
alar produ
t may have Eu
lidean or Minkowskian signature.The transformed 
oupling parameters are
Θ̃ = −4B−1Θ−1B−1 , g̃ = |det(BΘ/2)|−1

g . (3.40)Moreover, the transformation (φ;B, g,Θ) 7→ (φ;B, g̃, Θ̃) is a duality of the �eld theory, i.e. it generates a
y
li
 group of order two.22



3.3 Classi
al LS-Covarian
eProof: For the following we de�ne the derivatives ∂̂j = ∂/∂kj and ∂̃i = ∂/∂k̃i = −Bij ∂̂j with k̃ = B−1 · k.We start with the mass term. Using the Parseval relation we get
µ2

∫
dDxφ∗(x)φ(x) = µ2

∫
dDk φ̂∗(k) φ̂(k)

= µ2

∫
dDk̃ | detB| φ̂∗(B · k̃) φ̂(B · k̃)

= µ2

∫
dDx φ̃∗(x) φ̃(x) . (3.41)where in the last we renamed k̃ = x. Furthermore we getP̂iφ = (ki + iBij ∂̂

j)φ̂(k) = (− i ∂̃i +Bij k̃
j)φ̂(k) . (3.42)Thus de�ning Qi = i ∂̃i −Bij k̃

j we 
an pro
eed as before using again the Parseval relation
∫

dDx (Piφ)†(x) (Piφ)(x) =

∫
dDk̃ | detB| (Qiφ̂)†(B · k̃) (Qiφ)(B · k̃)

=

∫
dDx (Qiφ̃)†(x) (Qiφ̃)(x) (3.43)whi
h has the same form as before with φ̃ substituted for φ. The same analysis holds for the part 
ontainingP̃i, whi
h proves the duality for the free part. Surely, these 
onsiderations are independent of the parti
ular
hoi
e of the metri
.The symmetry of the intera
tion term Sint follows immediately from lemma 3.1 and relations (3.36). Upto the term | det(Θ/2)|−1, they have the same form in momentum and position spa
e but with (Θ/2)−1substituted for Θ/2. Changing φ̂→ φ̃ and k→ k̃ this implies

g → | det(BΘ/2)|−1g ,

Θ→ −4B−1Θ−1B−1 ,
(3.44)whi
h �nally proves the lemma.At the spe
ial points Θ = ±2B−1 the �eld theory is 
ompletely invariant under Fourier transformation(up to the sign of θ), and it is said to be self-dual. It is important to noti
e that everything we needed toprove this theorem were Fourier and Gaussian integrals. This implies that this 
lassi
al duality holds forEu
lidean as well as for Minkowskian metri
.The proof of the 
lassi
al duality in the LSZ 
ase is based on the fa
t that the Fourier transformed 
omplex
onjugated �elds get momenta with �ipped sign. For real �elds this has to be ensured arti�
ially by usingthe 
y
li
 Fourier transformation instead of the usual Fourier transformation, de�ned by

φ̂(ka) :=

∫
dDxa

(2π)D/2
φ(xa) e i (−1)aka·xa , (3.45)where a = 1, 2, 3, 4 enumerates the momenta involved. It ensures that the sign of the momenta in the kineti
and the intera
tion term is the same as in the LSZ 
ase su
h that the integrations 
an be done in the sameway, proving the duality for the GW model. In the literature this duality is sometimes presented in theequivalent formLemma 3.3. Under the ex
hange of position and momenta

pi ↔ x̃i , φ̂(k)↔
√
| det(Θ/2)|φ(x) (3.46)with φ̂ the 
y
li
 Fourier transformed �eld, the Grosse-Wulkenhaar model given by the a
tion SGW transformsas

SGW[φ; Ω, λ, µ] = Ω2SGW

[
φ;

1

Ω
,
λ

Ω2
,
µ

Ω

] (3.47)23



3 How to 
ure the UV/IR Mixing ProblemAt Ω = ±1 the theory is again invariant under LS duality.The intera
tion terms of the vGN model are identi
al to those of the s
alar models given by the relations(3.36). Using P̂iψ = (ki − iBij ∂̂
j)ψ̂(k) (3.48)it is 
lear that also the vGN model is 
ovariant under Fourier transformation plus some appropriate res
alingof the �elds, namely the LS-duality.3.4 LS-Covarian
e, Renormalizability and Vanishing of the

β-Fun
tionThe LS-duality 
ovarian
e has been turned out to be a 
ru
ial 
on
ept in the 
onstru
tion of renormalizablenon
ommutative quantum �eld theories on Eu
lidean spa
e. As a motivation for the sear
h of 
orrespondingtheories on Minkowski spa
etime, we will now give a brief overview on established results.For the LSZ model there are two independent intera
tion terms. However, only the oriented intera
tion,i.e. the α-dependent part has been shown to be renormalizable. In the following β is always assumed to be0. The behavior of these models strongly depend on their parameters σ and Ω. There are four 
ases whi
hare generally distinguished:
• σ = 1,Ω = 1 (
riti
al and self-dual)
• σ < 1,Ω = 1 (self-dual)
• σ < 1, 0 < Ω < 1 (ordinary)
• σ = 1, 0 < Ω < 1 (
riti
al)Ea
h model may be 
omplex or real. A model is 
alled 
riti
al if the 
orresponding propagator in positionspa
e ∆(x,x′) de
ays if |x− x′| goes to in�nity, but only os
illates as |x + x′| → ∞.2The 
riti
al and self-dual φ⋆4 model was �rst introdu
ed in [Fil90℄, while its invarian
e under LS-dualityhas been pointed out [LS02a℄. It has been shown to be exa
tly solvable [LSZ03, LSZ04℄ in general evendimensions, in the sense that there is a 
losed formula for the partition fun
tion for the regularized theory.The UV �xed point of the theory is, however, trivial, and the 
oupling 
onstant vanishes if the UV 
uto� isremoved. The self-dual φ⋆3 theory in two, four and six dimensions, based on the real GW free a
tion, hasbeen shown to be renormalizable, non-trivial and essentially solvable genus by genus,3 while in six dimensionsthis model is asymptoti
ally free [GS06a, GS06b, GS08℄.To improve the renormalization properties it was suggested in [LSZ03, LSZ04℄ to slightly disturb the LSZmodel by 
hoosing σ < 1. In this 
ase the model gets altered by a harmoni
 os
illator term (see equation(3.13)), making the position-spa
e propagator well behaved, with an exponential de
ay in |x−x′| → ∞ and

|x + x′| → ∞ separately. The �rst result was due to Grosse and Wulkenhaar for σ = 1/2 and real �elds.Using the matrix basis they showed that in two and four dimensions this theory is renormalizable to allorders in perturbation theory [GW03, GW05b℄. While in two dimensions the harmoni
 os
illator frequen
yvanishes if the 
uto� is removed and the theory is superrenormalizable, in four dimensions the selfdual point
Ω = 1 is a non-trivial �xed point of the theory. Their analysis relied on numeri
al determination of thes
aling behavior of the propagator. This gap has later been �lled by Rivasseau et al. [RVTW06℄, 
on�rmingthe renormalizability. In addition, in four dimensions and at the self-dual point, the β-fun
tions for both
ouplings Ω and g vanish to all orders in perturbation theory, and thus the renormalized 
ouplings �ows toa �nite bare 
oupling [GW04, DR07, DGMR07℄. This breakthrough has been possible due to 
ertain Wardidentities the model ful�lls at quantum level, whi
h are believed to be related to the LS duality. It is arguedthat the same is true for Ω < 1, sin
e the renormalization group �ow of Ω→ 1 is very fast [DGMR07℄. These2The designation 
riti
al is due to Rivasseau et al. [RT08℄. In order to avoid 
onfusion with �
riti
al phenomena�, it hasbeen proposed to 
all them 
ovariant models [Riv07b℄. Sin
e in this thesis we are already using the terminus LS-
ovariantmodels for all of these models we will sti
k to the des
ription 
riti
al.3Feynman diagrams in the perturbative expansion of NCQFTs form a Riemannian surfa
e using the double line formalism,whi
h we will introdu
e in se
tion 4.4. The genus of a diagram is then identi
al to the genus of the surfa
e.24



3.5 Translation-Invariant Modelresults have been extended to all 0 < σ < 1 for both real and 
omplex �elds in [GMRVT06, GGR09℄. Theextension to bosons with N �avors, 
alled 
olor Grosse-Wulkenhaar model, have been studied in [GR08℄.They have been shown to be renormalizable and asymptoti
 free for N > 1.The LSZ model for σ = 1 and Ω < 1 is more di�
ult to treat. It belongs to the 
ategory of 
riti
alNCQFTs. It is shown to be renormalizable in 4 dimensions (see [RT08℄). The vul
anized Gross-Neveumodel is also of this type. In [VT07a℄ it has been shown that the massless orientable LS-duality 
ovariantGross-Neveu model is renormalizable to all orders in perturbation theory. Interestingly, the UV/IR mixingis partly still present, whi
h, however, does not prevent the theory to be renormalizable. This seems toindi
ate that the pre
ise role of LS-duality and the vul
anization pro
edure has not been fully understoodyet. Furthermore it has been shown, that at one-loop level this theory is asymptoti
ally �free� but notasymptoti
ally safe [LVTW07℄, just like its 
ommutative 
ounterpart.The s
alar LS-
ovariant models have a vanishing β-fun
tion and thus 
ontain no Landau ghost, 
ontrary tothe 
ommutative φ4
4 theory. Unlike non-abelian gauge theories, this elimination is a
hieved without asymp-toti
 freedom, but instead with asymptoti
 safety. For these reasons, a full non-perturbative 
onstru
tionof the quantum �eld theory without any 
ut-o� is believed possible [Riv07a, MR08℄, whi
h would be the�rst known model in four dimensions. However, while the vanishing of the β-fun
tion was blessing from the
onstru
tive �eld theory point of view, it might turn out to be a problem from the physi
al perspe
tive,as its 
onne
tion to the 
ommutative regime Θ → 0 may not exist. For this reason another renormalizablemodels has been suggested, 
alled the translation-invariant model, brie�y exposed in the next se
tion.3.5 Translation-Invariant ModelWe will not keep quite about yet another 
on
ept whi
h has su

essfully over
ome the UV/IR mixingproblem, but whi
h at the same time avoids the breaking of translation invarian
e. It still keeps the UV/IRmixing under 
ontrol and is renormalizable to all orders in perturbation theory [GMRT09℄. It is 
alledtranslation-invariant model and de�ned by the a
tion

S1/p2 =

∫
d4x

1

2

(
∂iφ(x) ∂iφ(x) + µ2φ2(x)− φ(x) ⋆

a2

θ2∂2
i

⋆ φ(x)

)
+
λ

4!

∫
d4xφ⋆4(x) , (3.49)with a a dimensionless 
onstant and ∂−2

i regarded as the Green fun
tion of ∂2
i . The momentum spa
epropagator, given by

G(k) =
1

k2 +m2 + a2

k2

, (3.50)does not a�e
t the UV behavior, but has a ni
e damping in the IR regime. Putting n one-loop diagramsinto one big loop has a ni
e IR behavior and thus solves the UV/IR mixing problem. It is renormalizable toall orders in perturbation theory [GMRT09℄.The 1/p2-modi�ed propagator 
an be seen as the usual propagator dressed by quantum 
orre
tions. Indeed,the 1/p2 
orre
tions appear at every order in perturbation theory of the usual φ⋆4 theory. Its β-fun
tion isa rational multiple of the β-fun
tion of the 
ommutative model [GT08℄. It follows that 
ontrary to the LS-
ovariant models it might not be realizable non-perturbatively, but it might have a meaningful 
ommutativelimit. In [MRT09℄ a 
ommutative limit me
hanism has been proposed, in whi
h the 1/p2-terms get tradedin for mass and wave fun
tion 
ounterterms in the limit θ → 0. It is also argued that the extension to gaugetheories is easier than in the LS-
ovariant models [GT08℄, sin
e this extension preserves its trivial va
uum[BGK+08℄. In this thesis we will not further follow this dire
tion and restri
t ourselves to the investigationof LS-
ovariant models. For more information see [Tan08, Tan10, BKSW10℄ and referen
es therein.
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4 Matrix Model Representation of Eu
lideanLS-Covariant NCQFTsAn invaluable tool in the investigation of the LS-
ovariant models has been the Landau basis, whi
h allowsto map them onto matrix models. It has been used to solve the 
riti
al, self-dual LSZ model exa
tly, to provethe renormalizability of the GW model and the vanishing of its β-fun
tions. Though the renormalizability ofthese models have already been proven in position spa
e, it will give us the possibility to de�ne a well-de�nedanalyti
al 
ontinuation to Minkowski spa
etime.From a physi
ist's point of view, the Landau basis is a very natural basis for the Hilbert spa
e L2(R2),sin
e it is made of (Wigner transformations of) the produ
ts of two 
opies of harmoni
 os
illator states.Furthermore, its elements are fun
tions, whi
h 
an be des
ribed as �best lo
alized states� with respe
t tothe star-produ
t. The analog of Heisenberg's un
ertainty relation for non
ommuting 
oordinates forbidsthe simultaneous lo
alization of 
onjugated 
oordinates xi and xj with θij = θ 6= 0. If we try to lo
alizeGaussian wave pa
kets in two dimensions through a multipli
ation with itself one �nds
e−x2

i /a2

⋆θ e−x2
i /a2

= c e−x2
i /d2 (4.1)with

c = 1 +
θ2

a4
and d =

√
a4 + θ2

2a2
. (4.2)This implies that for a > √θ we get d < a and for a < √θ we �nd d > a with a �xed point at a =

√
θ and abest fo
used Gaussian given by

f00(x) ∼ 2 e−x2
i /θ . (4.3)The Landau fun
tions fmn ∈ S(R2) with m,n ∈ N are build on this Gaussian as a ground state via appli-
ation of �ladder operators�, and form an 
ountable in�nite orthonormal basis for L2(R2). They are energyeigenfun
tions of the Landau Hamiltonian, whi
h des
ribes the motion of a 
harged parti
le, moving in atwo-dimensional plane exposed to a perpendi
ular magneti
 �eld, namely the (P2

i )k and (P̃2
i )k. Expand-ing the �elds in this basis, the theory gets mapped onto a matrix model, simplifying the intera
tion part
onsiderably through the relation

fmn ⋆ fkℓ ∼ δnkfmℓ . (4.4)With help of this basis we get rid of the twisting fa
tors showing up in the vertex fun
tions in the planewave basis, trading the non
ommutative star-produ
t in for the non
ommutative matrix-produ
t.In the following we will derive the matrix model representation for Eu
lidean LS-
ovariant theories. Thiswill be done in a fashion whi
h will make it easy to 
apture the generalization to Minkowski spa
etime. Inse
tion 4.1 we use the Weyl-Wigner transformation to map the eigenvalue equation for the operators (P2
i )kand (P̃2

i )k to the harmoni
 os
illator problem. Using its Fo
k spa
e representation we 
onstru
t the Landaufun
tions in 4.2, whi
h brings us immediately to the matrix model representation in se
tion 4.3. Afterwardswe will introdu
e the modi�ed Feynman rules in terms of ribbon graphs and prove the LS-
ovarian
e atquantum level. In the following we will work in two dimensions. The generalization to higher dimensions isstraightforward and will be given in se
tion 4.6.4.1 Mapping onto the Harmoni
 Os
illatorThe Eu
lidean LS-
ovariant models introdu
ed in the last 
hapter are spe
ial in the sense that there existsa matrix representation whi
h diagonalizes the free part of the a
tions. This is implied by the fa
t that the27



4 Matrix Model Representation of Eu
lidean LS-Covariant NCQFTsoperators (P2
i )k and (P̃2

i )k for ea
h k = 1, . . .D/2 have dis
rete spe
tra resembling the harmoni
 os
illatorspe
trum. In the following we will show how to see this and how to 
onstru
t the eigenbasis.We will skip the index k and work with the 2 dimensional wave operators P2
i and P̃2

i a
ting on fun
tionson S(R2) depending on x = (x, y). Sin
e P2
i and P̃2

i 
ommute, we 
an �nd simultaneous eigenfun
tions su
hthat P2
i fmn(x) = λmnfmn(x)P̃2
i fmn(x) = λ̃mnfmn(x)

(4.5)with λmn, λ̃mn ∈ R and some indi
es m and n. The a
tion of P2
i and P̃2

i on some fun
tion g(x) 
an berepresented as P2
i g(x) = B2(x2 + y2) ⋆2/B g(x)P̃2
i g(x) = g(x) ⋆2/B B2(x2 + y2) ,

(4.6)where ⋆2/B is the usual Moyal produ
t with θ = 2/B. This 
an be veri�ed by using the perturbativerepresentation of the star produ
t to get
B2(x2 + y2) ⋆θ g(x) =

(
B2(x2 + y2) + iB2θ(x∂y − y∂x)− 1

4
B2θ2(∂2

x + ∂2
y)

)
g(x) . (4.7)Setting θ = 2/B the rhs yields exa
tly P2

i g(x) sin
eP2
i = −∂2

i − 2 iB(y∂x − x∂y) +B2x2
i , (4.8)
ompare (3.12). Now inter
hanging the order of the two fa
tors of the lhs of (4.7) �ips the sign of θ on therhs. This is equivalent to inter
hanging P2

i and P̃2
i .The a
tion of P2

i and P̃2
i 
an thus be represented as a star produ
t with the 
lassi
al Hamiltonian B2(x2 +

y2), whi
h is the harmoni
 os
illator if we interpret y as the momentum 
onjugated to x. We 
an exploitthis fa
t, by using the Weyl-Wigner transformation, whi
h maps the star produ
t of two fun
tions onto theoperator produ
t of its Weyl symbols (2.14). The symbols
Ŵ
[√

2Bx
]

= q̂ and Ŵ
[√

2By
]

= p̂ (4.9)obey the Heisenberg algebra
[q̂, p̂] = 2B2[x, y]⋆2/B

= i 4B . (4.10)Noting that Ŵ [x2
]

= Ŵ [x]
2 and Ŵ [

y2
]

= Ŵ [y]
2 we �ndP2

i fmn(x) = W

[
Ĥhof̂mn

]
= λmnfmn(x)P̃2

i fmn(x) = W

[
f̂mnĤho

]
= λ̃mnfmn(x)

(4.11)with
Ĥho =

1

2
(p̂2 + q̂2) (4.12)the harmoni
 os
illator and f̂mn = Ŵ [fmn]. Clearly, the left/right-eigenfun
tions of Ĥho are tensor produ
tsof the form

f̂mn = Cf |φm〉〈φn| (4.13)with Cf being some 
onstant and φn denoting the harmoni
 os
illator eigenstates. Working in the represen-tation
〈q′|q̂|q〉 =

√
2Bq 〈q′|q〉 ⇒ 〈q′|p̂|q〉 = − i

∂

∂q/
√

8
〈q′|q〉 . (4.14)the harmoni
 os
illator is given by

〈q′|Ĥho|q〉 = 4
(
−∂q + γ2 q2

)
〈q′|q〉 (4.15)28



4.2 Landau Fun
tionswith γ = B/2. It is a self-adjoint operator on L2(R) with a dis
rete spe
trum given by {8γ (n+1/2) , n ∈ N}.Its eigenfun
tions are known as harmoni
 os
illator wavefun
tions and are given by
φn(q) =

( √
γ

2nn!
√
π

)1/2

e− γ
2 q2

Hn(
√
γ q) . (4.16)They form a Hilbert spa
e basis for L2(R) and obey

〈φm|φn〉 = δmn . (4.17)In summary, the simultaneous eigenvalue equations for P2
i and P̃2

i are equivalent to two harmoni
 os
illatorproblems with eigenvalues given by
λmn = 4B

(
m+

1

2

) and λ̃mn = 4B

(
n+

1

2

)
, (4.18)and eigenfun
tions being Wigner transformations of two harmoni
 os
illator states

f (B)
mn (x) = CfW [|φm〉〈φn|] (x) (4.19)known as Landau fun
tions. We use the supers
ript (B) to distinguish the Landau fun
tions with di�erentmagneti
 �eld strengths B.4.2 Landau Fun
tionsWe will now 
onstru
t the Landau fun
tions and prove those properties whi
h will be needed to �nd thematrix model representation of the LS-
ovariant models. In the following we will set θ = 2/B, thus ⋆ = ⋆2/B.Using the expli
it representation for the Wigner transformation (2.10) with θ = 2/B one gets

∫
d2x W [|φm〉〈φn|] (x) =

∫
dx

∫
dy

∫
dk e i B

2 ky〈x + k/2|φm〉〈φn|x− k/2〉

=
4π

B

∫
dx〈x|φm〉〈φn|x〉

=
4π

B
. (4.20)Thus demanding the normalization

∫
d2x f (B)

mn (x) =

√
4π

B
δmn (4.21)we �nd with (4.19)

f (B)
mn (x) =

√
B

4π
W [|φm〉〈φn|] (x) . (4.22)Using again the expli
it expression for the Wigner transformation we 
an immediately dedu
e

f (B)
mn (x)∗ =

√
B

4π

∫
dk e− i B

2 ky〈x+ k/2|φn〉〈φm|x− k/2〉 = f (B)
nm (x) . (4.23)An important property 
an be proven by using the star-produ
t relations for Wigner distributions (2.14) forthe produ
t of two Landau fun
tions

(
f (B)

mn ⋆ f
(B)
kℓ

)
(x) =

B

4π
W [|φm〉〈φn|φk〉〈φℓ|] (x) =

√
B

4π
δnkf

(B)
mℓ (x) . (4.24)whi
h is 
alled the proje
tor property and allows us to map the non
ommutative models to matrix models.Note that the de�nition of the Landau fun
tions with �eld strength B implies the proje
tor property only29



4 Matrix Model Representation of Eu
lidean LS-Covariant NCQFTsfor ⋆ = ⋆2/B thus for θ = 2/B.1 Combining the identities (4.21) and (4.24) we �nd that the f (B)
mn areorthonormal with respe
t to the L2 s
alar produ
t

〈f (B)
mn |f (B)

kℓ 〉 =

∫
dx f (B)

nm (x) f
(B)
kℓ (x)

=

∫
dx (f (B)

nm ⋆ f
(B)
kℓ )(x)

=

√
B

4π

∫
dx δmk f

(B)
nℓ (x)

= δmnδkℓ . (4.25)The Landau fun
tions have a simple form in terms of generalized Laguerre polynomials:Lemma 4.1. We de�ne the radial 
oordinates x = r cosϕ and y = r sinϕ. The Landau fun
tions fmn(r, ϕ)are given by
f (B)

mn (r, ϕ) = (−1)min(m,n)

√
B

π

√
min(m!, n!)

max(m!, n!)

(
Br2

)|m−n|/2
e i ϕ(n−m) e−r2/θL

|m−n|
min(n,m)

(
Br2

) (4.26)where Lα
k (x) are asso
iated Laguerre polynomials.A proof of this lemma will be given in se
tion E.The ladder operator representation of the harmoni
 os
illator states has an analog on the Wigner side,whi
h will be useful to determine the matrix model representation of the NCQFTs. Observe that

W [|φm〉〈φn|] =
1√
m!n!

W
[
(â†)m|φ0〉〈φ0|(â)n

]

=
1√
m!n!

(W
[
â†])⋆m ⋆W [|φ0〉〈φ0|] ⋆ (W [â])⋆n . (4.27)The Fo
k spa
e ladder operators for the harmoni
 os
illator with frequen
y 4B are de�ned by linear 
ombi-nations â = (q̂ + i p̂)/

√
8B. Using Ŵ [√

2Bx
]

= q̂ and Ŵ [√
2By

]
= p̂ we �nd for the Wigner transformedladder operators

W [â] =

√
B

4
(x + i y) , W

[
â†]
√
B

4
(x− i y) (4.28)whi
h are proportional to the 
omplex 
oordinates z = x + i y and z̄ = x − i y. We de�ne new ladderoperators a, a† and b, b† through

(√
B

4
z

)
⋆ g(x) = a g(x) ,

(√
B

4
z̄

)
⋆ g(x) = a† g(x)

g(x) ⋆

(√
B

4
z̄

)
= b g(x) , g(x) ⋆

(√
B

4
z

)
= b† g(x) .

(4.29)De�ning ∂z = ∂x − i ∂y and ∂z̄ = ∂x + i ∂y one notes that
i

B
(∂x∂

′
y − ∂y∂

′
x) =

1

2B
(∂z∂

′
z̄ − ∂z̄∂

′
z) . (4.30)Using ∂zz = ∂z̄ z̄ = 2 one easily �nds

(√
B

4
z

)
⋆ g(x) =

(√
B

4
z

)
g(x) + 2

√
B

4

1

2B
∂z̄g(x) =

1

2

(
√
Bz +

√
1

B
∂z̄

)
g(x) (4.31)1We should remark that the fmn also obey the proje
tor property

“

f
(B)
mn ⋆(−2/B) f

(B)
kℓ

”

(x) =

r

B

4π
δmℓf

(B)
kn (x) .whi
h follows from f ⋆−θ g = g ⋆θ f .30



4.3 Matrix Model Representationand similarly
a =

1

2

(√
1

B
∂z̄ +

√
Bz

)
, a† =

1

2

(
−
√

1

B
∂z +

√
Bz̄

)

b =
1

2

(√
1

B
∂z +

√
Bz̄

)
, b† =

1

2

(
−
√

1

B
∂z̄ +

√
Bz

)
.

(4.32)These operators indeed generate two 
ommuting 
opies of the harmoni
 os
illator algebra
[
a, a†

]
=

[
b, b†

]
= 1

[a, b] =
[
a, b†

]
= 0 .

(4.33)A 
ommon va
uum state is de�ned by af (B)
00 = bf

(B)
00 = 0. Demanding the normalization (4.21) one 
an usethe expli
it expressions (4.32) to solve for the ground state fun
tion

f
(B)
00 (x) =

√
B

π
e−B

2 x2
i . (4.34)Applying the ladder operators we generate the Landau fun
tions

f (B)
mn (x) =

(a†)m

√
m!

(b†)n

√
n!
f

(B)
00 (x) . (4.35)and one easily �nds

a f (B)
mn (x) =

√
mf

(B)
m−1,n(x) , a† f (B)

mn (x) =
√
m+ 1 f

(B)
m+1,n(x)

b f (B)
mn (x) =

√
nf

(B)
m,n−1(x) , b† f (B)

mn (x) =
√
n+ 1 f

(B)
m,n+1(x) .

(4.36)whi
h will be important in the next se
tion.4.3 Matrix Model RepresentationThe Landau fun
tions f (B)
mn ful�ll the proje
tor property with respe
t to the star-produ
t ⋆ = ⋆2/B thus with

θ = 2/B. However, the deformation parameters θ o

urring in the intera
tion terms of the LS-
ovarianttheories are not equal to 2/B in general. In this 
ase we 
an either simplify the intera
tion or the free partof the a
tion. Sin
e we are able to �nd the matrix propagator even for θ 6= 2/B, see se
tion 8.2, we 
hoosethe �rst option and expand in f (2/θ)
mn , whi
h obey the proje
tor property with ⋆ = ⋆θ for θ 6= 2/B.For the following we assume the �elds to be well-behaved fun
tions whi
h allow for an expansion in theLandau basis, like S
hwartz fun
tions (we will 
ome ba
k to this issue in se
tion 6.2). From the a
tion we
an read o� the perturbative de�nition of the 
orrelation fun
tions of the 
orresponding quantum theory.However, these will in general 
onsist of produ
ts of distributions, and have to be regularized. An appro-priate regularization is the matrix 
uto� introdu
ed in se
tion 4.5. Removing this regularization is partof the renormalization program, and ne
essitates a good de
ay behavior of the propagator in the matrixrepresentation for large indi
es (see se
tion 8).We start with the intera
tion part of the two-dimensional LSZ model given by2

Sint = g

∫
d2x [α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)] (4.37)The s
alar �elds are expanded in Landau basis read

φ(x) =

∞∑

mn

f (2/θ)
mn (x)φmn

φ(x)∗ =

∞∑

mn

f (2/θ)
mn (x)φmn

(4.38)2The generalization to higher dimensions is straightforward and given in se
tion 4.6. 31



4 Matrix Model Representation of Eu
lidean LS-Covariant NCQFTswith 
oe�
ients given by
φmn = 〈f (2/θ)

mn |φ〉 =

∫
d2x f (2/θ)

nm (x)φ(x)

φmn = 〈f (2/θ)
mn |φ〉 =

∫
d2x f (2/θ)

nm (x)φ(x)∗ .

(4.39)Note that φmn = φnm = (φnm)∗ = (φmn)†. Using
f (2/θ)

m1n1
⋆ f (2/θ)

m2n2
⋆ f (2/θ)

m3n3
⋆ f (2/θ)

m4n4
=

1
√

2πθ
3 δn1m2δn2m3δn3m4f

(2/θ)
m1n4

, (4.40)the general φ⋆4 intera
tion term of the LSZ model simpli�es to
Sint =

g

2πθ

∑

n,m,k,ℓ,p

(
αφmnφnk φkℓφℓm + β φmnφnk φkℓφℓm

)
. (4.41)For the Grosse-Wulkenhaar model this simply reads

Sint =
g

2πθ

∑

mnkℓ

φmnφnkφkℓφℓm (4.42)We already know that at the self-dual points θ = ±2/B the Landau fun
tions diagonalizes also the freepart of the a
tions. The wave operator P2 be
omesP2
i = 4B

(
a†a+

1

2

) for θ = +2/BP2
i = 4B

(
b†b+

1

2

) for θ = −2/B ,

(4.43)and analogously for P̃2
i with a, a† ↔ b, b† inter
hanged. Their matrix representations at θ = 2/B then simplyread

(P2
i )mn;kℓ =

∫

x

f (2/θ)
mn (x)P2

i f
(2/θ)
kℓ (x) = 4B

(
k +

1

2

)
δmℓδnk

(P̃2
i )mn;kℓ =

∫

x

f (2/θ)
mn (x) P̃2

i f
(2/θ)
kℓ (x) = 4B

(
ℓ+

1

2

)
δmℓδnk .

(4.44)For generi
 θ the expressions are more 
ompli
ated:Lemma 4.2. The wave operator of the two-dimensional LSZ model in matrix representation is given by
Gmn;kℓ =

(
µ2 + 2

(1 + Ω2)

θ
(m+ n+ 1)δmℓδnk +

4Ω̃

θ
(n−m)

)
δmℓδnk

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)
, (4.45)with frequen
ies Ω = Bθ/2 and Ω̃ = (2σ − 1)ΩProof: The wave operator in matrix representation is given by

Gmn;kℓ =

∫

x

f (2/θ)
mn (x)

(
σP2

i + (1− σ)P̃2
i + µ2

)
f

(2/θ)
kℓ (x) . (4.46)We show the following relation:P2

i =
1

2θ

[
(2 +Bθ)2

(
a†a+

1

2

)
+ (2−Bθ)2

(
b†b+

1

2

)
+
(
θ2B2 − 4

) (
a†b† + ab

)]
. (4.47)32



4.3 Matrix Model RepresentationThis 
an be veri�ed by inserting the expli
it expressions (4.32) for a and b with 2/θ substituted for B. Notingthat
a†b† + ab =

1

2

(
2

θ
zz̄ +

θ

2
∂z∂z̄

)

(
a†a+

1

2

)
+

(
b†b+

1

2

)
=

1

2

(
2

θ
zz̄ − θ

2
∂z∂z̄

) (4.48)
(
a†a+

1

2

)
−
(
b†b+

1

2

)
=

1

2
(z̄∂z̄ − z∂z) .we indeed �ndP2

i =
1

2θ

[
(4 +B2θ2)

1

2

(
2

θ
zz̄ − θ

2
∂z∂z̄

)
+ (B2θ2 − 4)

1

2

(
2

θ
zz̄ +

θ

2
∂z∂z̄

)
+ 4Bθ

1

2
(z̄∂z̄ − z∂z)

]

=
1

2θ

[
B22θzz̄ − 2θ∂z∂z̄ + 4Bθ

1

2
(z̄∂z̄ − z∂z)

]

= B2x2
i − ∂2

i + 2 iB(x∂y − y∂x)

= (− i ∂i +Bijx
j)2i . (4.49)The 
orresponding expression for P̃2

i are obtained by inter
hanging a, a† ↔ b, b†. Using (4.36) one 
an easilyread o� the matrix versions of the wave operators P2
i and P̃2

i

(P2
i )mn;kℓ =

1

2θ

[
(2 +Bθ)2

(
n+

1

2

)
δmℓ δnk + (2−Bθ)2

(
m+

1

2

)
δmℓ δnk

+
(
θ2B2 − 4

)(√
nmδm,ℓ+1 δn,l+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)] (4.50)and
(P̃2

i )mn;kℓ =
1

2θ

[
(2 +Bθ)2

(
m+

1

2

)
δmℓ δnk + (2−Bθ)2

(
n+

1

2

)
δmℓ δnk

+
(
θ2B2 − 4

) (√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]
. (4.51)These 
an be 
ombined to give

σ(P2
i )mn;kℓ + (1− σ)(P̃2

i )mn;kℓ

=
1

2θ
σ

[
(2 +Bθ)2

(
n+

1

2

)
δmℓ δnk + (2 −Bθ)2

(
m+

1

2

)
δmℓ δnk

]

+
1

2θ
(1− σ)

[
(2 +Bθ)2

(
m+

1

2

)
δmℓ δnk + (2 −Bθ)2

(
n+

1

2

)
δmℓ δnk

]

+
1

2θ

[(
θ2B2 − 4

) (√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]

=
2

θ

[
(1 + (Bθ/2)2)(m+ n+ 1)δmℓδnk + (2σ − 1)Bθ(n−m)δmℓδnk

+
(
(θB/2)2 − 1

)(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]
, (4.52)whi
h proves the theorem.The two-dimensional general LSZ model then has the matrix model representation

SLSZ =
∑

mnkℓ

φmnGmn;kℓφℓk

+
g

2πθ

∑

mnkℓ

(
αφmnφnk φkℓφℓm + β φmnφnkφkℓ φℓm

)
. (4.53)33



4 Matrix Model Representation of Eu
lidean LS-Covariant NCQFTsNote that at σ = 1 the in�nite Landau level degenera
y, i.e. the dependen
e on only one of the two Landauindi
es, manifests itself in a U(∞) symmetry
φ −→ U · φ , φ† −→ φ† · U † . (4.54)This is the maximal symmetry-group of area-preserving di�eomorphisms, and it a
ts through rotations ofthe magneti
 quantum numbers n. The phase spa
e be
omes degenerate and the wave fun
tions dependonly on one half of the position spa
e 
oordinates, leading to a redu
tion of the quantum Hilbert spa
eat θ = 2/B [LSZ04℄. In position spa
e, this implies an os
illatory behavior of the propagator in the longvariable |x + x′| → ∞, making the renormalization pro
edure more involved [RT08℄.From lemma 4.2 we 
an easily follow for σ = 1/2Lemma 4.3. The two-dimensional Grosse-Wulkenhaar wave operator in matrix representation is given by

Gmn;kℓ =

(
µ2 + 2

Ω2 + 1

θ
(m+ n+ 1)

)
δmℓ δnk

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (4.55)with frequen
y Ω = Bθ/2.The 
orresponding a
tion reads
SGW =

∑

mn;kℓ

(
1

2
φnmGmn;kℓφkℓ +

g

2πθ
φmnφnkφkℓφℓm

)
. (4.56)4.4 Perturbative Quantum Field Theory in Matrix RepresentationIn the following we will demonstrate how the LS-
ovariant quantum �eld theories 
an be de�ned perturba-tively in the matrix representation. The matrix representation of GW model is straightforwardly obtainedusing the perturbative solution of the generating fun
tional (3.25) and the expansion of the GW a
tion asin (4.56), whi
h leads to the generating fun
tional

Z[J ] = N exp

(
−g

∑

mnkℓ

∂4

∂Jmℓ∂Jℓk∂Jkn∂Jnm

)
exp

(
1

2

∑

mnkℓ

Jmn∆mn;kℓJkℓ

) (4.57)The propagator solves the equation
∑

kℓ

Gmn;kℓ∆ℓk;sr =
∑

kℓ

∆nm;ℓkGkℓ;rs = δmrδns . (4.58)A pre
ise expression for ∆mn;kℓ will be determined in se
tion 8.2.2. The modi�ed Feynman rules are 
onve-niently presented in the double line formalism. The vertex is diagonal and given by
= −g δmpδnqδkrδℓs .and the double line for the propagator

m
n

ℓ

k = ∆nm;ℓk .34



4.5 LS-Duality at Quantum LevelSin
e the GW model 
onsiders real �elds the Feynman diagrams are unoriented. The double lines haveno distinguished dire
tion, with arrows showing in both dire
tions. They are usually kept for bookkeepingpurposes.For 
omplex �elds ea
h double line has arrows dire
ted in the same dire
tion, either in
oming or outgoing.The matrix representation of the LSZ model reads
Z[J ] = N exp

(
−αg

∑

mnkℓ

∂4

∂Jmℓ∂Jℓk∂Jkn∂Jnm

− β g
∑

mnkℓ

∂4

∂Jmℓ∂Jℓk∂Jkn∂Jnm

)

× exp

(∑

mnkℓ

Jmn∆mn;kℓJkℓ

)
,

(4.59)The double lines are now oriented from φ∗ to φ :
m
n

ℓ

k = ∆nm;ℓk ,The two intera
tion terms φ∗ ⋆ φ ⋆ φ∗ ⋆ φ and φ∗ ⋆ φ∗ ⋆ φ ⋆ φ are represented by di�erent diagrams
∼ φ∗ ⋆ φ ⋆ φ∗ ⋆ φ ∼ φ∗ ⋆ φ∗ ⋆ φ ⋆ φhaving verti
es −g δmpδnqδkrδℓs times α or β. Restri
ting to one of these intera
tions redu
es the numberpossible diagrams for the 
omplex matrix model.Every Feynman diagram is represented by a ribbon graph. Its topologi
al data is now de
isive for thequestion whether it is divergent or not. The power 
ounting theorem for general non-lo
al matrix modelshas been proven by Grosse and Wulkenhaar in [GW05a℄.3 More on this in 
hapter 84.5 LS-Duality at Quantum LevelTo ensure the LS-duality at the quantum level, we have to �nd a regularization s
heme for the model, whi
hsuppresses possible divergen
es and at the same time keeps the duality manifestly. We demonstrate thepro
edure at the GW model. Using this regularization s
heme, Grosse and Wulkenhaar were able to provethe renormalizability of the GW model in two and four dimensions [GW03, GW05b℄.Conne
ted Green fun
tions with M external legs are given by

GM (x1, . . . ,xM ;B, g,Θ) =
M∏

i=1

δ

δJ(xi)
W (J ;B, g,Θ)

∣∣∣∣∣
J=0

. (4.60)with
W [J ] = − ln

Z[J ]

Z[0]
≡W [J ;B, g,Θ] . (4.61)the generating fun
tional of 
onne
ted graphs. Sin
e the path integral measure is formally invariant under

φ→ φ̃, the duality symmetry of the 
lassi
al a
tion plus the identity
∫

x

φ(x)J(x) =

∫

x

φ̃(x) J̃(x) (4.62)3A matrix model is thereby 
alled lo
al if ∆nm;ℓk = ∆(m, n)δmℓδnk for some fun
tion ∆(m, n) and non-lo
al otherwise. 35



4 Matrix Model Representation of Eu
lidean LS-Covariant NCQFTsformally yields the identity
W [J ;B, g,Θ] = W [J̃ ;B, g̃, Θ̃] . (4.63)Hen
e any 
onne
ted Green fun
tion with M external legs formally obeys the identity

ĜM (k1, . . . ,kM ;B, g,Θ) = |det(B)|M/2 GM

(
k̃1, . . . , k̃M ;B, g̃, Θ̃

) (4.64)with ĜM the Fourier transform of GM and as before k̃ = B−1 · k.However, to nail this symmetry down, one has to regularize possible divergen
es while keeping this dualitymanifestly at any step in perturbation theory. Note that the propagator for the two-dimensional GW modelreads
∆(x,x′) =

∑

m,n

f
(B)
mn (x)f

(B)
nm (x′)

2B (m+ n+ 1) + µ2
. (4.65)Sin
e for real B we have

F [f (B)
mn ](k) =

i m−n

B
f (B)

mn (B−1 · k) , (4.66)whi
h is proven in appendix H, and
F [P2

i f
(B)
mn ](k) = 4B

(
m+

1

2

)
F [f (B)

mn ](k) ,

F [P̃2
i f

(B)
mn ](k) = 4B

(
n+

1

2

)
F [f (B)

mn ](k) ,

(4.67)we �nd that Fourier transformation relates the propagator in position spa
e to the momentum spa
e prop-agator
∆̂(k,k′) =

1

B2
∆(k̃, k̃

′
) . (4.68)This is just the re�e
tion of the 
lassi
al LS-
ovarian
e proven in se
tion 3.3 and 
oin
ides with the generalexpression (4.64) for g = 0. Following [LS02a℄, an appropriate regularization s
heme whi
h 
uts o� simulta-neously short distan
es and low momenta in a duality invariant way is to modify the propagator with thehelp of the operator P2

i + P̃2
i = −∂2

i + Ω2x̃2
i . Let Λ ∈ R+ be a 
ut-o� parameter and L a smooth 
ut-o�fun
tion whi
h is monotoni
ally de
reasing with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. The modi�edpropagator in position spa
e is thus given by

∆Λ(x,x′) = 〈x| 1
1
2P2

i + 1
2 P̃2

i + µ2
L
(
Λ−2|P2

i + P̃2
i |
)
|x′〉 (4.69)Sin
e P2

i + P̃2
i is LS-duality 
ovariant, this is a 
ovariant regularization of the propagator. One expe
ts −∂2

ito 
ut o� high momenta and x̃2
i to regulate possible infrared divergen
es. This gets substantiated with helpof the matrix representation.Contrary to the previous se
tion we adjust the matrix fun
tions su
h as to diagonalize the propagator

∆Λ(mn; kℓ) =
δmℓδnk

2B (m+ n+ 1) + µ2
L
(
Λ−2 [4B(m+ n+ 1)]

)

=: δmℓδnk∆Λ(m,n) . (4.70)The intera
tion vertex in matrix representation is now given by
v(m1, n1, . . . ,m4, n4) :=

∫

x

(
f (B)

m1n1
⋆θ f

(B)
m2n2

⋆θ f
(B)
m3n3

⋆θ f
(B)
m4n4

)
(x) . (4.71)36



4.6 Generalization to Higher DimensionsThe Landau fun
tions are elements of a subspa
e of S(R2), the so 
alled Gel'fand-Shilov spa
e Sα
α (R2) with

α ≥ 1/2 (see e.g. appendix C.1), whi
h is 
losed under the star-produ
t. We thus follow that the intera
tionvertex v is well-de�ned. All Feynman diagrams are now of the form
∑

m1n1,...,mKnK

K∏

i=1

∆Λ(mi, ni) (· · · ) (4.72)where (· · · ) is a produ
t of intera
tion vertex v, depending on the regularized propagator ∆Λ and externalverti
es m1, n1, . . . ,mM , nM . Sin
e the ∆Λ is only nonzero for 4B(m+n+ 1) < 2Λ2, all Feynman diagramsare represented by �nite sums, and thus 
onstitute well-de�ned and LS-duality 
ovariant Green fun
tions
GM (m1, n1, . . . ,mM , nM ) in matrix basis.By multiplying these expression with f (B)

mini(xi) for i = 1, . . . ,M and summing over all mi, ni we get ba
kthe position spa
e Green fun
tions. They are also well-de�ned and LS-duality 
ovariant, sin
e they are buildby �nite sums of well-de�ned 
ovariant obje
ts. This ends the proof of the LS-duality of the GW model atquantum level. The proof for the LSZ model is identi
al.4.6 Generalization to Higher DimensionsThe D = 2n-dimensional LS-
ovariant theories are linear 
ombinations of the operators (P2
i )k and (P̃2

i )k for
k = 1, . . . , n, see (3.11). Sin
e all of them 
ommute with ea
h other, the generalization to higher dimensions isremarkable simple. Taking D/2 = n 
opies of the Landau fun
tions f (Bk)

mknk(xk) with xk = (x2k−1, x2k) ∈ R2,the produ
ts
f (B)

mn(x) :=

n∏

k=1

f (Bk)
mknk

(xk) , (4.73)for all multi-dimensional indi
es m = (mk),n = (nk) ∈ Nn, B = (Bk) ∈ Rn
+ and x = (xi) ∈ RD, obviouslyform an orthonormal basis for L2(RD) and are eigenfun
tions of K2

i and K̃2
i . The deformation matrix Θ isassumed to be in its 
anoni
al form

(Θij) =




0 θ1
−θ1 0

0. . .
0

0 θn

−θn 0




(4.74)with θi ∈ R. The star produ
t of two su
h multi-dimensional Landau fun
tions with respe
t to (4.74)de
ouples into produ
ts of Landau fun
tions depending on (x2k−1, x2k) for k = 1, . . . , n. If in addition
Bk = 2/Θk for all k, then

(
f (B)

mn ⋆Θ f
(B)
m′n′

)
(x) = δnm′ f

(B)
mn′(x) (4.75)with δm′n =

∏n
k=1 δm′

knk
.The generalization of the matrix model representation is straightforward. The s
alar �elds living on RDexpanded in Landau basis read

φ(x) =
∞∑

m,n∈Nn

f (2θ−1)
mn (x)φmn

φ(x)∗ =

∞∑

m,n∈Nn

f (2θ−1)
mn (x)φmn

(4.76)where the 
oe�
ients are given by
φmn = 〈f (2θ−1)

mn |φ〉 =

∫
dDx f (2θ−1)

nm (x)φ(x)

φmn = 〈f (2θ−1)
mn |φ〉 =

∫
dDx f (2θ−1)

nm (x)φ(x)∗ .

(4.77)37



4 Matrix Model Representation of Eu
lidean LS-Covariant NCQFTsand f (2θ−1)
nm (x) given by (4.73) with Bk = 2θ−1

k . The matrix representation of the D-dimensional LSZ modelaway from the self-dual point is given by
SLSZ =

∑

m,n,k,ℓ∈Nn

φmnGmn;kℓ φℓk

+
g

2πθ

∑

m,n,k,ℓ∈Nn

(
αφmnφnk φkℓφℓm + β φmnφnkφkℓ φℓm

)
. (4.78)with D-dimensional wave operator

Gmn;kℓ :=

n∑

i=1

Gmini;kiℓi + µ2δmℓδnk (4.79)and ea
h Gmini;kiℓi given by the massless, two-dimensional wave operator (4.45). Any result of this 
hapter
an now formally be generalized to higher dimensions by substituting multi-indi
es m,n, . . . ∈ Nn for usualone-dimensional indi
es m,n, . . . ∈ N.
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5 LS-Covariant NCQFTs in MinkowskiSpa
etimeThe introdu
tion of an external ba
kground �eld proved very useful in Eu
lidean NCQFT, making the theory
ovariant under LS-duality. Furthermore the o

urring wave operators K2
i and K̃2

i have dis
rete spe
tra su
hthat the 
orresponding models 
an be handled properly with help of the matrix basis. However, in passingfrom the Eu
lidean LS-
ovariant NCQFTs to Minkowski signature, the main feature of the wave operators
hanges dramati
ally. The same ba
kground �eld, being magneti
 in Eu
lidean metri
, now plays the roleas an ele
tri
 �eld.The presen
e of an ele
tri
-like external �eld implies a qualitative 
hange 
ompared to the magneti
 �eld
ase, due to the work whi
h is done on the parti
les by the �eld. The ele
tri
 �eld a

elerates and splitsvirtual dipole pairs leading to pair produ
tion. This is re�e
ted in the spe
tra of the Hamiltonian and of thewave operators, being now the whole real axis and unbounded from below. The main problem for us is, thatthe dis
rete spe
trum of the wave operator was essential for the model to have a matrix representation inform of a 
ountable in�nite set of eigenfun
tions whi
h solve the proje
tor property. Surely the Landau basis
an again be used to map this model onto a matrix model, however the free part will not be diagonalized,whi
h was part of the proof of the LS-
ovarian
e at quantum level. A di�erent matrix basis has to be found,whi
h is tailored for the Minkowskian version of the LS-
ovariant non
ommutative �eld theories.In the following we will introdu
e the LS-
ovariant models in Minkowski spa
etime. We derive their relationto the inverted harmoni
 os
illator whi
h possesses the 
onje
tured 
ontinuous spe
trum. By 
omputing itseigenfun
tions a possible matrix expansion is identi�ed with a resonan
e expansion. Finally we de�ne thequantum �eld theories for both approa
hes, the 
ontinuous and the dis
rete one. To make the latter well-de�ned a spe
ial regularization will be introdu
ed.5.1 LS-Covariant Models in Minkowski Spa
etimeWe will again work in D = 2n dimensions. Ve
tors will now be indi
ated by Greek indi
es µ, ν, . . . rangingfrom 0 to d = D − 1. The signature is given by (1,−1, . . . ,−1).The general LSZ-model in D dimensional spa
etime is given by the a
tion S0 + Sint with
S0 =

∫
dDxφ∗(x)

(
σK2

µ + (1 − σ)K̃2
µ − µ2

)
φ(x) (5.1)

Sint = −g
∫

dDx [α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)] (5.2)with generalized momenta Kµ = i ∂µ − Fµνx
νK̃µ = i ∂µ + Fµνx
ν ,

(5.3)obeying the 
ommutation relations
[Kµ,Kν ] = 2 iFµν , [K̃µ, K̃ν ] = −2 iFµν . (5.4)and [Kµ, K̃ν ] = 0. The 
oordinate system will be 
hosen su
h that the D×D dimensional deformation matrix

Θ takes the 
anoni
al skew-symmetri
 form
(Θµν) =




0 θ1
−θ1 0

0. . .
0

0 θn

−θn 0




(5.5)
39



5 LS-Covariant NCQFTs in Minkowski Spa
etimewith θk > 0 for all k. The ele
tromagneti
 tensor Fµν is given by
(Fµν) =




0 E
−E 0

0

0 B2

−B2 0 . . .
0

0 Bn

−Bn 0




(5.6)for E,Bk > 0 and Eθ1/2 = Bkθk/2 = Ω for all k and 0 < Ω ≤ 1. The 2n-dimensional wave operators againbreak up into n parts K2
µ =

n∑

k=1

(P2
µ)kK̃2

µ =

n∑

k=1

(P̃2
µ)k

. (5.7)The negative of the operators
(P2

µ)k = (∂2
2k−2 + ∂2

2k−1) + 2 iBk(x2k−1∂2k−2 − x2k−2∂2k−1)− B2
k(x2

2k−2 + x2
2k−1)

(P̃2
µ)k = (∂2

2k−2 + ∂2
2k−1)− 2 iBk(x2k−1∂2k−2 − x2k−2∂2k−1)− B2

k(x2
2k−2 + x2

2k−1)
(5.8)for k = 2, . . . , n des
ribe two dimensional Eu
lidean Klein-Gordon �elds moving in an external magneti
ba
kground, already investigated in 
hapter 4, while

(P2
µ)1 = −(∂2

0 − ∂2
1)− 2 iE(x1∂0 + x0∂1)− E2(x2

0 − x2
1)

(P̃2
µ)1 = −(∂2

0 − ∂2
1) + 2 iE(x1∂0 + x0∂1)− E2(x2

0 − x2
1)

(5.9)des
ribe 1+1 dimensional KG �elds moving in a 
onstant ele
tri
 ba
kground with �eld strengths ±2E,respe
tively. Again, all two-dimensional operators (P2
µ)k and (P̃2

µ)k mutually 
ommute su
h that diagonal-ization of the full wave operators amounts to diagonalizing ea
h of its 2 dimensional parts independently.Eigenfun
tions of the operators (5.8) are the Landau fun
tions. What is missing are the eigenfun
tions of(5.9).The �rst important observation is that the operators (5.9) 
an not be obtained from its Eu
lidean 
oun-terpart by an ordinary Wi
k rotation t → i t. Some additional signs have 
hanged, showing that for ourtheories the rotation of time has to be a

ompanied by the transformations B → − iE. This is not surprising,sin
e this model 
an be viewed as �eld theory on a 
urved, non-stati
 spa
etime, for whi
h this is a generi
feature [DeW75℄. Another 
hara
teristi
 of those theories is that the degenera
y of the di�erent equivalentde�nitions of the Feynman propagator is resolved [CR77℄. We will 
ome ba
k to this problem in se
tion 7.1.The eigenfun
tions of (5.9) will be determined in se
tion 5.3.The extra transformation of the magneti
 �eld strength is in 
on
ordan
e with the fa
t, that in order toensure the relation
[x0, xi] = i Θ0i (5.10)for Eu
lidean and Minkowskian spa
e, the deformation parameter Θ0i has to transform a

ordingly to
ompensate the phase 
oming from the Wi
k rotation. For LS-invariant theories, the deformation matrix isrelated to the �eld strength, whi
h in turn implies a rotation of the �eld strength.The Minkowskian Grosse-Wulkenhaar model in D spa
etime dimensions is again the general LSZ modelfor σ = 1/2 involving real �elds. Exa
tly as in the LSZ 
ase, the D dimensional wave operator redu
esto a sum of n − 1 Eu
lidean GW wave operators plus a two dimensional GW wave operator in Minkowskisignature

1

2
(P2

µ)1 +
1

2
(P̃2

µ)1 − µ2 = −(∂2
0 − ∂2

1)− Ω2(x2
0 − x2

1)− µ2 (5.11)with frequen
y Ω = Eθ/2. The main di�eren
e, beside the Minkowskian signature, is an extra minus sign infront of the Ω-term. The 
orresponding wave operator is an harmoni
 os
illator with imaginary frequen
y,known as inverted harmoni
 os
illator. We will 
ome a
ross this os
illator in the next se
tion.40



5.2 Mapping onto the Inverted Harmoni
 Os
illator5.2 Mapping onto the Inverted Harmoni
 Os
illatorWe need to �nd the eigenfun
tions of the part of the a
tion depending on the 
oordinates x1 := (x0, x1) =
(t, x), given by the wave operator σ(P2

µ)1 + (1− σ)(P̃2
µ)1 − µ2. In the following, we work in 1+1 dimensionsand drop the index �1� at the wave operators, the 
oordinates and the deformation parameter. As in se
tion4.1, we use the Weyl-Wigner 
orresponden
e to solve the simultaneous eigenvalue equationsP2

µ fmn(x) = λmnfmn(x) ,P̃2
µ fmn(x) = λ̃mnfmn(x) .

(5.12)Noting that
E2x2 ⋆θ f(x) =

(
E2x2 − iE2θx∂t −

1

4
E2θ2∂2

t

)
f(x) ,

E2t2 ⋆θ f(x) =

(
E2t2 + iE2θt∂x −

1

4
E2θ2∂2

x

)
f(x) ,

(5.13)we �nd that in the Minkowski 
ase the a
tion of P2
µ and P̃2

µ 
an be represented as a left- and right-star a
tionof the 
lassi
al fun
tion E2(x2 − t2):
E2(x2 − t2) ⋆θ g(x) =

[
E2(x2 − t2)− iE2θ(x∂t + t∂x)− 1

4
E2θ2(∂2

t − ∂2
x)

]
g(x)

θ=2/E
= P2

µ g(x) . (5.14)Analogously one �nds P̃2
µ g(x) = g(x) ⋆2/E E2(x2 − t2). To 
ompare to the Eu
lidean version we have toidentify B ≡ E and the ordered 
oordinate pairs (x, y)Eucl ≡ (t, x)Mink and �nd

E2(x2 ± t2) ⋆2/E f(x) =

{P2
i f(x)P2
µ f(x)

. (5.15)De�ning the Weyl symbols
W

[√
2Et

]
= q̂ , W

[√
2Ex

]
= p̂ and W [fmn] = f̂mn , (5.16)we �nd the Heisenberg algebra

[q̂, p̂] = 2E2[t, x]⋆2/E
= i 4E , (5.17)and the eigenvalue equation (5.12) 
an be expressed asP2

µ fmn(x) = W

[
Ĥi f̂mn

]
= λmnfmn(x) ,P̃2

µ fmn(x) = W

[
f̂mnĤi

]
= λ̃mnfmn(x) .

(5.18)The operator Ĥi = 1
2 (p̂2 − q̂2) is known as inverted harmoni
 os
illator. In q̂ eigenbasis it has the form

Ĥi ∼
1

2
(−∂2

q − γq2) (5.19)thus it is a harmoni
 os
illator with imaginary frequen
y ± i γ. Due to the minus sign in front of thepotential q2, it des
ribes a one dimensional quantum me
hani
al parti
le in a potential whi
h is unboundedfrom below! This is an unbounded operator in L2(R) and has a 
ontinuous spe
trum extending over thewhole real axis σ(Ĥi) = R as already anti
ipated above. This shows that the ne
essary ingredients whi
hled to the matrix basis in Eu
lidean spa
e are not given. In the following se
tion we will investigate the
ontinuous eigenfun
tions and demonstrate, how to squeeze out the matrix nature of the model. 41



5 LS-Covariant NCQFTs in Minkowski Spa
etime5.3 Eigenfun
tion Expansion and Resonan
esIn order to �gure out whi
h possibilities we have to des
ribe the LS-
ovariant models, we will now �ndthe eigenfun
tions of the inverted harmoni
 os
illator. An analyti
al 
ontinuation of the eigenve
tors tothe 
omplex energy plane will reveal a dis
rete pole stru
ture, whi
h allows us to 
onstru
t a matrix basisexpansion in terms of resonan
es. These two 
ompeting approa
hes, based on the 
ontinuous an the dis
reteresonan
e expansion, are analyzed and 
ompared afterwards.The inverted harmoni
 os
illator is parity invariant, thus ea
h eigenvalue is two-fold degenerated as indi-
ated through an additional index ± 
arried by the eigenfun
tions. The eigenvalue equation
1

2
(−∂2

q − γq2)χE
±(q) = EχE

±(q) (5.20)with E ∈ R gets rearranged by substituting z =
√

2 i γq

(
∂2

z + ν +
1

2
− z2

4

)
χE
±(z) = 0 , (5.21)where

ν = − i
E
γ
− 1

2
. (5.22)The di�erential equation (5.21) is solved by paraboli
 
ylinder fun
tions Dν(z) whi
h are de�ned by

Dν(z) :=
1

Γ(−ν) e− 1
4 z2

∫ ∞

0

dt e−zt e− 1
2 t2t−ν−1 . (5.23)In parti
ular, every solution is a linear 
ombination of the fun
tions Dν(z), Dν(−z), D−ν−1( i z) and

D−ν−1(− i z). Only two of them are linearly independent. One su
h 
omplete set of eigenfun
tions aregiven by [Chr04℄
χE
±(q) =

C√
2πγ

i
ν
2 + 1

4 Γ(ν + 1)D−ν−1

(
∓
√
−2 i γq

)
, (5.24)where C = (γ/2π2)1/4. Taking the other two paraboli
 
ylinder fun
tions, we get the 
omplex 
onjugatedof the χE

s . These fun
tions satisfy the orthonormality and 
ompleteness relations [Chr04℄
∫

R

dq χE1
s (q)⋆χE2

s′ (q) = δss′δ(E1 − E2) and ∑

s=±

∫

R

dE χE
s (q)⋆χE

s (q′) = δ(q − q′) (5.25)and belong to the spa
e of tempered distributions S′(R). The Gel'fand-Maurin theorem now ensures thatthe operator Ĥi 
an be de
omposed on S(R) into these eigenfun
tions.1 This means ea
h �eld in ψ ∈ S(R)is given by
|ψ〉 =

∑

s=±

∫

R

dE ψE
s |χE

s 〉 with ψE
s =

∫

R

dq ψ(q)χE
s (q)∗ , (5.26)and Ĥi has the spe
tral de
omposition̂

Hi =
∑

s=±

∫

R

dE E |χE
s 〉〈χE

s | . (5.27)1The eigenfun
tions χE
s are not in the Hilbert spa
e L2(R), whi
h is a 
hara
teristi
 feature of unbounded operators. Themathemati
al framework for dealing with unbounded operators is given by the Gel'fand-Maurin theorem. Let Â be anunbounded self-adjoint operator de�ned on an in�nite-dimensional Hilbert spa
e H. Roughly it says that if a rigged Hilbertspa
e 
an be found, that is a triplet of spa
es Φ ⊂ H ⊂ Φ′, where Φ is a dense, topologi
al ve
tor subspa
e of H and Φ′ itstopologi
al dual, then, having for ea
h value from the spe
trum of Â an eigenve
tor F ∈ Φ′, we 
an expand Â (restri
ted to

Φ) and ea
h φ ∈ Φ in this eigenbasis. This theorem is the mathemati
al basis for quantum me
hani
s. See [dlM05℄ for anintrodu
tion.42



5.3 Eigenfun
tion Expansion and Resonan
eswith abuse of Dira
's bra-ket notation.Now the eigenfun
tions χE
s possess a pe
uliar analyti
al stru
ture, if the energy E gets analyti
ally 
on-tinued to the 
omplex plane. It has poles on the negative imaginary axis, and furthermore, its residues atthese poles are harmoni
 os
illator eigenfun
tions 
orresponding to imaginary �eigenvalues�! To see this let'sstate the following lemma proved in [Chr04℄Lemma 5.1. The paraboli
 
ylinder fun
tions Dλ(z) are analyti
 fun
tions of λ ∈ C.The analyti
al stru
ture of the fun
tions (5.24) is thus entirely governed by the gamma-fun
tions. Sin
ethe only singularities of Γ(λ) are simple poles at λ = −n, n ∈ N0 with residuesResλ=−n (Γ(λ)) =

(−1)n

n!
(5.28)and E = i γ

(
ν + 1

2

), we see that χE
± has poles at E = − i γ

(
n+ 1

2

) with residuesResE=− i γ(n+ 1
2 )
(
χE
±(q)

)
∼ (−1)n

n!
i−

n
2 − 1

4Dn

(
∓
√
−2 i γq

)
. (5.29)Now using

Dn(z) = 2−n/2 e−z2/4Hn(z/
√

2) (5.30)for n ∈ N0, we �nd ResE=− i γ(n+ 1
2 )
(
χE
±(q)

)
∼ (∓1)nf−

n (q) (5.31)with
f−

n (q) =

( √− i γ

2nn!
√
π

)1/2

e i γ
2 q2

Hn(
√
− i γq) . (5.32)One should note that starting with the 
omplex 
onjugated fun
tions (χE

±)∗ we would have found poles inthe upper 
omplex half plane, with residues proportional to f−
n |γ→−γ =: f+

n . The interpretation of thedi�erent sets of fun
tions will be
ome 
lear shortly.One might be reminded of the eigenfun
tions of the ordinary harmoni
 os
illator, whi
h are given by
φn(q) =

( √
γ

2nn!
√
π

)1/2

e−γ
2 q2

Hn(
√
γq) , (5.33)and show up in the Eu
lidean 
ase. As said before, the inverted harmoni
 os
illator emerges by inserting animaginary frequen
y ± i γ into the usual harmoni
 os
illator, whi
h also transforms the harmoni
 os
illatorfun
tions (5.33) into f±

n . Though these are not eigenfun
tions in the usual sense, they appear as residues ofthe proper eigenfun
tions χE
±. One 
an easily verify that the f±

n are not ordinary eigenfun
tions of Ĥi bylooking at the �eigenvalue equation�̂
Hif

±
n (q) = ± i γ

(
n+

1

2

)
f±

n (q) , (5.34)whi
h follows dire
tly from the de�ning equation for Hermite polynomials. This equation seems to 
ontradi
tthe well-known fa
t that Hermitian operators have real eigenvalues. But the f±
n are in S′(R) and Ĥi is notHermitian on these states:

〈f±
n |Ĥif

±
n 〉 6= 〈Ĥif

±
n |f±

n 〉 (5.35)due to non-vanishing boundary terms. Apart from this, the f±
n are not normalizable in L2-norm:

〈f±
n |f±

n 〉 =

∫

R

dq f∓
n (q) f±

n (q)

∼
∫

R

dq Hn(
√
∓ i γ q)Hn(

√
± i γ q) =∞ . (5.36)43



5 LS-Covariant NCQFTs in Minkowski Spa
etimeSu
h states are known as resonan
e states or Gamow states, whi
h were �rst introdu
ed to des
ribe de
ayphenomena in nu
lei. They 
orrespond to 
omplex eigenvalues of the Hamiltonian and are a 
hara
teristi
feature of open quantum systems. The imaginary part of the �Hamiltonian expe
tation value� of the resonantstate determines the momentum �ux out of the system, whi
h is proportional to 〈f±
n |f±

n 〉. This expressionis in�nite, whi
h mirrors the fa
t that in an in�nite volume an in�nite amount of real parti
le/anti-parti
lepairs are produ
ed per unit time. Resonant states always o

ur as resonant/anti-resonant pairs, whi
h inour 
ase are the pairs of poles ± i γ(n+ 1/2). For an overview see [CG04, HSNP08℄.How 
an these fun
tions nevertheless help us 
onstru
ting a diagonal matrix expansion of our models?First of all note that the L2 s
alar produ
t of f+
n with f−

n 
an be de�ned as
〈f+

n |f−
m〉 = δnm , (5.37)by an analyti
al 
ontinuation of the identity 〈φn|φm〉 = δnm to imaginary frequen
ies. Thus they form amathemati
al stru
ture 
alled bi-orthogonal system. The naive answer is then that by 
losing the integration
ontour of (5.26) and (5.27) in the lower 
omplex half plane we pi
k up the poles with help of the residuetheorem. This te
hnique is well known in the physi
s literature, 
alled resonan
e expansion. Using

(∓1)nD−n−1(−
√

2 i γq) +D−n−1(
√

2 i γq) =

√
2π

n!
(− i )n2−n/2 e i γ

2 q2

Hn(
√
− i γq) (5.38)we �nd

− 2π i
∑

s=±
ResE=−En

(
〈q|χE

s 〉〈χE
s |q′〉

)
= f−

n (q)f−
n (q′) (5.39)and thus get the following formal expansions

|ψ〉 =

∞∑

n=0

|f−
n 〉〈f+

n |ψ〉

Ĥi =

∞∑

n=0

(− i )γ(n+ 1/2)|f−
n 〉〈f+

n | .
(5.40)Note that in both expansions di�erent fun
tions appear in the kets and bras. This is in 
on
ordan
e withthe pairing de�ned in (5.37), whi
h is only well-de�ned for f−-kets with f+-bras or vi
e versa.The resonan
e expansion should be allowed for those fun
tions, for whi
h the integrand of the eigenve
torexpansion vanishes faster than 1/r in the lower 
omplex half plane, if r determines the distan
e to the origin.Se
ondly, sin
e there are in�nitely many poles s
attered over a non-
ompa
t region, we have to make surethat the arising sum 
onverges. The ordinary Landau basis were naturally de�ned on the S
hwartz spa
e,whi
h as its most prominent representative has the Gaussian ψ(q) = e−bq2 . Sin
e this Gaussian alreadyfeatures all the problems we will en
ounter, we will try to expand it in the f−

n basis. Instead of verifyingthat the integrand vanishes faster than 1/r in the 
omplex plane (whi
h is possible), we will expand thisfun
tion dire
tly in f−
n -basis and 
he
k whether

ψ(q)
?!
=

∞∑

n=0

f−
n (q) 〈f+

n |ψ〉 . (5.41)Though we will �nd that the resulting series is not absolutely 
onvergent, it inevitably tells us how to over
omethese problems.As is shown in proposition B.1 the f−
n 
an be represented as2

f−
n =

( √− i γ

2nn!
√
π

)1/2

(2 i )n/2

∫ ∞

−∞
da (−1)nδ(n)(a) e i S(x,a) (5.42)with S(x, a) = γ

2x
2 −√2γxa+ a2

2 and γ > 0. The 
oe�
ients ψn =
∫

q
f−

n (q)ψ(q) are given by
ψn =

(√− i γ√
π

)1/2
i n/2

√
n!

∫
dx

∫
da (−1)nδ(n)(a) e i S(x,a) e−b x2

. (5.43)2In the notation used in the appendix we have f−
n ≡ f

(− i γ)
n with γ > 0.44



5.3 Eigenfun
tion Expansion and Resonan
esThe x-integration is Gaussian and 
an be performed
∫

x

e i γ
2 x2− i

√
2γxa+ i

2 a2−b x2

=

√
π

b− i γ/2
exp

{
i

2
a2

(
b+ i γ/2

b− i γ/2

)} (5.44)leading to
ψn =

(√− i γ√
π

)1/2
i n/2

√
n!

√
π

b− i γ/2

(
i

2

b+ i γ/2

b− i γ/2

)n/2 ∫

a

δ(a)∂n
a e a2

. (5.45)The a integration follows from
∫

a

δ(a)∂n
a e a2

= ∂n
a e a2

∣∣∣
a=0

=

{ n!
(n/2)! n even
0 n odd , (5.46)hen
e

ψn =

(√− i γ√
π

)1/2
i n/2

√
n!

√
π

b− i γ/2

(
i

2

b+ i γ/2

b− i γ/2

)n/2
n!

(n/2)!
. (5.47)Putting this ba
k into the expansion yields

∞∑

n=0

ψn f
−
n (x)

=

∞∑

n=0

( √− i γ

2nn!
√
π

)1/2

e i γ
2 x2

Hn

(√
− i γx

)

×
(√− i γ√

π

)1/2
i n/2

√
n!

√
π

b− i γ/2

(
i

2

b+ i γ/2

b− i γ/2

)n/2
n!

(n/2)!

{
1 n even
0 n odd

=

∞∑

k=0

√
− i γ

b− i γ/2

(
i

2

)2k (
b+ i γ/2

b− i γ/2

)k
1

k!
e i γ

2 x2

H2k

(√
− i γx

)
. (5.48)The sum 
an be performed using equation (49.4.4) from [Han75℄:

∞∑

k=0

tk

k!
H2k(z) = (1 + 4t)−1/2 exp

(
4tz2

1 + 4t

)
. (5.49)This formula is 
learly not valid for all t ∈ C. Using the asymptoti
 behavior of the Hermite fun
tion for

n→∞ [MOS66℄
Hn(x) ∼ n!

(n/2)!
e
√

2n|Imx| (5.50)and Stirling's formula n! ∼ nn e−n we �nd
∣∣∣∣
tk

k!
H2k(x)

∣∣∣∣ ∼ |t|k e 2k ln 2k−2k ln k e
√

4k|Imx| ∼ (4|t|)k e
√

4k|Imx| (5.51)In order to get an absolutely 
onvergent series we have to ensure that |t| < 1/4. This is however not ful�lledin our 
ase, sin
e we have |t| = 1/4. This shows us that the S
hwartz spa
e is too big for our purpose.The problem might be 
ir
umvented by 
onsidering an even smaller spa
e, like the spa
e of smoothfun
tions with 
ompa
t support. The expansion on S(R) might then be de�ned in some limiting pro
edure.But, sin
e we are lying exa
tly at the edge of the 
onvergen
e radius, a natural pro
edure is to make γslightly imaginary su
h that |t| < 1/4 and we 
an pro
eed with summing up. We have
z =

√
− i γx , t = −1

4

b + i γ/2

b − i γ/2
, (5.52)45



5 LS-Covariant NCQFTs in Minkowski Spa
etimewhi
h gives us the relevant 
ombinations
1

4t
+ 1 =

−b+ i γ/2 + b+ i γ/2

b+ i γ/2
=

i γ

b+ i γ/2

4tz2

1 + 4t
=

(b+ i γ/2)(− i γ)x2

i γ
= − i

γ

2
x2 − bx2 (5.53)

1 + 4t =
−b− i γ/2 + b− i γ/2

b− i γ/2
=

− i γ

b− i γ/2
.Inserting into the sum yields

∞∑

n=0

f−
n (x)ψn

=
∞∑

k=0

√
− i γ

b− i γ/2

(
i

2

)2k (
b+ i γ/2

b− i γ/2

)k
1

k!
e i γ

2 x2

H2k

(√
− i γx

)

=

√
− i γ

b − i γ/2
(1 + 4t)−1/2 e i γ

2 x2

e− i γ
2 x2−bx2

= e−b x2

, (5.54)giving us ba
k the Gaussian we started with. Most importantly, this result is independent of γ, thus putting
γ ba
k on the real line is no problem at the end. The resonan
e expansion 
an thus be understood withhelp of the regularization i γ → e i ϑγ with 0 < ϑ < π/2, while −π/2 < ϑ < 0 
orresponds to the analogregularized expansion in f+

n -basis. The 
ase ϑ = 0 is exa
tly the harmoni
 os
illator 
ase (5.33).This regularization seems to be natural, as it is a well-known pro
edure in QFT de�ned on Minkowskispa
etime. There one often en
ounters pseudo-Gaussian integrals like
∫

R

dxxn e i ax2

=

√
i

a

n+1

Γ

(
n+ 1

2

)
, (5.55)whi
h have a meaning if regularized in the same way as above. The same integral appears in the s
alarprodu
t 〈f+

n |f−
m〉 = δnm and has to be understood in this way. The regularized f±

n will be denoted in thefollowing by
f (γϑ)

n (q) =

( √
γϑ

2nn!
√
π

)1/2

e− γϑ
2 q2

Hn(
√
γϑ q) (5.56)using the 
ompa
t notation

γϑ = e i ϑγ (5.57)with γ > 0. For ϑ ∈ (−π/2, π/2) they possess an exponential de
ay due to the Gaussian fa
tor, and are thusS
hwartz fun
tions.3 Apparently, they are eigenfun
tion of the harmoni
 os
illator with 
omplex frequen
y
γϑ whi
h is known as 
omplex harmoni
 os
illator. In appendix C.2 we show that their linear span is densein L2(R). But the o

urring sums are not 
onvergent with respe
t to L2-norm and thus do not build a Rieszbasis [Dav99, DK04℄. Its general appli
ability will be s
rutinized in se
tion 6.2.To summarize, we have (at least) two di�erent 
on
epts at our disposal to treat the Minkowskian LS-
ovariant models. There is the 
ontinuous approa
h based on the eigenfun
tions χE

s and the matrix approa
husing the regularized fun
tions f (γϑ)
n . The eigenfun
tions of the wave operators are given by
χEE′

ss′ (x) := CχW

[
|χE

s 〉〈χE′

s′ |
]
(x) (5.58)

f (2γϑ)
mn (x) := CfW

[
|f (γϑ)

m 〉〈f (γ−ϑ)
n |

]
(x) (5.59)with some normalization 
onstants Cχ and Cf , where the (bi-)orthogonality of χE

s and f (γϑ)
n will ensure thesimpli�
ation of the φ⋆4 through (2.14) analog to the Eu
lidean Landau fun
tions. In the next se
tion wewill show how to implement the regularized matrix basis.3This is in 
ontradistin
tion to the original fun
tions f

(±)
n = limϑ→±π/2 f

(γϑ)
n , whose modulus in
reases polynomially. Theyare tempered distributions.46



5.4 LS-Covariant NCQFT and the ϑ-Regularization5.4 LS-Covariant NCQFT and the ϑ-RegularizationWe have seen that a regularization is needed to endow the fun
tions f (±)
n with ni
e properties. Sin
e theseregularized fun
tions, or rather their Wigner transformed 
ounterparts (5.59), will not diagonalize the freea
tions we are 
on
erned with, it raises the question how to exploit the regularized fun
tions to �nd amatrix representation for the LS-
ovariant models on Minkowski spa
etime? The answer is that we have toregularize the a
tion anyway to de�ne the 
orresponding quantum �eld theory. In se
tion 2.2.3 we enhan
edthe a
tion by an additional term i ǫ

∫
φ2, whi
h ensured the 
orre
t asymptoti
 de
ay of the integrand withinthe generating fun
tional at |φ| → ∞ and at the same time imposed 
ausality. We will now introdu
e aregularization of the model, whi
h will be 
alled ϑ-regularization and 
orresponds to the regularization ofthe matrix fun
tion above. In 
ase of vanishing ba
kground �eld this turns out to be the i ǫ-pres
ription.We know that the f (γϑ)

n are analyti
al 
ontinuations of the harmoni
 os
illator fun
tions. So a naturalguess for a 
orresponding generalization of the free LS-
ovariant models is
iS0[ϑ] = i sin(ϑ)SM

0 − cos(ϑ)SE
0 (5.60)where SM

0 stands for the Minkowskian version and SE
0 for its Eu
lidean 
ounterpart. Obviously this a
tionrelates both signatures, with ϑ = 0 
orresponding to the Eu
lidean and ϑ = ±π/2 to the Minkowskian 
ase.The 
ombinations of the wave operators showing up in S0[ϑ] for the di�erent models are given by

e− i ϑK2(ϑ) := cos(ϑ)K2
i − i sin(ϑ)K2

µ ,

e− i ϑK̃2
(ϑ) := cos(ϑ)K̃2

i − i sin(ϑ)K̃2
µ ,

(5.61)where the phase fa
tor has been fa
tored out su
h thatK2(±π/2) = K2
µ , K̃2(±π/2) = K̃2

µ ,K2(0) = K2
i , K̃2(0) = K̃2

i .
(5.62)As will be shown below, the wave operators K(ϑ) and K̃(ϑ) have dis
rete spe
tra with eigenfun
tions givenby

f (Eϑ)
m1n1

(x1)f
(B2)
m2n2

(x2) · · · f (Bn)
mnnn

(xn) (5.63)with xk = (x2k−2, x2k−1), f (Bk)
mknk(xk) the usual Landau fun
tions and f

(Eϑ)
m1n1(x1) given by (5.59). Thequantum �eld theory is de�ned by the generating fun
tional

Z[J ] = lim
ϑ→±π/2

∫
Dφ exp

(
i sin(ϑ)SM

0 − cos(ϑ)SE
0 + iSint +

∫
Jφ

) (5.64)for the GW model and analogously for the 
omplex LSZ model, where one of the two options ϑ → ±π/2has to be 
hosen. The free a
tion in the exponent of (5.64) 
an be expanded in the ϑ-regularized matrixbasis. Remember that SE
0 is a positive fun
tional on the �elds, thus for ϑ 6= 0 this 
an be interpreted as apath integral in Minkowski spa
e with an additional 
onvergen
e fa
tor, 
orresponding to the − ∫ ǫφ2 termin the free 
ase (2.53). Not really surprising, in the limit E → 0 the modi�
ation (5.60) turns out to be the

i ǫ pres
ription of the free 
ase:
σ e− i ϑK2(ϑ) + (1 − σ) e− i ϑK̃(ϑ) + e i ϑµ2 E→0−→ − e− i ϑ∂2

0 − e i ϑ∂2
i + e i ϑµ2 , (5.65)whi
h holds for all σ. The ϑ-regularization is hen
e a generalization of the i ǫ-pres
ription to the externalele
tromagneti
 �eld 
ase! One is thus tempted to interpret the two di�erent models near +π/2 is −π/2analogously to the situation in the free 
ase. There, �ipping the sign in the exponential of the path integralinter
hanges the parti
le and anti-parti
le des
ription, by inter
hanging the Feynman- and Dyson-propagator(also known as anti-
ausal propagator) whi
h 
orrespond to di�erent ways of 
ir
umventing the poles. It willbe shown in se
tion 7.1.1 that this interpretation indeed holds for E 6= 0. Without restri
tion of generalitywe will 
hoose in the following always ϑ > 0 and de�ne ϑ = π/2− ǫ > 0 for a small ǫ > 0. Denoting

(K2
µ − µ2)ǫ := e i ǫ K2(π/2− ǫ)− e− i ǫµ2 (5.66)

(K̃2
µ − µ2)ǫ := e i ǫ K̃2

(π/2− ǫ)− e− i ǫµ2 (5.67)47



5 LS-Covariant NCQFTs in Minkowski Spa
etimethe regularized LSZ model is de�ned by the 
lassi
al a
tion
S(ǫ)

LSZ =

∫

x

φ∗(x)
(
σ(K2

µ − µ2)ǫ + (1− σ)(K̃2
µ − µ2)ǫ

)
φ(x)

− g
(
α

∫

x

(φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β

∫

x

(φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)

) (5.68)and the regularized GW model by
S(ǫ)

GW =

∫

x

1

2
φ(x)

(
1

2
(K2

µ − µ2)ǫ +
1

2
(K̃2

µ − µ2)ǫ

)
φ(x)− g

∫

x

(φ ⋆ φ ⋆ φ ⋆ φ) (x) . (5.69)What remains is to show that these a
tions get indeed diagonalized by the fun
tions (5.63) in some spa
e offun
tions. This will be shown in the next 
hapter.Note that the usual i ǫ-pres
ription amounts to adding the 
onstant i ǫ to the 
ontinuous spe
trum of thewave operators, but leaves its 
ontinuous 
hara
ter unaltered. A perturbative quantum theory amenable forthe 
ontinuous basis approa
h with fun
tions (5.58) is the generating fun
tional
Z[J ] = lim

ǫ→0+

∫
Dφ exp

(
iSM

0 − ǫ
∫
φ2 + iSint +

∫
Jφ

)
. (5.70)We thus have two possible de�nitions for a generating fun
tional, while it is not obvious that both areequivalent.The perturbation theory of the Minkowskian LS-
ovariant NCQFT 
an be derived quite similar to theusual φ⋆4 theory 2.2.3, where the ba
kground �eld is treated exa
tly in the Furry representation as in se
tion3.2. For real �elds we write the regularized free a
tions as

S(ǫ)
0 =

∫

x

φ(x)D
(ǫ)
x φ(x) (5.71)where D

(ǫ)
x is the wave operator, whi
h has been regularized in one of two possible ways. The regularizationensures the vanishing of the integrand in the path integrals for |φ| → ∞ leading to the free generatingfun
tional

Z0[J ] = lim
ǫ→0+

exp

(
i

2

∫

x

∫

y

J(x)∆(ǫ)(x,y)J(y)

)
. (5.72)with ∆(ǫ) the propagator de�ned through one of the equations

(
σ(K2

µ − µ2)ǫ + (1 − σ)(K̃2
µ − µ2)ǫ

)
∆(ǫ)(x,y) = δ(x− y) ,

(
σK2

µ + (1− σ)K̃2
µ − µ2 + i ǫ

)
∆(ǫ)(x,y) = δ(x− y) .

(5.73)This is the point where the regularization 
ould make the di�eren
e, sin
e it is not 
lear initially whetherthese two propagators 
oin
ide in the limit ǫ → 0+. We will 
ome ba
k to this point in 
hapter 7. Theformal setting of a perturbative analysis of the intera
ting NCQFTs is now given by
Z[J ] = lim

ǫ→0+
N exp

[
iSint

(
δ

δJ

)]
exp

(
i

2

∫

x

∫

y

J(x)∆(ǫ)(x,y)J(y)

)
. (5.74)with Sint the intera
tion part and N some normalization 
onstant. For 
omplex �elds we get

Z[J, J∗] = lim
ǫ→0+

N exp

[
iSint

(
δ

δJ∗ ,
δ

δJ

)]
exp

(
i

∫

x

∫

y

J∗(x)∆(ǫ)(x,y)J(y)

)
. (5.75)In the following 
hapter we will 
onstru
t the matrix representations of the regularized LS-
ovariant models.

48



6 Matrix Model Representation ofMinkowskian LS-Covariant NCQFTIn the previous 
hapter we showed that it is possible to �nd a matrix representation for the LS-
ovariantmodels through a suitable regularization, whi
h has been dubbed ϑ-regularization and is an alternative tothe usual i ǫ-pres
ription. In this 
hapter we will try to nail this matrix representation down. In se
tion 6.1we will use the Weyl-Wigner transformation to map the eigenvalue problem of the regularized wave operators(5.61) to the 
omplex harmoni
 os
illator. Its spe
trum and eigenfun
tions are investigated in se
tion 6.2, aswell as the possibility to expand fun
tions and distributions in terms of these eigenfun
tions. The generalizedLandau fun
tions are 
onstru
ted in se
tion 6.3. Using their Fo
k spa
e representation, we will �nally arriveat the matrix model representation for the two-dimensional 
lassi
al models in 6.4 and their 
orrespondingquantum theories. The generalization to higher dimensions is illustrated in se
tion 6.5.6.1 Mapping onto the Complex Harmoni
 Os
illatorThe �rst step is to �nd the 
orresponding Weyl symbols of the generalized operatorsK2(ϑ) = e i ϑ
(
cos(ϑ)K2

i − i sin(ϑ)K2
µ

)
,K̃2(ϑ) = e i ϑ

(
cos(ϑ)K̃2

i − i sin(ϑ)K̃2

µ

)
,

(6.1)similar to the Eu
lidean and Minkowskian 
ases in se
tion 4.1 and 5.2, whi
h again split up into two-dimensional wave operators de�ned by (3.12), (5.8) and (5.9). In D = 2n dimensions the 
omponents (P2
i )kand (P2

µ)k, and likewise (P̃2
i )k and (P̃2

µ)k, di�er only by a minus sign for k = 2, . . . , n up to a relabeling ofthe 
oordinates. We thus �ndK2(ϑ) = e i ϑ
(
cos(ϑ)(P2

i )1 − i sin(ϑ)(P2
µ)1
)

+ e 2 i ϑ
n∑

k=2

(P2
i )k ,K̃2(ϑ) = e i ϑ

(
cos(ϑ)(P̃2

i )1 − i sin(ϑ)(P̃2
µ)1

)
+ e 2 i ϑ

n∑

k=2

(P̃2
i )k .

(6.2)What remains is to �nd the eigenfun
tions of the remaining parts of the wave operators. We denote the
k = 1 part as P2(ϑ) = e i ϑ

(
cos(ϑ)(P2

i )1 − i sin(ϑ)(P2
µ)1
)
,P̃2(ϑ) = e i ϑ

(
cos(ϑ)(P̃2

i )1 − i sin(ϑ)(P̃2
µ)1

)
.

(6.3)Using (5.13), one easily 
on�rms that P2(ϑ) f(x) = H(ϑ) ⋆2/|E| f(x) ,P̃2(ϑ) f(x) = f(x) ⋆2/|E| H(ϑ) ,
(6.4)with

H(ϑ) := E2(x2 + e 2 i ϑt2) . (6.5)Allo
ating to ea
h fun
tion H(ϑ) a Weyl symbol Ĥ(ϑ) we �nd
Ĥ(ϑ) =

1

2

(
Ŵ
[√

2Ex
]2

+ e 2 i ϑŴ
[√

2Et
]2)

=
1

2

(
p̂2 + e 2 i ϑq̂2

)
, (6.6)49



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTwhere the symbols Ŵ [√
2Ex

]
= p̂ and Ŵ [√2Et

]
= q̂ obey the Heisenberg algebra

[q̂, p̂] = 2E2[t, x]⋆2/E
= i 4E . (6.7)The operators Ĥ(ϑ) for ϑ ∈ (−π/2, π/2) are known as 
omplex harmoni
 os
illators, and the eigenvalueequations of our original operators are related to their 
orrespondents on the Weyl side byP2(ϑ)f (Eϑ)

mn (x) = W

[
Ĥ(ϑ)̂f(Eϑ)

mn

]
(x) = λ(Eϑ)

mn f (Eϑ)
mn (x)P̃2(ϑ)f (Eϑ)

mn (x) = W

[
f̂(Eϑ)
mn Ĥ(ϑ)

]
(x) = λ̃(Eϑ)

mn f (Eϑ)
mn (x)

(6.8)with f̂
(Eϑ)
mn = Ŵ[f

(Eϑ)
mn ]. The spe
trum of Ĥ(ϑ) and its eigenfun
tions f̂

(Eϑ)
mn will be investigated in the nextse
tion. The eigenvalues will turn out to depend on E and ϑ only through the 
ombination

E e i ϑ := Eϑ , (6.9)whereas the eigenfun
tions are tensor produ
ts of two generalized os
illator fun
tions of frequen
y Eϑ/2,whi
h explains the (Eϑ)-supers
ript of the fun
tions. The simultaneous eigenfun
tions of P2(ϑ) and P̃2(ϑ)
an afterwards be a
hieved with help of the Wigner transformation
f (Eϑ)

mn (x) = W[̂f(Eϑ)
mn ](x) . (6.10)The extension to the full D-dimensional 
ase will be given in se
tion 6.5.6.2 Generalized Os
illator BasisIn this se
tion investigate the 
omplex harmoni
 os
illator Ĥ(ϑ), whi
h turns out to have a dis
rete spe
trumresembling the harmoni
 os
illator spe
trum rotated into the 
omplex plane by a fa
tor e i ϑ, and whoseeigenfun
tions are found to be the regularized harmoni
 os
illator fun
tions f (γϑ)

n of se
tion 5.3. In addition,the general appli
ability of the generalized os
illator basis is s
rutinized.The 
omplex harmoni
 os
illator in a representation independent form is given by
Ĥho =

1

2
(p̂2 + e 2 i ϑq̂2) (6.11)with 
ommutation relation

[q̂, p̂] = i 4E (6.12)and positive real frequen
y E ∈ R+. Sin
e q̂ = Ŵ
[√

2Et
], it is natural to work in a representation su
hthat

〈q′|q̂|q〉 =
√

2Eq 〈q′|q〉 ⇒ 〈q′|p̂|q〉 = − i
∂

∂q/
√

8
〈q′|q〉 (6.13)thus

〈q′|Ĥ(ϑ)|q〉 = 4
(
−∂q + γ2

ϑ q
2
)
〈q′|q〉 (6.14)with the 
ondensed notation

γϑ = e i ϑγ with γ = E/2 ∈ R+ . (6.15)Firstly note that the equation
4(−∂2

q + γ2
ϑq

2)φn(q) = 8γϑ

(
n+

1

2

)
φn(q) (6.16)50



6.2 Generalized Os
illator Basisis ful�lled even for 
omplex γϑ, if φn(q) is the os
illator fun
tion (4.16) with γϑ substituted for γ. We de�nethe generalized harmoni
 os
illator fun
tions
f (γϑ)

n (q) =

( √
γϑ

2nn!
√
π

)1/2

e−γϑ
2 q2

Hn(
√
γϑq) (6.17)as a generalization of the φn to 
omplex frequen
ies, whi
h 
oin
ide with the fun
tions found in se
tion5.3. These possess an exponential de
ay and are thus S
hwartz fun
tions for |ϑ| < π/2. We expe
t that by
ontinuity, for |ϑ| small enough, the eigenvalues of the 
omplex harmoni
 os
illator are given by the set

{8γϑ (n+ 1/2) , n ∈ N} . (6.18)In fa
t, the values (6.18) are indeed the eigenvalues of Ĥ(ϑ) for |ϑ| < π/2 [Dav99℄.The generalized harmoni
 os
illator fun
tions (6.17) are not orthogonal, and thus do not serve as a usualHilbert spa
e basis for S(R). But together with its 
omplex 
onjugated fun
tions and for Re(γϑ) > 0,they 
onstitute a bi-orthogonal system with respe
t to the L2-norm. This means the two sets of fun
tions
(f

(γϑ)
n )n∈N and (f

(γ−ϑ)
n )n∈N with nonzero γϑ and Re(γϑ) > 0 ful�ll

〈f (γ−ϑ)
n |f (γϑ)

m 〉 =
∫ ∞

−∞
dq f (γϑ)

n (q) f (γϑ)
m (q) = δnm . (6.19)whi
h follows immediately from the orthogonality of the Hermite fun
tions by a deformation of the integration
ontour to a straight line from −∞ e i ϑ to +∞ e i ϑ. This is possible due to the fa
tor e−γϑ

2 q2 in theintegrand, ensuring an exponential de
ay for Re(γϑ) > 0. In addition their linear span is dense in L2(R),whi
h means that every square-integrable fun
tion 
an be approximated pointwise by a linear 
ombinationof these fun
tions. This is shown in appendix D. To ensure the appli
ability to arbitrary quantum �eldtheories, however, one has also to be able to deal with s
alar produ
ts and distributions. In the followingwe will �rst brie�y explain how things work out in the usual os
illator basis φn(q) with positive frequen
y
γ ∈ R+. Afterwards we will present preliminary results 
on
erning the generalized os
illator basis.The usual os
illator basis provide a 
onvenient tool in the investigation of tempered distributions andsimilar obje
ts. Chara
terizations of standard 
lasses of fun
tions, as S
hwartz spa
e S(R) and its dual
S′(R) and many others are easily given in terms of their expansion 
oe�
ients with respe
t to the os
illatorfun
tions [Sim70℄, whi
h in the following will be 
alled the Hermite 
oe�
ients. Sin
e the issue of howto implement NCQFT into a mathemati
ally rigorous formalism has still to be 
lari�ed, see e.g. [BN04,Sol07b, Sol07a, CMTV08, Sol09, Sol10℄, we will only dis
uss the expansion of several spa
es in terms ofthe os
illator basis and its generalization. The 
hara
terization of S
hwartz fun
tions is as follows. For afun
tion ϕ(x) ∈ S(R) with Hermite 
oe�
ients

ϕn =

∫

R

dq φn(q)ϕ(q) , (6.20)one �nds [Sim70℄
‖ϕ‖2k :=

∑

n

|ϕn|2(n+ 1)k <∞ (6.21)for every k ∈ N. If on the other hand ‖ψ‖k < ∞ for all k, then ∑n ψnφn(x) 
onverges in the S
hwartztopology to a fun
tion in S(R), establishing an isomorphism between the S
hwartz spa
e and the spa
e offast falling sequen
es. Moreover 
onvergen
e in the topology of S(R) is equivalent to 
onvergen
e of theirHermite 
oe�
ients with respe
t to the in�nite set of norms ‖ · ‖k for k ∈ N.Now suppose that T ∈ S′(R) is a tempered distribution with Tn = T (φn) denoting its Hermite 
oe�
ients.Then |Tn| ≤ C(1 + n)k for some C and k and
T (ϕ) =

∞∑

n=0

Tnϕn , (6.22)for any ϕ ∈ S(R) with Hermite 
oe�
ients ϕn. Conversely, if Tn ≤ C(1 + n)k for some k and all n, then
ϕ 7→ ∑

n Tnϕn de�nes a tempered distribution. By duality the usual os
illator basis thus provides a meanto deal with tempered distributions. 51



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTThe extension to larger spa
es of distributions, like the spa
e Sα
α (R)′ with α ≥ 1/2, whi
h is the dual of theGel'fand-Shilov spa
e Sα

α (R), is also possible in the same manner. The spa
e Sα
α (R) is dense in the S
hwartzspa
e, 
losed under Fourier transformation and the star-produ
t, whi
h makes them to an appropriate testfun
tion spa
e for non
ommutative �eld theories. For a short introdu
tion see appendix C.1. In [LCP07℄it has been shown that its elements are exa
tly those fast-falling fun
tions ϕ, whose Hermite 
oe�
ients

ϕn = 〈φn|ϕ〉 ful�ll the 
ondition
∞∑

n=0

|ϕn|2 e n
1
2α ω < 0 . (6.23)for some 
onstant ω > 0. Its dual spa
e Sα

α (R)′ 
onsists of those distributions T , whose Hermite 
oe�
ients
Tn = T (φn) satisfy

|Tn| ≤ e n
1
2α ω (6.24)for all ω > 0, and T (ϕ) for every ϕ ∈ Sα

α (R) has the representation
T (ϕ) =

∞∑

n=0

Tnϕn . (6.25)Conversely, for any sequen
e (Tn)n∈N satisfying (6.24) for all ω > 0, then ϕ→∑
n Tnϕn de�nes an elementof Sα

α (R)′.The question is, if a similar 
hara
terization holds if we 
ontinue γ into the 
omplex plane, thus for theexpansion in generalized os
illator fun
tions. Analogously to the ordinary 
ase des
ribed above, we wouldlike to de�ne the a
tion of a tempered distribution T ∈ S′(R) on test fun
tions ϕ by
T (ϕ) =

∞∑

n=0

T (γϑ)
n ϕ(γϑ)

n , (6.26)where
ϕ(γϑ)

n = 〈f (γ−ϑ)
n |ϕ〉 . (6.27)and

T (γϑ)
n = T (f (γϑ)

n ) (6.28)for nonzero γϑ ∈ C with Re(γϑ) > 0. The generalized Hermite 
oe�
ients T (γϑ)
n exists for every tempereddistribution sin
e f (γϑ)

n ∈ S(R). However, it is not 
lear for whi
h fun
tions ϕ the series (6.26) is well-de�ned.Con
erning this question we only have partial results. Note that for any tempered distribution (or S
hwartzfun
tion) ψ we 
an formally swit
h between the usual Hermite 
oe�
ients, de�ned for nonzero frequen
y
γ ∈ R+, and rotated Hermite 
oe�
ients with frequen
y γϑ through

ψ(γϑ)
n =

∞∑

m=0

h(ϑ)
nmψm , (6.29)where

h(ϑ)
nm =

∫

R

dq f (γϑ)
n (q)φm(q) (6.30)is the transition matrix. This follows from equation (6.22) for ϕ = f

(γ)
n and T = ψ. In appendix B.3 weshow, that for arbitrary nonzero, distin
t β, γ ∈ C with Re(γ + β) > 0 the general transition matrix

h(γ,β)
nm :=

∫

R

dq f (γ)
n (q) f (β)

m (q) (6.31)52



6.2 Generalized Os
illator Basishas the following asymptoti
 behavior for given m and large n:
h(γ,β)

nm
n→∞∼ n−1/2

∣∣∣∣
β − γ
β + γ

∣∣∣∣
n

. (6.32)We see that the transition matrix has an exponential de
ay if the angle between β and γ is less than π/2. Toanswer the question whether there is are fun
tions su
h that the expansion (6.26) of tempered distributionsis allowed, we have to �nd the asymptoti
s of the 
orresponding generalized Hermite fun
tions. This 
an bedone using the transition matrix and relation (6.29), sin
e the asymptoti
s of the usual Hermite 
oe�
ientsare known.A spa
e whi
h is 
omputationally feasible is the Gel'fand-Shilov spa
e of type Sα
α (R) ⊂ S(R) with α = 1/2.In appendix C.2 we show that for this 
ase the 
orresponding generalized Hermite 
oe�
ients ϕ(γϑ)

n have thefollowing asymptoti
 upper bound for large n
|ϕ(γϑ)

n | . 1 + e 2ωr

e 2ω − r . (6.33)with
r = | tan(ϑ/2)| . (6.34)Thus for a given r ∈ [0, 1] there is a lower bound ω0 given by

ω0 =
1

2
ln

(
1 + r

1− r

) (6.35)su
h that every Gel'fand-Shilov fun
tion with ω > ω0 has an exponential de
ay. However, this is not apre
ise lower bound, sin
e we used a rough estimation to obtain this result. The a
tual asymptoti
s forthose fun
tions might be better. For �xed ϑ there is thus a spa
e of fun
tions whi
h might serve as testfun
tion spa
e. If we allow r to be
ome arbitrary 
lose to 1, a

ording to the asymptoti
s of the transitionmatrix (6.32) we have to restri
t to those fun
tions whose usual Hermite 
oe�
ients de
ay faster than e−nωfor every ω. The spa
e of fun
tions obeying this 
ondition is spa
e made up of all �nite linear 
ombinationsof harmoni
 os
illators, thus the spa
e spanned by the φn. But this is obvious, sin
e every �nite linear
ombination∑N
m=0 φm(q)am gives rise to a fun
tion in the rotated os
illator basis with generalized Hermite
oe�
ients

a(ϑ)
n =

N∑

m=0

h(ϑ)
nmam , (6.36)whi
h, a

ording to the asymptoti
s of the transition matrix h(ϑ)

nm given by (6.32), have an exponential de
ayfor |ϑ| < π/2 in the limit n→∞. This spa
e is obviously dense in L2(R) pointwise.Using the same methods, analog results may be derived for tempered distributions giving exponentialdivergen
es
|T (γϑ)

n | ∼ (n+ 1)q

(
1 + r

1− r

)n/2 (6.37)for some q > 0, whi
h have been derived in appendix C.3. Using these upper bounds, one 
an �nd su�
ient
onditions on the test fun
tions su
h that the sum (6.26) 
onverges. In order to get a de
ay whi
h dampsthe divergen
e of (6.37) we �nd the 
ondition
2ω >

2− (1 − r)2
2− (1 + r)2

. (6.38)This has only �nite solutions ω for r < √2 − 1 or equivalently ϑ < π/4, ruling out test fun
tions made upof an in�nite linear 
ombination of os
illator fun
tions. Again, we have to emphasize that these are roughestimates and the a
tual de
ay behavior might be mu
h better. 53



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTThe question for whi
h spa
es of fun
tions this generalized os
illator basis makes sense is thus still openand will be left for future work. For a spe
i�
 theory, however, one only needs the asymptoti
s of the matrixversion of the 
orresponding propagator, to ensure the 
onvergen
e of the sums in Feynman diagrams and topro
eed with the renormalization program. We will 
ome ba
k to this aspe
ts in 
hapter 8 and 
omment onthe appli
ability to LS-
ovariant theories. In the forth
oming 
hapters, we will use the matrix basis to derivethe propagators of the various theories and �nd that they 
oin
ide with the position spa
e propagators in allthose 
ases, where results are already known in the literature. In appendix F the one-loop e�e
tive a
tionof the Klein-Gordon theory in a 
onstant ele
tri
 �eld is 
al
ulated with help of the matrix basis and also
oin
ides with the known results. By pi
king up the regularization s
heme imposed on the position spa
epropagator in the Eu
lidean 
ase, whi
h e�e
tively 
uts o� the matrix summations at some �nite N , theo

urring Feynman diagrams of the ϑ-regularized LS-
ovariant theories are well-de�ned and LS-
ovariant.6.3 Generalized Landau fun
tionsIn the following, we go ba
k to the Wigner side, by 
onstru
ting the generalized Landau fun
tions f (Eϑ)
mn ,de�ned by (4.19) through Wigner distribution of the tensor produ
t of two generalized os
illator fun
tions.We will derive a �ladder operator�-
onstru
tion, whi
h allows us to obtain the matrix model representationof the LS-
ovariant models. Temporarily we set θ = 2/E and thus ⋆ = ⋆2/E.We 
an use a similar 
onstru
tion as in the Eu
lidean 
ase in se
tion 4.2 by relating the ordinary to the
omplex harmoni
 os
illator fun
tions using 
omplex s
aling methods. Introdu
ing the Hermitian s
alingoperator

V̂(ϑ) = exp

(
− ϑ

4γ
(p̂q̂ + q̂p̂)

) (6.39)and using
e XY e−X = e ad XY = Y + [X,Y ] +

1

2!
[X, [X,Y ]] + . . . (6.40)we see that

V̂(ϑ) q̂ V̂(ϑ)−1 = e i ϑ
2 q̂ ,

V̂(ϑ) p̂ V̂(ϑ)−1 = e− i ϑ
2 p̂ .

(6.41)The 
omplex harmoni
 os
illator is thus related to the ordinary one by
Ĥ(ϑ) := e i ϑ V̂(ϑ) Ĥho V̂(ϑ)−1

=
1

2

(
p̂2 + e 2 i ϑq̂2

)
, (6.42)while the generalized eigenfun
tions 
an now easily obtained by the os
illator fun
tions |φn〉, where 〈q|φn〉 =

φn(q) as in (4.16), by noting that
Ĥ(ϑ) V̂(ϑ)|φn〉 = e i ϑV̂(ϑ) Ĥho |φn〉 = e i ϑ8γ (n+ 1/2) V̂(ϑ) |φn〉 (6.43)and the 
orresponding eigenve
tors are related to the os
illator wave fun
tions by
f (γϑ)

n (q) = 〈q|f (γϑ)
n 〉 := 〈q|V̂(ϑ)|φn〉 = e i ϑ/4φn

(
e i ϑ/2 q

)
. (6.44)From here on we 
an 
ontinue deriving the 
orresponding results for the generalized os
illator fun
tionssimilar to the Eu
lidean 
ase, with generalized Landau fun
tion given by

f (Eϑ)
mn (x) =

√
E

4π
W

[
V̂(ϑ)|φm〉〈φn|V̂(−ϑ)

]
(x) . (6.45)where normalization 
onstant has been 
hosen su
h that again

∫
dx f (Eϑ)

mn (x) =

√
4π

E
δmn . (6.46)54



6.3 Generalized Landau fun
tionsUsing the expli
it representation for the Wigner transformation (2.10) we see that 
omplex 
onjugationyields
f (Eϑ)

mn (x)∗ =

√
E

4π

∫
dk e− i E

2 kx〈t+ k/2|V̂(−ϑ)|φn〉〈φm|V̂(ϑ)|t− k/2〉 = f (E−ϑ)
nm (x) (6.47)and the proje
tor property takes the form

(
f (Eϑ)

mn ⋆ f
(Eϑ)
kℓ

)
(x) =

E

4π
W

[
V̂(ϑ)|φm〉〈φn|φk〉〈φℓ|V̂(−ϑ)

]
(x) =

√
E

4π
δnkf

(Eϑ)
mℓ (x) . (6.48)Together with the normalization 
ondition this implies the bi-orthogonality of the generalized Landau fun
-tions with respe
t to the L2 s
alar produ
t

〈f (Eϑ)
mn |f (E−ϑ)

kℓ 〉 =

∫
dx f (E−ϑ)

nm (x) f
(E−ϑ)
kℓ (x)

=

∫
dx
(
f (E−ϑ)

nm ⋆ f
(E−ϑ)
kℓ

)
(x)

=

√
E

4π

∫
dx δmkf

(E−ϑ)
nℓ (x)

= δmkδnℓ . (6.49)The expli
it expressions of the matrix basis fun
tions are given byTheorem 6.1. The generalized Landau fun
tions f (Eϑ)
mn (x) with m,n ∈ N0 are given by

f (Eϑ)
mn (t, x) = (−1)min(m,n)

√
E

π

√
min(m!, n!)

max(m!, n!)
E

|m−n|/2
ϑ

× e−Eϑ
2 x

(ϑ)
+ x

(ϑ)
− (x

(ϑ)
−sgn(m−n))

|m−n| L|m−n|
min(m,n)

(
Eϑ x

(ϑ)
+ x

(ϑ)
−

) (6.50)with x(ϑ)
± = t± i e− i ϑx and Lα

n(z) the generalized Laguerre Polynomials.The proof is given in appendix E. Setting ϑ = 0 this result proves the Eu
lidean 
ounterpart given in lemma4.1. Noting that
Eϑ x

(ϑ)
+ x

(ϑ)
− = E

(
e i ϑt2 + e− i ϑx2

)

= E
{
cos(ϑ)(t2 + x2) + i sin(ϑ)(t2 − x2)

}
. (6.51)we see that similar to the f (γϑ)

m these fun
tions are S
hwartz fun
tions only for |ϑ| < π/2. In parti
ular theyare in Sα
α (R2) for all α ≥ 1/2. At ϑ = ±π/2 we have a polynomial in
rease and thus tempered distributions.The Fo
k spa
e representation of the harmoni
 os
illator fun
tions has a 
ounterpart in the 
omplex s
aledversion, whi
h will be very useful in the expli
it determination of the matrix versions of the LS-
ovariantmodels. Note that

|f (γϑ)
n 〉〈f (γ−ϑ)

m | = V̂(ϑ)
(â†)m

√
m!
|φ0〉〈φ0|

(â)n

√
n!

V̂−1(ϑ)

=
1√
m!n!

(
V̂(ϑ)â†V̂−1(ϑ)

)m

|f (γϑ)
0 〉〈f (γ−ϑ)

0 |
(
V̂(ϑ)âV̂−1(ϑ)

)n (6.52)with â = (q̂ + i p̂)/
√

8E. We 
an use relations (6.41) to get
V̂(ϑ)â†V̂−1(ϑ) = e i ϑ/2q̂− i e− i ϑ/2p̂ ,

V̂(ϑ)âV̂−1(ϑ) = e i ϑ/2q̂ + i e− i ϑ/2p̂ .
(6.53)Sin
e W

[√
2Et

]
= q̂ and W

[√
2Ex

]
= p̂ we �nd

W

[
V̂(ϑ)â†V̂−1(ϑ)

]
=

√
Eϑ

4
x

(ϑ)
− , W

[
V̂(ϑ)âV̂−1(ϑ)

]
=

√
Eϑ

4
x

(ϑ)
+ . (6.54)55



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTwhere we introdu
ed generalized light 
one 
oordinates
x

(ϑ)
± = t± i e− i ϑx . (6.55)The 
orresponding derivatives are given by

∂
(ϑ)
± = ∂t ∓ i e i ϑ∂x , (6.56)with ∂

(ϑ)
± x

(ϑ)
± = 2 and ∂

(ϑ)
± x

(ϑ)
∓ = 0. The matrix fun
tions on R2 
an now be obtained via Weyl-Wigner
orresponden
e

f (Eϑ)
mn =

1√
m!n!

W

[
|f (γϑ)

m 〉〈f (γ−ϑ)
n |

]

=
1√
m!n!

(√
Eϑ

4
x

(ϑ)
−

)⋆m

⋆W

[
|f (γϑ)

0 〉〈f (γ−ϑ)
0 |

]
⋆

(√
Eϑ

4
x

(ϑ)
+

)⋆n

. (6.57)Analogue to se
tion 4.2 we de�ne ladder operators through1
(√

Eϑ

4
x

(ϑ)
−

)
⋆ g(x) = a+

(Eϑ)g(x) ,

(√
Eϑ

4
x

(ϑ)
+

)
⋆ g(x) = a−(Eϑ)g(x) ,

g(x) ⋆

(√
Eϑ

4
x

(ϑ)
+

)
= b+(Eϑ)g(x) , g(x) ⋆

(√
Eϑ

4
x

(ϑ)
−

)
= b−(Eϑ)g(x) .

(6.58)The operators on the rhs 
an most easily be obtained by expressing the star-produ
t in terms of the gener-alized light 
one 
oordinates. Inverting the relations (6.56) we get
∂t =

1

2
(∂

(ϑ)
+ + ∂

(ϑ)
− ) , ∂x =

e− i ϑ

2 i
(∂

(ϑ)
− − ∂(ϑ)

+ ) , (6.59)thus
i

E
(∂t∂

′
x − ∂x∂

′
t) =

1

2Eϑ
(∂

(ϑ)
+ ∂

′(ϑ)
− − ∂(ϑ)

− ∂
′(ϑ)
+ ) . (6.60)The ladder operators are then given by

a±(Eϑ) =

√
Eϑ

4

(
x

(ϑ)
∓ ∓ 1

2Eϑ
2∂

(ϑ)
±

)
=

1

2

(√
Eϑx

(ϑ)
∓ ∓

√
1

Eϑ
∂

(ϑ)
±

)
,

b±(Eϑ) =

√
Eϑ

4

(
x

(ϑ)
± ∓ 1

2Eϑ
2∂

(ϑ)
±

)
=

1

2

(√
Eϑx

(ϑ)
± ∓

√
1

Eϑ
∂

(ϑ)
∓

)
,

(6.61)and ful�ll the relations
[
a−(Eϑ), a

+
(Eϑ)

]
=

1

2
[∂

(ϑ)
− , x

(ϑ)
− ] = 1 , (6.62)

[
b−(Eϑ), b

+
(Eϑ)

]
=

1

2
[∂

(ϑ)
+ , x

(ϑ)
+ ] = 1 , (6.63)whereas all others are zero. We note that the equations derived above are formally identi
al to those obtainedin the Eu
lidean 
ase in se
tion 4.2, when substituting Eϑ for E. Of 
ourse both 
oin
ide for ϑ = 0. Theground state is determined by

a−(Eϑ)f
(Eϑ)
00 (x) = b−(Eϑ)f

(Eϑ)
00 (x) = 0 (6.64)plus the normalization 
ondition

∫
d2x f

(Eϑ)
00 (x) =

√
4π

E
(6.65)1Sin
e (a+

(Eϑ)
)† 6= a−

(Eϑ)
and (b+

(Eϑ)
)† 6= b−

(Eϑ)
they are stri
tly speaking not ladder operators, but we will nevertheless 
allthem as su
h.56



6.4 Matrix Model Representation of the Regularized LS-
ovariant Modelswhi
h has the solution
f

(Eϑ)
00 (x) =

√
E

π
e−Eϑ

2 x
(ϑ)
+ x

(ϑ)
− . (6.66)The fun
tions f (Eϑ)

mn have the ladder operator representation
f (Eϑ)

mn (x) =
(a+

(Eϑ))
m

√
m!

(b+(Eϑ))
n

√
n!

f
(Eϑ)
00 (x) . (6.67)It immediately follows that

a−(Eϑ)f
(Eϑ)
mn (x) =

√
mf

(Eϑ)
m−1,n(x) , a+

(Eϑ)f
(Eϑ)
mn (x) =

√
m+ 1f

(Eϑ)
m+1,n(x) ,

b−(Eϑ)f
(Eϑ)
mn (x) =

√
nf

(Eϑ)
m,n−1(x) , b+(Eϑ)f

(Eϑ)
mn (x) =

√
n+ 1f

(Eϑ)
m,n+1(x) .

(6.68)We will use these relations to obtain the matrix representation of the models in the next se
tion.Note that the problem of the right test fun
tion spa
e is the same as in the generalized os
illator 
ase.The results of the previous se
tion 
arry over dire
tly to the Wigner transformed 
ase, using the followingresult [Teo06℄:Lemma 6.2. Let ψ ∈ Sα
α (Rd), ϕ ∈ Sα

α (Rd)′. Then ψ ∈ Sα
α (Rd) if and only if W [|ψ〉〈ϕ|] ∈ Sα

α (R2d).Following this lemma, we 
an relate the subspa
es of Gel'fand-Shilov spa
es Sα
α (R) found in the previousse
tion to subspa
es of Sα

α (R2) via Wigner transformation.6.4 Matrix Model Representation of the Regularized LS-
ovariantModelsUsing the Fo
k spa
e representation of the last se
tion we will now derive the matrix representation of the
lassi
al regularized a
tions (5.68) and (5.69). In the following we denote
f ǫ

mn := f (2/θ−ϑ)
mn (6.69)with ϑ = π/2 − ǫ. In addition we set ⋆ = ⋆θ with θ 6= 2/E in general, whi
h means that the generalizedLandau fun
tions diagonalize the intera
tion part, but not ne
essarily the free part of the a
tion. As inse
tion 4.3 we will assume the �elds to be su
h that the expansion in generalized Landau fun
tions arewell-de�ned.We expand the s
alar �elds in terms of the generalized Landau basis

φ(x) =

∞∑

mn

f ǫ
mn(x)φǫ

mn

φ(x)∗ =

∞∑

mn

f ǫ
mn(x)φǫ

mn

(6.70)where the 
oe�
ients given by
φǫ

mn =

∫
d2x f ǫ

nm(x)φ(x)

φǫ
mn =

∫
d2x f ǫ

nm(x)φ(x)∗ .

(6.71)Using the proje
tor property (6.48) we �nd
f ǫ

m1n1
⋆ f ǫ

m2n2
⋆ f ǫ

m3n3
⋆ f ǫ

m4n4
=

1
√

2πθ
3 δn1m2δn2m3δn3m4f

ǫ
m1n4

. (6.72)57



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFTand thus the LSZ intera
tion
g

2πθ

∑

mnkℓ

(
αφǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm + β φǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm

) (6.73)and GW intera
tion
g

2πθ

∑

mnkℓ

(φǫ
mnφ

ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm) . (6.74)The free parts of the a
tions 
an be dedu
ed from the followingLemma 6.3. The wave operator of the two-dimensional LSZ model in matrix representation is given by

G
(ǫ,σ)
mn;kℓ =

(
− e− i ǫµ2 + 2 i

(1 + Ω2)

θ
(m+ n+ 1)δmℓδnk +

4Ω̃

θ
(n−m)

)
δmℓδnk

+2 i
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

) (6.75)with frequen
ies Ω = Eθ/2 and Ω̃ = (2σ − 1)Ω.Proof: The wave operator is de�ned by
G

(ǫ,σ)
mn;kℓ =

∫

x

f ǫ
mn(x)

(
σ e i ǫ P2(π/2− ǫ) + (1− σ) e i ǫ P̃2(π/2− ǫ)− e− i ǫµ2

)
f ǫ

kℓ(x) . (6.76)One �ndsP2(ϑ) =
e i ϑ

2θ

[
(2 + Eθ)2

(
a+a− +

1

2

)
+ (2− Eθ)2

(
b+b− +

1

2

)
+
(
θ2E2 − 4

) (
a+b+ + a−b−

)] (6.77)and a similar expression for P̃2(ϑ) with a± and b± swapped. The veri�
ation of these expressions 
an bedone exa
tly as in the proof of lemma 4.2 by simply substituting θ−ϑ for θ and Eϑ for B. The matrixrepresentation of P2(ϑ) and P̃2(ϑ) away from the dual point 
an be obtained from (6.77) with help of (6.68)leading toP2
mn;kℓ(ϑ) =

e i ϑ

2θ

[
(2 + Eθ)2

(
m+

1

2

)
δmℓ δnk + (2− Eθ)2

(
n+

1

2

)
δmℓ δnk

+
(
θ2E2 − 4

) (√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)] (6.78)and P̃2
mn;kℓ(ϑ) =

e i ϑ

2θ

[
(2 + Eθ)2

(
n+

1

2

)
δmℓ δnk + (2− Eθ)2

(
m+

1

2

)
δmℓ δnk

+
(
θ2E2 − 4

)(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1) δm,ℓ−1 δn,k−1

)]
. (6.79)whi
h 
an be 
ombined to give (6.75).The regularized LSZ model in two-dimensional Minkowski spa
etime then has the matrix model representa-tion

S(ǫ)
LSZ =

∑

mnkℓ

φǫ
mnG

(ǫ,σ)
mn;kℓ φ

ǫ
ℓk +

g

2πθ

∑

mnkℓ

(
αφǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm + β φǫ

mnφ
ǫ
nkφ

ǫ
kℓ φ

ǫ
ℓm

)
. (6.80)A perturbative expansion of the generating fun
tional in matrix basis is similarly obtained as in the Eu
lidean
ase 4.4. The generating fun
tional of the LSZ model reads

Z[J ] = lim
ǫ→0+

N exp

(
− iαg

∑

mnkℓ

∂4

∂Jǫ
mℓ∂J̄

ǫ
ℓk∂J

ǫ
kn∂J̄

ǫ
nm

)

× exp

(
− iβ g

∑

mnkℓ

∂4

∂Jǫ
mℓ∂J

ǫ
ℓk∂J̄

ǫ
kn∂J̄

ǫ
nm

)
exp

(
i

2

∑

mnkℓ

J̄ǫ
mn∆

(ǫ,σ)
mn;kℓJ

ǫ
kℓ

)
, (6.81)58



6.4 Matrix Model Representation of the Regularized LS-
ovariant Modelswith Jǫ
mn and J̄ǫ

mn the sour
es in matrix basis and the propagator ∆
(ǫ,σ)
mn;kℓ de�ned as the inverse of G(ǫ,σ)

mn;kℓ:
∑

kℓ

G
(ǫ,σ)
mn;kℓ∆

(ǫ,σ)
ℓk;sr =

∑

kℓ

∆
(ǫ,σ)
nm;ℓkG

(ǫ,σ)
kℓ;rs = δmrδns . (6.82)The modi�ed Feynman rules are presented in the double line formalism and are exa
tly as in the Eu
lidean
ase. The double lines are oriented pointing from φ∗ to φ :

m
n

ℓ

k = ∆
(ǫ,σ)
nm;ℓk .The two intera
tion terms φ∗ ⋆ φ ⋆ φ∗ ⋆ φ and φ∗ ⋆ φ∗ ⋆ φ ⋆ φ are represented by di�erent diagrams

∼ φ∗ ⋆ φ ⋆ φ∗ ⋆ φ ∼ φ∗ ⋆ φ∗ ⋆ φ ⋆ φhaving verti
es − i g δmpδnqδkrδℓs times α or β, respe
tively.The GW model 
an be treated identi
ally. One 
an immediately follow from lemma (6.3) by setting
σ = 1/2:Lemma 6.4. The regularized Grosse-Wulkenhaar wave operator in two dimensions has the matrix represen-tation given by

G
(ǫ)
mn;kℓ =

(
− e− i ǫµ2 + 2 i

Ω2 + 1

θ
(m+ n+ 1)

)
δmℓ δnk

+2 i
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (6.83)with frequen
y Ω = Eθ/2.The Minkowskian GW a
tion then reads
S(ǫ)

GW =
∑

mn;kℓ

(
1

2
φǫ

mnG
(ǫ)
mn;kℓφ

ǫ
kℓ +

g

2πθ
φǫ

mnφ
ǫ
nkφ

ǫ
kℓφ

ǫ
ℓm

)
. (6.84)The generating fun
tional is given by

Z[J ] = lim
ǫ→0
N exp

(
− i g

∑

mnkℓ

∂4

∂Jǫ
mℓ∂J

ǫ
ℓk∂J

ǫ
kn∂J

ǫ
nm

)
exp

(
i

2

∑

mnkℓ

Jǫ
mn∆

(ǫ)
mn;kℓJ

ǫ
kℓ

) (6.85)with the propagator ∆
(ǫ)
mn;kℓ being the inverse of G(ǫ)

mn;kℓ and being represented by the unoriented double line
m
n

ℓ

k = ∆
(ǫ)
nm;ℓk .The vertex of the φ⋆4 intera
tion is given by the graph

= − i g δmpδnqδkrδℓs .Sin
e the vertex is oriented there will be as many diagrams as in the LSZ a
tion with both parameters αand β turned on. 59



6 Matrix Model Representation of Minkowskian LS-Covariant NCQFT6.5 Generalization to Higher DimensionsThe generalization to higher dimensions 
an be obtained similarly as in se
tion 4.6. By de�nition, the
D = 2n-dimensional operators K2(ϑ) and K̃2(ϑ) are given byK2(ϑ) = P2(ϑ) + e 2 i ϑ

n∑

k=2

(P2
i )kK̃2(ϑ) = P̃2(ϑ) + e 2 i ϑ

n∑

k=2

(P̃2
i )k ,

(6.86)a

ording to equations (6.2) and (6.3). We found that the spe
tra of both operators are given by
{4E e i ϑ(ℓ1 + 1/2) +

n∑

k=2

4Bk e 2 i ϑ(ℓk + 1/2) , ℓ1, . . . , ℓn ∈ N} , (6.87)where the eigenfun
tions are produ
ts of generalized Landau fun
tions from se
tion 6.3 f (Eϑ)
m1n1 and ordinaryLandau fun
tions from se
tion 4.2 f (Bk)

mknk :
f (F ϑ)

mn (x) := f (Eϑ)
m1n1

(x1)f
(B2)
m2n2

(x2) · · · f (Bn)
mnnn

(xn) (6.88)with xk = (x2k−2, x2k−1) ∈ R2, x = (xµ) ∈ RD, m = (mk),n = (nk) ∈ Nn and F ϑ = (Eϑ, B2, . . . , Bn) ∈
C+ × Rn

+, where C+ denotes the 
omplex numbers with positive real part. The deformation matrix Θ isassumed to be in its 
anoni
al form
(Θµν) =




0 θ1
−θ1 0

0. . .
0

0 θn

−θn 0




(6.89)with θi ∈ R. The star produ
t of two su
h multi-dimensional, generalized Landau fun
tions with respe
t to(6.89) de
ouples into produ
ts of Landau fun
tions depending on xk for k = 1, . . . , n. If in addition E = 2/θand Bk = 2/θk for all k, then
(
f (F ϑ)

mn ⋆Θ f
(F ϑ)
m′n′

)
(x) = δnm′ f

(F ϑ)
mn′ (x) (6.90)with δm′n =

∏n
k=1 δm′

k
nk
.The generalization of the matrix model representation is straightforward. To 
on�rm with our previousnotation we set ϑ = π/2− ǫ > 0 and use the notation

f ǫ
mn(x) =

n∏

k=1

f (2/(θk)−ϑ)
mknk

(x) . (6.91)The f ǫ
mn are arranged su
h as to simplify the intera
tion part but not ne
essary the free part of the a
tion.The s
alar �elds living on R

D are expanded in the generalized Landau basis
φ(x) =

∞∑

m,n∈Nn

f ǫ
mn(x)φǫ

mn

φ(x)∗ =
∞∑

m,n∈Nn

f ǫ
mn(x)φǫ

mn

(6.92)where the 
oe�
ients are given by
φǫ

mn =

∫
dDx f ǫ

nm(x)φ(x)

φǫ
mn =

∫
dDx f ǫ

nm(x)φ(x)∗ .

(6.93)60



6.5 Generalization to Higher DimensionsThe matrix representation of the D = 2n-dimensional LSZ model away from the self-dual point 
an beobtained by 
omparing the operators (6.86) with its two dimensional 
onstituents and their matrix represen-tations given by the equations (4.50), (4.51), (6.78) and (6.79). The matrix LSZ operator is thus the sum ofthe two-dimensional Minkowskian 
ase given by (6.75) plus n− 1 
opies of the massless Eu
lidean operatorgiven by (4.45) times e− i ǫ, where we set again ϑ = π/2 − ǫ. Noting that the massless LSZ operators inEu
lidean and Minkowskian spa
e di�er only by a fa
tor �i�, we 
an write
G

(ǫ,σ)
mn;kℓ = iG(σ)

m1n1;k1ℓ1
− e− i ǫ

n∑

i=2

G(σ)
mini;kiℓi

− e− i ǫµ2 (6.94)with m = (mk),n = (nk),k = (kk), ℓ = (ℓk) ∈ Nn and Gmn,kℓ the two dimensional, massless, Eu
lidean LSZmatrix wave operators
G(σ)

mn;kℓ =

(
2
Ω2 + 1

θ
(m+ n+ 1) +

4Ω̃

θ
(n−m)

)
δmℓ δn,k

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (6.95)with Ω = Eθ/2 = Biθ/2 and Ω̃ = (2σ − 1)Ω. The 2n-dimensional, regularized LSZ a
tion is then given inthe usual form
SLSZ =

∑

m,n,k,ℓ∈Nn

φǫ
mnG

(ǫ,σ)
mn;kℓ φ

ǫ
ℓk

+
g

2πθ

∑

m,n,k,ℓ∈Nn

(
αφǫ

mnφ
ǫ
nk φ

ǫ
kℓφ

ǫ
ℓm + β φǫ

mnφ
ǫ
nkφ

ǫ
kℓ φ

ǫ
ℓm

)
. (6.96)Every other result of this 
hapter 
an now formally be generalized to higher dimensions by substitutingmulti-indi
es m,n, . . . ∈ Nn for usual one-dimensional indi
es m,n, . . . ∈ N.
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7 Aspe
ts of the LS-Covariant TheoriesIn this 
hapter we will treat several questions 
on
erning the LS-
ovariant models in Minkowski spa
etime,like the determination of the 
ausal propagator, LS-
ovarian
e at quantum level and unitarity. Problemati
for the propagator and the unitarity issue turns out to be the la
k of translation invarian
e, whi
h manifestsitself in an instability of the va
uum with respe
t to pair produ
tion. We review how the ordinary pro
edures,one is used to, have to be altered to take 
are of these features. In addition, the two di�erent possibilitiesto treat these models, the 
ontinuous and the matrix basis, will be 
ompared. We will �rst 
omment onthe 
orresponding propagators, whi
h one obtains by removing the ϑ-regularization. Afterwards we dis
usstheir appli
ability to Feynman diagrams in the 
ase Ω = 1. The question of how to implement LS-duality atquantum level is given in se
tion 7.3. The unitarity of the LS-
ovariant models will be dis
ussed in se
tion7.4.7.1 Causal PropagatorIt is a feature of all frequently 
onsidered physi
al theories on Minkowski spa
etime that there is more thanone propagator, that means a fun
tion (or distribution) ∆ whi
h solves the equation Dx∆(x,x′) = δ(x−x′)with Dx being the wave operator of the theory. Any two of these di�er by a solution of the equation of motion.It is therefore ne
essary to impose further 
onditions as to make the solution of this problem unique. Thismay be done by imposing boundary 
onditions, postulating a spe
tral representation or extending the waveoperator as to make the equation unique. We are mainly 
on
erned with the question whi
h propagatorsshow up in the generating fun
tionals (5.74) and (5.75). The free generating fun
tional Z0[J ] is de�ned asthe va
uum-to-va
uum amplitude
Z0[J ] = 〈Ω, out|Ω, in〉[J ] , (7.1)where |Ω, in〉 and 〈Ω, out| are the va
ua at time instan
es tin and tout of the quantum theory de�ned by

S0[ϕ] in presen
e of the sour
e J . Using S
hwinger's a
tion prin
iple, one 
an show that 
ausality implies
δ2 logZ0[J ]

δJ(x) δJ(y)

∣∣∣∣
J=0

=
〈0, out|T (φ̂(x)φ̂†(y))|0, in〉

〈0, out|0, in〉 , (7.2)where φ̂ is the �eld operator and |0, in〉 and 〈0, out| the in- and out- va
ua for J = 0, whi
h in the presen
e offurther intera
tions are supposed to be in the intera
tion pi
ture with respe
t to S0[ϕ]. Note that for theorieswhi
h allow spontaneous pair produ
tion, whi
h is the 
ase for the LS-
ovariant models we are 
onsidering,the in- and out- va
ua are in general not dual to ea
h other, thus |〈0, out|0, in〉| < 1 whi
h has to be takeninto a

ount. This is evident, sin
e 〈0, out|0, in〉 measures the va
uum persisten
e and is equal to 1 only ifno spontaneous pair produ
tion o

urs. The rhs is known as 
ausal propagator and will be denoted as i ∆c,where the imaginary unit has been fa
tored out for 
onvenien
e. Quite generally, for a Klein-Gordon �eld,whi
h may be free or moving in an external ba
kground whi
h preserves va
uum stability, the expression(7.2) may be evaluated as
i ∆c(x,x

′) = θ(x0 − x′ )
∑

n

φ(+)
n (x)φ (+)

n (x′)

+ θ(x′ 0 − x0)
∑

n

φ(−)
n (x)φ (−)

n (x′) (7.3)with (φ
(±)
n ) being a 
omplete set of solutions of the equation of motion with positive and negative frequen
y,respe
tively, and n being an index 
omprising the quantum numbers. One 
an 
he
k that (7.2) propagates63



7 Aspe
ts of the LS-Covariant Theoriesparti
les (positive frequen
y solutions) forward in time and anti-parti
les (negative frequen
y solutions)ba
kward. This is the imprint of 
ausality and lends the 
ausal propagator its name.The situation gets more 
ompli
ated if the ba
kground �eld spoils va
uum persisten
e. Cru
ial for the
anoni
al quantization s
heme and for equation (7.3) to be appli
able is the existen
e of a 
omplete set ofsolutions, whi
h allows for a distin
tion between positive or negative frequen
ies through all times. However,su
h a set of solutions only exists if we are dealing with a �stationary spa
etime�, whi
h says that thespa
etime allows for a global timelike Killing ve
tor �eld [DeW75℄. In our 
ase, there does not exist su
ha ve
tor �eld due to the la
k of time translation symmetry. The methods to be used have been developedin [Git77, FG81℄. Sin
e the asymptoti
 Hilbert spa
es in the remote past and future, provided they exist,are di�erent, we have two sets of solutions, denoted as (φn
(±))n and (φn(±))n and being the equivalent topositive/negative frequen
y solutions above in the in�nite future and past, respe
tively. The generalizationof the sum over solutions (7.3) then reads

i ∆c(x,x
′) = θ(x0 − x′ 0)

∑

m,n

φm
(+)(x)ω(m+|n+)φn(+)(x

′)

+ θ(x′ 0 − x0)
∑

m,n

φn(−)(x)ω(m−|n−)φm
(−)(x′) , (7.4)with ω(m±|n±) being the relative probability for a parti
le/anti-parti
le to be s
attered by va
uum (seealso se
tion 7.4). For a theory with a stable va
uum this is just δmn and in addition φ (±)

n = φn(±). Thispro
edure determines the propagator uniquely and is equal to the de�nition (7.2), but might at times bequite 
ompli
ated to perform, for whi
h it is desirable to have another method at hand.Su
h an equivalent method, whi
h will proves pro�table for us, is the eigenvalue representation. Let ϕn(x)be an orthonormal and 
omplete set of eigenfun
tions of the wave operator Dx with eigenvalues λn, i.e.
Dxϕn(x) = λnϕn(x) (7.5)with

∑

n

ϕn(x)ϕn(x′) = δ(x− x′) and ∫

x

ϕn(x)ϕm(x) = δnm . (7.6)Note that, 
ontrary to the φ(±)
n above, these eigenfun
tions may not solve the equations of motion. De
om-posing the propagator into these eigenfun
tions gives formally

∆(x,x′) =
∑

n

ϕn(x)λ−1
n ϕn(x′) , (7.7)however singularities at λn = 0 for any n pose problems to this de�nition, whi
h re�e
ts the fa
t of havingmore than one propagator for a single theory. Usually one modi�es the denominator by a small imaginarypart λn → λn + i ǫf(n) with small ǫ > 0 and f(n) some fun
tion su
h that

λn + i ǫf(n) 6= 0 , ∀n . (7.8)A propagator for Dx is �nally obtained by taking the limit ǫ → 0. Equivalently one 
an regularize theoperator Dx → D
(ǫ)
x with limǫ→0 D

(ǫ)
x = Dx and solve the equation

D
(ǫ)
x ∆(ǫ)(x,x′) = δ(x− x′) , (7.9)where limǫ→0+ ∆(ǫ)(x,x′) is a propagator of the original operator Dx. Hen
e any well-de�ned operator whi
his 
ontinuously 
onne
ted to the original operator and has no zero eigenvalue gives rise to a propagator for Dx.However, apart from the absen
e of zero eigenvalues of D(ǫ)

x , or equivalently 
ondition (7.8), the regularizationis arbitrary, and di�erent regularizations may lead to di�erent propagators. For example in the free Klein-Gordon 
ase f(k) = const. > 0 leads to the Feynman propagator, while f(k) = 2k0 yields the retardedpropagator. In general one 
annot be sure whether one got the 
ausal propagator unless one 
ompares itto the result obtained from (7.2). This is the obvious problem of the eigenvalue method, and it is still notsolved for the general 
ase of any propagator and any external �eld.64



7.1 Causal PropagatorFor the LSZ model the two di�erent regularized operators are
D

(ǫ)
x,disc = σ(K2

µ − µ2)ǫ + (1 − σ)(K̃2
µ − µ2)ǫ (7.10)

D
(ǫ)
x,cont = σK2

µ + (1 − σ)K̃2
µ − µ2 + i ǫ , (7.11)introdu
ed in se
tion 5.4. The question to whi
h propagator they lead in the limit ǫ→ 0 has been answeredfor the i ǫ-pres
ription for several related models. For the KG �eld moving in 
rossed or parallel uniformele
tri
 and magneti
 �elds, or in an ele
tri
 �eld with an additional plane wave, this method gives the 
ausalpropagator [Rit70, Rit78, BFS85℄. Sin
e an additional uniform, 
onstant magneti
 ba
kground should not
hange the pole stru
ture of the propagator, we do not doubt that the i ǫ-pres
ription will also give the 
ausalpropagator in the 
ase of a pure ele
tri
 �eld. In the next se
tion we will 
on�rm that the ϑ-regularization(7.10) gives the same propagator.7.1.1 Propagator from Matrix RegularizationThe equivalen
e of the propagators in the di�erent representations have to be 
he
ked by hand, whi
h iseasily done in the free 
ase. For generi
 ele
tromagneti
 ba
kgrounds this is still an open question, and inorder to make a 
omparison we have to restri
t to 
ases where the propagators are already known. Usingthe �sum over solutions method� (7.4), the 
ausal propagator for a s
alar �eld in four dimensions with a
onstant, uniform ele
tri
 �eld along one spa
e dire
tion has been 
al
ulated in [FGS91℄ (equation (6.2.40)):

∆c(x,x
′) =

eE

16π2
e i e

2x‖·E·x′
‖

∫ ∞

0

ds

s

1

sinh(sE)

× exp

{
− i sµ2 − i

2
eE(x‖ − x′

‖)
2 coth(seE) + i

(x⊥ − x′
⊥)2

4s

}
.

(7.12)Here we de�ned x = (x‖,x⊥) ∈ R4 with x⊥ denoting the two spa
e 
omponents perpendi
ular to the ele
tri
�eld and
x‖ ·E · x′

‖ := E(x‖)
µǫµν(x′‖)

ν , (7.13)where ǫµν is the two-dimensional Levi-Civita-tensor with ǫ01 = 1 and E > 0 the ele
tri
 �eld strength. Belowwe will start with this four-dimensional wave operator, where the ele
tri
 part is regularized as in (7.10),and 
al
ulate its (unique) propagator. For ǫ→ 0 we �nd 
oin
iden
e with (7.12) 
on�rming that this is the
ausal propagator. This result 
an easily be 
arried over to the two-dimensional 
ase 
on�rming that the
ϑ-regularization leads to 
ausality for the LSZ model at σ = 1. We 
onje
ture that this also holds for σ 6= 1.The 
al
ulations done here using the matrix basis are 
omparable simple, su
h that the matrix basis 
an beseen as a powerful 
omputational tool.We de�ne the map (·, ·)ϑ : R2 × R2 → C for ϑ ∈ [−π/2, π/2] by

(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M , (7.14)where (·, ·)M is the two dimensional Minkowskian and (·, ·)E the two dimensional Eu
lidean s
alar produ
t.In addition we de�ne the map ‖ · ‖ : R2 → C by
‖x‖2ϑ = (x,x)ϑ

= cos(ϑ)‖x‖E + i sin(ϑ)‖x‖M (7.15)with ‖ · ‖E the two dimensional Eu
lidean and ‖ · ‖M the two dimensional Minkowskian norm. For arbitrarytwo-dimensional ve
tors x,x′ ∈ R
2 we denote as above

x ·E · x′ = Exµǫµνx
′ν . (7.16)We need the following lemma 65



7 Aspe
ts of the LS-Covariant TheoriesLemma 7.1. Let x ∈ R2 and a ∈ C− {0}. The following identity holds
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π
exp

{
−E

2
‖x− x′‖2ϑ + (a− 1)E(x,x′)ϑ − a i x ·E · x′

}

× Lm

(
E‖x− x′‖2ϑ − a(1− a−1)2E(x,x′)ϑ + (a− a−1) i x ·E · x′) .(7.17)Proof: is given in appendix G.An immediate 
orollary isCorollary 7.2. The following relations hold

∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x)an =
E

π
e (a−1)E(x,x′)ϑam Lm

(
−E (a− 1)2

a
‖x‖2ϑ

) (7.18)
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′) =
E

π
exp

{
−E

2
‖x− x′‖2ϑ − i x ·E · x′

}
Lm

(
E‖x− x′‖2ϑ

) (7.19)
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x) =
E

π
. (7.20)Now we determine the propagator of the Klein-Gordon �eld in four dimensions exposed to a 
onstant ele
tri
�eld, where the wave operator parallel to the ele
tri
 �eld is given by the two-dimensional, regularizedoperator (P2

µ − µ2
)
ǫ
. The 
oordinate ve
tor is again written as x = (x‖,x⊥) with x⊥ being the 
omponentsperpendi
ular to the ele
tri
 �eld, and analogously for the momenta p = (p‖,p⊥) and derivatives ∂µ =

(∂‖, ∂⊥).Theorem 7.3. The propagator of the regularized wave operator D
(ǫ)
x =

(P2
µ − µ2

)
ǫ
+( i ∂⊥)2 
oin
ides in thelimit ǫ→ 0 with the 
ausal propagator (7.12).Proof: The inverse of D

(ǫ)
x is given by

∆(ǫ)(x,x′) = 〈x| 1

(P2
µ − µ2)ǫ + ( i ∂⊥)2

|x′〉 , (7.21)where (P2
µ − µ2)ǫ + ( i ∂⊥)2 = e i ǫP2(π/2− ǫ)− e− i ǫµ2 + ( i ∂⊥)2 with ǫ > 0 ful�lls the eigenvalue equation

[(P2
µ − µ2

)
ǫ
+ ( i ∂⊥)2

]
f (Eϑ)

mn (x‖) e− i p⊥·x⊥

=

[
i 4E

(
m+

1

2

)
+ p⊥ − e− i ǫµ2

]
f (Eϑ)

mn (x‖) e− i p⊥·x⊥ (7.22)with ϑ = π/2− ǫ. We simply write µ2 for e− i ǫµ2, keeping in mind that µ2 is slightly imaginary. Using theidentity
1

a
= − i

∫ ∞

0

ds e i sa , Im(a) > 0 , (7.23)we obtain
〈x|
(

1P2
µ − µ2

)

ǫ

|x′〉 = − i

∫ ∞

0

ds

∫
d2p⊥
(2π)2

∞∑

m,n=0

f (Eϑ)
mn (x‖)f

(Eϑ)
nm (x′

‖)

× e− i sµ2

e−s4E(m+ 1
2 ) e i sp2

⊥− i (x⊥−x′
⊥)·p⊥ . (7.24)66



7.1 Causal PropagatorThe sum over n is given by relation (7.19), leading to
− i

E

π
e− i x‖·E·x′

‖−E
2 ‖x‖−x′

‖‖2
ϑ

∫ ∞

0

ds

∫
d2p⊥
(2π)2

∞∑

m=0

Lm

(
E‖x‖ − x′

‖‖2ϑ
)

× e− i sµ2

e−s4E(m+ 1
2 ) e i sp2

⊥− i (x⊥−x′
⊥)·p⊥ , (7.25)and the resulting sum over m follows from equation (48.4.1) of [Han75℄:

e−y/2
∞∑

m=0

Lm(y)tm = e−y/2 1

1− t exp

{
yt

t− 1

}

=
1

1− t exp

{
y

2

t1/2 + t−1/2

t1/2 − t−1/2

}
, |t| < 1 , (7.26)whi
h yields

− i
E

2π
e− i x‖·E·x′

‖

∫ ∞

0

ds
1

sinh(2sE)

× exp

{
− i sµ2 − 1

2
Eϑ‖x‖ + x′

‖‖2ϑ coth(2sE)

}∫
d2p⊥
(2π)2

e i sp2
⊥− i (x⊥−x′

⊥)·p⊥ .

(7.27)The integration over the momenta 
an be done using
∫

dp e i sp2− i (x−y)p =

√
iπ

s
e i (x−y)2

4s (7.28)yielding
E

8π2
e− i x‖·E·x′

‖

∫ ∞

0

ds

s

1

sinh(s2E)

× exp

{
− i sµ2 − 1

2
Eϑ‖x‖ − x′

‖‖2ϑ coth(2sE) + i
(x⊥ − x′

⊥)2

4s

}
, (7.29)where the s
alar produ
ts are understood to be Eu
lidean for the x⊥ 
omponents. Taking the limit ǫ → 0,thus ϑ→ π/2, and substituting E → eE/2 to 
onform to the 
onventions of [FGS91℄, this result is identi
alto equation (7.12) and proves the lemma.The eigenfun
tions for the full regularized operator D

(ǫ)
x fa
torize into 
omponents perpendi
ular to theele
tri
 �eld and the eigenfun
tions of (P2

µ − µ2)ǫ. Sin
e the eigenvalues of the perpendi
ular momenta donot produ
e new singularities, we 
an negle
t them in this 
al
ulation and also in the 
al
ulation leading to(7.12). Again they perfe
tly agree, extending this result to the two dimensional LSZ model at σ = 1. Wesuspe
t that the ϑ-regularization leads to the 
ausal propagators for σ 6= 1, too.Note that the S
hwinger parameter introdu
ed in equation (7.23) only allows for the regularizations ϑ > 0and µ2 − i ǫ be
ause of the 
ondition Im(a) > 0, where the latter is usually asso
iated to the Feynmanboundary 
ondition on the propagator. The other 
hoi
es ϑ < 0 and µ2 + i ǫ 
an be applied using
1

a
= i

∫ 0

−∞
ds e i sa , for Im(a) < 0 . (7.30)The regularization µ2 + i ǫ is known as Dyson boundary 
ondition, whi
h leads to an anti-
ausal propagator,where anti-parti
les travel forward and parti
les ba
kward in time. This suggests the 
on
lusion that theregularization ϑ < 0 leads to the Dyson propagator.The regularization of the mass µ2 → e− i ǫµ2 is a
tually irrelevant for the analysis above. Its only fun
tionis to provide a 
ontinuous relation of the Minkowskian and the Eu
lidean wave operators with help ofparameter ϑ alone, without the need to keep tra
e of additional minus signs in front of the mass term. Thismeans that the interpretation in terms Feynman/Dyson propagator for the 
ases ϑ→ ϑ± π/2 still holds byregularizing just the operator P2

µ . 67



7 Aspe
ts of the LS-Covariant TheoriesThe derivation of the propagator with help matrix basis may be 
ompared to the 
al
ulation with othermethods, su
h as S
hwinger's derivation in his proper time formalism [S
h51℄, the �sum over solutionsmethod� [FGS91℄ or the eigenvalue method using the 
ontinuous basis [Rit78℄. Compared to the latter thematrix basis involves only polynomials and sums instead of the 
ompli
ated integral expressions and thusbrings along a strong simpli�
ation. As a further example how the matrix basis 
an be used serves theone-loop e�e
tive a
tion of the same model as above. It has been 
al
ulated in appendix F. It is proposedthat going beyond the 
onstant �eld 
ase might be possible using the ϑ-regularization and the matrix basis.This might help to probe QED in the non-perturbative regime (see e.g. [Rin01, HI09, Dun09, ILM10℄).We 
on
lude that the matrix basis may serve as a 
omputational tool to simplify otherwise 
umbersome
al
ulations.7.2 Continuous versus Matrix BasisWe now dire
tly 
ompare the 
ontinuous basis to the dis
rete matrix basis. The two-dimensional GW modelin 
ontinuous basis with φ⋆3 intera
tion term at the self-dual point has been investigated in [Zah10℄. Wewill give a short exposition of the aspe
ts of this work with relevan
e for us, with its problems and possiblesolutions. The notation of [Zah10℄ 
ompared to ours is su
h that θ = λ2
nc and E = 2/λ2. Its perturbationtheory 
an be determined analogously to the matrix representation in the last se
tion, with a di�erentintera
tion vertex and propagator as demonstrated below. In 1+1 dimensions the 
ontinuous basis are theWigner transformed tensor produ
ts

χkℓ
st (x) = W

[
|χk

s〉〈χℓ
t|
]
(x) (7.31)with s, t = ± and k, ℓ ∈ R. They 
an be represented in terms of 
on�uent hypergeometri
 fun
tions, buttheir exa
t form is irrelevant for the following. They satisfyP2

µ χ
kℓ
st (x) = 4Ek χkℓ

st (x)P̃2
µ χ

kℓ
st (x) = 4Eℓχkℓ

st (x)
(7.32)and obey the proje
tor property

χkℓ
st ⋆ χ

k′ℓ′

s′t′ = δts′δ(k′ − ℓ)χkℓ′

st′ . (7.33)The real �elds expanded in terms of χkℓ
st read

φ(x) =
∑

st

∫
dk dℓ χkℓ

st (x)φℓk
ts (7.34)with

φts
ℓk =

∫
d2xχℓk

ts (x) ⋆ φ(x) . (7.35)The GW wave operator takes the form
(

1

2
P2

µ +
1

2
P̃2

µ − µ2

)
kℓ;ℓ′s′

st;t′s′ = (2E(k + ℓ)− µ2)δss′δtt′δ(k − k′)δ(ℓ − ℓ′) . (7.36)Due to zero eigenvalues this operator 
an not simply be inverted. In [Zah10℄ this problem is solved byadding the term i ǫ σst(k, ℓ) with some 
onstant ǫ > 0 and a sign fun
tion σst(k, ℓ). Depending on theexpli
it fun
tional behavior of the sign fun
tion one gets di�erent propagators. This fun
tion will be leftundetermined for the time being su
h that the results may be 
ompared with di�erent propagators at theend. The double line notation is used with the propagator given by
ks

ℓt

k′s′
ℓ′t′

=
−1

2E(k+ℓ)−µ2+ i ǫ σst(k,ℓ)
δ(k − k′)δ(ℓ − ℓ′)δss′δtt′and the vertex given by68



7.3 LS-Duality at Quantum Level
ks

ℓ′t′

k′s′
ju

ℓt
j′u′

= i g δss′δtt′δuu′δ(k − k′)δ(ℓ− ℓ′)δ(j − j′) ,with 
oupling 
onstant g. It follows that the planar �sh graph
ℓt

ks

ℓ′t′

k′s′

is given by
g2δ(k − k′)δ(ℓ − ℓ′)δss′δtt′

×
∑

u

∫
dj dj′

1

4E(k + j)− µ2 + i ǫ σsu(k, j)

1

4E(j′ + ℓ)− µ2 + i ǫ σtu(j′, ℓ)
[δ(j − j′)]2 . (7.37)This expression is divergent due to the squared δ-fun
tion 
oming from the undetermined loop integration.It is no UV divergen
e in the usual sense, as it o

urs before performing loop integrals, and shows up inevery φ⋆n theory with n ≥ 3 for graphs with an unbroken internal line. A possible 
ure for this divergen
eis a box regularization. Instead of using the i ǫ regularization one puts the system into a box with �nitevolume and imposes periodi
 boundary 
onditions. Instead of a 
ontinuous spe
trum we get a dis
reteone leading to Krone
ker δ-fun
tions and sums instead of Dira
 δ-fun
tions and integrals. Obviously thispro
edure renders this diagram �nite. However, the box regularization is an IR 
uto�, whi
h is likely todestroy the LS-
ovarian
e at quantum level unless one imposes in addition a suitable UV-
uto�. In 
ontrast,the regularized matrix approa
h has the same e�e
t on the vertex fun
tions as the box regularization, butat the same time keeps the model LS-
ovariant, as will be demonstrated in the next se
tion.7.3 LS-Duality at Quantum LevelThe ϑ-regularization allows us to regularize the LS-
ovariant theories su
h that the LS-duality is preservedat quantum level. This is done in the same spirit as in se
tion 4.5 with the ϑ-regularization being a newingredient. In the following this will be demonstrated for the two-dimensional GW model. The general LSZ
ase is exa
tly the same.An important question is, how the ϑ-regularization a�e
ts the behavior under LS-duality. The regularizedpropagator with ϑ = π/2− ǫ > 0 reads

∆(ǫ)(x,x′) = 〈x|
(

1

2
P2

µ +
1

2
P̃2

µ − µ2

)−1

ǫ

|x′〉

=
∑

m,n

f
(Eϑ)
mn (x)f

(Eϑ)
nm (x′)

2 iE (m+ n+ 1)− e− i ǫµ2
. (7.38)In appendix H we show that the Fourier transformation of matrix fun
tions is given by

F [f (Eϑ)
mn ](k) = f (1/Eϑ)

nm (k) =
(− i )m−n

E
f (Eϑ)

mn (k̃) (7.39)69



7 Aspe
ts of the LS-Covariant Theorieswith k̃ = E−1 · k = −E−1(k1, k0).1 Sin
e
F [(P2(ϑ) + P̃2(ϑ))f (Eϑ)

mn ](k) = 4Eϑ (m+ n+ 1)F [f (Eϑ)
mn ](k) , (7.40)we �nd that Fourier transformation relates the propagator in position spa
e to the momentum spa
e prop-agator even in the regularized 
ase:

∆̂(ǫ)(k,k′) =
1

E2
∆(ǫ)(k̃; k̃

′
) . (7.41)Analogously to the Eu
lidean 
ase the UV/IR-regularization now amounts to 
utting o� the sums at some�nite N by modifying the regularized position spa
e propagator as

∆
(ǫ)
Λ (x,x′) = 〈x|

(
1

2
P2

µ +
1

2
P̃2

µ − µ2

)−1

ǫ

L
(
Λ−2|P2(ϑ) + P̃2(ϑ)|

)
|x′〉 , (7.42)where Λ ∈ R+ is a 
ut-o� parameter and L a smooth 
ut-o� fun
tion whi
h is monotoni
ally de
reasing,with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. We adjust the matrix fun
tions as to diagonalize the LSZpropagator

∆
(ǫ)
Λ,mn;kℓ =

∫

x

f ǫ
mn(x)

(
1

2
P2

µ +
1

2
P̃2

µ − µ2

)−1

ǫ

L
(
Λ−2|P2(ϑ) + P̃2(ϑ)|

)
f ǫ

kℓ(x)

=
δmℓ δnk

2 iE(m+ n+ 1)− e− i ǫµ2
L
(
Λ−24E(m+ n+ 1)

)
. (7.43)The intera
tion verti
es in matrix representation are now quite 
ompli
ated, being proportional to

∫

x

(
f ǫ

m1n1
⋆θ f

ǫ
m2n2

⋆θ f
ǫ
m3n3

⋆θ f
ǫ
m4n4

)
(x) (7.44)with θ 6= 2/E in general. Sin
e for ǫ > 0 the f ǫ

mn are in Sα
α (R2) with α ≥ 1/2, whi
h is 
losed with respe
tto the star-produ
t, the intera
tion vertex (7.44) is well-de�ned. Feynman diagrams 
an now be produ
edby suitable derivatives with respe
t to the external sour
es involving the regularized propagator. Denoting

∆
(ǫ)
Λ,mn;kℓ = δmk δnℓC

(ǫ)
Λ (m,n) , (7.45)they have the s
hemati
al form

∑

n1,m1,...,nK ,mK=0

K∏

k=1

C
(ǫ)
Λ (mk, nk)(· · · ) , (7.46)where (· · · ) denotes the 
ontributions from the non
ommutative intera
tion verti
es and 
ombinatorial fa
-tors. Sin
e the propagator is nonzero only if 4E(mk + nk + 1) < 2Λ, whi
h at �nite Λ is true solely for a�nite number of distin
t values of (m,n) ∈ N2

0, every Feynman amplitude is represented by a �nite sum andthus 
onstitutes well-de�ned Green fun
tions in the matrix basis 
ir
umventing the problem of the right testfun
tion spa
e for the time being. By multiplying these expression with f ǫ
mini

(xi) for i = 1, . . . ,M and Mthe number of external verti
es, we get ba
k the position spa
e Green fun
tions by summing over all mi, ni.They are also well-de�ned, sin
e they are build by �nite sums of well-de�ned obje
ts. This establishes thequantum duality in Minkowski spa
etime for the 
ase ǫ > 0.To prove the duality at ǫ = 0 in the same manner as above, one has to ensure that the intera
tion vertexaway from the dual point is well-de�ned, whi
h is not obviously true. We 
on
lude that, to be on the safeside, the ϑ-regularization should be kept unless the matrix 
uto� has been removed and all summations andintegrations have been performed.1Note that there is a subtle di�eren
e between the Eu
lidean and Minkowskian 
ase. Contrary to the ordinary Landau
ase in Eu
lidean spa
e, the (not yet res
aled) Fourier transformed generalized Landau fun
tions have swapped indi
esand an inverted regularization parameter ϑ → −ϑ. The former is equivalent to an inversion of time (or spa
e) while thelatter 
orresponds to an inter
hange of parti
les and anti-parti
les. This follows from the results of se
tion 7.1.1, where theregularization ϑ > 0 has been identi�ed with the Feynman boundary 
ondition and ϑ < 0 with the Dyson boundary 
ondition.The spe
i�
 res
aling in both 
ases, whi
h are formally identi
al but di�er by the metri
 whi
h is used, 
ompensates for thisdi�eren
e.70



7.4 UnitarityAs is usually the 
ase, the limit Λ → ∞ may still be ill-de�ned and may require a renormalization. Inaddition, the results from se
tion 6.2 are not able to ex
lude that even at �nite ǫ > 0 there might be extradivergen
es at Λ → ∞ if we work in the matrix basis, stemming from the generalized matrix basis itself.This, however, does not a�e
t the LS-
ovarian
e of the theory, whi
h has been a
hieved for the Green'sfun
tions in position spa
e through a regularization of the propagators in equation (7.42). This result isindependent of the matrix basis.7.4 UnitarityThe unitarity of the s
attering matrix is one of the main pillars of 
ommutative quantum �eld theory, inwhi
h statements as analyti
ity, mi
ros
opi
 
ausality and unitarity are roughly inter
hangeable. These
on
epts are expe
ted to be disentangled in NCQFT due to the la
k of lo
ality and Lorentz invarian
e.In [GM00℄ new singularities in the 
orrelation fun
tions of the usual φ⋆3 and φ⋆4-theories in the standardperturbative setup have been observed, whi
h imply a violation of the 
utting rules and thus the breakdownof unitarity. The question arises what happens to the analyti
al stru
ture, if the NCQFT is put into aba
kground ele
tromagneti
 �eld, making the theory LS-duality 
ovariant? The interesting new features ofthe LS-
ovariant models in Minkowski spa
etime are the duality between Θ and E and the va
uum instability.Thus, there are new singularities due to pair 
reation even to zeroth order in the 
oupling g.We shortly review the main aspe
ts of unitarity starting from the Hamiltonian formalism in 
ommutativequantum �eld theory with stable va
uum. For simpli
ity we 
onsider a theory with one spe
ies of realbosons without external �eld. In a s
attering experiment, an initial state |i, in〉 is assumed to 
onsist of freeparti
les in the remote past. The state evolves in time in the presen
e of some intera
tion, while in the farfuture the dete
tors are set up to dete
t a state |f, out〉, 
onsisting of free parti
les of de�nite momenta andmaybe other quantum numbers. It will thereby assumed that the asymptoti
 initial and �nal Hilbert spa
esmay be 
onstru
ted as free parti
le Fo
k spa
es, with ladder operators ap(in), a†p(in) and ap(out), a†p(out)
orresponding to parti
les with de�nite momenta a
ting on unique va
ua |0, in〉 and |0, out〉, respe
tively.Sin
e the theory has a stable va
uum, these two spa
es are equivalent with |0, in〉 = |0, out〉 up to a phase.In the following we will mainly work in the intera
tion pi
ture. For those few times we need to swit
h tothe the Heisenberg pi
ture we will designate the states with a subs
ript H . In the intera
tion pi
ture thetwo Hilbert spa
es are related by a unitary operator, the S-matrix operator Ŝ with
Ŝ†ap(in)Ŝ = ap(out) , Ŝ†a†p(in)Ŝ = a†p(out)and

Ŝ|p1, . . . ,pn; in〉 = |p1, . . . ,pn; out〉
〈p1, . . . ,pn; out|Ŝ = 〈p1, . . . ,pn; in|

(7.47)up to an irrelevant phase. The probability of the pro
ess to take pla
e is given by the S-matrix element
Sfi = H〈f, out|i, in〉H = 〈f, in|Ŝ|i, in〉 . (7.48)

Sfi is related to the n-point fun
tions in a spe
i�
 way, pres
ribed by the LSZ redu
tion formula. As anexample we 
onsider the s
attering pro
ess k1,k2 → p1,p2, where the initial and �nal states have de�nitemomenta pi and ki. The 
orresponding S-matrix element reads
H〈p1,p2|k1,k2〉H = dis
onne
ted terms

+

(
i√
Z

)4 ∫

y1

∫

y2

∫

x1

∫

x2

u∗p1
(y1)u

∗
p2

(y2)
−−−−−−−→
(∂2

y1
+m2)

−−−−−−−→
(∂2

y2
+m2)

× G(4)(x1,x2,y1,y2)
←−−−−−−−
(∂2

x1
+m2)

←−−−−−−−
(∂2

x2
+m2)uk1(x1)uk2(x2) (7.49)where m is the physi
al mass and Z the �eld strength renormalization. The eigenstates up(x) and u∗p(x) areKlein-Gordon in-states and out-states, respe
tively, with de�nite momentum p, energy ωp and

up(x) =
1√

(2π)D2ωp

e− i p·x , u∗p(x) =
1√

(2π)D2ωp

e + i p·x . (7.50)71



7 Aspe
ts of the LS-Covariant TheoriesThe four-point fun
tion G(4) 
an be expressed in the intera
tion pi
ture as
G(4)(x1,x2,y1,y2) =

〈0|T (Ŝ φ̂(x1)φ̂(x2)φ̂(y1)φ̂(y2))|0〉
〈0|S|0〉 (7.51)with φ̂ the �eld operators in the intera
tion pi
ture and T the time ordering operator. The S-matrix operator
an be written as

Ŝ = T exp

(
− i

∫
dt ĤI(t)

) (7.52)with ĤI(t) being the intera
tion Hamiltonian in the intera
tion pi
ture. The perturbative expansion ofthe S-matrix operator (7.52) plus Wi
k's 
ontra
tion theorem leads to a perturbative evaluation of thisexpression in terms of Feynman diagrams.Note that the n-point fun
tion does not know about whi
h parti
le is in
oming and whi
h is outgoing.This designation is imposed by proje
ting onto the respe
tive eigenfun
tions, whi
h in the Klein-Gordon
ase amounts to �xing the signs of the external momenta. At this step pair 
reating pro
esses are ex
ludedthrough δ-fun
tions 
aused by translation invarian
e. Dis
onne
ted va
uum graphs fa
torize from all graphsinto a phase fa
tor whi
h is identi
al to 〈0|S|0〉 and thus get 
an
eled by the normalization fa
tor of the
n-point fun
tion. Self-energy subgraphs 
onne
ted to the external propagators, like the tadpole or the �sh-graph, simply turns the free external propagators into the full �intera
tion propagators� with shifted masspole and alternated residue. This 
orresponds to a mass and �eld strength renormalization. This has beentaken into a

ount already in (7.49) by usage the physi
al mass m and by the insertion a fa
tor Z−1/2 forea
h external propagator. In Fourier spa
e the probability amplitude is proportional to

(p2
1 −m2)(p2

2 −m2)(k2
1 −m2)(k2

2 −m2)Ĝ(4)(p1,p2,−k1,−k2) , (7.53)with Ĝ(4) being the Fourier transformed four-point fun
tion. The momenta ki and pi are �on mass-shell� andwould for
e the whole expression to vanish, if the n-point fun
tion had no poles at p2
1 = p2

2 = k2
1 = k2

2 = m2.One 
an show that this is not the 
ase and the fa
tors 
an
el exa
tly the full intera
ting external propagatorof ea
h diagram, whi
h are now 
alled amputated diagrams. One disregards the 
ase of no a
tual s
atteringby splitting up the T -matrix
〈f |Ŝ|i〉 = 〈f |i〉 − i 〈f |T̂ |i〉 , (7.54)where for translation invariant theories 〈f |T̂ |i〉 is proportional to an overall δ-fun
tion imposing energy-momentum 
onservation. In summary, the S-matrix elements are given by all 
onne
ted and amputatedFeynman diagrams, whi
h in turn may be evaluated in the usual way using Feynman rules.Unitarity of the S-matrix now formally reads

ŜŜ† = Ŝ†Ŝ = 1 (7.55)and implies relations between di�erent transition probabilities. Sandwi
hing this relation between in- andout-states with i = f and inserting a 
omplete set of asymptoti
 states |n〉, we �nd
2Im〈i|T̂ |i〉 = −

∑

n

|〈n|T̂ |i〉|2 , (7.56)whi
h is known as opti
al theorem. Veri�
ation of relation (7.56) for single pro
esses |i〉 is thus a test for theunitarity of the theory. The usual approa
h to verify (7.56) is to use the 
utting rules to the 
orrespondingFeynman diagrams, whi
h is as follows. A given graph 
onsists of 
ombinations of Feynman propagators
(p2 −m2 + i ǫ)−1 and 
onstant verti
es. It possess an imaginary part be
ause of

lim
ǫ→∞

1

x+ i ǫ
= P

1

x
− iπδ(x) . (7.57)The exa
t value of the imaginary part of a given diagram may be obtained as follows: drawing lines throughinternal propagators su
h that the Feynman diagram splits up into two pie
es, followed by a repla
ement ofea
h 
ut propagator (p2 −m2 + i ǫ)−1 through −2π i δ(p2 −m2). This should be done in all possible ways,where the imaginary part of the original graph is the sum of all 
ontributions 
oming from the 
ut diagrams.72



7.4 UnitarityIn [GM00℄, Gomis and Mehen 
he
ked the 
utting rules for the two point fun
tion in φ⋆3-theory andfour-point fun
tion in φ⋆4-theories to se
ond order in perturbation theory. Sin
e the theories are still trans-lation invariant and the propagators are identi
al to the 
ommutative 
ase, the above pro
edure to �nd theimaginary part of a given Feynman diagram also applies in non
ommutative QFT. However, it was foundthat the diagrams have additional bran
h 
uts along
p ◦ p = −pµΘµνΘνσp

σ ≤ 0 , (7.58)whi
h are a

essible for time/spa
e non
ommutative theories, and in these 
ases 
ause a violation of unitarity.They resemble parti
le-produ
tion 
uts. As has already been pointed out at the end of se
tion 2.2.3, thereason for this 
uriosity is the wrong appli
ation of Wi
k's theorem in order to redu
e the determinationof n-point fun
tions to the evaluation of Feynman diagrams, whi
h is not allowed sin
e time derivativesand time ordering do not 
ommute [BDFP02, Bah04℄. For the two-point fun
tion at se
ond order of theperturbative expansion in a φ⋆3-theory the non-unitarity has been spotted to the nonvanishing of the terms
∆ret ⋆∆av + ∆av ⋆∆ret 6= 0 (7.59)for time/spa
e-non
ommutativity, whi
h in turn is due to θ ⋆ θ 6= θ. Here ∆av and ∆ret are the advan
edand retarded propagators, respe
tively. The question arises, if it is possible to retain unitarity in some way,but at the same time keep the Feynman diagrams as the main building blo
ks of the perturbative expansion.In [AGBZ01℄ the singularities have been further investigated and assigned to the produ
tion of ta
hyoni
states. By adding new states to the Hilbert spa
e the 
utting rules are formally ful�lled, however, unitarityis still absent due to the presen
e of ta
hyoni
 states in the asymptoti
 Hilbert spa
e. What happens in theLS-
ovariant 
ase?To give an answer, we �rst des
ribe the situation for 
ommutative theories where pair 
reation is allowed.A typi
al example is the usual QED in a va
uum stability violating external �eld. The following expositionis quite general and applies to 
omplex s
alars and spinors. We will leave aside the te
hni
al subtleties andgive only a sket
hy overview of the general pro
eeding in these 
ases. For an extensive overview see [FGS91℄.We start with an heuristi
 argument, assuming the asymptoti
 Hilbert spa
es may be 
onstru
ted as beforeas Fo
k spa
es. Due to the pairs whi
h are 
reated from the va
uum in the 
ourse of time, the probabilityfor an initial va
uum to stay the va
uum is not equal to one:
|H〈0, out|0, in〉H | < 1 . (7.60)Going to the intera
tion pi
ture, where the �eld operators now ful�ll the equation of motion of the parti
lesmoving in the external �eld, the va
uum-to-va
uum probability is given by

|H〈0, out|0, in〉H| = |〈0, out|Ŝ|0, in〉| < 1 (7.61)with Ŝ the S-matrix operator (7.52). We follow that in 
ontrast to the relations (7.47) of the ordinary 
ase,
Ŝ|0, in〉 6= |0, out〉 and 〈0, out|Ŝ 6= 〈0, in|. The S-matrix element for an arbitrary pro
ess |i, in〉 → |f, out〉 isde�ned similarly by

Sfi = H〈f, out|i, in〉H = 〈f, out|Ŝ|i, in〉 (7.62)where we �nd 
ontrary to (7.48) again an out-state to the left of the S-matrix operator. Thus the 
orrelationfun
tion 
an not be obtained by a redu
tion to normal form relative to one va
uum, but demands a redu
tionto a generalized normal form relative to the two va
ua 〈0, out| and |0, in〉. How to do this will be sket
hednow.On the level of solutions of the equation of motion, pair produ
tion manifests itself in an inevitable mixingof positive and negative frequen
ies. This means that solutions whi
h have de�nite positive or negativefrequen
y throughout all times are no longer available. Sin
e those are ne
essary for the ordinary 
anoni
alquantization s
heme to apply one pro
eeds as follows [Git77℄. One 
onstru
ts two 
omplete and orthog-onal sets of solutions of the energy eigenvalue equation, one at ea
h of the two �nite time instan
es tinand tout. At these time instan
es, these sets 
an be split into positive and negative frequen
y solutionsand 
anoni
al quantization of the �elds applies as usual by quantizing the positive/negative energy solu-tions in terms of ladder operators, whi
h a
t on the respe
tive Fo
k va
ua. The limits tin → −∞ and
tout → ∞ are taken afterwards, su
h that the solutions remain their 
hara
ter as positive/negative energy73



7 Aspe
ts of the LS-Covariant Theoriessolutions and the relations whi
h 
hara
terize pair produ
tion pro
esses (equations (7.64)-(7.71) below) re-main well-de�ned.2 The va
ua |0, in〉 and |0, out〉 now di�er from ea
h other, as well as the ladder operators
an(in), a†n(in), bn(in), b†n(in) representing parti
les/antiparti
les of de�nite momenta at tin whi
h are dif-ferent to an(out), a†n(out), bn(out), b†n(out) representing parti
les/antiparti
les of de�nite momenta at tout.The index n thereby 
ompa
tly designates all the quantum numbers as momentum and spin. The usual
ommutation relations hold among the in-operators and among the out-operators, as well as

an(in)|0, in〉 = bn(in)|0, in〉 = 0

an(out)|0, out〉 = bn(out)|0, out〉 = 0 .
(7.63)for all n. The mixing of frequen
ies imply relations among the ladder operators at di�erent times

am(in) =
∑

n

G (+|+)mn an(out) +
∑

n

G
(
+|−

)
mn

b†n(out) , (7.64)
bm(in) =

∑

n

G (+|−)mn a
†
n(out) +

∑

n

G
(−|−

)
mn

bn(out) , (7.65)
am(out) =

∑

n

G (+|+)mn an(in) +
∑

n

G
(
+|−

)
mn

b†n(in) , (7.66)
bm(out) =

∑
G (+|−)mn a

†
n(in) +

∑

n

G
(
−|−

)
mn

bn(in) , (7.67)where the Bogoliubov-
oe�
ients G(·) are a measure for parti
le produ
tion. A stable va
uum thus implies
G (±|∓) = G (±|∓) = 0 with all others being equal to unity. A generalized Wi
k theorem with respe
tto 〈0, out| and |0, in〉 
an be realized by expressing all operators in terms of an(in), bn(in), a†n(out), b†n(out)alone. The pro
edure is then to pull all 
reation operators to the left of the annihilation operators su
h thatthe relations (7.63) apply as in the ordinary 
ase. The o

urring generalized 
ontra
tions may be obtainedby exploiting the usual 
ommutation relations and equations (7.64)-(7.67):

am(out)a†n(in) = G−1 (+|+)mn := ω(m+|n+) (7.68)
bm(out)b†n(in) = G−1 (−|−)mn := ω(m−|n−) (7.69)
am(out)bn(out) =

[∑
k G

−1 (+|+)mk G (+|−)kn

]
mn

:= ω(m+n−|0) (7.70)
b†n(in)a†n(in) =

[∑
k G (−|+)mk G

−1 (+|+)kn

]
mn

:= ω(0|m−n+) (7.71)While ω(m+|n+) and ω(m−|n−) are the relative probabilities of parti
les and anti-parti
les to be s
atteredby the external �eld (
ompare equation (7.4) for the 
ausal propagator), the quantities ω(m+n−|0) and
ω(0|m−n+) measure the relative probabilities for pair 
reation and pair annihilation in the va
uum.By expressing the �eld operators φ̂ in terms of the ladder operators, the S-matrix element

Sfi = 〈f, out|Ŝ|i, in〉 (7.72)
an be now be 
al
ulated using the generalized Wi
k 
ontra
tions. The matrix element may be obtainedas in equation (7.49), by substituting the Klein-Gordon operators by the wave operators of the modeland up(x) and u∗p(x) by the new in- and out-states of de�nite momenta. The S-matrix element is thenthe amputated 
orrelation fun
tion proje
ted on these initial and �nal momentum states. Rearranging all
reation operators to the left of the annihilation operators, the 
orrelation fun
tion 
an be expressed in termsof the usual Feynman diagrams with the 
ausal propagator given by
i ∆c(x,y) =

〈0, out|T φ̂(x)φ̂†(y)|0, in〉
〈0, out|0, in〉 , (7.73)whi
h may be 
al
ulated by one of the methods outlined in se
tion 7.1. Sfi is still a sum of a unit matrixand a T -matrix, where the overall δ-fun
tion in front of the s
attering part of (7.72) is absent due to thela
k of energy-momentum 
onservation. New transition 
hannels must be taken into a

ount, 
orrespondingto pairs 
reated from the va
uum.2Conditions on the solutions su
h that the Fo
k spa
es exist may be found in [Git77℄.74



7.4 UnitarityApart from this, the usual 
utting rules no longer hold. Demanding unitarity of the S-matrix as in equation(7.54), we �nd the generalization of the opti
al theorem
2Im〈i, in|T̂ |i, in〉 = −

∑

n

|〈n, out|T̂ |i, in〉|2 . (7.74)The 
ontra
tion s
heme dis
ussed above leads to the usual Feynman diagrams on the rhs with additionalpair produ
tion diagrams. However, on the lhs one has diagrams involving the propagator
i ∆in

c (x,y) = 〈0, in|T φ̂(x)φ̂†(y)|0, in〉 (7.75)instead of the Feynman propagator. These two propagators do not 
oin
ide in presen
e of an instableva
uum. In order to 
he
k unitarity of the LS-
ovariant theories, one has to �nd a relation between ∆in
c and

∆c. Quite generally, by de
omposing the state 〈0, in| in a 
omplete set of out-states one �nds
∆in

c (x,y) = ∆c(x,y) + ∆a(x,y) , (7.76)
∆a(x,y) = − i

∑

mn

ω(m−n+|0)∗〈0, out|am(out)bn(out)T φ̂(x)φ̂†(x)|0, in〉 , (7.77)where ∆a is a solution of the equation of motion. It should be noted that the usage of the in-propagator
an not be 
ir
umvented by 
onsidering 〈i, out| instead of 〈i, in| in equation (7.74). This would lead to therelation
i 〈i, out|(T † − T )|i, in〉 = −

∑

n

〈0, out|T |n, in〉〈n, in|T †|0, in〉 (7.78)
= −

∑

n

〈0, out|T |n, out〉〈n, out|T †|0, in〉 . (7.79)Sin
e
〈i, out|T |i, in〉∗ = 〈i, in|T †|i, out〉 , (7.80)the lhs of equation (7.78) is not the imaginary part of 〈i, out|T |i, in〉. In addition, on the rhs we �nd Feynmandiagrams involving the propagator ∆in

c or
i ∆out

c (x, y) = 〈0, out|T φ̂(x)φ̂†(y)|0, out〉 (7.81)depending on whether we insert a 
omplete set of in-states (7.78) or out-states (7.79).Now we 
ome to the LS-
ovariant theories, where in addition to the instable va
uum we have a non
om-mutative intera
tion term. The intera
tion Hamiltonian is symmetri
 su
h that formally the S-matrix isunitary in the Hamiltonian formalism [Bah04℄. As pointed out above, the proof for Wi
k's theorem does notapply anymore if the intera
tion is nonlo
al in time, whi
h is also true for the generalized 
ontra
tion theo-rem. Thus unless there are some �magi
 
an
ellations� the perturbative quantum theory based on modi�edFeynman rules will lead to a non-unitary S-matrix. However, this may happen and has to be 
he
ked. Buteven in the 
ase of unitarity violation it is interesting to see how the non-unitarity violating terms look like,and whether there is a possibility to retain unitarity by modifying the theory.A �rst attempt towards an answer to the unitarity issue for LS-
ovariant theories in the standard pertur-bation setup was made in [Zah10℄ for the self-dual GW model with φ⋆3 intera
tion. The imaginary parts ofthe 
ontributions to the two-point fun
tion at se
ond order in perturbation theory have been 
al
ulated and
ompared to the expressions obtained from the 
utting rules. The propagators whi
h are used are determinedvia i ǫ pres
ription:
∆ℓt,ℓ′t′

ks,k′s′ =
−1

2E(k + ℓ)− µ2 ± i ǫ
δ(k − k′)δ(ℓ − ℓ′)δss′δtt′ . (7.82)Thus the quantity whi
h has been 
al
ulated is not the imaginary part of the Feynman diagrams 
orre-sponding to 〈i, in|T (2)|i, in〉 but 
orresponding to 〈i, out|T (2)|i, in〉. These results have, however, then been
ompared to diagrams 
oming from the rhs of (7.74), where the mismat
h has been interpreted as a la
k ofunitarity. From the dis
ussion above we �nd that for a 
orre
t investigation we need the probability for pairprodu
tion ω(·|0), in order to relate the propagators ∆c and ∆in

c . Sin
e for the models under 
onsideration,the free LSZ and GW model, these are unknown to the author, we 
annot give a satisfa
tory answer at thispoint and leave this issue for a future investigation. 75
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8 Renormalization of the LS-CovariantModelsOne of the most intriguing features of Eu
lidean LS-
ovariant models is their renormalizability. We willnot prove here the renormalizability of their Minkowskian 
ounterparts, but start this program by derivingtheir propagators in position and matrix representation. First, we give a brief a

ount of the methods whi
hwere su

essfully used in Eu
lidean spa
e. After determining the propagators we will shortly dis
uss theirasymptoti
s.8.1 Multis
ale AnalysisMultis
ale analysis has been used to prove renormalizability of the LSZ, GW, vGN model and the translationinvariant model. Though in their original proof Grosse and Wulkenhaar used Pol
hinski's RG equation, wewill introdu
e the multis
ale analysis in order to explain the relevant steps towards the renormalization of LS-
ovariant models in Minkowski spa
etime. Multis
ale analysis is independent of the pre
ise representation ofthe model and has been su

essfully applied to both position- and matrix spa
e. Multis
ale analysis repla
esthe sharp 
uto�s in matrix spa
e by smoother ones dire
tly in the S
hwinger parameter representation ofthe propagator. For a general a

ount of this method see [Riv91, Riv07b℄.We will now give a sket
hy illustration of how the asymptoti
 behavior of the propagator are used to provethe renormalizability of the GW model in Eu
lidean spa
e following [RVTW06, Riv07b℄. Feynman graphsfor matrix models are written using the double line formalism. These graphs 
an not be drawn on a plane,but on two-dimensional Riemann surfa
es with non-trivial topologi
al stru
ture. The power 
ounting of amatrix model depends essentially on this topologi
al data. Let G be a graph with V verti
es, I internal(double) lines and F fa
es. To get F one has to amputate the external legs. Then F is the number of 
losedsingle lines and B the number of those 
losed lines whi
h 
arry external legs. The Euler 
hara
teristi
 of theRiemann surfa
e de�ned by these graphs is given by
χ = 2− 2g = V − I + F (8.1)whi
h de�nes the genus g of the manifold. The genus g and the number B are a measure for non-planarity.As an illustration how the topologi
al data of a ribbon graph 
an be determined serve the following examples:

=⇒
V = 3
I = 3
F = 2
B = 2





=⇒ g = 0
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8 Renormalization of the LS-Covariant Models
=⇒

V = 2
I = 3
F = 1
B = 1





=⇒ g = 1

In the Grosse-Wulkenhaar model the N-leg ribbon graph in four dimensions has the power 
ounting degree
ω(G) = (4−N)− 4(2g +B − 1) . (8.2)As a result, the only graphs whi
h 
an be relevant or marginal, i.e. those whi
h have power 
ounting degree

ω(G) ≥ 0, are planar two- and four-leg graphs. We will give a brief a

ount on whi
h role the propagatorrole plays in the derivation of this power 
ounting theorem.Four indi
es {m,n; k, ℓ} ∈ N2 are asso
iated to ea
h internal line of a graph and two indi
es to ea
hexternal line, thus we get 4I + 2N = 8V indi
es for a graph of genus g = 1 − 1
2 (V − I + F ). Sin
e at ea
hvertex the left index of a ribbon is identi�ed with the right index of its neighbor, we have 4V independentidenti�
ations, so that we 
an write the indi
es of any propagator in terms of a set I of 4V indi
es. In thematrix basis the verti
es are multi-dimensional Krone
ker-delta fun
tions. The amplitude of a graph G thenreads

AG =
∑

I

∏

δ∈G

Gmδ(I),nδ(I);kδ(I),ℓδ(I)δmδ−ℓδ,nδ−kδ
, (8.3)where the four indi
es of the propagator ∆ of the line δ are fun
tions of I. Sli
ing of the propagator as

∆ =
∞∑

i=0

∆i through ∫ 1

0

dα =
∞∑

i=0

∫ M−2(i−1)

M−2i

dα (8.4)with M > 1 leads to a de
omposition of the amplitude as
AG =

∑

µ

AG,µ , (8.5)
AG,µ =

∑

I

∏

δ∈G

∆iδ

mδ(I),nδ(I);kδ(I),ℓδ(I)δmδ−ℓδ,nδ−kδ
, (8.6)where µ = {iδ} runs over all possible assignments of a positive integer iδ to ea
h line δ. The next importantstep is to �nd appropriate bounds on the propagators.The main bounds are given by [RVTW06℄1

∆i
m,n;k,ℓ ≤ KM−i e−cM−i(‖m‖+‖n‖+‖k‖+‖ℓ‖) (8.7)

∑

ℓ

max
n,k

∆i
m,n;k,ℓ ≤ K ′M−i e−c′M−i‖m‖ (8.8)for some 
onstants K,K ′ and c, c′. About half of the 4V indi
es are determined by the external indi
esand the Krone
ker-deltas in (8.3). The undetermined indi
es are summation indi
es. Perturbative power
ounting amounts to �nding whi
h summations 
ost a fa
tor M2i through (8.7)

∞∑

m1,m2

e−cM−i(m1+m2) =
1

(1− e−cM−i)2
=
M2i

c2
(1 +O(M−i)) . (8.9)1For te
hni
al reasons these bounds where derived only for restri
ted values of Ω. This limitation has been over
ome in[GMRVT06℄ using dire
t spa
e methods.78



8.2 Propagatorsand whi
h 
ost O(1) due to the bound (8.8). Integrating out loops at higher s
ales of a graph then givese�e
tive 
oupling 
onstants in powers of M . The important point is that the faster the propagator de
ays,the smaller is the 
ontribution of the integration over internal lines to e�e
tive 
oupling 
onstants. This inturn redu
es the number of divergent graphs. One 
an prove that all relevant and marginal graphs are planarfour-leg and two-leg subgraphs with a single external fa
e, whi
h must be renormalized by 
ounterterms. Dueto symmetries there are only four initial 
onditions whi
h have to be �xed by �experiments�. All relevant andmarginal 
ounterterms whi
h are needed are of Moyal-type, thus of the same form as the initial Lagrangianand 
an be absorbed in a rede�nition of the 
oupling parameters Ω, g, µ and a �eld strength renormalization.The theory is renormalizable to all orders in perturbation theory.8.2 PropagatorsWe start the renormalization program by 
al
ulating the propagators for the di�erent models. The purposeof the �rst se
tions is to enhan
e the formulas given in [GRVT06℄ to the Minkowskian regime. In the followingthe propagators for the general LSZ theorem in generi
 2n dimensions in position and in matrix basis willbe given.8.2.1 Position Spa
e representationThe main theorem, from whi
h all 
ausal propagators in Minkowski spa
e and its Eu
lidean 
ounterparts
an be derived, is the following theorem. The 
oordinates in 2n dimensions are denoted by x = (x0, . . . , xd)and xk = (x2k−2, x2k−1) with k = 1, . . . , n. As in se
tion 7.1.1 we de�ne the map (·, ·)ϑ : R2 × R2 → Cthrough
(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M , (8.10)where (·, ·)M is the two dimensional Minkowskian and (·, ·)E the two dimensional Eu
lidean s
alar produ
t.In addition we de�ne the map ‖ · ‖ : R2 → C through

‖x‖2ϑ = (x,x)ϑ

= cos(ϑ)‖x‖E + i sin(ϑ)‖x‖M (8.11)with ‖ · ‖E the two dimensional Eu
lidean and ‖ · ‖M the two dimensional Minkowskian norm. Then we �nd:Theorem 8.1. The propagator of the regularized, general LSZ model in 2n dimensions is given by
∆(ǫ,σ)(x,x′) = − i e− i ϑ E

2π

∫ ∞

0

ds
1

sinh(2sE−ϑ)
exp

{
− sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
i x1 ·E · x′

1

}

× exp

{
−1

2
coth(2sE−ϑ)E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E(x1,x

′
1)ϑ

}

×
n∏

k=2

Bk

2π

1

sinh(2sBk)
exp

{
− sinh(2sB̃k)

sinh(2sBk)
i xk ·Bk · x′

k

}

× exp

{
−1

2
coth(2sBk)Bk(‖xk‖20 + ‖x′

k‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(xk,x

′
k)0

}

(8.12)
with ϑ = π/2− ǫ > 0, Ẽ = (2σ − 1)E and B̃k = (2σ − 1)Bk.The proof is given in appendix I.We 
an now read o� the 
ausal propagators of the relevant 
ases for the four dimensional LSZ and GWmodels. Noting that (·, ·)π/2 = i (·, ·)M and thus ‖ · ‖π/2 = i ‖ · ‖M , one �nds for general σ 79



8 Renormalization of the LS-Covariant ModelsCorollary 8.2. The 
ausal propagator of the general LSZ model in four-dimensional Minkowski spa
etimeis given by
∆M

LSZ(x,x′;σ) = − iEB

(2π)2

∫ ∞

0

ds
1

sin(2sE)

1

sinh(2sB)
exp

{
−sµ2 −A−B

}

× exp

{
− sin(2sẼ)

sin(2sE)
i x1 ·E · x′

1 −
sinh(2sB̃)

sinh(2sB)
i x2 ·B · x′

2

} (8.13)with
A = −1

2
cot(2sE)E

(
‖x1‖2M + ‖x′

1‖2M
)

+
cos(2sẼ)

sin(2sE)
E(x1,x

′
1)

2
M (8.14)and

B =
1

2
coth(2sB)B

(
‖x2‖2E + ‖x′

2‖2E
)
− cosh(2sB̃)

sinh(2sB)
B(x2,x

′
2)

2
E . (8.15)At σ = 1 this redu
es toCorollary 8.3. The 
ausal propagator of the four-dimensional LSZ model for σ = 1 in Minkowski spa
etimeis given by

∆M
LSZ(x,x′, σ = 1) = − iEB

(2π)2
e− i x1·E·x′

1− i x2·B·x′
2

∫ ∞

0

ds
1

sin(2sE)

1

sinh(2sB)

× exp

{
−sµ2 +

1

2
E‖x1 − x′

1‖2M cot(s2E)− 1

2
B‖x2 − x′

2‖2E coth(s2B)

}
.(8.16)The propagator of the four dimensional Grosse-Wulkenhaar model reads:Lemma 8.4. The 
ausal propagator of the Grosse-Wulkenhaar model in four-dimensional Minkowski spa
e-time is given by

∆M
GW(x,x′) = − iEB

(2π)2

∫ ∞

0

ds e−sµ2 1

sin(2sE)

1

sinh(2sB)

× exp

{
1

2
E cot(2sE)

(
‖x1‖2M + ‖x′

1‖2M
)
− E

sin(2sE)
(x1,x

′
1)M

}

× exp

{
−1

2
B coth(2sB)

(
‖x2‖2E + ‖x′

2‖2E
)

+
B

sinh(2sB)
(x2,x

′
2)E

}
.

(8.17)
One should noti
e that the Eu
lidean results 
oin
ide with those determined in [GRVT06℄. To 
onformto their notation one has to substitute Ẽ → −B/2 and E → Ω/2 within the hyperboli
 fun
tions of the LSZmodel propagators.8.2.2 Propagators in Matrix Spa
eTheorem 8.5. The matrix propagator for the 2n-dimensional regularized LSZ model in Minkowski spa
etimeis given by

∆
(ǫ,σ)
m,m+α;ℓ+α,ℓ

= − e i ǫ θ

8Ω

∫ 1

0

dz z− i e i ǫ(σα1+1/2)+
Pn

i=2(σαi+1/2)−1+ θµ2

8Ω

× ∆
(ǫ)
n1,n1+α1;ℓ1+α1,ℓ1

n∏

i=2

∆
(E)
ni,ni+αi;ℓi+αi,ℓi (8.18)80



8.2 Propagatorswith Minkowskian part
∆

(ǫ)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

z− i e i ǫu(1 − z−i e i ǫ

)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
− i e i ǫ

)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1(
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u)(8.19)and Eu
lidean part
∆

(E)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

zu(1− z)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1 (
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u) , (8.20)where
A(n, ℓ, α, u) =

√(
α+ n
α+ u

)(
α+ ℓ
α+ u

)(
n
u

)(
ℓ
u

)
. (8.21)and α = (α1, . . . , αn) ∈ Z

n and αi = ni −mi.The proof 
an be found in appendix J. The respe
tive spe
ial 
ases, like the four-dimensional Grosse-Wulkenhaar model et
., 
an easily be read o� from this expression.8.2.3 Asymptoti
sWe have seen that the asymptoti
s of the propagators play an important role for the renormalization program.But in addition we are also interested in the question whether the matrix basis makes sense at all for thedes
ription of the perturbative analysis of the LS-
ovariant models. Also here do the asymptoti
s give us the
ru
ial information. However, the asymptoti
s of the Minkowskian part of the propagators are di�
ult toinvestigate due to the os
illatory behavior of its integrand. Let us 
onsider the two-dimensional Eu
lideanGW operator
∆E

GW(x,x′) =
B

(2π)

∫ ∞

0

ds
e−sµ2

sinh(2sB)
exp

{
−1

2
B coth(2sB)

(
x2

i + x′2i
)

+
B

sinh(2sB)
x · x′

}
. (8.22)Introdu
ing short variables ui = xi − x′i and long variables vi = xi + x′i and using

1 = cosh2(y/2)− sinh2(y/2)

cosh(y) = cosh2(y/2) + sinh2(y/2) (8.23)
sinh(y) = 2 sinh(y/2) cosh(y/2) ,we 
an rearrange

−B
2

coth(2sB)
(
x2

i + x′2i
)

+
B

sinh(2sB)
x · x

= −B
4

(
cosh2(sB) + sinh2(sB)

cosh(sB) sinh(sB)

)(
x2

i + x′2i
)

+
B

4

(
cosh2(sB)− sinh2(sB)

cosh(sB) sinh(sB)

)
2x · x′

= −B
4

coth(sB)u2
i −

B

4
tanh(sB)v2

i (8.24)and thus
∆E

GW(u,v) =
1

(2π)

∫ ∞

0

ds
e−s µ2

B

sinh(2s)
exp

{
−B

4
coth(s)u2

i −
B

4
tanh(s)v2

i

}
. (8.25)81



8 Renormalization of the LS-Covariant ModelsThe integral is sli
ed in the usual way
∆E,i

GW(u,v) =
1

(2π)

∫ M−2(i−1)

M−2i

ds
e−s µ2

B

sinh(2s)
exp

{
−B

4
coth(s)u2

i −
B

4
tanh(s)v2

i

} (8.26)with M > 1. This 
an easily be estimated from above by maximizing ea
h fa
tor in the integrand on theinterval [M−2i,M−2(i−1)]. The fa
tor e−B
4 tanh(s)v2

i takes its maximum at s = M−2i at whi
h tanh(s) ≈
M−2i−M−6i/3 < c′M−i for some 
onstant c′, while e−B

4 coth(s)u2
i takes its maximum at s = M−2(i−1) with

coth(s) < M2(i−1) +M−2(i−1) < c′′M i and some 
onstant c′′. The sinh(2s)−1 
an be estimated from aboveby M2i su
h that we get the very rough bound
∆E,i

GW(u,v) ≤ KM2i e−c(Miu2
i +M−iv2

i ) (8.27)for some 
onstants K and c. This reprodu
es the �rst bound whi
h is needed for the renormalization proof.However, the four-dimensional Minkowski propagator in short and long variables reads
∆M

GW(x,x′) = − iB

(2π)2

∫ ∞

0

ds e−s µ2

B
1

sin(2sB)

1

sinh(2sB)

× exp

{
B

4
cot(s)u2

1,µ −
B

4
tan(s)v2

1,µ

}

× exp

{
−B

4
coth(s)u2

2,i −
B

4
tanh(s)v2

2,i

}
, (8.28)where we set E = B. After the sli
ing we 
an estimate the Eu
lidean part from above exa
tly as before:

|∆M,i
GW (x,x′)| ≤ KM2i

∫ M−2(i−1)

M−2i

ds
e−s µ2

B

sin(2sE)
exp

{
B

4
cot(s)u2

1,µ −
B

4
tan(s)v2

1,µ

}
e−c(Miu2

i +M−iv2
i ) ,(8.29)but the behavior of the propagator remains un
lear. The Minkowskian part of the integrand is os
illatingsu
h that more sophisti
ated methods have to be used to estimate this integral.There is a spe
ial 
ase for whi
h we 
an dedu
e the qualitative behavior. The propagator of the regularized,massless LSZ model in two dimensions for σ = 1 
an be written as

∆(ǫ,σ=1)(x,x′) = − iE

2π

∫ ∞

0

ds
1

sinh(2sE)
e− i x·E·x′

exp

{
− coth(2sE)

E

2
(‖x− x′‖2ϑ)

}
, (8.30)where the integration 
ontour has been rotated as s → s e i ϑ. Substituting u =

E‖x−x′‖2
ϑ

2 (coth(2sE)− 1) ,we get
− i

4π

∫ ∞

0

du e− i x·E·x′ e−u−E
2 ‖x−x′‖2

ϑ

√
u2 + Eu‖x− x′‖2ϑ

= − i

4π
e− i x·E·x′

K0

(
E

2
‖x− x′‖2ϑ

)
, (8.31)with K0 the modi�ed Bessel fun
tion of the se
ond kind of order 0. This implies that there is still a UVsingularity at x = x′ due to the singular behavior of K0(z) at z = 0. Using the identity 9.7.2 of [AS70℄

K0(z) ∼
√

π

2z
e−z

(
1 +O(z−1)

)
, (8.32)we also see that ∆

(ϑ)
LSZ has an exponential de
ay in the short variable |x− x′| → ∞ only for

Re
(
‖x− x′‖2ϑ

)
> 0 , (8.33)and thus only for |ϑ| < π/2.2 We are thus tempted to 
onje
ture that for σ < 1 the exponential de
ay in

|x + x′| → ∞ also persists as long |ϑ| < π/2. We 
on
lude that the propagator has a worse behavior in2Note that ‖ · ‖π/2 = i ‖ · ‖M .82



8.2 PropagatorsMinkowski spa
etime than in Eu
lidean spa
etime, but, we 
an 
ontrol its asymptoti
 behavior with helpof the parameter ϑ. Considering the assumption |ϑ| < π/2 as part of the regularization, one 
ould try torenormalize the Minkowskian LS-
ovariant models.Con
erning the matrix representation we have a similar problem, sin
e the integrand in the expression(8.18) is os
illating. Thus estimating the absolute value of the integral through an integral over the absolutevalue of the integrand possibly produ
es a big error and might lead to bad estimates on the asymptoti
s.Indeed, one 
an use this approximation to show that the Minkowskian GW propagator at |ϑ| = π/2 has anexponential de
ay in ea
h index separately. To �nd the other bounds, however, one has to take 
are of theos
illating behavior of the integrand. At least the asymptoti
s of the spe
ial 
ase (8.32) for |ϑ| < π/2 raisesthe hope that the propagators at hand may have su
h an asymptoti
 behavior in position spa
e su
h thatthe matrix basis is appli
able.3We summarize that the questions whether the matrix representations of LS-
ovariant NCQFTs in termsof generalized Landau fun
tions are well-de�ned and whether they are renormalizable are still open issues,but deserve a thorough investigation.

3Note that these propagators are LS-
ovariant, whi
h implies a similar de
ay in momentum spa
e. 83



8 Renormalization of the LS-Covariant Models
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Con
lusion and OutlookThe goal of this thesis was to de�ne LS-
ovariant models on Minkowski spa
etime, �nd their renormalizationproperties and dis
uss the unitarity of the S-matrix. We brie�y introdu
ed these models on Eu
lideanspa
e and showed, how the Weyl-Wigner 
orresponden
e 
an be used to relate their wave operators to theharmoni
 os
illator. Using their well-known eigenfun
tions we were able to derive the eigenfun
tions of thewave operators and map the Eu
lidean LS-
ovariant models onto matrix models. On Minkowski spa
etime,the additional ba
kground �eld, whi
h was supposed to render the models LS-
ovariant, spoils the va
uumpersisten
e with respe
t to pair 
reation. Contrary to the harmoni
 os
illator in the Eu
lidean 
ase, theMinkowskian models 
orrespond to an inverted harmoni
 os
illator, implying that the wave operators donot possess a 
ountable in�nite set of eigenfun
tions, whi
h 
ould be used to map the models onto a matrixmodel, but a 
ontinuously parameterized eigenbasis.We derived the eigenfun
tions of the inverted harmoni
 os
illator and dis
overed a 
ountable in�nite set ofpoles through an analyti
ally 
ontinuation of these fun
tions to the 
omplex energy plane. The 
orrespondingresidues were identi�ed as resonan
e states of the model. In order to employ an expansion of the a
tions interms of these resonan
es we regularized the models su
h that the resonan
es turn into genuine eigenfun
tionsof the regularized wave operators. These operators 
orrespond to the 
omplex harmoni
 os
illator, whi
hmediates between the ordinary to the inverted harmoni
 os
illator and thus between the Eu
lidean withthe Minkowskian models, unifying both theories into one formulation related by a single parameter ϑ. Wehave shown that this regularized matrix basis is a bi-orthogonal system whi
h spans the spa
e of square-integrable fun
tions and derived upper bounds on the asymptoti
s of the 
orresponding Hermite 
oe�
ientsfor tempered distributions and Gel'fand-Shilov fun
tions. At the quantum level and in the limit of vanishingba
kground, this regularization turned into the usual i ǫ-pres
ription. For the spe
ial 
ase of a Klein-Gordon theory in a 
onstant, external �eld, where the di�erent propagators are known, we re
al
ulated thepropagator using the matrix basis and veri�ed that the ϑ-regularization leads to Feynman propagators andthus 
on�rmed the equivalen
e to the i ǫ-pres
ription.We gave a short overview of the unitarity problem for models with unstable va
uum and dis
ussed thesteps whi
h are needed to de
ide whether the S-matrix is unitary or not. The matrix basis was also 
omparedto the 
ontinuous basis approa
h. Spe
ial divergen
es whi
h are present in the 
ontinuous approa
h at Ω = 1are absent in the matrix representation. In turn, using the ϑ-regularization we showed that a 
uto� 
ouldbe employed to render the LS-
ovariant NCQFT �nite at every step in perturbation theory and at the sametime keep the LS-
ovarian
e manifestly. We derived the propagators for the regularized LS-
ovariant modelswhi
h in
luded the Eu
lidean propagators and the Minkowskian 
ausal propagators as spe
ial 
ases. Due tothe os
illatory behavior of the o

urring integrands in Minkowski spa
etime the 
orresponding asymptoti
sare mu
h more di�
ult to derive than in the Eu
lidean 
ase. For the spe
ial 
ase of the massless LSZ modelat σ = 1 we found that the exponential de
ay of the short variable in the Eu
lidean spa
e vanishes if onegoes to Minkowski spa
etime, however persists in the near neighborhood of this 
ase. The ϑ-regularizationthus gives us a mean to 
ontrol the de
ay behavior of the propagators. The appli
ability of the matrix basisin this 
ase, however, is still in question.We propose the following interesting perspe
tives for future resear
h:
• The 
onstru
tion of a renormalizable and non-trivial quantum �eld theory in four-dimensional Minkowskispa
etime is yet an unsolved problem. En
ouraged by the results in Eu
lidean spa
e we 
on
lude thatthe LS-
ovariant theories in Minkowski spa
etime are natural 
andidates and deserve a 
loser inves-tigation. To probe their renormalization properties, the derivation of the exa
t asymptoti
s of thepropagators is indispensable. Therefore the appli
ability of the matrix basis is of spe
ial interestand deserves a thorough and systemati
 inquiry. But, even if the matrix basis turns out to be in-adequate for the investigation of these theories, te
hniques for the renormalization in position spa
eare available and have already been su

essfully applied to LS-
ovariant theories in Eu
lidean spa
e[GMRVT06, RVTW06, RT08℄. The ϑ-regularization 
ould then turn out to be a 
ru
ial ingredient.85



Con
lusion and Outlook
• The question whether LS-
ovariant theories have a unitarity S-matrix has not been de
ided yet. Alongthe lines explained in se
tion 7.4 one 
ould try to give an answer to this question. Even if the unitarity isviolated, the possibility to extend these models su
h as to retain unitarity is an interesting perspe
tive,whi
h 
ould shed light on the 
onstru
tion of unitary NCQFTs in the framework of modi�ed Feynmanrules.
• The possible appli
ations of the matrix basis are not restri
ted to the non
ommutative LS-
ovarianttheories. Comparing to analog 
al
ulations in a 
ontinuous eigenbasis [Rit78℄, 
al
ulations in thematrix basis are surprisingly simple and 
an thus be seen as a 
omputational tool simplifying otherwise
umbersome 
al
ulations. It may �nd an appli
ation in QED and NCQED in strong external �elds[Rin01, HI09, Dun09, ILM10℄. The former is of fundamental theoreti
al interest, sin
e the experimentalobservation of pair 
reation or other strong �eld phenomena would verify the validity of QED in thesuperstrong �eld domain beyond perturbation theory. There has been a resurgen
e of interest in theseissues 
aused by new experiments as the �Extreme Light Infrastru
ture� (ELI) proje
t 4, whi
h willprovide lasers with ele
tromagneti
 �elds with unpre
edented intensity, and may thus provide newinsights in the non-perturbative regime of QED and QFT in general. Theoreti
ally new te
hniques willbe needed to realisti
ally represent the experimental laser 
on�gurations. In this respe
t the e�e
tivea
tion plays a 
entral role, whi
h for the 
onstant �eld 
ase has been 
al
ulated using the matrix basisin appendix F. The appli
ation to realisti
 experiments in
ludes varying �eld 
on�gurations, whi
h
ould be handled perturbatively around the 
onstant �eld, whi
h might turn out to be 
omputationalfeasable with help of the ϑ-regularization and the matrix basis. For this a knowledge of the generalappli
ability of the generalized Landau basis would be desirable.

4http://www.extreme-light-infrastru
ture.eu/86
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Appendix AProof of Lemma 3.1Lemma (3.1). The multiple star produ
t of fun
tions fk ∈ S(RD) for k = 1, . . . 4 we have the followingmomentum and position spa
e representations
∫

dDx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x) =

4∏

a=1

(∫
d2nxa

(2π)n

)
f(x1) f(x2) f(x3) f(x4)V (x1,x2,x3,x4)

=

4∏

a=1

(∫
d2nka

(2π)n

)
f̂(k1) f̂(k2) f̂(k3) f̂(k4) V̂ (k1,k2,k3,k4) (A.1)with vertex fun
tions

V (x1,x2,x3,x4) =
(2π)2n

| det(Θ/2)|δ
2n(x1 − x2 + x3 − x4) e−2 i (Θ−1)ij [(x1)i(x2)j+(x3)i(x4)j ] (A.2)

V̂ (k1,k2,k3,k4) = (2π)2nδ2n(k1 + k2 + k3 + k4) e− i
2 Θij [(k1)i(k2)j+(k3)i(k4)j ] . (A.3)Proof: Using the Fourier transformation

f̂(k) =

∫

RD

dDx

(2π)D/2
e− i kxf(x) (A.4)we obtain the momentum spa
e representation

∫
dDx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x)

=

4∏

a=1

(∫
d2nka

(2π)D/2

)
f̂1(k1) f̂2(k2) f̂3(k3) f̂4(k4)

∫
d2nx

(
e− i k1·x ⋆ e− i k2·x) ( e− i k3·x ⋆ e− i k4·x)

=

4∏

a=1

(∫
d2nka

(2π)D/2

)
f̂(k1) f̂(k2) f̂(k3) f̂(k4) V̂ (k1,k2k3k4) (A.5)with vertex fun
tion

V̂ (k1,k2k3k4) = (2π)2nδ2n(k1 − k2 + k3 − k4) e
i
2 Θµν [(k1)µ(k2)ν+(k3)µ(k4)ν ] . (A.6)In position spa
e the star-produ
t takes the same form

∫
dDx f1 ⋆ f2 ⋆ f3 ⋆ f4(x) =

4∏

a=1

(∫
d2nxa

(2π)n

)
f1(x1) f2(x2) f3(x3) f4(x4)V (x1,x2,x3,x4) , (A.7)but with vertex fun
tion given by the inverse Fourier transform

V (x1,x2,x3,x4) =
4∏

a=1

∫
d2nka

(2π)n
e i (k1·x1+k2·x2+k3·x3+k4·x4)V̂ (k1,k2,k3,k4) . (A.8)This is just a Gaussian integral and 
an easily be 
omputed. Combining the ka and xa for a = 1, . . . , 4 into8n-
omponent ve
tors

K = (k1,k2,k3,k4) , X = (x1,x2,x3,x4) , (A.9)89



Appendix A Proof of Lemma 3.1de�ning the skew-symmetri
 8n× 8n matrix
AΘ = −1

2




0 i Θ 0 0
− i Θ 0 0 0

0 0 0 i Θ
0 0 − i Θ 0


 (A.10)and using the representation (2π)2nδ2n(k1 + k2 + k3 + k4) =

∫
d2nt exp( iK · T ) with T = (t, t, t, t) ∈ R

8nthe integral be
omes
V (X) =

∫
d2nt

∫
d8nK

(2π)4n
e i K(T+X)− 1

2K·AΘ·K = det(Θ/2)−2

∫
d2nt e− 1

2 (T+X)·(AΘ)−1·(T+X) , (A.11)where the relation det(AΘ) = det(Θ/2)4 has been used. Sin
e T · (AΘ)−1 · T = 0 and T · (AΘ)−1 · X =
X · (AΘ)−1 · T = − i (x1 − x2 + x3 − x4) · (Θ/2)−1 · t, the t-integral yields

V (x1,x2,x3,x4) =
(2π)2n

| det(Θ/2)|δ
2n(x1 − x2 + x3 − x4) e

1
2X·(AΘ)−1·X

=
(2π)2n

| det(Θ/2)|δ
2n(x1 − x2 + x3 − x4) e−2 i (Θ−1)µν [(x1)µ(x2)ν+(x3)µ(x4)ν ] . (A.12)whi
h proves the lemma.
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Appendix BTransition Matrix and its Asymptoti
sIn order to 
al
ulate the asymptoti
s of the generalized Hermite 
oe�
ients in appendix C and to show thatthe generalized os
illator fun
tions and generalized Landau fun
tions span the spa
e of square-integrablefun
tions in appendix D, we need to derive the transition matrix
h(γ,β)

mn =

∫

q

f (γ)
m (q) f (β)

n (q) (B.1)and to �nd its asymptoti
s.B.1 Expression for the Generalized Os
illator Fun
tionsWe start with proving a 
onvenient representation for the generalized os
illator fun
tions de�ned in equation(6.17) by
f (γϑ)

n (q) =

( √
γϑ

2nn!
√
π

)1/2

e−γϑ
2 q2

Hn(
√
γϑq) (B.2)We will need:Proposition B.1. The generalized harmoni
 os
illator fun
tions f (γ)

n (q) 
an be represented as
f (γ)

n (q) =

( √
γ

2nn!
√
π

)1/2

(2 i )
n
2

∫ ∞

−∞
da (−1)nδ(n)(a) e i S(γ)(q,a) (B.3)with S(γ)(q, a) = i γ

2 q
2 −√2 i γqa+ a2

2 .Proof: We will show the identity
∫ ∞

−∞
da (−1)nδ(n)(a) e i S(ϑ)(q,a) =

(
− i

2

)n/2

e−γ
2 q2

Hn (
√
γq) (B.4)with S(γ)(q, a) = i γ

2 q
2 −√2 i γqa+ a2

2 from whi
h the lemma follows immediately. De�ning
y :=

√
− i /2a−√γq

∂a =
√
− i /2∂y

(B.5)we get
iS(γ)(q, a) = i

(
i γ

2
q2 −

√
2 i γqa+

a2

2

)

= −
(
γ

2
q2 +

√
−2 i γqa− i a2

2

)

= −
(√
− i /2a−√γq

)2

+
γ

2
q2

=: −y2 +
γ

2
q2 . (B.6)91



Appendix B Transition Matrix and its Asymptoti
sUsing the de�nition for the Hermite polynomials
Hn(z) = (−1)n e z2

∂n
z e−z2 (B.7)and noting that

y|a=0 = −√γq
Hn(−z) = (−1)nHn(z)

(B.8)we get
∫ ∞

−∞
da (−1)nδ(n)(a) e i S(q,a)

=

∫ ∞

−∞
da δ(a)

(
− i

2

)n/2

∂n
y e−y2+ γ

2 q2

=

(
− i

2

)n/2 ∫ ∞

−∞
da δ(a) e

γ
2 q2−y2

(−1)nHn (y)

=

(
− i

2

)n/2

e− γ
2 q2

Hn (
√
γq) (B.9)whi
h proves the lemma.B.2 Expression for the Transition MatrixTo swit
h between two sets of generalized os
illator fun
tions (f

(β)
n )n∈N and (f

(γ)
n )n∈N we need the transitionmatrix, whose expli
it form will be derived in the next proposition:Proposition B.2. Let β, γ ∈ C−{0} be two di�erent 
omplex numbers with Re(β+ γ) > 0. The transitionmatrix

h(γ,β)
nm :=

∫ ∞

−∞
dx f (γ)

n (x)f (β)
m (x) (B.10)is given by

h(γ,β)
nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

γ + β

√(
γ − β
γ + β

)m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(γ − β)2

m−2k

×
{

1 , |m−n|
2 ∈ N

0 , |m−n|
2 ∈ N + 1

2

. (B.11)Proof: Using proposition B.1 we have
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2

(2 i )
n+m

2

×
∫

x

∫

a

∫

a′

(−1)nδ(n)(a)(−1)mδ(m)(a′) e i S(γ)(x,a)+ i S(β)(x,a′) (B.12)with S(γ)(x, a) = i γ
2 x

2 −√2 i γxa+ a2

2 . The exponential 
an then be rearranged to92



B.2 Expression for the Transition Matrix
iS(γ)(x, a) + iS(β)(x, a′)

= −γ
2
x2 − β

2
x2 − i

√
2 i γx a− i

√
2 iβxa′ +

i

2
a2 +

i

2
a′2

= −1

2
(γ + β)

(
x+ i

√
2 i γ a+

√
2 iβ a′

γ + β

)2

︸ ︷︷ ︸
−bx̃2

+
i

2

(a2 + a′2)(γ + β)− 2(
√
γa+

√
βa′)2

γ + β

= −bx̃2− i

2

(
γ − β
γ + β

)[
a+

2
√
γβ a′

γ − β

]2

︸ ︷︷ ︸
=:−y2

+
i

2

(
γ − β
γ + β

)[
4γβ

(γ − β)2
+ 1

]
a′2

= −bx̃2 − y2 +
i

2

(
γ + β

γ − β

)
a′2 . (B.13)Sin
e we assumed Re(γ + β) > 0 for i = 1, 2 we 
an perform the x̃-integration giving

∫
dx e−b x̃2

=

√
2π

γ + β
. (B.14)With the de�nition

y2 :=
i

2

(
γ − β
γ + β

)[
a+

2
√
γβ a′

γ − β

]2 (B.15)one gets
∂a =

√
i

2

(
γ − β
γ + β

)
∂y

y2|a=0 =
i

2

(
γ − β
γ + β

)[
2
√
γβ a′

γ − β

]2
=

2 i γβ

γ2 − β2
a′2 .

(B.16)We see that the a-integration leads to another Hermite polynomial
∫

a

δ(a)∂n
a exp

{
− i

2

(
γ − β
γ + β

)[
a− 2

√
γβ a′

γ − β

]2
+

i

2

(
γ + β

γ − β

)
a′2
}

=

√
i

2

(
γ − β
γ + β

)n

exp

{
i

2

(
γ + β

γ − β

)
a′2
}

e−y2

e y2

∂n
y e−y2

∣∣∣
a=0

=

√
i

2

(
γ − β
γ + β

)n

exp

{
i

2

(
γ + β

γ − β

)
a′2 − 2 i γβ

γ2 − β2
a′2
}

(−1)nHn

(√
2 i γβ

γ2 − β2
a′
)

=

√
i

2

(
γ − β
γ + β

)n

exp

{
i

2

(
γ − β
γ + β

)
a′2
}
Hn

(
−
√

2 i γβ

γ2 − β2
a′
)
. (B.17)and our intermediate result is

(2 i )
m+n

2

√
2π

γ + β

√
i

2

(
γ − β
γ + β

)n ∫

a′

δ(a′)∂m
a′

[
exp

{
i

2

(
γ − β
γ + β

)
a′2
}
Hn

(
−
√

2 i γβ

γ2 − β2
a′
)]

. (B.18)In the following we will perform the derivatives
∂m

a′

[
e Aa′2

Hn(Ba′)
]

a′=0

=

m∑

k=0

(
m

k

)(
e Aa′2

)(k)
∣∣∣∣∣
a′=0

H(m−k)
n (Ba′)

∣∣∣
a′=0

. (B.19)93



Appendix B Transition Matrix and its Asymptoti
sUsing the expli
it formula for the Hermite polynomials [AS70℄
Hn(z) =

⌊n/2⌋∑

k=0

(−1)kn!

k!(n− 2k)!
(2z)n−2k . (B.20)one 
an derive the derivatives of the respe
tive fa
tors:

(
e Aa′2

)(k)
∣∣∣∣
a′=0

= Ak/2 k!

(k/2)!

{
1 , for k even
0 , for k odd

} (B.21)and
∂m−k

a′




⌊n/2⌋∑

ℓ=0

n!(−1)ℓ

ℓ!(n− 2ℓ)!
(2Ba′)n−2ℓ



∣∣∣∣∣∣
a′=0

= (2B)m−k




⌊n/2⌋∑

ℓ=0

n!(−1)ℓ

ℓ!(n− 2ℓ−m+ k)!
(2Ba′)n−2ℓ−m+k



∣∣∣∣∣∣
a′=0

{
1 , for n ≥ m− k
0 , for n < m− k

}

= (2B)m−k(−1)
n−m+k

2
n!(

n−m+k
2

)
!

{
1 , for n−m+ k even and n ≥ m− k
0 , for n−m+ k odd or n < m− k

}
. (B.22)Taking 
are of the three 
onditions for non-vanishing derivatives, k even, m ≥ n− k and m−n+ k even, weget

∂m
a′

[
e Aa′2

Hn(Ba′)
]

a′=0

=

m∑

k=0

(
m

k

)(
e Aa′2

)(k)
∣∣∣∣∣
a′=0

H(m−k)
n (Ba′)

∣∣∣
a′=0

=

⌊m/2⌋∑

k=0

(
m

2k

)
(−1)

n−m+2k
2 (2k)!n!

k!
(

n−m+2k
2

)
!

Ak(2B)m−2k

{
1 , for n−m+ 2k even and n ≥ m− 2k
0 , for n−m+ 2k odd or n < m− 2k

}

=

⌊m/2⌋∑

k=max(0, m−n
2 )

(−1)
n
2 (−1)−

m
2 (2B)mn!m!

k! (m− 2k)!
(
k + n−m

2

)
!

(
− A

4B2

)k {
1 , n−m even
0 , n−m odd }

. (B.23)Putting this into (B.18) with
A =

i

2

(
γ − β
γ + β

)

2B = −
√

8 i γβ

γ2 − β2
(B.24)

− A

4B2
= − i

2

(
γ − β
γ + β

)(
γ2 − β2

8 i γβ

)
= − i

2

(
(γ − β)2

8 i γβ

)
= −

(
γ − β
4
√
γβ

)2and assuming �even n−m� we get
(2 i )

m+n
2

√
2π

γ + β

√
i

2

(
γ − β
γ + β

)n√
8 i γβ

γ2 − β2

m ⌊m/2⌋∑

k=max(0, m−n
2 )

i nn! i mm!

k! (m− 2k)!
(

n−m+2k
2

)
!
(−1)k

(
γ − β
4
√
γβ

)2k

=

√
2π

γ + β

√(
γ − β
γ + β

)m+n ⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16γβ

(γ − β)2

m−2k

. (B.25)94



B.3 Asymptoti
s of the Transition MatrixPutting this into (B.12) one �nds
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2 ( √
β

2mm!
√
π

)1/2√
2π

γ + β

√(
γ − β
γ + β

)m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(γ − β)2

m−2k (B.26)for �m− n even� and 0 otherwise.B.3 Asymptoti
s of the Transition MatrixWe need the asymptoti
 behavior of the transition matrix to determine estimations on the asymptoti
s ofthe generalized Hermite 
oe�
ients. To prove the asymptoti
s we bring (B.11) into a more 
ompa
t form.Lemma B.3. The generalized transition matrix h(γ,β)
nm with β, γ ∈ C−{0} and Re(β+γ) > 0 
an be broughtinto the form

h(γ,β)
nm =

(
4βγ

(β + γ)2

)1/4
√
m!

n!
P

n−m
2

n+m
2

[√
4βγ

(γ + β)2

]{
1 , |m−n|

2 ∈ N

0 , |m−n|
2 ∈ N + 1

2

(B.27)where P is the Legendre fun
tion of �rst kind.Proof: We start with
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√
γ − β
β + γ

m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(β − γ)2

m−2k

. (B.28)It is not self-evident, but this result is invariant under ex
hange of (m,β) ↔ (n, γ), as it should be. Thefollowing table shows, whi
h values the di�erent fa
tors 
an depending on k and on whether we have m < nor m ≥ n:
m < n m ≥ n

k 0, 1, . . . , ⌊m/2⌋ m−n
2 , m−n

2 + 1, . . . , ⌊m/2⌋
m− 2k m,m− 2, . . . ,m− ⌊m⌋ n, n− 2, . . . , n− . . . ,m− ⌊m⌋
k + n−m

2
n−m

2 , n−m
2 + 1, . . . , ⌊n/2⌋ 0, 1, . . . , ⌊n/2⌋Thus in terms of a new variable k̄ de�ned bȳ

k = k +
n−m

2
(B.29)the sum gets an extra fa
tor (−1)

m−n
2 :

⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(β − γ)2

m−2k

=

⌊n/2⌋∑

k̄=max(0, n−m
2 )

n!m!(−1)
m−n

2 (−1)k̄

k̄!
(
n− 2k̄

)
!
(
k̄ + m−n

2

)
!

√
16βγ

(β − γ)2

n−2k̄

. (B.30)95



Appendix B Transition Matrix and its Asymptoti
sThe ex
hange of β and γ has the 
onverse e�e
t. The two fa
tors depending on β − γ earn extra fa
tors
√
−
(
β − γ
β + γ

)m+n√
16βγ

(β − γ)2

m−2k̄

= (−1)
n−m

2

√
−
(
β − γ
β + γ

)m+n√
16βγ

(β − γ)2

m−2k̄ (B.31)whi
h 
an
el exa
tly the 
ontribution of the rede�nition in terms of k̄. We 
an use equation (B.30) to rewritethe sum as
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)−
m
2

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

( i γ − iβ)2

m−2k

=

⌊min(m,n)/2⌋∑

k=0

n!m!(−1)−
min(m,n)

2

k! (min(m,n)− 2k)!
(
k +

∣∣n−m
2

∣∣)!

√
16βγ

( i γ − iβ)2

m−2k

. (B.32)Using
⌊p/2⌋∑

k=0

p!

k! (p− 2k)! (ℓ+ k)!
Ck =

1

ℓ!
2F1

(
−p

2
,
1− p

2
, 1 + ℓ, 4C

) (B.33)one gets
h(γ,β)

n,m =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√
γ − β
β + γ

m+n√
16βγ

( i γ − iβ)2

min(m,n) (B.34)
× (−1)−

min(m,n)
2 max(m!, n!)∣∣n−m

2

∣∣! 2F1

(
−min(m,n)

2
,
1−min(m,n)

2
, 1 +

∣∣∣∣
n−m

2

∣∣∣∣ ,
( i γ − iβ)2

4βγ

)whi
h is totally symmetri
 in m and n.Now we want to get rid of the minimum and maximum fun
tions by relating the hypergeometri
 fun
tionsto Legendre fun
tions Pµ
ν . The following formulas will be of use for us:
Pµ
−ν−1(z) = Pµ

ν (z)

P−µ
ν = (−1)µ (ν − µ)!

(ν + µ)!

[
Pµ

ν (z)− 2π

e

− i µπ

sin(µπ)Qµ
ν (z)

] (B.35)with Qµ
ν Legendre fun
tions of the se
ond kind. However, sin
e in the following we will have �µ = m−n

2even� the se
ond equation will simplify to
P−µ

ν = (−1)µ (ν − µ)!

(ν + µ)!
Pµ

ν (z) . (B.36)The important identity relating our hypergeometri
 fun
tion to a Legendre fun
tion is (15.4.10) of [AS70℄1
2F1(a, a+

1

2
; c; z) = 2c−1Γ(c)(−z) 1

2− 1
2 c(1− z) 1

2 c−a− 1
2P 1−c

2a−c

[
(1− z)−1/2

]
. (B.37)The fa
tors of (B.34) depending on minimum and maximum fun
tions are

2min(m,n)(−z)−min(m,n)
2

max(m!, n!)(∣∣m−n
2

∣∣)! 2F1

(
1−min(m,n)

2
,−min(m,n)

2
, 1 +

∣∣∣∣
m− n

2

∣∣∣∣ , z
)
. (B.38)1In [AS70℄ is a fa
tor (−1)

1
2
− 1

2
c missing whi
h I in
luded. This 
an also be seen from equation (15.4.11) in [AS70℄, whi
h isexa
tly the same formula for real z, where this fa
tor is present.96



B.3 Asymptoti
s of the Transition Matrixwith
z =

( i γ − iβ)2

4βγ
. (B.39)For m < n we identify

a = −m
2

, c = 1 +
n−m

2
c− 1

2
− a =

n+m

4
, 2a− c = −1− n

2
− m

2

(B.40)and use equation (B.37) to get
2m(−z)−m

2
n!(

n−m
2

)
!
2F1

(
−m

2
,
1−m

2
, 1 +

n−m
2

, z

)

= 2m(−z)−m
2

n!(
n−m

2

)
!
2

n−m
2

(
n−m

2

)
!(−z)m−n

4 (1− z)n+m
4 P

m−n
2

−1−n
2 −m

2

[
(1− z)−1/2

]

= n!2
n+m

2

(
z − 1

z

)m+n
4

P
m−n

2
n+m

2

[
(1 − z)−1/2

]
. (B.41)For m ≥ n we have

a = −n
2

, c = 1 +
m− n

2
c− 1

2
− a =

n+m

4
, 2a− c = −1− n

2
− m

2

(B.42)and thus
2n(−z)−n

2
m!(

m−n
2

)
!
2F1

(
−n

2
,
1− n

2
, 1 +

m− n
2

, z

)

= 2n(−z)−n
2

m!(
m−n

2

)
!
2

m−n
2

(
m− n

2

)
!(−z)n−m

4 (1− z)n+m
4 P

n−m
2

−1−n
2 −m

2

[
(1− z)−1/2

]

= m!2
n+m

2

(
z − 1

z

)m+n
4

P
n−m

2
n+m

2

[
(1− z)−1/2

]
. (B.43)Now we 
an use equation (B.36) with

−µ =
m− n

2
, ν =

m+ n

2
(ν − µ)! = m! , (ν + µ)! = n!

(B.44)to see that that the expressions in terms of Legendre fun
tion 
oin
ide. Inserting the expli
it expression for
z and

z − 1

z
=

( i γ− i β)2

4βγ − 1

( i γ− i β)2

4βγ

=

(
γ + β

γ − β

)2

1− z =
(γ + β)2

4βγ

(B.45)we get
(−1)−

min(m,n)
2

√
16βγ

( i γ − iβ)2

−min(m,n)
2

max(m!, n!)(∣∣m−n
2

∣∣)!

× 2F1

(
1−min(m,n)

2
,−min(m,n)

2
, 1 +

∣∣∣∣
m− n

2

∣∣∣∣ ,
( i γ − iβ)2

4βγ

)

= m!2
n+m

2

√
γ + β

γ − β

m+n

P
n−m

2
n+m

2

[√
4βγ

(γ + β)2

] (B.46)97



Appendix B Transition Matrix and its Asymptoti
sThis simpli�es the matrix h(γ,β)
nm :

h(γ,β)
nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√
γ − β
β + γ

m+n

m!2
n+m

2

√
γ + β

γ − β

m+n

P
n−m

2
n+m

2

[√
4βγ

(γ + β)2

]

=

(
4βγ

(β + γ)2

)1/4
√
m!

n!
P

n−m
2

n+m
2

[√
4βγ

(γ + β)2

] (B.47)and proves the lemma.It is easy to see that the argument of the transition matrix takes values between 1 and √2, with itsminimum at β = γ and its maximum at |γ| = |β| and γ/β = ± i . Below √2, the transition matrix de
aysexponentially in ea
h index, as will be shown in the next lemma:Lemma B.4. Let β, γ ∈ C− {0}. Then for large n the transition matrix behaves as
h(γ,β)

nm ∼ n−1/2

∣∣∣∣
β − γ
β + γ

∣∣∣∣
n

. (B.48)Proof: The Legendre fun
tion has the following integral representation (equation 14.12.8 of [OLBC10℄)
Pµ

ν (x) =
2µµ!(ν + µ)!(x2 − 1)µ

(2µ)!(ν − µ)!π

∫ π

0

dφ
(
x+

√
x2 − 1 cosφ

)ν−µ

(sinφ)2µ

=
2

n−m
2

(
n−m

2

)
!n!(x2 − 1)

n−m
2

(n−m)!m!π

∫ π

0

dφ
(
x+

√
x2 − 1 cosφ

)m

(sinφ)n−m , (B.49)where in our 
ase 2µ = n−m and 2ν = n+m and
x :=

√
4βγ

(β + γ)2
. (B.50)The integral 
an be estimated via the saddle point method for large n. Writing the integral in the form

∫ π

0

dφ
(
x+

√
x2 − 1 cosφ

)m

(sinφ)n−m

=

∫ π

0

dφ e n ln(sin φ)

(
x+
√
x2 − 1 cosφ

sinφ

)m

=

∫ π/2

0

dφ e nω(φ)ϕ(φ) . (B.51)the exponential has one saddle point at φ = π/2. Expanding around π/2 gives ω(φ) = 1− 1
2!(sin(π/2))−2(φ−

π/2)2 + . . . = 1− 1
2 (φ− π/2)2 + . . ., whi
h gives the saddle point approximation [Cop65℄
∫ π/2

0

dφ e nω(φ)ϕ(φ) = ϕ(π/2) e nω(π/2)

( −2π

nω′′(π/2)

)1/2 (
1 +O(n−ǫ)

)

= xm

(
2π

n

)1/2 (
1 +O(n−ǫ)

) (B.52)for some 0 < ǫ < 1
2 and n large enough. We thus �nd for x as in (B.50)

h(γ,β)
nm ∼

√
n!

m!

2
n−m

2

(
n−m

2

)
!(x2 − 1)

n−m
2

(n−m)!π
xm

√
2π

n
. (B.53)98



B.3 Asymptoti
s of the Transition MatrixStirling's formula n! ∼ nn e−n 
an be used yielding
√
n!

2
n−m

2

(
n−m

2

)
!

(n−m)!

∼ exp

(
n−m

2
ln(n−m)− (n−m) ln(n−m)− n−m

2
+ (n−m) +

n

2
ln(n)− n

2

)

∼ 1 (B.54)whi
h gives us the �nal result
h(γ,β)

nm ∼ (x2 − 1)n/2

√
n

∼ n−1/2

∣∣∣∣
β − γ
β + γ

∣∣∣∣
n

. (B.55)The transition matrix possesses an exponential de
ay unless the angle between β and γ is less than π/2.Note that this ensures the pointwise 
onvergen
e of the sum ∑∞
n=0 f

(γ)
n (q)h

(γ,β)
nm in these 
ases sin
e

f (γ)
n (q) ∼

√
n!

2n/2(n/2)!
Hn(
√
γ q)

∼ e
√

2n|Im(
√

γ q)| (B.56)due to Stirling's formula and the asymptoti
 behavior of the Hermite polynomial (see equation (5.50)).
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Appendix CAsymptoti
s of Generalized HermiteCoe�
ientsIn the following we will determine the asymptoti
s of the generalized Hermite 
oe�
ients of various 
lassesof obje
ts, as presented in se
tion 6.2. We �rst introdu
e Gel'fand-Shilov spa
es, whose asymptoti
s will beestimated from above afterwards. Tempered distributions are 
onsidered afterwards.C.1 Gel'fand-Shilov Spa
esIn the following we will give a brief a

ount on Gel'fand-Shilov spa
es. The Gel'fand-Shilov spa
e Sβ
α(R) forsome α, β ∈ R+ is de�ned to be the spa
e of smooth fun
tions ϕ(x) ∈ C∞(R), whi
h obey the inequalities[GS64℄

|xkϕ(q)(x)| ≤ CAkBqkkαqqβ (C.1)for all x ∈ R with 
onstants A,B,C > 0 depending on ϕ and k, q = 0, 1, 2, . . . .1 The 
onditions poserestri
tions on the behavior of the fun
tions and its derivatives for |x| → ∞. The smaller the parameters αand β are, the faster do the fun
tions and their derivatives de
ay for |x| → ∞. These spa
es are non-trivialonly for
α > 0 , β > 0 , α+ β ≥ 1

α = 0 , β > 1 (C.2)
α > 1 , β = 0 .They are invariant under multipli
ation with polynomials and di�erentiation, while Fourier transformationinter
hanges α and β. For β < 1 the fun
tions possess analyti
al 
ontinuations into the whole 
omplex plane.A 
hara
terization whi
h is equivalent to (C.1) is

|ϕ(x + i y)| ≤ C e−a|x|1/α+b|y|1/(1−β) (C.3)where a = α
e A1/α and b > 1−β

e (B e )
1

1−β .A topology is given through the subspa
es Sβ,B
α,A (R) ⊂ Sβ

α(R) 
onsisting of all those fun
tions whi
h obey
|xkϕ(q)(x)| ≤ CĀkB̄qkkαqqβ (C.4)for all Ā > A and B̄ > B. One then de�nes the set of norms on Sβ,B

α,A (R)

‖ϕ‖δ,ρ = sup
x∈R,k,p∈N0

|ϕ(x)|
(A+ δ)k(B + ρ)qkαkqβq

, δ, ρ = 1,
1

2
,
1

3
, . . . (C.5)whi
h de�nes a topology on these spa
es. For A1 < A2 and B1 < B2 we have Sβ,B1

α,A1
(R) ⊂ Sβ,B2

α,A2
(R) and if

{ϕn(x)} is a 
onvergent series in Sβ,B1

α,A1
(R) it is also 
onvergent in Sβ,B2

α,A2
(R). The spa
e Sβ

α(R) 
an then be1The generalization to higher dimensions is straightforward but not important for us. 101



Appendix C Asymptoti
s of Generalized Hermite Coe�
ientsde�ned as the 
ountable-in�nite 
onjun
tion of all Sβ,B
α,A (R) with A,B = 1, 2, . . ., and the topology on Sβ

α(R)is the indu
ed limit topology. For α > 0, β > 0 and α+ β = 1 these spa
es are nontrivial only if AB > γ forsome γ > 0, where the admissible values for A and B are bounded from below by the hyperbola AB = γ.One 
an show that if ϕ(x) ∈ Sβ,B
α,A (R) then ϕ(λx) ∈ Sβ,λB

α,A/λ(R). Thus if the former spa
e is nontrivial thenalso the latter.Of spe
ial interest is the 
ase α = β with α ∈ [1/2, 1] of quasi-analyti
 fun
tions, whi
h are subspa
es ofthe spa
e of entire fun
tions on C restri
ted to R. They are 
losed under Fourier transformation and forman algebra under the star-produ
t, and might thus be a suitable test fun
tion spa
e for non
ommutativequantum �eld theories [Sol07b, Sol07a℄. In [Sol10℄ it has been shown that every element in the multiplieralgebra of Sα
α (R) 
an be approximated by fun
tions in Sα

α (R) in the operator topology.2The spa
e Sα
α (R) have been 
hara
terized in terms of their Hermite 
oe�
ients [LCP07℄. A fun
tion ϕwith Hermite 
oe�
ients {ϕn} is in Sα

α (R) i�
‖{ϕn}‖θ =

( ∞∑

n=0

|ϕn|2 exp
{

2
α

e
n

1
2α θ

1
α

})1/2

<∞ (C.6)for some θ > 0.3 One de�nes the spa
es sα,θ̄, whi
h 
onsists of those sequen
es {ϕn} with �nite norm withrespe
t to (C.6) for all θ > θ̄. The sequen
es of ultrafast fall-o� sα are then de�ned as the indu
tive limitof the family of spa
es {sα,θ, θ ∈ R+}.The dual spa
e Sα
α (R)′ has a similar 
hara
terization in terms of Hermite 
oe�
ients. A distribution T isin Sα

α (R)′ i� its Hermite 
oe�
ients Tn = 〈T |φn〉 obey the relation
|Tn| < exp

{
2
α

e
n

1
2α θ

1
α

} (C.9)for all θ > 0. In the following we will use these asymptoti
s to estimate the asymptoti
 behavior of thegeneralized Hermite 
oe�
ients, i.e. the 
oe�
ients in the generalized matrix basis.C.2 Asymptoti
s for Generalized Hermite Coe�
ients ofGel'fand-Shilov Fun
tionsFor a general appli
ation of the generalized matrix basis it is important to know, how the asymptoti
s of thegeneralized Hermite fun
tions for various 
lasses of fun
tions and distributions look like. As an example, wepi
k the Gel'fand-Shilov spa
e of type Sα
α (R) with α = 1/2, whi
h is dense in S
hwartz spa
e. We will showthat (at least) the fun
tions of a subset of it have Hermite 
oe�
ients with an exponential de
ay.We determine bounds on the asymptoti
 behavior of the generalized Hermite 
oe�
ients ψ(ϑ)

m = 〈f (ϑ)
m |ψ〉for ψ ∈ S1/2

1/2 (R) and ψ ∈ S′(R). Their 
orresponding Hermite 
oe�
ients ψm are 
hara
terized by theexisten
e of a parameter θ > 0 su
h that [LCP07℄
∞∑

m=0

|ψm| e mθ <∞ . (C.10)2This is a
tually true for all Sβ
α(RD) with β ≥ α.3In [LCP07℄ the norm for any Gel'fand-Shilov spa
e of Romieu type S{Mp}, where Sα

α is a spe
ial 
ase of, is de�ned to be
‖{ϕn}‖θ =

 

∞
X

n=0

|ϕn|2 exp
˘

2M(θ
√

n)
¯

!1/2 (C.7)with M the fun
tion
M(θ

√
n) = sup

p∈N0

log

„

(θ
√

n)

Mp

«

. (C.8)In the 
ase Sα
α (R) one has (Mp)p∈N0

= (pαp)p∈N0
and one 
an show that M(θ

√
n) = α

e
n

1
2α θ

1
α .102



C.2 Asymptoti
s for Generalized Hermite Coe�
ients of Gel'fand-Shilov Fun
tionsWe use the representation (B.11) of the transition matrix
h(γ,β)

nm =

( √
γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

γ + β

√(
γ − β
γ + β

)m+n

×
⌊n/2⌋∑

k=max(0, n−m
2 )

n!m!(−1)
m−n

2 (−1)k

k! (n− 2k)!
(
k + m−n

2

)
!

√
16βγ

(β − γ)2

n−2k

×
{

1 , |m−n|
2 ∈ N

0 , |m−n|
2 ∈ N + 1

2

=

⌊n/2⌋∑

k=max(0, n−m
2 )

G(m, k, n) . (C.11)for whi
h in our 
ase β ∈ R+. We give a bound on the generalized Hermite 
oe�
ient by the followingestimation
|ψ(γϑ)

n | = |
∞∑

m

′h(γ,β)
nm ψm| (C.12)

≤
∞∑

m

′
⌊n/2⌋∑

k=max(0, n−m
2 )

|G(m, k, n)ψm| (C.13)where∑∞
n

′ denotes the sum over even or odd m ≥ 0 depending on whether n is even or odd. This estimationa�e
ts the a

ura
y of the resulting bounds, sin
e the k-sum of h(γ,β)
mn 
onsists of terms with alternating sign.Better bounds might be found by keeping the k-sum within the modulus of h(γ,β)

mn . We have to swap thesummations. The following table should make 
lear whi
h 
ombinations (k, n) 
orrespond to non-vanishingterms:
k m0 � � . . . � � n n+ 2 n+ 4 . . .1 � � . . . � n− 2 n n+ 2 n+ 4 . . .... . . .
⌊n/2⌋ n− 2k n− 2k + 2 . . . n− 4 n− 2 n n+ 2 n+ 4 . . .For given k we 
an thus 
hara
terize the non-vanishing terms by m = 2p+ n − 2k and all integers p ∈ N0.For the 
ase at hand, the sum over the di�erent fa
tors depending on n be
ome

∞∑

m

′
⌊n/2⌋∑

k=max(0, n−m
2 )

|G(m, k, n)ψm| =
⌊n/2⌋∑

k=0

∞∑

p=0

|G(2p+ n− 2k, k, n)ψ2p+n−2k| . (C.14)In the following we denote z = γ−β
γ+β and r = |z|. For simpli
ity we set |β| = |γ| whi
h implies z = i tan(ϑ/2)and thus

16βγ

(β − γ)2 = 4(1− z−2) = 4
1 + r2

r2
. (C.15)103



Appendix C Asymptoti
s of Generalized Hermite Coe�
ientsWe then have
|G(m, k, n)ψm|

=

∣∣∣∣∣∣
C

(
n!

2n

)1/2√
z

m+n

√
4
1 + r2

r2

n−2k
2−m/2

√
m!(−1)

m−n
2 (−1)k

k! (n− 2k)!
(
k + m−n

2

)
!
ψm

∣∣∣∣∣∣

m→2p+n−2k
= C

(
n!

2n

)1/2√
r

n+2p+n−2k

√
4
1 + r2

r2

n−2k
2−p+k−n/2

√
(2p+ n− 2k)!

k! (n− 2k)!p!
|ψ2p+n−2k|

k→k̄=n/2−k
= C

(
n!

2n

)1/2√
r

n+2p+2k̄

√
4
1 + r2

r2

2k̄
2−p−k̄

√
(2p+ 2k̄)!(−1)p

(2k̄)!
(

n−2k̄
2

)
!p!

|ψ2p+2k̄| (C.16)for some 
onstant C. Sin
e
π1/2Γ(2x) = 22x−1Γ(x)Γ(x + 1/2) (C.17)we have

√
(2p+ n− 2k)!

p!
< π−1/22p+n/2−k (p+ k̄)!

p!
= π−1/22p+n/2−k(p+ 1)k̄ . (C.18)with (p + 1)k̄ the Po
hhammer symbol. The Hermite 
oe�
ients of the Gel'fand-Shilov fun
tion may notshow a de
ay already at m > 0 but only at m > N for some �nite N . Sin
e for any given m the transitionmatrix de
ays exponentially for n→∞ these �rst N/2 terms of (C.12) 
an be negle
ted and we 
an safelyassume |ψ2p+2k̄| ∼ e−θ(2p+2k̄) for some θ > 0. We thus �nd

|ψ(γϑ)
n | < C

(
n!

2n

)1/2

rn/2

⌊n/2⌋∑

k=0

1

(2k̄)!
(

n−2k̄
2

)
!

(
4 e−2θ 1 + r2

r

)k̄

×
∞∑

p=0

(p+ 1)k̄(r e−2θ)p . (C.19)Using
∞∑

p=0

(p+ 1)k̄(r e−2θ)p = (1− r e−2θ)−k̄k̄! . (C.20)and
⌊n/2⌋∑

k̄

k!(4y)k

(2k)!(n−2k̄
2 )

=
1

(n/2)!
2F1

(
−n

2
, 1;

1

2
,−y

) (C.21)we �nd
|ψ(γϑ)

n | ∼ 2−n/2
√
n!

(n/2)!
rn/2

2F1

(
−n

2
, 1;

1

2
,−y

)

∼ rn/2
2F1

(
−n

2
, 1;

1

2
,−y

) (C.22)with
y =

1 + r2

r( e 2θ − r) . (C.23)Using 15.8.6 and 15.8.1 of [OLBC10℄, we �nd
rn/2

2F1

(
−n

2
, 1;

1

2
,−y

)
=

(1)n/2

(1/2)n/2
rn/2(1 + y)n/2

2F1

(
−n

2
,−1

2
;−n

2
,

y

1 + y

)

=
(1)n/2

(1/2)n/2
rn/2(1 + y)n/2

(
y

1 + y

)1/2

, (C.24)104



C.3 Asymptoti
s for Tempered Distributionswhere 2F1(0, b, c) = 1 has been used. The fa
tor (1)n/2/(1/2)n/2 goes as √n/2 for large n. The asymptoti
behavior is thus determined by the fa
tor
rn/2(1 + y)n/2 =

(
r +

1 + r2

e 2θ − r

)n/2

=

(
1 + e 2θr

e 2θ − r

)n/2

. (C.25)Note that for r = 0 we get ba
k the exponential de
ay of the original Hermite 
oe�
ients. Though, in orderto have a de
ay for a given r ∈ [0, 1], we have to restri
t on those Gel'fand-Shilov fun
tions for whi
h
2θ > ln

(
1 + r

1− r

) (C.26)In the notation of se
tion C.1 these fun
tions form the spa
e s1/2,θ̄ for some θ̄ proportional to the rhs of(C.26). The larger we 
hoose r the more do we have to restri
t to Gel'fand-Shilov spa
e. We emphasize thatthese bounds are not exa
t but rely on the estimation (C.13). The spa
e of �good� fun
tions might be largerthan the one we found.One should note that this estimation 
an not dire
tly be applied to the dual spa
e (S1/2
1/2 (R))′, whi
h obeysequation (C.10) for all θ < 0. A 
ase whi
h 
an be handled analogously is the spa
e of tempered distribution,whi
h will investigated in the next se
tion.C.3 Asymptoti
s for Tempered DistributionsNow we 
onsider a tempered distributions T ∈ S(R)′. We know that its Hermite 
oe�
ients Tm are boundedby

|Tm| < C(m+ 1)q (C.27)for some 
onstant C and all q ∈ N. For te
hni
al reasons we will substitute (m + 1)q by (m+ 1)q, whi
h isthe Po
hhammer symbol de�ned by
(m+ 1)q =

Γ(m+ q + 1)

Γ(m+ 1)
. (C.28)We 
an then start at equation (C.20) in the previous se
tion by substituting (2p+ 2k + 1)qr

p for (r e−2θ)p,where again m = 2p+ 2k̄ with p ∈ N0. The sum over p then gives
∞∑

p=0

(p+ 1)k̄(2p+ 2k̄ + 1)qr
p ∼ 2q

∞∑

p=0

(p+ 1)k̄(p+ k̄ + 1)qr
p

= 2q(1− r)−k̄−qk!(k + 1)q , (C.29)whi
h leads to the k̄-sum
⌊n/2⌋∑

k̄=0

k̄!(k + 1)q

(2k̄)!(n−2k̄
2 )!

(4y′)k̄ =
q!

(n/2)!
2F1

(
−n

2
, 1 + q;

1

2
;−y′

)
. (C.30)with y′ = (1 + r2)/(r − r2). Using 15.8.6 of [OLBC10℄ we �nd

2F1

(
−n

2
, 1 + q;

1

2
;−y′

)

=
(1 + q)n/2

(1/2)n/2
(1 + y′)n/2

2F1

(
−n

2
,−1

2
− q;−q − n

2
;

1

1− y′/4

)

=
(1 + q)n/2

(1/2)n/2
(1 + y′)n/2

(
y′

1 + y′

)1/2+q

2F1

(
−q,−1

2
− q;−q − n

2
;−1/y′

) (C.31)105



Appendix C Asymptoti
s of Generalized Hermite Coe�
ientsThe Hypergeometri
 fun
tion approa
hes 1 for large n and the asymptoti
 behavior is given by
(1 + q)n/2

(1/2)n/2
rn/2 (1 + y′)

n/2 ∼ (n/2 + q)q+1/2

(
1 + r

1− r

)n/2 (C.32)whi
h diverges exponentially for all r ∈ (0, 1). For r = 0 we get ba
k the usual polynomial divergen
e oftempered distributions.One 
ould now ask the question, for whi
h r = tan(ϑ/2) it is still possible to �nd Gel'fand-Shilov fun
tions
ψ ∈ S1/2

1/2 (R) su
h that the series
∞∑

n=0

ψ(ϑ)
n ϕ(ϑ)

n (C.33)
onverges for all tempered distributions ϕ ∈ S′(R). Convergen
e requires
ψ(ϑ)

n ϕ(ϑ)
n ∼

(
1 + r

1− r

)(
1 + e 2θr

e 2θ − r

)
< 1 (C.34)whi
h 
an be rearranged to

e 2θ >
1 +

(
1−r
1+r

)
r

(
1−r
1+r

)
− r

=
2− (r − 1)2

2− (r + 1)2
. (C.35)This is only possible for r+ 1 <

√
2 and thus for ϑ < π/4. Again these results are only approximately, sin
ethe bounds on the asymptoti
s are only upper bounds and might not re�e
t the true asymptoti
 behaviorof the 
orresponding Hermite sequen
es.
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Appendix DExpansion Theorem for Generalized Os
illatorStatesUsing the results of appendix B we 
an now proveTheorem D.1. The linear span of the generalized os
illator fun
tions (f
(γϑ)
n )n∈N0 is dense in L2(R).Proof: We will use the usual os
illator basis (φn)n∈N0 as an intermediate basis. Ea
h ψ ∈ L2(R) 
an beapproximated pointwise by the limit limN→∞

∑N
n=0 φn(q)ψn, whi
h means that the linear span of the usualos
illator fun
tions is dense in L2(R). In turn, ea
h os
illator fun
tion 
an be expanded in the f (γ)

n -basis for
Re(γ) > 0, whi
h is a 
orollary of the next lemma and proves that their span is also dense in L2(R).More generally we prove thatLemma D.2. Let α, β ∈ C− {0} with Re(α+ β) > 0 and

0 <

∣∣∣∣
α− β
α+ β

∣∣∣∣ < 1 . (D.1)Then any fun
tion f (β)
m 
an be expanded in terms of f (α)

n , i.e. the following sum
f (β)

m (q) =

∞∑

n=0

f (α)
n (q)h(α,β)

nm (D.2)
onverges pointwise for every q ∈ R, with transition matrix given by
h(α,β)

nm =

∫

q

f (α)
n (q) f (β)

m (q) . (D.3)Proof: Due to proposition B.2 we are able to do the sum∑n f
(γ)
n (x)h

(γ,β)
nm expli
itly. Keeping in mind thatea
h term with �n−m odd� is zero we �nd

∞∑

n=0

f (γ)
n (x)h(γ,β)

nm

=
∞∑

n

′
( √

γ

2nn!
√
π

)1/2

e−γ
2 x2

Hn (
√
γx)

×
( √

γ

2nn!
√
π

)1/2( √
β

2mm!
√
π

)1/2√
2π

β + γ

√(
γ − β
β + γ

)m+n

×
⌊m/2⌋∑

k=max(0, m−n
2 )

n!m!(−1)k

k! (m− 2k)!
(
k + n−m

2

)
!

√
16βγ

(β − γ)2

m−2k

=

( √
β

2mm!
√
π

)1/2 ∞∑

n

′
⌊m/2⌋∑

k=max(0, m−n
2 )

m!(−1)k

k! (m− 2k)!

√
16βγ

(γ − β)2

m−2k√(
γ − β
β + γ

)m

×
√

2γ

β + γ

1(
k + n−m

2

)
!

√
1

4

(
γ − β
β + γ

)n

e−γ
2 x2

Hn (
√
γx) (D.4)107



Appendix D Expansion Theorem for Generalized Os
illator Stateswhere ∑∞
n

′ denotes the sum over even or odd n ≥ 0 depending on whether m is even or odd. We have toswap the summations. The double sum
∞∑

n

′
⌊m/2⌋∑

k=max(0, m−n
2 )

. (D.5)
an be rearranged su
h that k runs from 0 to ⌊m/2⌋. The following table should make 
lear whi
h 
ombina-tions (k, n) 
orrespond to non-vanishing terms:
k n0 � � . . . � � m m+ 2 m+ 4 . . .1 � � . . . � m− 2 m m+ 2 m+ 4 . . .... . . .

⌊m/2⌋ m− 2k m− 2k + 2 . . . m− 4 m− 2 m m+ 2 m+ 4 . . .For given k we 
an thus 
hara
terize the non-vanishing terms by n = 2ℓ +m − 2k and all integers ℓ ∈ N0.For the 
ase at hand, the sum over the di�erent fa
tors depending on n be
ome
∞∑

n

′
⌊m/2⌋∑

k=max(0, m−n
2 )

1(
k + n−m

2

)
!
Gn(x)

=

⌊m/2⌋∑

k=0

∞∑

ℓ=0

1

ℓ!
G2l+m−2k(x) . (D.6)For (D.4) this means

∞∑

n=0

f (γ)
n (x)h(γ,β)

nm

=

( √
β

2mm!
√
π

)1/2 ⌊m/2⌋∑

k=0

m!(−1)k

k! (m− 2k)!

√
16βγ

(γ − β)2

m−2k√(
γ − β
β + γ

)m

×
√

2γ

β + γ

∞∑

ℓ=0

1

ℓ!

√
1

4

(
γ − β
β + γ

)2ℓ+m−2k

e− γ
2 x2

H2ℓ+m−2k (
√
γx) (D.7)Here we 
an use equation (49.4.4) [Han75℄

∞∑

k=0

tk

k!
H2k+p(z) = (1 + 4t)−(p+1)/2 exp

(
4tz2

1 + 4t

)
Hp

(
z√

1 + 4t

)
, |t| < 1/4 (D.8)with the identi�
ation

z =
√
γx , p = m− 2k , t =

1

4

(
γ − β
β + γ

) (D.9)and thus
4tz2

1 + 4t
=
γ

2
x2 − β

2
x2 , 1 + 4t =

2γ

β + γ
,

z√
1 + 4t

=

√
1

2
(β + γ)x . (D.10)We get

√
2γ

β + γ

∞∑

ℓ=0

1

ℓ!

√
1

4

(
γ − β
β + γ

)2ℓ

e− γ
2 x2

H2ℓ+m−2k (
√
γx)

=

√
2γ

β + γ

−m+2k

e− β
2 x2

Hm−2k

(√
1

2
(β + γ)x

)
. (D.11)108



and (D.7) thus be
omes
∞∑

n=0

f (γ)
n (x)h(γ,β)

nm

=

( √
β

2mm!
√
π

)1/2 ⌊m/2⌋∑

k=0

m!(−1)k

k! (m− 2k)!

√
16βγ

(γ − β)2

m−2k√(
γ − β
β + γ

)m

×
√

2γ

β + γ

−m+2k
√

1

4

(
γ − β
β + γ

)m−2k

e− β
2 x2

Hm−2k

(√
1

2
(β + γ)x

)

=

( √
β

2mm!
√
π

)1/2
√
β − γ
β + γ

m

×
⌊m/2⌋∑

k=0

m!

k! (m− 2k)!

√
2β

β − γ

m−2k

e− β
2 x2

Hm−2k

(√
1

2
(β + γ)x

) (D.12)Now we have to make a 
ase study. For �m even� we will use equation (49.4.12) from [Han75℄1
n∑

k=0

(2n)!

(2k)!(n− k)! (−t)
kH2k(z) = (−1− t)nH2n

(
z

(
1 +

1

t

)−1/2
)
, (D.14)for �m odd� equation (49.4.14) from [Han75℄

n∑

k=0

(2n+ 1)!

(2k + 1)!(n− k)! (−t)
kH2k+1(z) = (−t)n

(
1 +

1

t

)n+ 1
2

H2n+1

(
z

(
1 +

1

t

)−1/2
) (D.15)m even: Substituting in (D.12)

ℓ := m/2− k
k! → (m/2− ℓ)! (D.16)

(m− 2k)! → (2ℓ)!we get
( √

β

2mm!
√
π

)1/2

e−β
2 x2

√
β − γ
β + γ

m m/2∑

ℓ=0

m!

(2ℓ)! (m/2− ℓ)!

[
2β

β − γ

]ℓ

H2ℓ

(√
1

2
(β + γ)x

) (D.17)Comparing to (D.14) we identify
m/2 = n , t = − 2β

β − γ . (D.18)Hen
e (
1 +

1

t

)−1/2

=

(
1− 1

2β
(β − γ)

)−1/2

=

√
1

2
(β + γ)

−1

−1− t =
−β − γ + 2β

β + γ
=
β + γ

β − γ

(D.19)1The formulas (49.4.12) and (49.4.14) given in [Han75℄ are expressed in terms of the Po
hhammer symbol (−n)k. I used therelation
(−n)k = (−1)k n!

(n − k)!
(D.13)to bring them into the given form (D.14) and (D.15). 109



Appendix D Expansion Theorem for Generalized Os
illator Statesand we �nd for �even m�
∞∑

n=0

f (γ)
n (x)h(γ,β)

nm =

( √
β

2mm!
√
π

)1/2

e−β
2 x2

√
β − γ
β + γ

m

×
m/2∑

ℓ=0

m!

(2ℓ)! (m/2− ℓ)!

[
2β

β − γ

]ℓ

H2ℓ

(
1

2
(β + γ)x

)

=

( √
β

2mm!
√
π

)1/2

e−β
2 x2

Hm(
√
βx)

= f (β)
m (x) (D.20)m odd: Substituting in (D.12)

ℓ :=
m− 1

2
− k

k! →
(
m− 1

2
− ℓ
)

! (D.21)
(m− 2k)! → (2ℓ+ 1)!we get

( √
β

2mm!
√
π

)1/2

e− β
2 x2

√
β − γ
β + γ

m√
2β

β − γ

m−1
2∑

ℓ=0

m!

(2ℓ+ 1)!
(

m−1
2 − ℓ

)
!

[
2β

β − γ

]ℓ

H2ℓ+1

(
1

2
(β + γ)x

) (D.22)Comparing to (D.15) we identify
m− 1

2
= n , t = − 2β

β − γ . (D.23)Hen
e
(−t)n

(
1 +

1

t

)n+ 1
2

=

√
β − γ
2β

√
β + γ

β − γ

m (D.24)and we �nd for �odd m�
∞∑

n=0

f (γ)
n (x)h(γ,β)

nm =

( √
β

2mm!
√
π

)1/2

e− β
2 x2

√
β − γ
β + γ

m√
2β

β − γ

×
m−1

2∑

ℓ=0

m!

(2ℓ+ 1)!
(

m−1
2 − ℓ

)
!

[
2β

β − γ

]ℓ

H2ℓ+1

(√
1

2
(β + γ)x

)

=

( √
β

2mm!
√
π

)1/2

e− β
2 x2

Hm(x)

= f (β)
m (x) . (D.25)whi
h proves the theorem.
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Appendix EExpression for the Generalized LandauFun
tionsTheorem (6.1). The generalized Landau fun
tions f (Eϑ)
mn (x) with m,n ∈ N0 are given by

f (Eϑ)
mn (t, x) = (−1)min(m,n)

√
E

π

√
min(m!, n!)

max(m!, n!)
E

|m−n|/2
ϑ

× e−Eϑ
2 x

(ϑ)
+ x

(ϑ)
− (x

(ϑ)
−sgn(m−n))

|m−n| L|m−n|
min(m,n)

(
Eϑ x

(ϑ)
+ x

(ϑ)
−

) (E.1)with x(ϑ)
± = t± i e− i ϑx and Lα

n(z) the generalized Laguerre Polynomials.Proof: The generalized Landau fun
tions are build on the generalized os
illator fun
tions f (γϑ)
m with γ = E/2and

f (Eϑ)
mn (x) =

√
E

4π
W

[
|f (γϑ)

m 〉〈f (γ−ϑ)
n |

]
(x) . (E.2)Using the de�nition of the generalized os
illator fun
tions (6.17) we get

f (Eϑ)
mn (t, x) =

√
γ

2π

∫

R

dk e i γ k x f (γϑ)
m (t+ k/2) f (γϑ)

n (t− k/2)

=

√
γ

2π

(γϑ

π

)1/2
∫

R

dk e i γ k x e− 1
2γϑ [(t+k/2)2+(t−k/2)2]

(
1

2m+nm!n!

)1/2

× Hm (
√
γϑ (t+ k/2))Hn (

√
γϑ (t− k/2)) . (E.3)The generating fun
tion of the Hermite polynomials

e−a2(ξ2−2ξq) =

∞∑

m=0

1

m!
(aξ)mHm(aq) . (E.4)will be used to obtain the generating fun
tion for the generalized matrix basis:

K(γϑ)(ξ, η; t, x) :=

√
2π

γ

∞∑

m,n=0

√
2m+n

m!n!
(
√
γϑξ)

m
(
√
γϑη)

n
f (Eϑ)

mn (t, x)

=
(γϑ

π

)1/2
∫

R

dk e i γ k x e− 1
2γϑ [(t+k/2)2+(t−k/2)2]

× e−γϑ(ξ2−2ξ(t+k/2)+η2−2η(t−k/2)) (E.5)111



Appendix E Expression for the Generalized Landau Fun
tionsThe exponential is a Gaussian. Rearranging it yields
−1

4
γϑ

[
k2 + 4k(η − ξ − i e− i ϑx) + 4(t2 + ξ2 + η2 − 2ξt− 2ηt)

]

= −1

4
γϑ

[
k + 2(η − ξ − i e− i ϑx)

]2

+ γϑ

[
(η − ξ − i e− i ϑx)2 − (t2 + ξ2 + η2 − 2ξt− 2ηt)

]

= −1

4
γϑ

[
k + 2(η − ξ − i e− i ϑx)

]2

+ γϑ

[(
i e− i ϑx

)2 − t2 + 2η i e− i ϑx− 2ξ i e− i ϑx+ 2ξt+ 2ηt− 2ηξ
]

= −1

4
γϑ

[
k + 2(η − ξ − i e− i ϑx)

]2
+ γϑ [−x+x− + 2ξx− + 2ηx+ − 2ηξ] . (E.6)where we redis
over the generalized light 
one 
oordinates x(ϑ)

± = t ± i e− i ϑx of se
tion 6.3. One 
an seehow the 
omplex 
ombinations t± ix used in the Eu
lidean setting for ϑ = 0 be
ome light 
one 
oordinates
t ± x for ϑ = ±π/2. In the following we will simply write x± for the x(ϑ)

± . The k integration 
an
els the
onstant prefa
tor up to a fa
tor of 2 leading to
K(γϑ)(ξ, η; t, x) = 2 e γϑ(−x+x−+2ξx−+2ηx+−2ηξ)

= 2 e−γϑx+x−

∞∑

k,ℓ,p

1

k!ℓ!p!
(2γϑx−ξ)

k
(2γϑx+η)

ℓ
(−2γϑηξ)

p
. (E.7)The generalized matrix fun
tions 
an now be obtained by taking suitable derivatives with respe
t to thevariables ξ and η:

f (Eϑ)
mn (t, x) =

√
|γϑ|
2π

1√
m!n!

(
1

2γϑ

)m+n
2 ∂m

∂ξm

∂n

∂ηn
K(γϑ)(ξ, η; t, x)

∣∣∣∣
ξ=η=0

. (E.8)Let m ≥ n. Then the derivatives of K are of the following form
∂m

∂ξm

∂n

∂ηn

∑

k,ℓ,p

1

k!ℓ!p!
akbℓcpξk+pηℓ+p

∣∣∣∣∣∣
ξ=η=0

=
∑

k,ℓ,p

1

(m− p)!(ℓ− p)!p!a
kbℓcp

(k + p)!

(k + p−m)!

(ℓ + p)!

(ℓ+ p− n)!
δ0,k+p−mδ0,ℓ+p−n

=

n∑

p

am−pbn−pcp
m!n!

(m− p)!(ℓ− p)!p! (E.9)with a = 2γϑx−, b = 2γϑx+ and c = −2γϑ. This leads to
f (Eϑ)

mn (t, x) =

√
2γ

π

√
m!n! (2γϑ)

m−n
2 e−γϑx+x−xm−n

−

×
n∑

p=0

(2γϑx+x−)n−p (−1)p

(m− p)!(ℓ− p)!p! . (E.10)This last sum 
an be identi�ed with the asso
iated Laguerre fun
tion by substituting p→ n− p and
Lk

n(y) =

n∑

q=0

(n+ k)!(−1)qyq

(n− q)!(k + q)!q!
. (E.11)We �nally get

f (Eϑ)
mn (t, x) = (−1)n

√
2γ

π

√
n!

m!
(2γϑ)

m−n
2 e−γϑx+x−xm−n

− Lm−n
n (2γϑx+x−) (E.12)112



A similar 
al
ulation for n ≥ m leads to this result with +↔ − and m ↔ n. Substituting γ → E/2 solvesthis lemma.The generalized Landau fun
tions have 
ertain symmetries whi
h will be useful in appendix H.Corollary E.1. The generalized Landau fun
tions given by equation (E.1) ful�ll the relations
f (Eϑ)

mn (E−1t, E−1x) = Ef (1/E−ϑ)
mn (t, x) (E.13)

f (Eϑ)
mn (−t, x) = (−1)m−nf (Eϑ)

nm (t, x) (E.14)
f (Eϑ)

mn (t,−x) = f (Eϑ)
nm (t, x) (E.15)

f (Eϑ)
mn (x, t) = (− i )m−nf (E−ϑ)

nm (t, x) . (E.16)Proof: Equation (E.13) follows dire
tly from the expli
it expression (E.1) by noting that E and x(ϑ)
± onlyo

ur in the 
ombination √Ex(ϑ)

± and Ex
(ϑ)
+ x

(ϑ)
− . The inversion of time t → −t only a�e
ts the term

x
(ϑ)
−sign(m−n) with

x
(ϑ)
−sign(m−n) → −x

(ϑ)
+sign(m−n) = −x(ϑ)

−sign(n−m) , (E.17)su
h that
f (Eϑ)

mn (−t, x) = (−1)m−nf (Eϑ)
nm (t, x) . (E.18)The transformation x→ −x yields

x
(ϑ)
−sign(m−n) → x

(ϑ)
+sign(m−n) = x

(ϑ)
−sign(n−m) , (E.19)whi
h shows equation (E.15). Under the ex
hange of t and x we �nd

x
(ϑ)
± = t± i e− i ϑx→ ± i e− i ϑ(t∓ i e i ϑx) = ± i e− i ϑx

(−ϑ)
∓ (E.20)and thus √

Eϑx
(ϑ)
± →

√
E−ϑ(± ix

(−ϑ)
∓ )

Eϑx
(ϑ)
+ x

(ϑ)
− → E−ϑx

(−ϑ)
+ x

(−ϑ)
− .

(E.21)Putting these into the expression of the generalized Landau fun
tion we �nd
f (Eϑ)

mn (E−1x,E−1t) = (−1)min(m,n)

√
E

π

√
min(m!, n!)

max(m!, n!)

√
E−ϑ

|m−n|
e−E−ϑ

2 x
(−ϑ)
+ x

(−ϑ)
−

×
(
−sgn(m− n) ix

(−ϑ)
+sgn(m−n)

)|m−n|
L
|m−n|
min(m,n)

(
E−ϑ x

(−ϑ)
+ x

(−ϑ)
−

)

= (− i )m−nf (E−ϑ)
nm (t, x) (E.22)whi
h proves the 
orollary.
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Appendix E Expression for the Generalized Landau Fun
tions
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Appendix FRelative Probability to Create a PairWe will now re
onstru
t a 
lassi
al result in QED using the ϑ-regularization and the generalized Landaubasis, namely the e�e
tive a
tion for a 
omplex KG �eld and a Dira
 spinor in a 
lassi
al external ele
tri
�eld. In his seminal paper [S
h51℄ S
hwinger 
al
ulated the e�e
tive a
tion for a Dira
 �eld and a Klein-Gordon �eld in a 
onstant, uniform, external ele
tromagneti
 ba
kground in 4 spa
etime dimensions. In apure ele
tri
 �eld the one-loop 
orre
tion to the Klein-Gordon �eld (before 
harge renormalization) is givenby
L(1)

KG =
1

16π2

∫ ∞

0

ds s−3 e−µ2s

[
eEs

1

sin(eEs)
− 1

]
, (F.1)while the Dira
 
ase reads

L(1)
D = − 1

8π2

∫ ∞

0

ds s−3 e−µ2s [eEs cot(eEs)− 1] . (F.2)By shifting the 
ontour above the real axis one pi
ks up the poles s = sn = nπ/eE by the residue theorem.The probability per unit time and unit volume to 
reate a pair in the s
alar theory is given by
2ImL(1)

KG =
α2

2π2
E2

∞∑

n=1

(−1)n−1

n2
exp

(
−nπµ

2

eE

) (F.3)and for the fermioni
 
ase
2ImL(1)

D =
α2

π2
E2

∞∑

n=1

n−2 exp

(
−nπµ

2

eE

)
. (F.4)We will now show that the regularized matrix basis approa
h leads to the same result quite e�ortless.The generating fun
tional of 
onne
ted graphs W [J, J∗] is de�ned via the va
uum-to-va
uum amplitudein presen
e of a sour
e J

〈Ω, out|Ω, in〉[J, J∗] = e i W [J,J∗] , (F.5)with |Ω, in〉 and |Ω, out〉 the in- and out- va
ua of the theory in presen
e of the external sour
es J and J∗.We �rst investigate the bosonin
 
ase. In [S
h51℄ the following expression has been derived
WKG[J, J∗] =

∫∫
J∗∆cJ − i ln det

(
∆−1

F ∆c

)
. (F.6)with ∆F = ∆c|E=0 the usual Feynman propagator. Thus using the ϑ-regularization we 
an write

WKG[J, J∗] =

∫∫
J∗∆cJ − i ln det

(
∂2

µ − µ2P2
µ − µ2

)

ǫ

, (F.7)whi
h has to be understood in the limit ǫ→ 0 with
(
∂2

µ − µ2P2
µ − µ2

)

ǫ

=

(
∂2

µ − e− i ǫµ2

e i ǫP2(π/2 − ǫ)− e− i ǫµ2

)
. (F.8)115



Appendix F Relative Probability to Create a PairThe e�e
tive a
tion is now de�ned as the Legendre transformed of WKG[J, J∗] with respe
t to the 
lassi
al�elds φcl(x) and φ∗cl(x)

ΓKG[φc, φ
∗
c ] = WKG[J, J∗]−

∫
Jφ∗c −

∫
J∗φc , (F.9)where φcl(x) and φ∗cl(x) are given by

φcl(x) =
δW [J, J∗]

δ J∗(x)
=

∫

x′

∆c(x,x
′)J(x′)

φ∗cl(x) =
δW [J, J∗]

δ J(x)
=

∫

x′

J∗(x′)∆c(x
′,x) .

(F.10)These may be inverted to give
J(x) = (P2

µ − µ2)ǫφcl(x) and J∗(x) = −(P2
µ − µ2)ǫφ

∗
cl(x) , (F.11)and inserting into (F.9) yields

ΓKG[φcl, φ
∗
cl] =

∫∫
(P2

µ − µ2)ǫφ
∗
cl(x)∆(x,x′)(P2

µ − µ2)ǫφcl(x)− i ln det

(
∂2

µ − µ2P2
µ − µ2

)

ǫ

−
∫

[(P2
µ − µ2)ǫφcl]φ

∗
cl +

∫
[(P2

µ − µ2)ǫφ
∗
cl]φcl

= S0[φcl, φ
∗
cl] + i ln det

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

(F.12)This is the full e�e
tive a
tion of the theory, whi
h means that the quantum 
ontent is 
ompletely given bythe one-loop 
orre
tion
i ln det

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

= WKG[0, 0] . (F.13)The one-loop 
orre
tion in the Dira
 
ase is given by inverting the fun
tional determinant
i ln det

(
∂2

µ − µ2P2
µ − µ2

)

ǫ

= WD[0, 0] . (F.14)In the following we will de�ne WKG/D[0, 0] =: Wkg/D =:
∫

d4xL(1)
KG/D

, with L(1)
KG/D

the one-loop e�e
tiveLagrangian. The probability that no pair gets produ
ed out of the va
uum is given by
|〈0, out|0, in〉J=0|2 = e−2ImWKG/D ∼ 1− 2ImWKG/D , (F.15)and the relative probability to 
reate a pair per unit time and unit volume is thus approximately given by

2ImLKG/D.1 Sin
e perturbation theory will always give real 
ontributions, we see that pair produ
tion is anon-perturbative e�e
t, given by the imaginary part of the generating fun
tional.Starting with the 4-dimensional regularized bosoni
 
ase, the e�e
tive a
tion is given by
WKG = i ln det

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

= i tr ln

(P2
µ − µ2

∂2
µ − µ2

)

ǫ

. (F.16)1Of 
ourse in in�nite time and in in�nite volume there will be in�nitely many pairs produ
ed and WKG/D will be in�nite.This manifests itself in the x-independen
e of LKG/D, whi
h is plausible, sin
e the probability should not depend on timeor position. Restri
ting to �nite spa
e V and a �nite time interval T we have WKG/D = TV LKG/D.116



The operator e i ǫP2(ϑ)− e− i ǫµ2 ful�lls the eigenvalue equation
(
e i ǫP2(ϑ)− e− i ǫµ2

)
f (ϑ)

mn(x) =

(
i 4E

(
m+

1

2

)
− e− i ǫµ2

)
f (ϑ)

mn(x) . (F.17)We will simply write µ2 instead e− i ǫµ2, keeping in mind that µ2 is slightly imaginary. Additionally we willadhere to S
hwinger's 
onvention by substituting E → eE/2. With the identity
ln
(a
b

)
=

∫ ∞

0

ds

s

(
e i sa − e i sb

) (F.18)whi
h is valid for Im(a) > 0 and Im(b) > 0, the e�e
tive Lagrangian 
an be obtained by
L(1)

KG(x) = i 〈x| ln
(P2

µ − µ2

∂2
µ − µ2

)

ǫ

|x〉

= i

∫
ds

s

∫
d2p⊥
(2π)2

e− i sµ2

(∑

mn

f (ϑ)
nm(x)f (ϑ)

mn(x) e−s2eE(m+ 1
2 ) −

∫
d2p‖
(2π)2

e i sp2
‖

)
e i sp2

⊥

= i

∫
ds

s

d2p⊥
(2π)2

e− i sµ2

(∑

mn

f (ϑ)
nm(x)f (ϑ)

mn(x) e−s2eE(m+ 1
2 ) − 1

4πs

)
e i sp2

⊥ (F.19)where we denoted the momentum pµ = (p‖,p⊥) with p⊥ denoting the momentum perpendi
ular to theele
tri
 �eld, while all s
alar produ
ts involving p⊥ are understood to be Eu
lidean and those involving p‖Minkowskian. We 
an now use 
orollary 7.2 to obtain
i

∫
ds

s

d2p⊥
(2π)2

e− i sµ2

(
eE

2π
e−seE

∞∑

m=0

e−s2eEm − 1

4πs

)
e i sp2

⊥

=
1

16π2

∫
ds

s2
e− i sµ2

(
eE

sinh(eEs)
− 1

s

)
, (F.20)whi
h is indeed independent of x. The integral 
onverges at in�nity sin
e µ2 has a small imaginary part,and at 0 due to the 1/s subtra
tion of the free 
ase. By deforming the integration 
ontour as s 7→ − i s this
oin
ides with S
hwinger's result (F.1).The 4 dimensional spinor 
ase 
an now be done in the same way, starting with

WD = − i ln det

(
/P− µ
i /∂ − µ

)

ǫ

= − i tr ln

(
/P− µ
i /∂ − µ

)

ǫ

. (F.21)The tra
e is understood to run over both spin and spa
etime degrees of freedom. One uses
L(1)

D = − i tr〈x| ln (/P− µ)
ǫ
|x〉

= − i tr〈x|1
2

ln
(
/P2 − µ2

)
ǫ
|x〉

= − i tr〈x|1
2

ln

(P2
µ1− µ21+

i

2
σµνeF

µν

)

ǫ

|x〉 (F.22)to boil down the spinor 
ase to the s
alar one. Here Fµν = Eǫµν is the ele
tromagneti
 �eld tensor and
σµν = i

2 [γµ, γν ]. For the ele
tri
 �eld 
ase the matrix σµνF
µν has the form

eE

2




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (F.23)117



Appendix F Relative Probability to Create a PairEa
h eigenvalue ±eE/2 is two-fold degenerated, leading to an overall fa
tor of two. In
orporated into our
al
ulation this leads to
− i

∫
ds

s

∫
d2p⊥
(2π)2

e− i sµ2

(
eE

2π

∞∑

m=0

(
e−s2eE(m+ 1

2+ 1
2 ) + e−s2eE(m+ 1

2− 1
2 )
)
− 1

s

)
e i sp2

⊥

= − i
1

4π

∫
ds

s2
e− i sµ2

(
eE

2π

∞∑

m=0

e−s2eEm
(
e−s2eE + 1

)
− 1

s

)

= − 1

8π2

∫
ds

s2
e− i sµ2

(
eE coth(eEs)− 1

s

)
. (F.24)By deforming the integration 
ontour s 7→ − i s one obtains S
hwinger's result (F.2). This result supportsthe 
onje
ture of the physi
al relevan
e of this regularization.The matrix basis provides an easy way of doing the otherwise 
umbersome 
al
ulations.
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Appendix GProof of lemma 7.1Lemma (7.1). Let x ∈ R2 and a ∈ C− {0}. The following identity holds
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π
exp

{
−E

2
‖x− x′‖2ϑ + (a− 1)E(x,x′)ϑ − a i x ·E · x′

}

× Lm

(
E‖x− x′‖2ϑ − a(1− a−1)2E(x,x′)ϑ + (a− a−1) i x ·E · x′) ,

(G.1)where
(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M (G.2)with (·, ·)M the Minkowskian and (·, ·)E the Eu
lidean s
alar produ
t and ‖x− x′‖2ϑ = (x− x′,x− x′)ϑ.Proof: In the 
ase m ≥ n expli
it expression for the �rst eigenfun
tion is

f (Eϑ)
mn (x) = (−1)n

√
E

π

√
n!

m!
e−Eϑx+x−/2(

√
Eϑ x−)m−n Lm−n

n (Eϑ x+x−) . (G.3)and a similar representation for the se
ond fa
tor
f (Eϑ)

nm (x′) = (−1)n

√
E

π

√
n!

m!
e−Eϑx′

+x′
−/2(

√
Eϑx

′
+)m−n Lm−n

n

(
Eϑ x

′
+x

′
−
)
. (G.4)with x± = t ± i e− i ϑx and Eϑ = e i ϑE. These representations 
an also be used for n > m due to theidentity

(−1)nrm−nLm−n
n (r2) = (−1)mrn−mm!

n!
Ln−m

m (r2) . (G.5)The sum over n thus has the form
∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π

(
Eϑx−x′+

)m

m!
e−Eϑ x+x−/2−Eϑ x′

+x′
−/2

×
∞∑

n=0

n!

(
a

Eϑx−x′+

)n

Lm−n
n (Eϑ x+x−)Lm−n

n (Eϑ x
′
+x

′
−) .

(G.6)and 
an be done using the identity (48.23.11) from [Han75℄
∞∑

n=0

n!cnLm−n
n (ξ)Lk−n

n (η) = k! e c ξ η(1− η c)m−kcmLm−k
k

(
(1− ξ c)(η c− 1)

c

) (G.7)for k = m, ξ = Eϑ x+x−, η = Eϑ x
′
+x

′
− and c = a/(Eϑ x−x′+). We get

∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an =
E

π
e−ξ/2−η/2 e cξηtmLm

(
η + ξ − cξη − c−1

)
. (G.8)119



Appendix G Proof of lemma 7.1The di�erent 
ombinations of x± and x′± 
an be written as
ξ/2 + η/2 = Eϑx+x−/2 + Eϑx

′
+x

′
−/2

=
Eϑ

2
(x+ − x′+)(x− − x′−) +

Eϑ

2
(x+x

′
− + x−x

′
+)

=
E

2
‖x− x′‖2ϑ + E(x,x′)ϑ (G.9)where we de�ned

e i ϑ(x′+ − x+)(x′− − x−) = e i ϑ(t′ − t+ i e− i ϑ[x′ − x])(t′ − t− i e− i ϑ[x′ − x])
= e i ϑ(t− t′)2 + e− i ϑ(x− x′)2
= cos(ϑ)(x− x′)2i + i sin(ϑ)(x − x′)2µ

=: ‖x− x′‖2ϑ (G.10)and
1

2
e i ϑ(x+x

′
− + x−x

′
+) =

1

2
e i ϑ(tt′ + e−2 i ϑxx′ − i e− i ϑ(tx′ − xt′))

+
1

2
e i ϑ(tt′ + e−2 i ϑxx′ + i e− i ϑ(tx′ − xt′))

= cos(ϑ) (tt′ + xx′) + i sin(ϑ) (tt′ − xx′)
=: (x,x′)ϑ . (G.11)In addition we have

cηξ = aEϑx+x
′
−

= aEϑ(tt′ + e−2 i ϑxx′ − i e− i ϑ(tx′ − xt′))
= a (E(x,x′)ϑ − i x ·E · x′) . (G.12)and

c−1 = a−1Eϑx−x
′
+

= a−1Eϑ(tt′ + e−2 i ϑxx′ + i e− i ϑ(tx′ − xt′))
= a−1 (E(x,x′)ϑ + i x ·E · x′) . (G.13)Pie
ing all parts together gives the desired expression

∞∑

n=0

f (Eϑ)
mn (x) f (Eϑ)

nm (x′)an

=
E

π
exp

{
−E

2
‖x− x′‖2ϑ + (a− 1)E(x,x′)ϑ + a i x′ ·E · x

}

× am Lm

(
E‖x− x′‖2ϑ − a(1− a−1)2E(x,x′)ϑ − (a− a−1) i x′ ·E · x

)
. (G.14)
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Appendix HFourier Transformed Matrix Fun
tionsWe need the Fourier transformation of the Landau fun
tions as well as the generalized Landau fun
tions.Though the ordinary Landau fun
tions are a spe
ial 
ase of their generalizations, we have to distinguishboth 
ases, due to di�erent signatures the Fourier transformation depends on in the di�erent spa
es. Webegin with Eu
lidean Fourier transformation of the ordinary Landau fun
tions:Theorem H.1. The Eu
lidean Fourier transformation of f (B)
mn (x) is given by

F [f (B)
mn ](k) = f (1/B)

mn (k) =
i m−n

B
f (B)

mn (k̃) . (H.1)with k̃ = B−1 · k = B−1(−k2, k1).Proof: The Eu
lidean wave operators are given byP2
i = −(∂2

1 + ∂2
2)− 2 iB(x2∂1 − x1∂2) +B2(x2

1 + x2
2)P̃2

i = −(∂2
1 + ∂2

2) + 2 iB(x2∂1 − x1∂2) +B2(x2
1 + x2

2) .
(H.2)Denoting ∂̂µ = ∂/∂kµ, the operator P2

i has the following form in Fourier spa
e
∫

x

(P2
iφ)(x) e− i k·x

=

∫

x

φ(x) P̃2
i e− i k·x

=
(
(k2

1 + k2
2) + 2 iB(k1∂̂2 − k2∂̂1)−B2(∂̂2

1 + ∂̂2
2)
)
φ̂(k)

= B2
(
−(∂̂2

1 + ∂̂2
2)− 2 iB−1(k2∂̂1 − k1∂̂2) +B−2(k2

1 + k2
2)
)
φ̂(k)

= B2P2
i (H.3)where P2

i has the same form as P2
i with ∂µ → ∂̂µ, xµ → kµ and B → B−1. On the other hand by substituting

φ = f
(B)
mn we �nd

F [P2
i f

(B)
mn ](k) = 4B

(
m+

1

2

)
F [f (B)

mn ](k) . (H.4)Thus renaming k→ x we �nd
P2

iF [f (B)
mn ](x) = 4B−1

(
m+

1

2

)
F [f (B)

mn ](x) . (H.5)Due to the Parseval equation the Fourier transformed fun
tions have the same normalization as the originalones, from whi
h we 
on
lude
F [f (B)

mn ](k) = f (1/B)
mn (k) . (H.6)The relation f (1/B)

mn (k) = i m−n

B f
(B)
mn (k̃) follows from

k̃ = B−1 · k = B−1(−k2, k1) (H.7)and the symmetry relations (E.13)-(E.16) derived in appendix E.Now we 
ome to the Minkowskian 
ase: 121



Appendix H Fourier Transformed Matrix Fun
tionsTheorem H.2. The Fourier transformation of f (Eϑ)
mn (x) is given by

F [f (Eϑ)
mn ](k) = f (1/Eϑ)

nm (k) =
(− i )m−n

E
f (Eϑ)

mn (k̃) . (H.8)with k̃ = E−1 · k = −E−1(k1, k0).Proof: In Minkowski spa
etime the wave operators 
an be written asP2
i = −(∂2

0 + ∂2
1)− 2 iE(x1∂0 + x0∂1) + E2(x2

0 + x2
1) ,P2

µ = −(∂2
0 − ∂2

1)− 2 iE(x1∂0 − x0∂1)− E2(x2
0 − x2

1) ,P̃2
i = −(∂2

0 + ∂2
1) + 2 iE(x1∂0 + x0∂1) + E2(x2

0 + x2
1) ,P̃2

µ = −(∂2
0 − ∂2

1) + 2 iE(x1∂0 − x0∂1)− E2(x2
0 − x2

1) .

(H.9)The regularized wave operators then have the formP2(ϑ) = e i ϑ
(
cos(ϑ)P2

i − i sin(ϑ)P2
µ

)

= e i ϑ
(
−( e− i ϑ∂2

0 + e i ϑ∂2
1)− 2 iE( e−iϑx1∂0 + e iϑx0∂1) + ( e i ϑx2

0 + e− i ϑx2
1)
)
, (H.10)P̃2(ϑ) = e i ϑ

(
cos(ϑ)P̃2

i − i sin(ϑ)P̃2
µ

)

= e i ϑ
(
−( e− i ϑ∂2

0 + e i ϑ∂2
1) + 2 iE( e−iϑx1∂0 + e iϑx0∂1) + ( e i ϑx2

0 + e− i ϑx2
1)
)
. (H.11)In Fourier spa
e we �nd

∫

x

(P2
µφ)(x) e− i k·x

=

∫

x

φ(x) P̃2
µ e− i k·x

=
(
(k2

0 − k2
1) + 2 iE(k0∂̂1 − k1∂̂0) + E2(∂̂2

0 − ∂̂2
1)
)
φ̂(k)

= −E2
(
−(∂̂2

0 − ∂̂2
1) + 2 iE−1(k1∂̂0 − k0∂̂1)− E−2(k2

0 − k2
1)
)
φ̂(k) (H.12)and

∫

x

(P2
iφ)(x) e− i k·x

=

∫

x

φ(x) P̃2
i e− i k·x

=
(
(k2

0 + k2
1) + 2 iE(k0∂̂1 + k1∂̂0)− E2(∂̂2

0 + ∂̂2
1)
)
φ̂(k)

= E2
(
−(∂̂2

0 + ∂̂2
1) + 2 iE−1(k1∂̂0 + k0∂̂1)− E−2(k2

0 + k2
1)
)
φ̂(k) . (H.13)We thus �nd

F [P2(ϑ)φ](k)

= e i ϑE2
(
−( e i ϑ∂̂2

0 + e− i ϑ∂̂2
1) + 2 iE−1( e iϑk1∂̂0 + e−iϑk0∂̂1) + ( e− i ϑk2

0 + e i ϑk2
1)
)
φ̂(k)

= e 2 i ϑE2P̃2(−ϑ)φ̂(k) , (H.14)where P̃2(−ϑ) has the same form as P̃2(−ϑ) with ∂µ → ∂̂µ, xµ → kµ and E → E−1. On the other hand bysubstituting φ = f
(Eϑ)
mn we �nd

F [P2(ϑ)f (Eϑ)
mn ](k) = 4Eϑ

(
m+

1

2

)
F [f (Eϑ)

mn ](k) . (H.15)thus renaming k→ x we �nd
P̃2(−ϑ)F [f (Eϑ)

mn ](x) = 4(Eϑ)−1

(
m+

1

2

)
F [f (Eϑ)

mn ](x) . (H.16)122



Due to the Parseval equation the Fourier transformed fun
tions have the same normalization as the originalones, from whi
h we 
on
lude
F [f (Eϑ)

mn ](k) = f (1/Eϑ)
nm (k) . (H.17)The relation f (1/Eϑ)

nm (k) = (− i )m−n

E f
(Eϑ)
mn (E−1 · k) with

E−1 · k = −E−1(k1, k0) (H.18)follows from the symmetry relations (E.13)-(E.16).
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Appendix IPosition Spa
e PropagatorTheorem (8.1). The propagator of the regularized, general LSZ model in 2n dimensions is given by
∆(ǫ,σ)(x,x′) = − i e− i ϑ E

2π

∫ ∞

0

ds e−sµ2 1

sinh(2sE−ϑ)
exp

{
− sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
i x1 ·E · x′

1

}

× exp

{
−1

2
coth(2sE−ϑ)E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E(x1,x

′
1)ϑ

}

×
n∏

k=2

Bk

2π

1

sinh(2sBk)
exp

{
− sinh(2sB̃k)

sinh(2sBk)
i xk ·Bk · x′

k

}

× exp

{
−1

2
coth(2sBk)Bk(‖xk‖20 + ‖x′

k‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(xk,x

′
k)0

}
.

(I.1)
with ϑ = π/2− ǫ > 0, Ẽ = (2σ − 1)E, B̃k = (2σ − 1)Bk and

(x,x′)ϑ = cos(ϑ) (x,x′)E + i sin(ϑ) (x,x′)M (I.2)with (·, ·)M the Minkowskian and (·, ·)E the Eu
lidean s
alar produ
t and ‖x− x′‖2ϑ = (x− x′,x− x′)ϑ.Proof: The 
oordinates are denoted by x = (x0, . . . , xd) and xk = (x2k−2, x2k−1) with k = 1, . . . , n. Thepropagator is given by
∆(ǫ,σ)(x,x′) = 〈x|

[
σ e i ǫK2(ϑ) + (1− σ) e i ǫK̃2(ϑ)− e− i ǫµ2

]−1

|x′〉

= e− i ǫ〈x|
[
σP2(ϑ) + (1− σ)P̃2(ϑ) + e 2 i ϑ

n−1∑

k=1

(σP2
i,k + (1− σ)P̃2

i,k) + e 2 i ϑµ2

]−1

|x′〉(I.3)with ϑ = π/2− ǫ > 0, where the regularized wave operators ful�ll the eigenvalue equations
(σP2(ϑ) + (1− σ)P̃2(ϑ))f (Eϑ)

m1n1
(x1) = 4Eϑ

(
σm1 + (1− σ)n1 +

1

2

)
f (Eϑ)

m1n1
(x1)

(σ(P2
i )k + (1− σ)(P̃2

i )k)f (Bk)
mknk

(xk) = 4Bk

(
σmk + (1− σ)nk +

1

2

)
f (Bk)

mn (xk)

(I.4)with f (Bk)
mn (xk) the usual Landau fun
tions and Bk ∈ R+. We set σ̃ = 1− σ. With the identity

a−1 =

∫ ∞

0

ds e−sa (I.5)whi
h is valid for Re(a) > 0 we �nd
∆(ǫ,σ)(x,x′)

= − i e− i ϑ

∫ ∞

0

ds

∞∑

m1n1=0

f (Eϑ)
m1n1

(x1)f
(Eϑ)
n1m1

(x′
1) e−sµ2

e−4sE e − i ϑ(σm1+σ̃n1+1/2)

×
n∏

k=2

∞∑

mknk=0

f (Bk)
mknk

(xk)f (Bk)
nkmk

(x′
k) e−4sBk(σmk+σ̃nk+1/2) (I.6)125



Appendix I Position Spa
e PropagatorUsing lemma (7.1) the sum over nk gives the fa
tor
Bk

π

∞∑

mk=0

e−4sBkσ(mk+1/2) e−4sBkmkσ̃

× exp

{
−Bk

2
‖xk − x′

k‖20 + ( e−4sBkσ̃ − 1)Bk(xk,x
′
k)0 − e−4sBkσ̃ i xk ·Bk · x′

k

}

× Lmk

(
Bk‖xk − x′

k‖20 − e−4sBkσ̃(1− e 4sBkσ̃)2Bk(xk,x
′
k)0 + ( e−4sBkσ̃ − e 4sBkσ̃) i xk ·Bk · x′

k

)

=
Bk

π

∞∑

mk=0

e−4sBk(mk+1/2)

× exp

{
−Bk

2
‖xk − x′

k‖20 + ( e−4sBkσ̃ − 1)Bk(xk,x
′
k)0 − e−4sBkσ̃ i xk ·Bk · x′

k

}

× Lmk

(
Bk‖xk − x′

k‖20 − 4 sinh(2sBkσ̃)2Bk(xk,x
′
k)0 − 2 sinh(4sBkσ̃) i xk ·Bk · x′

k

)
. (I.7)while the sum over n1 gives

E

π

∞∑

m1=0

e−4sE−ϑ(m1+1/2)

× exp

{
−E

2
‖x1 − x′

1‖2ϑ + ( e−4sE−ϑσ̃ − 1)E(x1,x
′
1)ϑ − e−4sE−ϑσ̃ i x1 ·E · x′

1

}

× Lm1

(
E‖x1 − x′

1‖2ϑ − 4 sinh(2sE−ϑσ̃)2E(x1,x
′
1)ϑ − 2 sinh(4sE−ϑσ̃) i x1 ·E · x′

1

)
. (I.8)The sum over m1 and mk 
an be performed using equation (48.4.1) of [Han75℄

∞∑

n=0

Ln(y)tn =
1

1− t exp

{
yt

t− 1

}
, |t| < 1 (I.9)with t = e−4sBk :

Bk

π
exp

{
−Bk

2
‖xk − x′

k‖20 + ( e−4sBkσ̃ − 1)Bk(xk,x
′
k)0 − e−4sBkσ̃ i xk ·Bk · x′

k

}

× e−2sBk

1− e−4sBk
exp

{
e−4sBk

e−4sBk − 1

(
Bk‖xk − x′

k‖20

−4 sinh(2sBkσ̃)2Bk(xk,x
′
k)0 − 2 sinh(4sBkσ̃) i xk ·Bk · x′

k

)}

=
Bk

2π sinh(2sBk)
exp

{
− cosh(2sBk)

2 sinh(2sBk)
Bk‖xk − x′

k‖20

+

[
( e−4sBkσ̃ − 1) + 2 e−2sBk

sinh(2sBkσ̃)2

sinh(2sBk)

]
Bk(xk,x

′
k)0

+

[
− e−4sBkσ̃ + e−2sBk

sinh(4sBkσ̃)

sinh(2sBk)

]
i xk ·Bk · x′

k

} (I.10)and t = e−4sE−ϑ :
E

2π sinh(2sE−ϑ)
exp

{
− cosh(2sE−ϑ)

2 sinh(2sE−ϑ)
E‖x1 − x′

1‖2ϑ

+

[
( e−4sE−ϑσ̃ − 1) + 2 e−2sE−ϑ

sinh(2sE−ϑσ̃)2

sinh(2sE−ϑ)

]
E(x1,x

′
1)ϑ

+

[
− e−4sE−ϑσ̃ + e−2sE−ϑ

sinh(4sE−ϑσ̃)

sinh(2sE−ϑ)

]
i x1 ·E · x′

1

} (I.11)126



The term proportional to (xk,x
′
k)0 
an be simpli�ed using sinh2(a) = 1

2 (cosh(2a)− 1):
( e−4sBkσ̃ − 1) + 2 e−2sBk

sinh(2sBkσ̃)2

sinh(2sBk)

= ( e−4sBkσ̃ − 1) + e−2sBk
cosh(4sBkσ̃)

sinh(2sBk)
− coth(2sBk) + 1

= − sinh(4sBkσ̃) + coth(2sBk) cosh(4sBkσ̃)− coth(2sBk)

=
cosh(2sBk(1− 2σ̃))− cosh(2sBk)

sinh(2sBk)

=
cosh(2sB̃k)

sinh(2sBk)
− cosh(2sBk)

sinh(2sBk)
(I.12)where in the last step the addition theorem cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y) has been appliedand B̃k := (1 − 2σ̃)Bk = (2σ − 1)Bk has been de�ned. We �nd a similar result for terms proportional to

(x1,x
′
1)ϑ:

( e−4sE−ϑσ̃ − 1) + 2 e−2sE−ϑ
sinh(2sE−ϑσ̃)2

sinh(2sE−ϑ)

=
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
− cosh(2sE−ϑ)

sinh(2sE−ϑ)
(I.13)with Ẽ−ϑ := (1−2σ̃)E−ϑ = (2σ−1)E−ϑ. The triangle relation ‖x−x′‖2ϑ = ‖x‖2ϑ +‖x′‖2ϑ−2(x,x′)ϑ allowsus to 
ombine further terms

− cosh(2sBk)

2 sinh(2sBk)
Bk‖x1 − x′

1‖20 +

(
cosh(2sB̃k)

sinh(2sBk)
− cosh(2sBk)

sinh(2sBk)

)
Bk(x1,x

′
1)0

= − cosh(2sBk)

2 sinh(2sBk)
Bk(‖x1‖20 + ‖x′

1‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(x1,x

′
1)0 . (I.14)and

− cosh(2sE−ϑ)

2 sinh(2sE−ϑ)
E‖x1 − x′

1‖2ϑ +

(
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
− cosh(2sE−ϑ)

sinh(2sE−ϑ)

)
E(x1,x

′
1)ϑ

= − cosh(2sE−ϑ)

2 sinh(2sE−ϑ)
E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E−ϑ(x1,x

′
1)ϑ . (I.15)The terms proportional to i xk ·Bk · x′

k 
an be rearranged to
− e−4sBkσ̃ + e−2sBk

sinh(4sBkσ̃)

sinh(2sBk)

=
− cosh(4sBkσ̃) sinh(2sBk) + sinh(4sBkσ̃) sinh(2sBk)

sinh(2sBk)

+
cosh(2sBk) sinh(4sBkσ̃)− sinh(2sBk) sinh(4sBkσ̃)

sinh(2sBk)

= − sinh(2sB̃k)

sinh(2sBk)
(I.16)where sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y) has been used, while i x1 ·E ·x′

1 and 
an be vet in thesame manner giving
− e−4sE−ϑσ̃ + e−2sE−ϑ

sinh(4sE−ϑσ̃)

sinh(2sE−ϑ)
= − sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
. (I.17)127



Appendix I Position Spa
e PropagatorPutting everything together we �nally get
∆(ǫ,σ)(x,x′) = − i e−2 i ϑ E

2π

∫ ∞

0

ds e−sµ2 1

sinh(2sE−ϑ)
exp

{
− sinh(2sẼ−ϑ)

sinh(2sE−ϑ)
i x1 ·E · x′

1

}

× exp

{
−1

2
coth(2sE−ϑ)E(‖x1‖2ϑ + ‖x′

1‖2ϑ) +
cosh(2sẼ−ϑ)

sinh(2sE−ϑ)
E(x1,x

′
1)ϑ

}

×
n∏

k=2

Bk

2π

1

sinh(2sBk)
exp

{
− sinh(2sB̃k)

sinh(2sBk)
i xk ·Bk · x′

k

}

× exp

{
−1

2
coth(2sBk)Bk(‖xk‖20 + ‖x′

k‖20) +
cosh(2sB̃k)

sinh(2sBk)
Bk(xk,x

′
k)0

}
.

(I.18)
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Appendix JMatrix PropagatorTheorem (8.5). The matrix propagator for the 2n dimensional regularized LSZ model in Minkowski spa
e-time is given by
∆

(ǫ,σ)
m,m+α;ℓ+α,ℓ

= − e i ǫ θ

8Ω

∫ 1

0

dz z− i e i ǫ(σα1+1/2)+
Pn

i=2(σαi+1/2)−1+ θµ2

8Ω ∆
(ǫ)
n1,n1+α1;ℓ1+α1,ℓ1

n∏

i=2

∆
(E)
ni,ni+αi;ℓi+αi,ℓi(J.1)with Minkowskian part

∆
(ǫ)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

z− i e i ǫu(1 − z−i e i ǫ

)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
− i e i ǫ

)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1(
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u)(J.2)and Eu
lidean part
∆

(E)
m,m+α;ℓ+α,ℓ

=

min(m,ℓ)∑

u=max(0,−α)

zu(1 − z)m+ℓ−2u

(
1− (1−Ω)2

(1+Ω)2 z
)α+m+ℓ+1

(
4Ω

(1 + Ω)2

)α+2u+1(
1− Ω

1 + Ω

)m+ℓ−2u

A(m, ℓ, α, u) (J.3)where
A(n, ℓ, α, u) =

√(
α+ n
α+ u

)(
α+ ℓ
α+ u

)(
n
u

)(
ℓ
u

)
. (J.4)and α = (α1, . . . , αn) ∈ Zn and αi = ni −mi.Proof: The 2n dimensional, regularized LSZ wave operator in matrix basis is given by equation 6.94:

G
(ǫ,σ)
mn;kℓ = iG(σ)

m1n1;k1ℓ1
− e− i ǫ

n∑

i=2

G(σ)
mini;kiℓi

− e− i ǫµ2 (J.5)with m = (m1, . . . ,mn),n = (n1, . . . , nn),k = (k1, . . . , kn), ℓ = (ℓ1, . . . , ℓn) ∈ Nn and G(σ)
mn,kℓ the twodimensional, massless, Eu
lidean LSZ matrix wave operators

G(σ)
mn;kℓ =

(
2
Ω2 + 1

θ
(m+ n+ 1) +

4Ω̃

θ
(n−m)

)
δmℓ δn,k

+2
Ω2 − 1

θ

(√
nmδm,ℓ+1 δn,k+1 +

√
(n+ 1)(m+ 1)δm,ℓ−1δn,k−1

) (J.6)129



Appendix J Matrix Propagatorwith frequen
ies Ω = Eθ1/2 = Biθi/2 and Ω̃ = (2σ − 1)Ω. Ea
h of these operators are nonzero only for
ni −mi = ki − ℓi =: αi , ∀ i = 1, . . . , n . (J.7)This is due to the SO(1, 1)×SO(2)×(n−1)-symmetry of the a
tion. We 
an thus get rid of n parameters andwrite instead

G
(ǫ,σ)
m,m+α;ℓ+α,ℓ = iG(σ)

m1,m1+α1;ℓ1+α1,ℓ1
− e− i ǫ

n∑

i=2

G(σ)
mi,mi+αi;ℓi+αi,ℓi

− e− i ǫµ2δmℓδnk . (J.8)with α ∈ Zn. The n parts ofG are independent and its eigenfun
tions are thus a produ
t of the eigenfun
tionsof the individual G's. The mass term is already diagonal and also the terms proportional to Ω̃. Thus forevery α we are sear
hing for solutions of the equations
∞∑

ℓ=0

Gm,m+α;ℓ+α,ℓ|Ω̃=0U
(α)
ℓv = v U (α)

mv . (J.9)This equation has been solved in [GW05b℄ with the solutions given by
U (α)

mv =

√(
α+m
m

)(
α+ y
y

)(
2
√

Ω

1 + Ω

)α+1(
1− Ω

1 + Ω

)m+y

2F1

(
−m,−y
1 + α

∣∣∣∣ −
4Ω

(1− Ω)2

)
. (J.10)and eigenvalues

v =
4Ω

θ
(2y + α+ 1) . (J.11)for y = 0, 1, 2, . . .. The Ω̃ term has to be added to the eigenvalues

v → v′ =
4Ω

θ
(2y + 2σα+ 1) . (J.12)The 
omplete matrix operator in 2n dimensions has the representation

G
(ǫ,σ)
m,m+α;ℓ+α,ℓ =

∑

v

U (α)
mv

(
i v′1 − e− i ǫ

n∑

i=2

v′i − e− i ǫµ2

)(
U

(α)
ℓv

)−1 (J.13)where
U (α)

mv =

n∏

i=1

U
(αi)
mi,ℓi

. (J.14)and
i v′1 − e− i ǫ

n∑

i=2

v′i − e− i ǫµ2

= i
4Ω

θ
(2y1 + 2σα1 + 1)− e− i ǫ

n∑

i=2

4Ω

θ
(2yi + 2σαi + 1)− e− i ǫµ2

=
8Ω

θ

(
i y1 + i (σα1 + 1/2)− e− i ǫ

n∑

i=2

yi − e− i ǫ
n∑

i=2

(σαi + 1/2)− e− i ǫµ2 θ

8Ω

)
. (J.15)with yi = 0, 1, 2, . . .. One 
an show that

(
U (α1)

m1v1
· · ·U (αn)

mnvn

)−1

= U (αn)
mnvn

· · ·U (α1)
m1v1

. (J.16)130



In the following we will use the notation U (αi)
mivi = U

(αi)
mi (yi) where the relation between vi and yi is given by(J.15). Using the S
hwinger parameter this yields the propagator

∆
(ǫ)
m+α,m;ℓ+α,ℓ

= −
( ∞∑

y1=0

· · ·
∞∑

yn=0

) ∫ ∞

0

dt exp

{
t( i v′1 − e− i ǫ

n∑

2

v′i − e− i ǫµ2)

}
n∏

i=1

(
U (αi)

mi
(yi)U

(αi)
ℓi

(yi)
)

= − e i ǫ θ

8Ω

∫ ∞

0

dt e i t e i ǫ(σα1+1/2)−t
Pn−1

i=1 (σαi+1/2)−t θµ2

8Ω

×
( ∞∑

y1=0

e i t e i ǫy1U (α1)
n1

(y1)U
(α1)
ℓ1

(y1)

)
n∏

i=2

( ∞∑

yi=0

e−tyiU (αi)
mi

(yi)U
(αi)
ℓi

(yi)

) (J.17)The only di�eren
e between the Eu
lidean and Minkowskian part is the additional fa
tor �− i e i ǫ� in theexponent of the y1 part. We will 
onsider the two fa
tors depending on y1 and yi for i = 2, . . . , n separately.Using the expli
it formula for the U 's (J.10) the respe
tive sums are given by
∞∑

y0=0

e i t e i ǫy1U (α1)
m1

(y1)U
(α0)
ℓ1

(y1)

=
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)(
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ℓ1

)(
4Ω

(1 + Ω)2
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1 + Ω
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∞∑
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(
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e i t e i ǫ

(1− Ω)2

(1 + Ω)2
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× 2F1
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1 + α1
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4Ω
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2F1

(
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∣∣∣∣ −
4Ω

(1− Ω)2

) (J.18)and
∞∑
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e−tyiU (αi)
mi

(yi)U
(αi)
ℓi
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αi +mi
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)(
αi + ℓi
ℓi

)(
4Ω

(1 + Ω)2
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1− Ω
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×
∞∑
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(
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(1 + Ω)2
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× 2F1
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)
2F1

(
−ℓi,−yi

1 + αi

∣∣∣∣ −
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)
. (J.19)Now following Grosse & Wulkenhaar in [GW05b℄ we use the formula

∞∑

y=0

ay
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α+ y
y
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2F1
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)
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, |a| < 1 , (J.20)131



Appendix J Matrix Propagatorwhi
h 
an be applied both for the Eu
lidean as for the Minkowskian 
ase, with
a1 =

e i t e i ǫ

(1− Ω)2

(1 + Ω)2

b = − 4Ω

(1− Ω)2

(1− b)a1 =
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e i t e i ǫ

(1− Ω)2

(1 + Ω)2
= e i t e i ǫ
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2
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)2
e i t e i ǫ
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e i t e i ǫ
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(J.21)
and

ai =
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(1 + Ω)2
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(J.22)
Inserting the above expressions leads to
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) (J.23)and
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. (J.24)Now substituting z = e−t (whi
h gives a z−1 from the di�erential) and using the expansion of the hypergeo-metri
 fun
tions
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∣∣∣∣A
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min(m,ℓ)∑
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and re
ombining the binomials and fa
ulties
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omes
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