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Kurzzusammenfassung

In dieser Arbeit konstruiere ich neue Sasaki-Köcher-Eichtheorien auf konkreten homogenen
Räumen G/H mit Sasaki-Einstein- oder 3-Sasaki-Struktur und untersuche die resultierenden
Instanton-Matrixgleichungen auf den metrischen Kegeln über G/H. Die betrachteten Quoti-
entenräume umfassen die Mannigfaltigkeit T 1,1 = SU(2) × SU(2)/U(1), die runde 7-Sphäre
SU(4)/SU(3), die gequetschte 7-Sphäre Sp(2)/Sp(1) sowie den Aloff-Wallach-Raum X1,1, wo-
bei die beiden letzteren 3-Sasaki-Mannigfaltigkeiten sind.

Köcher-Eichtheorien treten im Zusammenhang mit äquivarianter Dimensionsreduktion von
Eichtheorien auf Räumen der Form Md×G/H auf und ermöglichen einen diagrammatischen
Zugang zum Feldinhalt der Theorie: Für eine gewählte G-Darstellung erfordert die Äquiva-
rianz eine isotopische Zerlegung der beteiligten Vektorbündel, bei der jeder Summand einer
Darstellung von H innerhalb der G-Darstellung entspricht und zu einem Vertex des Köcher-
diagramms führt. Die Wirkung der gesamten Gruppe G verbindet solche Unterdarstellungen
und erzeugt dadurch die Pfeile des Köcherdiagramms; daher kann die Eichtheorie als Dar-
stellung eines Köcherdiagramms betrachtet werden.

Diese Konstruktion kann auch verwendet werden, um eine Invarianzbedingung an Eichzu-
sammenhänge auf homogenen Räumen zu erfüllen, und liefert allgemeinere Lösungen als ein
skalarer Ansatz, der für viele Instantonstudien angewandt worden ist. Für alle vier Quotien-
tenräume werde ich die Äquivarianzbedingung diskutieren und explizite Beispiele der resul-
tierenden Köcherdiagramme geben, wobei ich die Ergebnisse untereinander und mit Litera-
turergebnissen zu verwandten geometrischen Räumen vergleiche.

Verallgemeinerte Instantonen lassen sich für Mannigfaltigkeiten mit reellen Killing-Spinoren
in Form einer verallgemeinerten Selbstdualitätsbedingung definieren und implizieren bekann-
termaßen die normale Yang-Mills-Gleichung. Instantonen sind als Lösungen der Gaugino-
Gleichung, die zu den BPS-Bedingungen gehört, ein wichtiger Bestandteil der heterotischen
Supergravitation. Nach der Konstruktion von äquivarianten Zusammenhängen, die durch die
Köcherdiagramme beschrieben werden, untersuche ich Instantonen auf den Calabi-Yau- und
Hyperkähler-Kegeln (bzw. -Zylindern) über den homogenen Räumen. Dies führt zu bestimm-
ten Matrixgleichungen, die nur von der Kegelrichtung abhängen und deren Form durch die
Köcherdiagramme bestimmt ist.

Die Instantonbedingungen auf den Calabi-Yau-Kegeln über T 1,1 und S7 liefern das erwar-
tete Ergebnis aus der Literatur, und daher kann der Modulraum durch koadjungierte Orbits
oder als Kählerquotient beschrieben werden. Instantonen auf den Hyperkähler-Kegeln über
Sp(2)/Sp(1) und X1,1 können auf den Schnitt von drei Hermiteschen Yang-Mills-Gleichungen
zurückgeführt werden, wobei andere algebraische Bedingungen auftreten, die die unterschied-
liche Bündelstruktur von Sasaki- und 3-Sasaki-Mannifaltigkeiten widerspiegeln. Ich diskutiere
die Folgen dieser veränderten Instantonbedingungen für die Modulräume.

Schlagwörter: Verallgemeinerte Instantonen, Köcher-Eichtheorie, Sasaki-Einstein-
Mannigfaltigkeit.
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Abstract

In this thesis I construct new Sasakian quiver gauge theories on concrete homogeneous spaces
G/H endowed with Sasaki-Einstein or 3-Sasakian structures and study the resulting instanton
matrix equations on the metric cones over G/H. The coset spaces taken into account are the
Romans space T 1,1 in dimension 5, the round seven-sphere SU(4)/SU(3), the squashed seven-
sphere Sp(2)/Sp(1) as well as the Aloff-Wallach space X1,1, where the latter two examples
are 3-Sasakian manifolds.

Quiver gauge theories arise in the context of equivariant dimensional reduction of gauge
theories on Md×G/H and allow a diagrammatric approach to the field content of the gauge
theory: for a fixedG-representation on the fibers, equivariance requires an isotopical decompo-
sition of the vector bundles involved where each summand corresponds to an H-representation
inside the G-representation and gives rise to a vertex of a quiver diagram. The entire group
action connects different subrepresentations and therefore induces arrows; thus, the gauge
theory can be considered as representation of a quiver.

This construction can also be applied for satisfying an invariance condition on gauge con-
nections over homogeneous spaces and provides more general solutions than the usual scalar
approach, which has been employed for various instanton studies. For all four cosets, I will
discuss the equivariance condition and give explicit examples of the resulting quiver dia-
grams, comparing the findings among each other and also with literature results for related
geometries.

Generalized instantons can be defined on manifolds with real Killing spinors in terms of
a generalized self-duality equation, and they are known to imply the usual Yang-Mills equa-
tion. Instantons are solutions of the gaugino equation, which is part of the BPS conditions,
and therefore constitute important ingredients of heterotic supergravity. Having constructed
equivariant gauge connections encoded in the quiver diagrams, I will study instantons on the
Calabi-Yau and hyper-Kähler cones (or cylinders) over the homogeneous spaces. The quiver
approach then yields instanton matrix equations which depend on the cone direction and
whose structure is determined by the quiver diagrams.

The instanton conditions on the Calabi-Yau cones over T 1,1 and S7 match the expected
results from the literature, and therefore the moduli space can be described in terms of coad-
joint orbits or as a Kähler quotient. Instantons on the hyper-Kähler cones over Sp(2)/Sp(1)
and X1,1 can be traced back to the intersection of three Hermitian Yang-Mills conditions, but
the algebraic conditions are changed, reflecting the different bundle structure of Sasakian and
3-Sasakian manifolds. I will discuss the impact of these different conditions on the moduli
spaces.

Keywords: Generalized Instantons, Quiver Gauge Theory, Sasaki-Einstein Mani-
folds.
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1 Introduction

String theory – the most promising candidate for a unified description of gravity and
quantum theory – comprises an astonishing mixture of theoretical physics and various
fields of mathematics such as differential geometry, algebraic geometry and number
theory. This unique mélange often reveals surprising links between different fields,
inspiring both mathematicians and physicists: mirror symmetry, the web of dualities
between the different types of string theory and M-theory as well as the AdS/CFT
correspondence have emerged in this context, to name a few.

Compactification and Killing spinors. One of the most striking aspects of string
theory is the need for – or the prediction of – a ten-dimensional spacetime for su-
perstrings or an eleven-dimensional background for M-theory. Actually, the idea of
considering theories in dimensions higher than four is older than string theory and
goes back to Kaluza’s and Klein’s attempt to unify gravity and electromagnetism in
terms of a 5-dimensional theory [1, 2]. The arising extra-dimensions of string theory
can be accounted for by applying the compactification ansatz: the higher-dimensional
spacetime is written as a (possibly warped) product of a Lorentzian manifold XD−d

and a compact Riemannian manifold Md, assumed to be so tiny that it is beyond
our perception. Constructing a theory that leads to phenomenologically reasonable
physical results on the external spacetime XD−d then requires finding a suitable in-
ternal manifold Md. The external manifold is usually a highly symmetric space like
Minkowski or Anti-de-Sitter (AdS) spaces.

The supersymmetry of string theory is described by field variations which twist
bosonic and fermionic degrees of freedom, and these conditions strongly restrict the
possible geometric structure of the internal manifold Md. In the simplest case, the
manifold Md has to admit parallel spinor(s), ∇Xψ = 0, so that it is forced to have
reduced holonomy. According to Berger’s list [3], only the Lie groups U(n), SU(n),
Sp(m), Sp(m)Sp(1) and the exceptional cases G2 and Spin(7) can occur as special
holonomy (of non-symmetric spaces) [4], which corresponds to Kähler, Calabi-Yau,
hyper-Kähler, quaternionic Kähler, G2 and Spin(7) manifolds, respectively. A proto-
typical example of this ansatz is compactification of type IIA and IIB string theory
on Calabi-Yau 3-folds.

More complicated scenarios comprise so-called fluxes [5,6], certain p-form contribu-
tions, and the Killing spinor equations, ensuring supersymmetry of the background
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1 Introduction

geometry, require the manifold to carry a G-structure, i.e. to admit a reduction of the
structure group, see for example [7]. Many compactification setups are now described
by real Killing spinors, i.e. spinors ψ satisfying

∇Xψ = αX · ψ , (1.1)

with α ∈ R \ {0}. Bär [8] observed that the metric cone over a manifold with real
Killing spinors is endowed with parallel spinors and therefore special holonomy, which
yielded a classification: besides the round spheres, only Sasaki-Einstein, 3-Sasakian,
nearly-parallel G2 and nearly-Kähler manifolds admit real Killing spinors. All of
them have been intensively studied as compactification spaces in the literature, see
for example the summary of brane configurations and compactification manifolds
in [9] and the references therein. Sasaki-Einstein manifolds can be used as (relatively
simple) solutions in backgrounds of the form AdSD−d ×Md in string and M-theory
and therefore play a crucial role in the AdS/CFT correspondence.

Instantons. A physical theory which extends the Standard Model of particle physics
naturally has to incorporate gauge theory; in particular, in type I and heterotic su-
pergravity the bosonic degrees of freedom include a gauge field A. Therefore, an un-
derstanding of higher-dimensional gauge theories [10] is necessary. The breakthrough
of gauge theory in four dimensions has been the development of Yang-Mills theory
and the construction of the Standard Model of particle physics as a gauge theory
with gauge group G = SU(3) × SU(2) × U(1). On Riemannian 4-manifolds, the un-
derstanding of physical and mathematical properties of gauge theories was deepened
by the study of gauge connections A whose curvature F = dA+A ∧A obeys

? F = ±F (⇐⇒ F12 = ±F34, F13 = ∓F24, F14 = ±F23). (1.2)

Such (anti-)self-dual connections are called instantons [11]. They satisfy the Yang-
Mills equationDA?F = 0 as equation of motion of the Yang-Mills functional thanks to
the Bianchi identityDAF = 0. In fact, instantons minimize the action functional and,
consequently, play an important role as non-perturbative tools in field theory [12–14].
Moduli spaces of such gauge configurations turned out to yield fruitful new insights,
in both physics and mathematics [15].

Generalized instantons and heterotic supergravity. The concept of instantons can
be extended to higher-dimensional manifolds [16–19] in several (more or less equiva-
lent) ways. From the point of view of heterotic supergravity (cf. [7]), an instanton is
a gauge connection that satisfies – as part of the supersymmetry / BPS conditions –
the gaugino equation

F · ε = 0, (1.3)

2



where the spinor ε is the supersymmetry generator. In terms of manifolds with
G-structures, the instanton definition restricts the curvature F to lie in the Lie algebra
of the reduced structure group, and this can rephrased

?d F = −F ∧ ?dQ, (1.4)

where Q is an invariant 4-form on Md. On manifolds with Killing spinors this form
can be constructed as bilinear of the spinors [19], and by virtue of the Killing spinor
equations the generalized self-duality condition (1.4) then implies the Yang-Mills
equation DA ?d F = 0, analogously to the 4-dimensional case. Hence, a first-order
equation (in terms of the gauge connection A) yields solutions to an intricate second-
order equation of motion.

As an essential part of the supersymmetry equations, instanton solutions may serve
as building blocks for full solutions of heterotic supergravity, as pursued e.g. in [19,20],
and therefore the construction of instantons attracts interest of string theorists.

Instantons on homogeneous spaces. A large number of compactification spaces in
string theory and supergravity are coset spaces G/H [21, 22]. Due to their relatively
easy description, their well-understood properties and the manifest symmetries, they
appear as typical model spaces in many applications, also for dimensional reduction
of gauge theories [23,24].

Many studies, for example [19,25–33], constructed generalized instantons and Yang-
Mills connections on manifolds with Killing spinors or their metric cones/cylinders,
for instance on G2 manifolds, nearly Kähler manifolds and on Sasakian manifolds,
typically on explicit homogeneous spaces G/H. The standard approach consists in
expressing the gauge connection locally as A = Γ +Xµ ⊗ eµ, where Γ is the canonical
connection [19] adapted to the geometry, eµ are a basis of 1-forms on the cotangent
space of the coset, and Xµ are endomorphisms valued in the Lie algebra of the struc-
ture group of the gauge bundle. For invariance of the connection, one imposes the
equivariance condition [34]

[Ij , Xµ] = fνjµXν , (1.5)

where Ij are the generators of the subgroup H. In most cases, this condition is solved
by applying the scalar ansatz Xµ = λµ(x)Iµ with functions λµ(x) depending on
coordinates of an external manifold only. Often, the metric cone/cylinder R+×G/H
is included in this way and the instanton equations then reduce to ordinary differential
equations on a set of functions which depend on the cone coordinate only.

Quiver gauge theory. Studying more general solutions of the equivariance condi-
tion (1.5) naturally leads to quiver gauge theories as they occur in the context of
equivariant dimensional reduction of gauge theories on spaces Md × G/H [34–38].
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1 Introduction

The central idea is to start from an arbitrary G-representation D which decomposes
under restriction to the subgroup into a direct sum of several H-representations. The
generators Ij as well as the canonical connection Γ split in the same way, and one can
depict each contribution as vertex of an oriented graph, called quiver diagram. The
group action of G (and equivalently the matrices Xµ) connect different subrepresen-
tations and therefore can be represented by arrows in the diagram. Similarly, this
decomposition induces a breaking of the structure group of the gauge bundle, which
makes equivariant dimensional reduction an interesting realization for gauge theories
with symmetry breaking.

When applied to the construction of instantons, this ansatz yields matrix equations
rather than conditions on functions, and the occurring contributions are depicted
in the quiver diagrams associated to chosen G-representations. Such quiver gauge
theories have been derived for the homogeneous spaces CP 1, CP 2, CP 1 × CP 1 and
SU(3)/(U(1)×U(1)), endowed with Kähler or nearly-Kähler structures [35–43].

In [44] this concept has been extended to the Sasaki-Einstein space SU(2)/Γ and
was named Sasakian quiver gauge theories. Thereafter, the round five-sphere S5, the
odd-dimensional counterpart of the space CP 2, has been included into this framework
[45, 46]. In both cases, the motivation (see [45, Ch. 7]) was to gain further insights
into the interplay between different quiver gauge theories in related geometric setups,
by using the “bridging property” of Sasakian geometry.

This thesis is devoted to constructing new examples of Sasakian quiver gauge the-
ories on 5– and 7-dimensional coset spaces as well as to studying the moduli space
of instantons on the metric cones over these cosets, endowed with Calabi-Yau and
hyper-Kähler structures. It includes the results from [47–49], which are extended and
related to each other.

Outline and results

Since the mathematical framework and the general ansatz for instantons on homo-
geneous spaces have already been established, the focus of this thesis is placed on
studying explicit examples of Sasakian quiver gauge theories and on closing gaps in
the literature by including some well-known homogeneous spaces in five and seven
dimensions. The motivation arises from their application as possible compactification
manifolds in string theory (see e.g. [50, Fig. 1]), in particular with respect to heterotic
supergravity, and their well-understood mathematical properties.

More precisely, we will study the homogeneous spaces S7 ∼= SU(4)/SU(3) and
T 1,1 := SU(2)×SU(2)/U(1), endowed with their Sasaki-Einstein structures, as well as
the 3-Sasakian manifolds S7 ∼= Sp(2)/Sp(1) and X1,1 ∼= SU(3)/U(1)1,1. Considering
these spaces is a very natural choice: the space T 1,1 completes the list of relevant
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structures studied in dimension 5, and the round seven-sphere is the prototype of a
7-dimensional Sasaki-Einstein manifold. The squashed seven-sphere and the space
X1,1 exhaust – up to isometry and under certain regularity conditions – the list of
3-Sasakian manifolds in dimension seven.

Results. Besides giving a self-contained overview over Sasakian quiver gauge theories
on various coset spaces G/H, the aims of this thesis can be divided into two parts:
(i) completing the picture of Sasakian quiver gauge theories (in dimensions 5 and 7)
and (ii) including 3-Sasakian manifolds into the framework of quiver gauge theories.
The main results can be summarized as follows:

• In five dimensions the study of the space T 1,1, the only other complete homo-
geneous Sasaki-Einstein manifold besides S5, closes a gap in the existing liter-
ature by providing another rank-2 quiver gauge theory. We derive the generic
description for all representations of G and compare the results to those on S5.
Moreover, the reduction of the quiver gauge theory to the underlying Kähler
manifold CP 1 × CP 1 correctly reproduces the results from [43].

• Sasakian quiver gauge theories on the round sphere S7 are constructed. We ob-
tain results analogous to those on the five-sphere in [46] for low-dimensional ex-
amples of SU(4)-representations. As a by-product, one derives a further quiver
gauge theory on a Kähler manifold by taking the limit CP 3. In addition, aspects
of the generalization to any odd-dimensioanl sphere S2n+1 = SU(n+ 1)/SU(n)
are sketched.

• Manifolds with 3-Sasakian structure are included into the framework of quiver
gauge theories over coset spaces, and the main features, also in comparison
with Sasaki-Einstein cosets, are elaborated. As a prototype the squashed seven-
sphere is discussed by considering some explicit examples for low-dimensional
Sp(2)-representations. We briefly comment on extensions to any squashed
sphere Sp(m+ 1)/Sp(m) as well.

• 3-Sasakian quiver gauge theories on X1,1 yield results similar to those for the
squashed seven-sphere. By emphasizing the entire 3-Sasakian structure, the
discussion here significantly extends [48], which only focussed on the Sasaki-
Einstein geometry.

• We describe the moduli spaces of instantons on the Calabi-Yau and hyper-
Kähler cones over the cosets G/H. While the instanton conditions on the cones
over S7 and T 1,1 lead to Nahm-type equations and correspond to the general
results for Calabi-Yau cones [51], the hyper-Kähler case can be discussed as
the intersection of three Hermitian Yang-Mills equations, which causes some
changes.

5



1 Introduction

Structure of the thesis. This thesis is organized as follows: the next two chapters
review the mathematical basics that are relevant for the discussion of the various
gauge theories in the remainder. Chapter 2 introduces the geometric setups of inter-
est, Sasaki-Einstein and 3-Sasakian manifolds, as well as the closely related Kähler
and hyper-Kähler spaces, recalling the most important properties. Moreover, the no-
tion of generalized or higher-dimensional instantons on these structures is reviewed,
making use of the existence of Killing spinors. The chapter concludes with a short
section on the conceptionally similar idea of calibrations.

The subsequent Chapter 3 reviews quiver bundles and diagrams in the context of
equivariant dimensional reduction in the first section. Section 3.2 relates this con-
struction to an invariance condition on gauge connections over homogeneous spaces.
The expressions here constitute the basis for the studies of explicit examples of quiver
gauge theories. The last section summarizes the basic properties, provides a list of
typical examples in the literature, and reviews the prototypical equivariant dimen-
sional reduction on CP 1.

The following parts are the core of this work: we study Sasakian quiver gauge
theories on the round seven-sphere (Chapter 4) and on the five-dimensional space
T 1,1 (Chapter 5) as well as 3-Sasakian quiver gauge theories on the squashed seven-
sphere (Chapter 6) and on the Aloff-Wallach space X1,1 (Chapter 7). In all cases
we proceed in the same way: based on a local section, the geometric structure of the
coset space is described and one constructs the canonical connection. Then we discuss
the equivariance conditions, derive the action functional and consider some explicit
examples of quiver diagrams as well as the resulting instanton matrix equations for
certain representations of the groups G. For the manifold T 1,1 we provide a discussion
of quiver diagrams for generic G-representations. Reductions to quiver gauge theories
on similar spaces – typically the underlying Kähler or quaternionic manifolds – are
investigated as well. For all four examples we discuss the instanton equations on
their metric cones, applying an established approach for the Sasaki-Einstein case and
commenting on the differences in the 3-Sasakian case.

Chapter 8 summarizes the results and contains open questions which are left for
future work. Appendix A provides some details on instantons and their generaliza-
tion, whereas the Appendices B – E collect details on the geometric structures and
representations of the relevant Lie groups G = SU(4), SU(2)×SU(2),Sp(2) and SU(3).

6



Part I

Review of mathematical
preliminaries
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2 Sasaki-Einstein geometry and
generalized instantons

This chapter discusses the relevant geometric properties of Sasakian manifolds and
their relation to Kähler manifolds. We review the definition of higher-dimensional
instantons in terms of a generalized self-duality equation, which comprises the Her-
mitian Yang-Mills equation in the case of Kähler manifolds. The last section briefly
comments on the relationship between instantons and generalized calibrations.

The basic definitions regarding Kähler and Sasakian manifolds can be found in
standard textbooks on geometry and review articles like [52]; we refer to some more
specialized references below. A discussion of higher-dimensional instantons in terms
of a generalized self-duality equation, whose notation we follow, is given in [19, 20].
The geometric properties and the instanton construction are based on the existence of
Killing spinors, and a good description of the spinor geometry of Sasakian manifolds
can be found in [53].

2.1 Sasakian and 3-Sasakian geometry

A fundamental property of Sasakian manifolds is that they are the odd-dimensional
counterparts of Kähler manifolds. Therefore, the usual presentation of Sasakian man-
ifolds starts with a review of Kähler manifolds, and we will do the same here. Among
the large number of articles and books on Sasakian geometry we refer in particular
to [54–56].

2.1.1 Kähler and Sasakian manifolds

We start by recalling the basic definitions in the context of complex geometry (from
the viewpoint of differential geometry). An almost complex structure on a manifold
M2n of real dimension 2n is an endomorphism J on the tangent bundle such that
J2
x = −idx for all points x ∈M2n.

An almost complex structure J is called integrable or complex if its Nĳenhuis tensor

N(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ], (2.1)

identically vanishes, N ≡ 0, where [·, ·] is the Lie bracket of vector fields on M2n.
An integrable complex structure allows the introduction of holomorphic forms on the

9



2 Sasaki-Einstein geometry and generalized instantons

manifold via
JΘ := J(e1 − ie2) = i(e1 − ie2) = iΘ. (2.2)

A Riemannian manifold (M2n, g) equipped with an almost complex structure J
is called almost Hermitian if the almost complex structure is compatible with the
metric, i.e. g(X,Y ) = g(JX, JY ) for all vector fields X, Y on M2n.

Kähler geometry. A Kähler manifold (M2n, g, J) is an almost Hermitian manifold
with integrable complex structure such that the Kähler form Ω(X,Y ) := g(JX, Y ) is
closed. Hence, a Kähler manifold is an almost Hermitian manifold characterized by
the two conditions N ≡ 0 and dΩ = 0.
In terms of holonomy groups and Berger’s list [3], a Kähler manifold is equivalently

defined as a Riemannian manifold (M2n, g) such that its holonomy group is contained
in the unitary group U(n). This point of view will be advantageous for one of the
definitions of instantons later on.

A very important aspect of Kähler manifolds is that they are not only Hermitian
but also symplectic [57] due to (Ω)n 6= 0. In many relevant situations, for instance
in the context of moduli spaces, one may use Kähler quotients. Let G be a compact
Lie group acting on a Kähler manifold (M2n, g,Ω) such that it preserves the Kähler
structure, i.e. LX]g = 0 = LX]Ω for the induced vector field X]. Then a moment
map [57,58] is defined as a G-equivariant map µ : M2n −→ Lie(G)∗ such that

d〈µ(p), X〉 = ιX]Ω. (2.3)

For elements ξ in the center of the Lie algebra of G, one constructs the well-defined
quotient

µ−1(ξ)/G, (2.4)

which inherits a Kähler structure from (M2n, g, J) and which is known as Kähler
quotient. In the context of generalized instantons on Calabi-Yau cones, it appears
as possible description of the moduli space of Hermitian Yang-Mills connections [51],
which will be applied in Section 4.5.2.

Sasakian manifolds. Being odd-dimensional counterparts of Kähler spaces, Sasakian
manifolds can be defined by certain conditions on their metric cones. Recall that the
metric cone (M̃ = R+ ×M, gc) over a manifold (M, g) is given by the warped metric

gc = r2g + dr ⊗ dr = r2(g + dτ ⊗ dτ) =: r2gcyl, (2.5)

where τ := ln(r) denotes the rescaled cone-coordinate and the second equality estab-
lishes a conformal equivalence1 between the metric cone and the cylinder over M .

1The conformal factor does not matter for the self-duality equation and one can use both cone
and cylinder interchangeably. However, metric cones and cylinders lead to different Yang-Mills
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2.1 Sasakian and 3-Sasakian geometry

A Sasakian manifold is a Riemannian manifold such that its metric cone is Kähler.
Equivalently (see e.g. [52]), a Sasakian manifold is given by a Riemannian mani-
fold (M2n+1, g) endowed with a vector field ξ, its dual 1-form η, and a tensor field
ϕ : TM2n+1 → TM2n+1 satisfying:

(i) ϕ2 = −1 + η ⊗ ξ and g(ϕ(X), ϕ(Y )) = g(X,Y )− η(X) η(Y ),

(ii) dη = 2F with fundamental form F (X,Y ) := g(X,ϕ(Y )),

(iii) and the vanishing of the Nĳenhuis tensor

N(X,Y ) := [ϕ(X), ϕ(Y )]− ϕ[ϕ(X), Y ]− ϕ[X,ϕ(Y )] + ϕ2[X,Y ] + dη(X,Y )ξ.

The vector field ξ is referred to as characteristic or Reeb vector field, and its dual
1-form η is a contact form, i.e. η ∧ (dη)n 6= 0. From the defining properties above, it
follows directly that the metric cone is Kähler. Conversely, the leaf spaces from the
foliation D := ker(η) along the Reeb vector field yield transverse Kähler spaces with
fundamental form dη in dimension 2n [54]. Thus, Sasakian manifolds are in a way
sandwiched between Kähler spaces, and the typical geometric structure one should
keep in mind is that of U(1)-bundles over Kähler manifolds.

Of particular interest in this thesis are Sasaki-Einstein manifolds [55], that is
Sasakian manifolds (M2n+1, g, ξ, η, ϕ) whose metric g is Einstein. This additional
condition on the Ricci tensor implies that the metric cone is a Ricci-flat Kähler man-
ifold, i.e. it is Calabi-Yau. Therefore, the holomomy of the metric cone M̃2n+2 is
contained in the subgroup SU(n+ 1) ⊂ U(n+ 1) ⊂ SO(2n+ 2), and the reduction on
the Lie-algebra level,

so(2n+ 2) = u(n+ 1)⊕ k = su(n+ 1)⊕ u(1)⊕ k, (2.6)

can be obtained by the closure of some defining forms. More precisely, the closure
of the fundamental form associated to the (integrable) complex structure reduces the
holonomy to U(n + 1), while the closure of the holomorphic top-degree form Ωn+1,0

yields the further reduction to SU(n+1); this criterion will prove useful for the explicit
examples later.

Standard results on Sasaki-Einstein manifolds M2n+1 state that their scalar cur-
vature is given by s = 2n(2n + 1) and that they admit SU(n) structures. Simply-
connected Sasaki-Einstein manifolds are endowed with (at least) two Killing spinors [59].

Typical examples of homogeneous Sasaki-Einstein manifolds are the round spheres
S2n+1 = SU(n + 1)/SU(n) and the Stiefel manifolds SO(m + 1)/SO(m − 1). Fur-
thermore, a new class of non-homogeneous Sasaki-Einstein manifolds, named Y p,q,
has been constructed on S2 × S3 [60], and this construction was generalized to all
dimensions [61].

equations; see also the remark in Appendix A.1.2.
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2 Sasaki-Einstein geometry and generalized instantons

2.1.2 Hyper-Kähler and 3-Sasakian structures

The close relationship between Kähler and Sasakian manifolds finds an analogue in the
interplay of hyper-Kähler and 3-Sasakian manifolds. The latter ones are a restrictive
subclass of Sasaki-Einstein manifolds in dimension 4m+ 3 and constitute the second
type of geometries we are particularly interested in.

Hyper-Kähler manifolds. In Berger’s list there appears the case of holonomy con-
tained in the subgroup2 Sp(m) ⊂ U(2m) ⊂ SO(4m), and manifolds with this holon-
omy are referred to as hyper-Kähler manifolds [4, 62,63].

Equivalently, a hyper-Kähler manifold (M4m, g) is equipped with a triple of co-
variantly constant endomorphisms Jα = I, J,K : TM4m → TM4m, ∇Jα = 0, which
satisfy the quaternionic relations

I2 = J2 = K2 = IJK = −1. (2.7)

Considering J = sαJα with s21 + s22 + s23 = 1, they give rise to a whole CP 1-family of
complex structures (and similarly of Kähler forms) and lead to the so-called twistor
spaces. Analogously to the Kähler quotient, one can now take the hyper-Kähler
quotient [58] which employs a triplet of moment maps µα (see also Appendix A.2).

Because of the quaternionic structure the group Sp(m) acts on, typical examples of
hyper-Kähler manifolds are given by the quaternionic spaces Hm and metric cones over
3-Sasakian manifolds (see below). Moreover, the famous quiver varieties [64] intro-
duced by Nakajima are hyper-Kähler varieties, constructed as hyper-Kähler quotients
on the space of linear maps in a representation of a given quiver diagram.

3-Sasakian manifolds. A manifold is called 3-Sasakian if its metric cone is hyper-
Kähler. This definition is equivalent to describing [53, 65] a 3-Sasakian manifold as
Riemannian manifold (M4m+3, g) which admits a triplet of Sasakian structures such
that the characteristic vector fields ξα are orthonormal, g(ξα, ξβ) = δαβ, and satisfy
the su(2) commutation relations

[ξα, ξβ] = 2ε γ
αβ ξγ . (2.8)

A 3-Sasakian manifold (M4m+3, g) is automatically Einstein (with scalar curvature
s = (4m+ 2)(4m+ 3)) and carries an Sp(m) structure. Simply-connected spin mani-
folds with 3-Sasakian structure admit (at least) three independent Killing spinors [59,
Thm. 6].

Homogeneous 3-Sasakian manifolds have been completely classified, revealing a cor-
respondence between simple Lie algebras and 3-Sasakian structures [65, Thm. 3.2.6].

2The notation Sp(m) always refers to the compact form of the symplectic group, which is also known
as USp(2m) in some literature.
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2.2 Higher-dimensional instantons

Examples include the squashed spheres Sp(m + 1)/Sp(m) of dimension 4m + 3, the
Aloff-Wallach space X1,1 = SU(3)/U(1)1,1 in dimension 7 and some exceptional cosets
like G2/Sp(1), for example. Note that every compact simply-connected 7-dimensional
spin manifold with regular 3-Sasakian structure is isometric to either the squashed
seven-sphere Sp(2)/Sp(1) or the Aloff-Wallach space X1,1 [53, Sec. 4.4., Cor. 4].

While the properties of Sasakian manifolds are dominated by being U(1)-bundles
over Kähler manifolds, 3-Sasakian manifolds are either Sp(1)-bundles (in the case
of the squashed spheres) or SO(3)-bundles over quaternionic Kähler spaces. This
property will become eminent in the discussion of the instanton equations on metric
cones over these spaces in Chapters 6 and 7.

Related geometries. 3-Sasakian manifolds, in particular in dimension 7, admit var-
ious closely related geometric structures, which are summarized in [54, Sec. 8] for
instance. Inter alia, every 3-Sasakian manifold is endowed with a second Einstein
metric of positive scalar curvature [65]. Furthermore, in dimension 7 the 3-Sasakian
metric is also a nearly-parallel G2 metric (also known as manifold with weak G2

holomomy). Therefore, 3-Sasakian manifolds also occur [66] in the context of G2

geometry, and one can study Spin(7) instantons on the metric cones over 3-Sasakian
manifolds [28].

2.2 Higher-dimensional instantons

Before considering instantons in higher dimensions, let us recall the properties of
4-dimensional instantons. In four Euclidean dimensions the Hodge star operator ?4

squares to the identity when acting on 2-forms, so that the 6-dimensional space
Λ2T ∗M4 of 2-forms splits into two eigenspaces with eigenvalues ±1,

Λ2T ∗M4 = Λ+ ⊕ Λ−. (2.9)

This decomposition motivates the study of connections with curvature valued in one
of these eigenspaces, ?F± = ±F±, which are referred to as (anti-)self-dual connections
or instantons [11]. Such connections automatically satisfy the Yang-Mills equation
DA ? F = 0 by virtue of the Bianchi identity DAF = 0. Morevover, it can be shown
that the Yang-Mills action is bounded from below by a topological term and that
the bound is saturated if the connection is an instanton. These basic properties are
reviewed in Appendix A.1 in more detail.

The self-duality equations and the structure of their moduli spaces played a cru-
cial role for the characterization of 4-manifolds [15, 67] and also provided important
insights in related geometric questions, see [68] for instance. In physics, instantons
are of importance as non-perturbative tools in field theory, see e.g. [12–14], and are
closely related to branes and other solitonic objects like magnetic monopoles.
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2 Sasaki-Einstein geometry and generalized instantons

2.2.1 Generalized self-duality condition

In order to formulate an analogue of the original self-duality condition ?F = ±F
in higher dimensions [16–18], one has to compensate the different form degrees of
the curvature 2-form F and its Hodge dual ?nF of degree n − 2 by extending the
?-operator with a suitable differential form. On manifolds with Killing spinors, one
can construct an invariant 4-form Q and consider the action of the operator ?(?Q∧·),
so that generalized instantons can be defined (see e.g. [69]) as connections A such
that their curvature F = dA+A ∧A satisfies

?d F = −F ∧ ?dQ. (2.10)

The construction of the 4-form Q for different geometries of manifolds with Killing
spinors is described in [19,20] (see also [7]), and we apply their formulation for Sasaki-
Einstein manifolds and 3-Sasakian manifolds here. Definition (2.10) implies – as in
four dimensions – a variant of the Yang-Mills equations: taking the derivative of the
self-duality equation yields the Yang-Mills equation with torsion term,

DA ? F − F ∧ ?H = 0, (2.11)

where one has defined ?H = d?Q, see [19,25] for example. For manifolds with Killing
spinors the torsion term vanishes: on manifolds with real Killing spinors the vanishing
of the torsion term is proven in [19]. Their metric cones admit parallel Killing spinors
and therefore special holonomy, hence the form Q (on the cone) is both closed and
co-closed, and the statement is clear. Thus, the first-order equation (2.10) implies
the usual second-order Yang-Mills equation DA ? F = 0 without torsion.

The Yang-Mills equation with torsion (2.11) can be shown to be the equation of
motion of the action functional

S =
∫
Md

Tr
[
F ∧ ?F + (−1)dF ∧ F ∧ ?Q

]
, (2.12)

which is the usual Yang-Mills action plus a Chern-Simons-type term, see e.g. [20,25,
70, 71] and the detailed discussion in Appendix A.1.2. Solutions to the generalized
self-duality equation (2.10) minimize this functional.

Heterotic supergravity. The interest in higher-dimensional instantons in gauge the-
ories arises not only as mathematical topic in its own right but also in the context of
heterotic supergravity [7]. Besides the metric g, the dilaton Φ and the Kalb-Ramond
field B – present in the common sector of type II string theories – the bosonic de-
grees of freedom in heterotic supergravity contain a gauge field A. Supersymmetric
backgrounds require the vanishing of the field variations [19,20,72,73],

δΨ ∝ ∇−ε = 0, (2.13a)

δλ ∝ (dΦ−H) · ε = 0, (2.13b)

δχ ∝ F · ε = 0, (2.13c)
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2.2 Higher-dimensional instantons

constituting the so-called BPS equations which comprise the gravitino, dilatino and
gaugino equation, respectively. Here ∇− denotes a metric connection with torsion
T = −H. This provides a physical motivation for studying connections with skew-
torsion [74]. The forms in (2.13b) and (2.13c) act on the supersymmetry generator ε
according to Clifford multiplication.

The definition of instantons in terms of the generalized self-duality equation (2.10)
implies the definition as solution to the gaugino equation (2.13c) [7, 19]. Therefore,
finding gauge connections satisfying (2.11) serves as a starting point for the construc-
tion of solutions of heterotic supergravity [19, 20]. The notation ?H = d ? Q in the
generalized Yang-Mills equation (2.11) emphasizes the setting of having a metric con-
nection with skew-symmetric torsion H in heterotic supergravity. However, one can
also study (2.11) in its own right, by allowing for a torsion form H that does not arise
from the BPS equation (2.10), and this leads to non-BPS Yang-Mills connections with
torsion, see for instance [28,33].

Canonical connection. Note that the generalized self-duality equation ensures the
curvature of a generalized instanton to take values in the subalgebra g ⊂ so(n), where
g is the Lie algebra of the reduced structure group. This is an even more general
definition of instantons since it does not need Killing spinors but only a reduction of
the structure group. In particular, the curvature of generalized instantons on Sasaki-
Einstein manifolds M2n+1 must be valued in su(n), and that of 3-Sasakian manifolds
M4m+3 is further restricted to lie in sp(m) ⊂ su(2m) ⊂ so(4m).

Following [19], one can introduce the so-called canonical connection on manifolds
with G-structures, in particular those with Killing spinors. It is defined as a met-
ric connection with holonomy G and skew-torsion with respect to a G-compatible
metric. This connection is a generalized instanton and serves as starting point in
many constructions of instantons, e.g. in [34], and also in this thesis. As clarified
in [19, Sec. 3.5], this connection differs from the characteristic connection of [74] in
the case of Sasaki-Einstein manifolds.

Instantons on Sasaki-Einstein manifolds. For Sasaki-Einstein manifolds (M2n+1, g)
one can construct the defining forms as [19]

η = (ε†γµε) eµ, ω = − i
2(ε†γµνε) eµν , (2.14)

where the Killing spinor ε satisfies∇µε = 1
2 iγµε and the 1-forms eµ are an orthonormal

basis with respect to the Sasaki-Einstein metric, g = δµνe
µ⊗eν . Moreover, one defines

the spinor bilinears

− i
3!(ε
†γµνρε) eµνρ =: P = η ∧ ω, − 1

4!(ε
†γµνρσε) eµνρσ =: Q = 1

2ω ∧ ω, (2.15)
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2 Sasaki-Einstein geometry and generalized instantons

where the shorthand notation ei1...ik := ei1 ∧ . . . ∧ eik is used for wedge products
of forms. The invariant 4-form Q is the square of the fundamental form ω of the
underlying Kähler manifold, and the generalized instanton equation takes the form
?F = − 1

(n−2)!η ∧ ω
n−2 ∧ F . Using the differentials of the forms obtained by the

Killing spinor equation, it is shown [19] that this generalized self-duality equation
implies the usual Yang-Mills equation without torsion term.

The canonical connection associated to the SU(n)-structure of the Sasaki-Einstein
manifold is uniquely determined by introducing its torsion components

T 2n+1 = P2n+1µνe
µν = 2ω = dη, T a = n+ 1

2n Paµνe
µν , (2.16)

where e2n+1 ≡ η denotes the contact form. We will use this canonical connection as
starting point for quiver gauge theories on the Sasaki-Einstein manifolds T 1,1 and S7.

Instantons on Calabi-Yau cones. On the Calabi-Yau cone (and the conformally
equivalent cylinder) over a Sasaki-Einstein manifold M2n+1, the generalized self-
duality condition can be formulated in terms of the 4-form [19]

QZ := dτ ∧ P +Q. (2.17)

Recalling the Kähler form on the cone, Ω1,1 = r2(dτ ∧ η + ω), the 4-form can also
be written as r4QZ = 1

2Ω1,1 ∧Ω1,1, which immediately shows the closure of the form
on the cone. Taking the Hodge star thereof yields again a power of the Kähler form,
so that r4QZ is indeed closed and co-closed, as expected for a manifold with special
holonomy [19].

Instantons on 3-Sasakian manifolds. Given a 3-Sasakian manifoldM4m+3 with the
triple of contact forms ηα and writing their differentials (which describe the associated
Kähler forms) as

dηα = εαβγη
βγ + ωα, (2.18)

with ωα 2-forms on the underlying quaternionic manifold, the relevant quantities for
the instanton equation read [19]

Q := 1
6
∑
α

ωα ∧ ωα, P = 1
3η

123 + 1
3
∑
α

ηα ∧ ωα. (2.19)

The canonical connection of the 3-Sasakian structure is defined by the torsion com-
ponents

Tα = 3Pαµνeµν , T a = 3
2Paµνe

µν , (2.20)

where α again denotes the three indices of the contact directions, a those of the
underlying quaternionic manifold, and the 1-forms eµ are orthonormal with respect
to the 3-Sasakian metric, g = δµνe

µ ⊗ eν .
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2.3 Hermitian Yang-Mills equation

Instantons on hyper-Kähler cones. The canonical connection of the 3-Sasakian
manifold can be lifted to an instanton on the metric cone. The generalized self-
duality condition involves the 4-form [19]

QZ := 1
6(ωα ∧ ωα + εαβγω

α ∧ ηβγ + 2dτ ∧ ηα ∧ ωα + 6dτ ∧ η123). (2.21)

Since the three Kähler forms on the cone are given by Ω1,1
α = ωα + 1

2εαβγη
βγ + dτ ∧ ηα,

the invariant 4-form can be written as

QZ = 1
3
∑
α

Ω1,1
α ∧ Ω1,1

α . (2.22)

As in the case of metric cones over Sasaki-Einstein manifolds, this expression shows
the closure and co-closure of the relevant form on the cone, and therefore the Yang-
Mills equation without torsion follows from the generalized self-duality condition in
this case as well.

Moreover, the form of (2.22) suggests that a description of instantons on hyper-
Kähler cones can be related to three single instanton equations known from Calabi-
Yau cones. With the results of [75] one can indeed trace back the moduli space in this
way [49], which will be used for the discussion of instanton moduli spaces of quiver
gauge theories on the cones over Sp(2)/Sp(1) and X1,1.

2.3 Hermitian Yang-Mills equation

On Kähler manifolds (M2n,Ω) – in the case at hand Calabi-Yau cones over Sasaki-
Einstein manifolds – there is a description of instantons in terms of the Hermi-
tian Yang-Mills (HYM) or Donaldson-Uhlenbeck-Yau (DUY) equations [69,73,76,77].
Splitting the curvature F = F2,0 + F1,1 + F0,2 according to the complex structure
induced by Ω, the Hermitian Yang-Mills equations are given by

F2,0 = 0 = F0,2 (“holomorphicity condition”), (2.23a)

0 = Ω F (“stability condition”), (2.23b)

where denotes the contraction of forms. These equations can be considered as defi-
nition of instantons in the spirit of G-structures: since Kähler manifolds carry (inte-
grable) U(n) structures, the generic structure group of the frame bundles can be de-
composed as so(2n) = u(1)⊕ su(n)⊕ k. The first equation (2.23a), the holomorphic-
ity condition, forces the curvature to take values in the subalgebra u(n) = su(n)⊕u(1).
The condition (2.23b) constrains the u(1)-part further. It is called stability-like con-
dition, since the formulation of the DUY equations [76,77] deals with the stability of
holomorphic vector bundles.

In the remainder of this thesis, we will apply the HYM equations as an equivalent
formulation of the instanton equations on the metric cones (cylinders) carrying Kähler
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2 Sasaki-Einstein geometry and generalized instantons

structures (here: the Calabi-Yau cones). It turns out [51] (cf. Section 4.5.2) that
evaluating the Hermitian Yang-Mills equations in our setups leads to Nahm-type
equations. The holomorphicity conditions Fαβ = 0 (with α, β denoting holomorphic
forms) gives rise to a version of the complex equation (A.21a), while the stability-like
condition Ωαβ̄Fαβ̄ = 0 yields an analogue of the real equation (A.21b).

2.4 Calibrations

The previous sections reviewed generalized instantons as certain BPS configurations
which are defined by first-order equations and imply second-order equations of motion.
Another prominent example of evaluating first-order equations in order to obtain
solutions to a second-order problem are calibrations [78] for minimal submanifolds
and the extension to supersymmetric cycles wrapped by branes, which are described
by generalized calibrations [7, 79, 80]. We review this concept here due to its analogy
as a first-order BPS equation constructed from Killing spinors, as can be seen in [7] for
instance. Applications of calibrations in gauge theory and the relationship between
both fields are also discussed in [10,69,81].

Calibrated submanifolds. According to [78], a calibration form φ on a Riemannian
manifold (Md, g) is a closed p-form (p < d) which satisfies the inequality

φ|S ≤ volS (2.24)

for all oriented tangent p-planes S on Md. Here volS denotes the induced volume
form and the inequality has to be read as an inequality on the scalar function in front
of the volume form dξ1 ∧ . . . ∧ dξp on both sides of the expression.
A p-dimensional submanifold Σ that saturates the inequality (2.24) in each point,

φ|Σ = volΣ , (2.25)

is called a calibrated submanifold. The crucial point is that calibrated submanifolds
minimize the volume within their homology class, as the following standard argument
[78, 80] shows. Let Σ′ be another manifold in the same homology class, i.e. the
manifolds only differ by a boundary term, Σ′ = Σ + ∂B. Then one obtains

Vol(Σ′) =
∫
Σ′

volΣ′ ≥
∫
Σ′
φ|Σ′ =

∫
Σ
φ|Σ +

∫
B

dφ|B

=
∫
Σ
φ|Σ =

∫
Σ

volΣ = Vol(Σ), (2.26)

where one has first used the definition of the calibration form (2.24), then Stokes’
Theorem and the closure of φ, and finally the saturation of the inequality (2.25) for
the calibrated submanifold Σ.
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Recall that the embedding of a p-dimensional submanifold into Md is described by

X : S →Md, (ξ1, . . . ξp) 7−→ (X1(ξi), . . . , Xd(ξi)), (2.27)

constituting the typical setup of the worldsheet and branes in string theory. The
induced metric on S is given by gαβ = ∂αX

m∂βX
ngmn, and finding a minimum of

the induced volume volS =
√

det(gαβ)dξ1 ∧ . . . ∧ ξp amounts to solving a compli-
cated second-order equation in the embedding functions Xµ. The first-order equation
(2.25), however, implies for calibrated submanifolds the minimization of the volume,
in analogy to the implication of the generalized self-duality equation (2.10) for the
Yang-Mills action.

Examples. The standard examples (see e.g. [78,82,83]) of calibrations and subman-
ifolds comprise:

• complex submanifolds calibrated by φ := 1
p!Ωp on Kähler manifolds (M2n, g,Ω),

• special Lagrangian submanifolds (SLAGs) calibrated by the real part of the
holomorphic top-degree form, φ := Re(Θ1 ∧ . . .Θn), on Calabi-Yau n-folds,

• submanifolds calibrated by the 3-form φ defining the group G2 or its dual
4-form ?7φ on G2-manifolds,

• Cayley planes calibrated by the self-dual 4-form φ on manifolds admitting a
Spin(7)-structure.

This intimate relation between special holonomy manifolds in Berger’s list and cali-
brations is caused by their common origin from Killing spinors, as explained in the
references. It also holds for the generalized case which describes supersymmetric
cycles.

Generalized calibrations. The concept of calibrations for minimal submanifolds can
be extended to the study of supersymmetric brane configurations in string theory,
which leads to the notion of generalized calibrations [80,82–84]. The action functional
of branes embedded in a certain background is not only given by the volume but also
includes fluxes – the NS 3-form H, the field in the Dirac-Born-Infeld (DBI) action
and Ramond-Ramond (RR) fluxes of the background – so that the definition has to
be slightly adapted.

The flux contributions obstruct the closure of the usual calibration form and there-
fore have to be compensated by including suitable potential terms in the calibration
form. The closure of the generalized calibration form again follows from the Killing
spinor equations of the background geometry, which are often already formulated such
that the calibration form is evident, see e.g. the supersymmetry equations in [85, Sec.
3.2].
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2 Sasaki-Einstein geometry and generalized instantons

The analogue of the inequality (2.24) is derived from the supersymmetry condition
imposed on the cycles wrapped by branes, such as the so-called κ-symmetry con-
dition. Contracting this equation then yields an inequality on a certain differential
form which is saturated if and only if the cycle is supersymmetric; this has been
applied in [86] for instance. Since type II string theory can be formulated in terms
of generalized geometry, the calibration form involves the pure spinors that describe
the supersymmetric background in these setups [87].

To name a few examples related to our geometries of interest, we consider AdS-
compactifications of type IIB string theory and M-theory on Sasaki-Einstein (SE)
manifolds. It is known that on backgrounds AdS5 × SE5 the 3-form η ∧ ω calibrates
D3-branes [88], while M5-branes in AdS4×SE7 are calibrated by the 5-form 1

2η∧ω∧ω
[89]. More generally, the vector structures of exceptional Sasaki-Einstein structures
constitute generalized calibrations [90,91].

Turning to the metric cones with special holonomy and taking up the discussion
from Section 2.2.1, the interplay between calibrations and instantons is illuminated
in [7, Sec. 3]: the flux equation

? H = e2Φd(e−2ΦΞ) (2.28)

can be regarded as a generalized calibration for supersymmetric cycles wrapped by
fivebranes, collected in [7, Table 1]. In heterotic supergravity, the occurring form Ξ is
exactly the tensor that governs the generalized instanton equation ?F = Ξ∧F . More
precisely, for manifolds Md with holomomy SU(3), SU(4) and Sp(2) (with respect to
the connection ∇ with torsion H), the expressions read [7]

− Ξ =


Ω1,1, SU(3) , d = 6,
1
2Ω1,1 ∧ Ω1,1, SU(4) , d = 8,
1
2Ω1,1

α ∧ Ω1,1
α , α = 1, 2, 3, Sp(2) , d = 8 .

(2.29)

Recalling that the notation of [7] is related by Ξ = − ? Q to ours, one recognizes the
forms introduced in Section 2.2.1. For the various calibrations in dimension 8, consult
also the discussion in [92, Sect. 3.2]. Hence, the above forms occur both as ingredients
of a higher-dimensional instanton equation and as generalized calibrations, so that
they play a crucial role for defining BPS configurations in two (related) contexts.

Despite this digression into typical compactification setups with fluxes, let us em-
phasize that we always deal with the fluxless case in the remainder of this thesis, i.e.
H vanishes, the dilaton is constant and the even-dimensional manifolds have special
holonomy with respect to the Levi-Civita connection.
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3 Equivariant bundles and quiver gauge
theories

After reviewing the universal geometric properties of Sasakian and 3-Sasakian man-
ifolds and the notion of generalized instantons, we now turn to the concrete form of
the manifolds as homogeneous spaces G/H, which is employed for the construction of
quiver bundles. A general introduction to homogeneous spaces can be found in [93]
for instance.

The motivation for studying quiver gauge theories is twofold. On the one hand,
quiver diagrams and quiver bundles arise naturally in the context of equivariant di-
mensional reduction of gauge theory on Md × G/H, which we will discuss in Sec-
tion 3.1, following [35, 37, 38]. On the other hand, invariance of gauge connections
over homogeneous spaces [94], expressed by the equivariance condition (1.5), can be
encoded in quiver diagrams [34, Sec. 4], which will be the content of the second
section. This approach yields gauge connections which are parametrized by more
degrees of freedom than a certain scalar ansatz which has been employed in many
studies on instantons. Section 3.3 summarizes quiver gauge theory on homogeneous
spaces and reviews a prototypical example of equivariant dimensional reduction.

3.1 Quivers and equivariant vector bundles

This section describes the arising of quiver gauge theories from equivariant vector
bundles in gauge theories, following [35,37,38]. We consider coset space dimensional
reduction [23], reducing a Yang-Mills theory over Md × G/H to a Yang-Mills-Higgs
theory on Md, where the potential terms depend on the geometry of the coset space.
In our setup, Md denotes a Riemannian manifold of dimension d, and we consider
Hermitian vector bundles which the gauge connection takes values in. Although
the natural objects in the context of gauge theory are principal bundles, we will be
working with vector bundles, associated to the relevant principal fiber bundles.

Quivers. We start by recalling the basic definitions regarding quivers [95, 96]: a
quiver Q is a directed graph, i.e. formally a quiver is a pair Q = (Q0,Q1) of a (finite)
set Q0 of vertices and a (finite) set Q1 of arrows such that the maps h, t : Q1 → Q0

assign starting and ending point (tail and head) to each arrow in Q1.
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3 Equivariant bundles and quiver gauge theories

The importance of quiver diagrams arises due to their relation to representation
theory of algebras. A representation of a quiver (Q0,Q1) is a collection of vector
spaces and linear maps among them obtained in the following way: to each vertex
vi ∈ Q0 one assigns a vector space Ei, and each arrow between vertices vi and vj

represents a linear map ρji ∈ Hom(Ei, Ej). A relation on a quiver is a formal sum
of paths. For example, the conditions imposed by commutativity of a diagram are
quiver relations.

Equivariant vector bundles. We now consider a Hermitian vector bundle of rank k,
i.e. a bundle π : E →Md ×G/H with structure group U(k) and typical fiber Ck. Let
the group G act trivially on Md and by its standard group action on the coset space.
Such a bundle E is called G-equivariant if the G-action ρ on the base and that on the
total space ρ̃, respectively, commute with the projection map, i.e. πρ̃ = ρπ,

Md ×G/H Md ×G/H

E E

ρ

ρ̃

π π

(3.1)

and if the G-action induces vector space isomorphisms between the fibers Ep and Eg·p
over points p ∈ Md × G/H. It can be shown [35] that G-equivariant bundles over
Md ×G/H are in one-to-one correspondence to H-equivariant bundles E →Md by

E = G×H E. (3.2)

From this observation, one derives [35] a couple of correspondences between equiv-
ariant vector bundles and representations of the Lie group G, finally leading to a
description in terms of quiver diagrams and quiver bundles. This has been carried
out for parabolic subgroups H, i.e. groups which contain a maximal torus of G and
give rise to flag manifolds G/H, by using a Levi decomposition of H.

While most examples of quiver gauge theories involve flag manifolds, such as the
prototype CP 1, CP 2 and SU(3)/U(1)×U(1), Sasaki-Einstein coset spaces are differ-
ent: due to their structure as U(1)-bundle over a Kähler manifold, the subgroup H
cannot contain a maximal torus. However, according to [35, Rem. 1.12], a quiver with
relations can be associated to any algebraic subgroup H of G by employing a semidi-
rect decomposition H =: U n L. Therefore, the procedure on flag manifolds [37, 38]
can be extended to Sasakian manifolds. For the Sasaki-Einstein manifolds to be stud-
ied here the focus is placed on constructing explicit examples instead of providing a
rigorous algebraic description comparable to that of [35].

Since the subgroup H acts trivially on the manifold Md, equivariance implies that
each fiber Ep ∼= Ck must carry a representation of the subgroup H. In general, this
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3.1 Quivers and equivariant vector bundles

representation on the fibers may consist of several smallerH-representations ρj (inside
the representation of the structure group U(k)), and one applies the ansatz [37] that
the ρj stem from the restriction of a G-representation D to the subgroup H,

D|H =:
N⊕
j=1

ρj , ρj : H → Aut(Vj). (3.3)

Therefore, each fiber admits an isotopical decomposition (cf. [35, 40,43]) as

Ep ∼=
N⊕
j=1

Ej ⊗ Vj ,
∑
j=1

kjdj = k, (3.4)

where we have split the summands into a vector space Vj carrying theH-representation
ρj and a vector space Ej with trivial action of the subgroup, writing kj := dim(Ej)
and dj := dim(Vj). This isotopical decomposition is accompanied by a breaking of
the structure group (of the bundle E) as [37,38,42]

U(k)→
N∏
j=1

U(kj), (3.5)

while the structure group of the bundle E is reduced toH×∏N
j=1 U(kj). Therefore, the

formalism of equivariant gauge theories incorporates the typical symmetry breaking
of physical gauge theories [38,39]. A product of several groups, each of them attached
to a vertex, as gauge group is exactly the situation of the commonly known quiver
gauge theories for brane configurations (cf. Section 3.3.2) and also for Nakajima’s
quiver varieties [64].

Quiver diagrams. The quiver diagram associated to a chosen G-representation D is
obtained by identifying each summand Vj in (3.4) with a vertex that is endowed with
a vector space Ej . While, by construction, the subgroup H acts as an endomorphism
on each vertex, the entire G-action connects different representations ρj and therefore
yields arrows of the quiver diagram which represent linear maps φji ∈ Hom(Ei, Ej).
Combining the fiber-wise decomposition (3.4) and using the induction (3.2) yields
the equivariant bundle E as a quiver bundle. Hence, the structure of equivariant
dimensional reduction of gauge theories onMd×G/H is determined by the isotopical
decomposition (3.4), which, in turn, is encoded in the representation ({Ei}, {φji}) of
a quiver (Q0,Q1) depending on a given G-representation D.

In order to preserve equivariance, the linear maps φji in the quiver bundle may
depend on coordinates of the external space Md but not on those of the coset G/H.
In this way, a pure Yang-Mills theory on Md × G/H induces a Yang-Mills-Higgs
theory on Md via dimensional reduction, where the form of the potential terms is
depicted in the quiver diagrams and therefore depends on the structure of G/H as a
homogeneous space.
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3 Equivariant bundles and quiver gauge theories

Construction and properties. In order to derive the quiver diagram associated to
a given G-representation D, one first constructs the corresponding weight diagram.
This weight diagram is collapsed along the action of the subalgebra, i.e. along the
ladder operators of h, to identify the subrepresentations ρj in the decomposition
D|H = ⊕N

j=1 ρj . The remaining vertices carry the representation spaces Vj and are
therefore considered as the vertices Q0 of the quiver, which the spaces Ej are attached
to. The allowed arrows Q1 of the quiver diagram are precisely the remaining arrows
after collapsing.

Quiver diagrams arising in this way may be thought of as a natural extension
of (collapsed) weight diagrams. A weight diagram is a trivial quiver in the sense
that each node represents a 1-dimensional vector space isomorphic to C, and arrows
correspond to elements of C∗ as homomorphisms C → C. For quiver gauge theory,
the 1-dimensional vector spaces are replaced by arbitrary ones, Ej , and compatibility
with the structure of the homogeneous space G/H requires the collapsing along the
ladder operators of h.

This construction of quiver bundles implies that in the special case of H being a
maximal torus of G, the quiver diagram is simply the weight diagram of the chosen
G-representation [35].

3.2 Invariant gauge connections on homogeneous spaces

After describing equivariant vector bundles in terms of quivers, we now focus on the
costruction of invariant gauge connections and instantons over Md ×G/H, following
the typical approach explained in [25,32–34,70] and the references therein.

Often one studies instantons on metric cones or cylinders over manifolds with
Killing spinors, in our case on Calabi-Yau or hyper-Kähler cones over Sasaki-Einstein
or 3-Sasakian manifolds G/H. This approach resembles the situation of (equivariant)
dimensional reduction on Md × G/H for the special case of Md = R+ being the
cone direction. Imposing the instanton conditions then amounts to a set of algebraic
relations as well as ODEs on matrix-valued functions.

Reductive homogeneous space. As in the previous section, let G be a compact
semi-simple Lie group and H a closed subgroup of G. The reductive homogeneous
space G/H admits an Ad(H)-invariant splitting of the Lie algebra as

g = h⊕m. (3.6)

The geometric structure of G/H is that of a principal H-bundle, and the complement
m can be identified with the tangent space of G/H at the identity in the canonical
way, m ∼= Te(G/H). We denote the generators of g as {Iµ} = {Ij , Ia}, where the Ij
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3.2 Invariant gauge connections on homogeneous spaces

generate the subalgebra h and the Ia belong to the complement m. The corresponding
structure constants are given by

[Ii, Ij ] = fkij Ik, [Ij , Ia] = f bjaIb, [Ia, Ib] = f jabIj + f cabIc. (3.7)

The 1-forms eµ dual1 to these generators satisfy the Maurer-Cartan structure equa-
tions

deµ = −1
2f

µ
ρσe

ρ ∧ eσ. (3.8)

They split, according to (3.7), as

dei = −1
2f

i
jke

j ∧ ek, dea = −1
2f

a
bce

b ∧ ec − faibei ∧ eb. (3.9)

Invariant gauge connection. A gauge connection A on a Hermitian vector bundle
E →Md ×G/H of rank k can be expressed as

A = Γ +
dim(G/H)∑

a=1
Xa ⊗ ea (3.10)

where Γ is a “suitable starting point” in the space of connections (to be specified
shortly), and Xa are matrices valued in the Lie algebra of the structure group, in our
case u(k). Therefore, the space of connections is parametrized by the endomorphisms
Xa as an affine space with respect to the chosen connection Γ.

In order to yield a reasonable gauge theory on Md, the connection A should be
G-invariant. Furthermore, since we are interested in instanton solutions, the instanton
equations shall be imposed on the invariant gauge connection. For a convenient
description in terms of the matrices Xa, also the starting point Γ should satisfy these
two conditions. That is, Γ should (i) be a G-invariant connection and (ii) satisfy
the instanton equations. An obvious candidate obeying the first condition is the
canonical connection in the sense of homogeneous spaces [94] which is characterized
by having the torsion T (X,Y ) := −[X,Y ]m for vector fields on m, where the subscript
denotes the projection of the commutator to the space m. In index notation, one has
T a = −1

2f
a
bce

b ∧ ec, and the canonical connection is written as2

Γ =
dim(H)∑
j=1

Ij ⊗ ej . (3.11)

It is valued in the subalgebra h only and therefore adapted to the geometry of G/H
as principal H-bundle.

1The natural metric on the semi-simple Lie algebra g is determined by the Killing form B(X,Y ) ∝
Tr(XY ), and one takes the pullback to a left-invariant metric on m, which may be piecewise
rescaled for obtaining the relevant geometries. See for instance the discussion of the 3-Sasakian
case in Section 6.1 and in Appendix D.3.

2We will denote generators in a chosen representation on the fibers with the same symbols as the
abstract generators of G throughout this text.
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3 Equivariant bundles and quiver gauge theories

On the other hand, one can construct on G/H the canonical connection in the
sense of manifolds with Killing spinors, as in Section 2.2.1. According to the results of
[19], both notions of canonical connection coincide3 for homogeneous spaces endowed
with Killing spinors, as we will explicitly see for all later examples. Recall that the
canonical connection of [19] is adapted to the reduction of the structure group of
the frame bundle of G/H to SU(n) for (2n + 1)-dimensional Sasaki-Einstein spaces
or to Sp(m) for 3-Sasakian manifolds of dimension 4m + 3. Since the canonical
connection Γ combines both desirable properties, it will be employed as starting point
in the formulation (3.10). After fixing the offset in (3.10), one still has to impose a
condition on the matrices Xa to ensure G-invariance of A. For this purpose, consider
the curvature of the gauge connection, ignoring possible dependence of the matrices
Xa for the time being:

F = (dΓ + Γ ∧ Γ) + ([Ij , Xa]− f bjaXb)ej ∧ ea + 1
2([Xa, Xb]− f cab)ea ∧ eb. (3.12)

The first term consists of the curvature of the canonical connection, which is an in-
stanton and G-invariant by construction. The second contribution in (3.12), however,
contains mixed two-forms, taking values in h∗ ∧m∗, which spoil the invariance of the
expression. Thus, one has to impose the following equivariance condition [34]:

[Ij , Xa] = f bjaXb ∀Ij ∈ h. (3.13)

This equation does not only arise from this consideration, but it is the consequence
of a known invariance condition on connections over homogeneous spaces. According
to [94, Ch.2, Sec.11], there is a one-to-one correspondence of G-invariant connections
in the principal H-bundle G/H and linear maps Λ : m→ g such that

Λ(Ad(h)Y ) = Ad(h)Λ(Y ) ∀h ∈ H, Y ∈ m. (3.14)

As explained in [25, Sec. 2.5], setting Xa = Λ(Ia) then yields the equivariance
condition (3.13) as infinitesimal version thereof. The equivariance condition (3.13)
fixes the commutation relations between the endomorphisms Xa and the generators
Ij = ⊕

l I
(l)
j ⊗ 1kl ∈

⊕
l Vl ⊗ El of the subgroup H in a chosen G-representation D,

and therefore amounts to the construction of the quiver bundles from the previous
section.

Many constructions of instantons on homogeneous spaces with Killing spinors have
applied the scalar ansatz [19]: setting Xa = λa(x)Ia automatically satisfies the equiv-
ariance condition (3.13), and the instanton equations reduce to equations on a set
of functions. Typically the geometric structure of the Killing spinor manifold, e.g.

3For the 3-Sasakian cosets (cf. Chapters 6 and 7), one has to consider the canonical connection with
respect to the 3-Sasakian structure rather than the canonical connection of one of the Sasaki-
Einstein structures only.
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3.3 Quiver gauge theories

Sasaki manifolds as U(1)-bundles over Kähler manifolds, restricts the number of in-
dependent fields further. Quiver gauge theory allows for more general solutions to
the equivariance condition, since each arrow in the quiver diagram corresponds to an
independent matrix-valued function. Imposing the instanton conditions then yields
a set of ODEs on these bundle maps as well as certain quiver relations.

The equivariant gauge connection, subject to the equivariance condition (3.13),
can also be considered (cf. [34, Sec. 4]) as twist and extension of the canonical flat
connection for a G-representation by bundle maps. This will be clarified for the
examples of quiver diagrams constructed in the remainder of this thesis.

3.3 Quiver gauge theories

We briefly summarize the definition and main properties of quiver gauge theories and
equivariant dimensional reduction in the following.

Quiver gauge theory. In this thesis, the notion of quiver gauge theory refers to
gauge theories on vector bundles E → Md × G/H which admit a decomposition as
quiver bundles due to G-equivariance. The quiver diagram associated to a chosen
G-representation is obtained by collapsing the weight diagram and assigning vector
spaces Ej and linear maps φji to the remaining vertices and arrows, which constitutes
a representation of the quiver. The quiver bundle is accompanied by a breaking of
the structure group into a product of unitary groups acting on each vertex.

An equivariant gauge connection is compatible with this structure and can be
parametrized by endomorphismsXa as in (3.10), which are subject to the equivariance
condition (3.13); the matrices Xa are referred to as Higgs fields. Aiming for instanton
solutions, we always choose the canonical connection [19] as starting point Γ in the
ansatz (3.10). A quiver gauge theory is called Sasakian or 3-Sasakian quiver gauge
theory if the coset space G/H admits the corresponding structure, and this name
shall also distinguish the concept from other quiver gauge theories in physics.

The instanton conditions on the metric cones over G/H yield a system of equations
on matrix-valued functions which depend on the cone direction and whose structure
follows from the quiver diagrams. These equations comprise algebraic conditions, i.e.
quiver relations, as well as ordinary differential (matrix) equations. The latter ones
are also referred to as flow equations since they admit an interpretation as gradient
flow equations (see e.g. [27, 71]).

Remark 1. It is worth recalling that the concept of quiver bundles [35] relies on
the structure as homogeneous space G/H and that the canonical connection of man-
ifolds with Killing spinors [19], albeit very useful for aiming at the construction of
instantons, only enters by the coincidence of both definitions on homogeneous spaces.
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3 Equivariant bundles and quiver gauge theories

On the other hand, by virtue of the canonical connection on manifolds X with real
Killing spinors, a similar construction is applicable even if the manifold itself is not
given as a homogeneous space [34]. The manifold X admits an H-structure, such as
H = SU(n) or Sp(m) for Sasaki-Einstein manifolds X2n+1 or 3-Sasakian manifolds
X4m+3, and the canonical connection is adapted to it, i.e. it takes values in the Lie
algebra of H. The metric cone over the Killing spinor manifold X has special holon-
omy G, with G = SU(n+ 1) or G = Sp(m+ 1) for Sasakian or 3-Sasakian manifolds,
respectively. The structure group H is embedded into the holonomy group G, and
one can mimick the approach for homogeneous spaces G/H by applying the same
ansatz (3.10) for the gauge connection [34].

Remark 2. For Sasakian or 3-Sasakian quiver gauge theory, evaluating the equiv-
ariance condition (3.13) alone is not completely equivalent to constructing the quiver
diagrams by collapsing the weight diagrams along the ladder operators of h and
twisting with bundle maps. Without further restrictions of the matrices Xa ∈ u(k),
condition (3.13) may admit additional contributions because H does not contain a
maximal torus and therefore its generators Ij (in the fixed representation) do not
determine the weight diagrams uniquely, in contrast to the case of flag manifolds. On
the other hand, since the approach is based on the G-action with the representations
descending from a G-representation D and with the induction E = G ×H E, it is
reasonable to require the matrices to be of the form of the generators of G. This
is ensured by imposing (3.13) for all Cartan generators additionally or by assuming
Xa ∈ g ⊂ u(k).

We will focus on the typical approach of quiver diagrams obtained by the collapsing
procedure and comment on more general Higgs fields that are compatible with (3.13)
only briefly.

3.3.1 Example: CP 1

Let us illustrate the concept of quiver gauge theory and equivariant dimensional
reduction by considering the guiding example CP 1 ∼= SU(2)/U(1) [35, 36, 38, 39, 97].
This example illuminates the general concept but also serves as a building block of
the quiver gauge theories for CP 1 × CP 1 [43], T 1,1 (cf. Chapter 5), as well as for
cosets involving Lie groups G of higher rank.

For the case of G = SU(2) and H = U(1), the structure of the equivariant vector
bundles and the gauge connection follows almost immediately. The subgroup H

is generated by the Cartan generator I3, for which one can use the representation
I3 = 1

2(m,m − 2, . . . ,−m) on Cm+1 as well as the typical sl(2,C) commutation
relations

[I3, I±] = ±2I±, [I+, I−] = −2I3. (3.15)
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3.3 Quiver gauge theories

Since H = U(1) is abelian, the representation spaces Vj ≡ Sj in the isotopical decom-
position (3.4) are 1-dimensional, and the subgroup acts with eigenvalues m, m − 2,
. . .,−m on them. Equivariance then requires that the entire group action on the fibers
is compatible with the commutation relations, so that the quiver diagram is given by
the so-called holormophic chain [36]

(m) (m− 2) (m− 4) (−m)
• • • . . . •

φ0 φ1 φ2 φm−1

(3.16)

where the arrows represent the homomorphisms φj : Ej → Ej−2, induced by the
action of I−. As claimed before, the quiver diagram simply consists of the weight
diagram because H is a maximal torus of G. The isotopical decomposition of the
bundle reads

Ex =
m∑
j=0
Ej ≡

m∑
j=0

Ej ⊗ Lm−2j , (3.17)

where Lm−2j := SU(2)×U(1) Sj is the monopole bundle (see e.g. [43]), which appears
due to the Hopf fibration SU(2) → CP 1. The equivariant gauge connection A takes
the form [38]

A =



A0 + am1k0 −φ†0β 0 . . . 0
φ0β̄ A1 + am−21k1 −φ†1β . . . 0

0 φ1β̄
. . . . . . ...

...
... . . . −φ†m−1β

0 0 . . . φm−1β̄ Am + a−m1km


, (3.18)

where the Aj constitute components of a gauge connection A on the bundle E →Md

and β is a basis 1-form on CP 1. The monopole forms am−2j consist of the form part
of the canonical connection Γ = I3 ⊗ a (with a the 1-form dual to I3) living on the
representation spaces Vj of the vertices.

Based on this equivariant gauge connection one can construct the Yang-Mills action
and reduce it to a Yang-Mills-Higgs theory onMd. Since the connection is formulated
in terms of the holormophic forms β, one can easily evaluate the HYM equations
to obtain the so-called chain vortex equations [35, 36] as BPS conditions. We will
encounter them as a limit of the BPS equations (5.47) and (5.42) on T 1,1, if the
reduction to the underlying Kähler manifold CP 1 × CP 1 is considered and if one of
the SU(2) factors is represented trivially.

3.3.2 Overview and different quiver gauge theories

Besides the prototypical manifold CP 1, the following homogeneous spaces G/H have
been included into the framework of quiver gauge theories from equivariant dimen-
sional reduction on Md ×G/H:
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3 Equivariant bundles and quiver gauge theories

• CP 1 × CP 1 with Kähler structure [35,43],

• CP 2 ∼= SU(3)/(SU(2)×U(1)) with Kähler structure [35,40,42,98],

• SU(3)/(U(1)×U(1)) with Kähler and nearly-Kähler structure [41,42,98],

• S3/Γ = SU(2)/Γ with Sasaki-Einstein structure [44],

• S5/Zk = (SU(3)/SU(2)) /Zk with Sasaki-Einstein structure [45,46].

Due to the bundle structures of Sasakian and 3-Sasakian manifolds and their relation
to Kähler manifolds, it is natural to compare the quiver gauge theories constructed
in the following chapters to known results. For instance, since the space T 1,1 (cf.
Chapter 5) is a U(1)-bundle over CP 1 × CP 1, it constitutes the obvious counterpart
of the quiver gauge theory onMd×CP 1×CP 1 [43]. This possibility of relating quiver
gauge theories in different dimensions by the “sandwiching property” of Sasakian
manifolds motivated studying Sasakian quiver gauge theories on S3 and S5 [44–46].

Different notion of quiver gauge theories. Most prominently, the concept of quiv-
ers appears in Nakajima’s quiver varieties [64] and in quiver gauge theories of brane
configurations, which share the same basic idea with the Sasakian quiver gauge the-
ories but arise in a different context. Nakajima’s construction is based on a given
quiver diagram whose vertices are endowed with two Hermitian vector spaces. The
space of linear maps between the vector spaces, according to the arrow structure of
the quiver, inherits a hyper-Kähler structure and one can define a compatible group
action on it. The quiver variety is obtained by taking the hyper-Kähler quotient, and
this construction generalizes the description of 4-dimensional instantons and their
hyper-Kähler moduli space by the ADHM construction [99,100].

The second notion of quiver gauge theories occurs for the description of brane
configurations, beginning with the description of D-branes at the orbifold C2/Zk
and resolved ALE spaces [101], which is actually related to the ADHM construction
and quiver varieties. This approach has been extended to other setups and has
been established as a suitable tool to describe branes located at certain singularities.
Roughly speaking, the quivers depict the breaking of the gauge group of a stack of
branes into a product of smaller gauge groups, depending on the brane configuration.
The field content of the theory then has to transform in bifundamental or adjoint
representations of these unitary gauge groups.

The Sasakian quiver gauge theories we are studying here do not necessarily have
a relation to branes, but they simply arise in the context of equivariant dimensional
reduction. However, for some of the Kähler quiver gauge thories listed above an
interpretation in terms of certain brane configurations was given [43, 102], once a
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3.3 Quiver gauge theories

noncommutative deformation of the external space Md is applied. Detailed discus-
sions illuminating both concepts – Sasakian quiver gauge theories and quiver gauge
theories of branes placed at singularities – can be found in [44] and [45, Sec. 7].
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Sasakian quiver gauge theories
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4 Quiver gauge theory on the round
seven-sphere

In this chapter we study Sasakian quiver gauge theories on orbifolds of the round
seven-sphere S7 ∼= SU(4)/SU(3), which is the prototype of 7-dimensional Sasaki-
Einstein manifolds. The seven-sphere and its orbifolds typically appear in the con-
text of the AdS4/CFT3 duality in M-theory and supergravity compactifications since,
as Sasaki-Einstein manifolds, they realize Freund-Rubin solutions [22, 103]; a list of
compact homogeneous spaces in supergravity compactifications can be found in [21]
for example. The near-horizon geometry of these backgrounds is that of M2-branes
placed at the conical singularity of C4/Zk, and the low energy effective theories can be
described as 3-dimensional superconformal Chern-Simons theories with N = 6 [104].
The setup AdS4 × S7 constitutes an effective N = 8 supergravity, and deforming
the round metric on S7 to the squashed metric (cf. Chapter 6), which is also nearly
parallel G2, breaks the supersymmetry1 to N = 1 [105, 106]. The Killing-spinor
equations for M-theory on backgrounds AdS4 ×M7 with N = 2 supersymmetry are
given in [89,107]. More general solutionsM7 than Sasaki-Einstein manifolds are com-
prised in the notion of exceptional Sasaki-Einstein structures [90], which employ the
formalism of exceptional generalized geometry.

We study Sasakian quiver gauge theories on S7 following the analogous discussion of
the five-sphere [45,46]. In contrast to the complete characterization in the case of S5,
using the Biedenharn basis for SU(3), we do not provide such a complete list because
of the higher dimension of the group SU(4). Emphasis is placed on illuminating the
basic features, and we therefore discuss explicit examples of the quiver diagrams and
resulting instanton equations for low-dimensional representations of G = SU(4). It
turns out that, due to the regularity of the construction of the round spheres, these
examples are the higher-dimensional analogues of those obtained for (orbifolds of)
the five-sphere S5 ∼= SU(3)/SU(2) [46]. The chapter concludes by briefly sketching
some generalizations to higher-dimensional spheres S2n+1 ∼= SU(n+ 1)/SU(n).

The following discussion is an extended version of the content covered in [49], a
collaboration with O. Lechtenfeld, A. D. Popov and R. J. Szabo.

1A 3-Sasakian manifolds admits 3/8 maximal supersymmetry while a nearly parallel G2 structure
breaks it to 1/8 [54, Sec. 10] (see also [9, Sec. 5]).
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4 Quiver gauge theory on the round seven-sphere

4.1 Geometric structure

In this section we review the Sasaki-Einstein geometry of the homogeneous space
SU(4)/SU(3) and construct the associated canonical connection, which serves as start-
ing point for the equivariant gauge connections.

4.1.1 Local section

The discussion of the geometric structure of the round seven-sphere S7 ∼= SU(4)/SU(3)
is based on the fibration over the complex projective space CP 3 as

SU(4) S7

CP 3

SU(3)

U(1)S(U(3)×U(1))
(4.1)

From this bundle one obtains a local section of SU(4) −→ CP 3 by following the
procedure in [42,46]. For a local patch U0 = {[w0 : w1 : w2 : w3] ∈ CP 3| w0 6= 0} one
introduces coordinates

Y := (y1, y2, y3)T := (w−1
0 w1, w

−1
0 w2, w

−1
0 w3)T , (4.2)

and the matrix

V := 1
γ

 1 Y †

−Y Λ

 with Λ := γ13 − 1
1+γY Y

†, γ :=
√

1 + Y †Y . (4.3)

These definitions imply the properties ΛY = Y , Y †Λ = Y † and Λ2 = γ213 − Y Y †, so
that the matrix V is a local section of the bundle SU(4) −→ CP 3. The Maurer-Cartan
form A0 := V −1dV provides SU(4)-left-invariant 1-forms on CP 3,

A0 = V †dV =:

−a β†

−β B

 with a = − 1
2γ2 (Y †dY − dY †Y ), β = 1

γ2 ΛdY,

B = 1
γ2 (Y dY † + ΛdΛ)− 1

2γ2 d(Y †Y ), (4.4)

which are the analogues of those in [42, 46]. The flatness of the connection A0,
dA0 +A0 ∧A0 = 0, leads to the structure equations

da = −β† ∧ β, dβ = β ∧ a−B ∧ β, dB = β ∧ β† −B ∧B. (4.5)

The section over CP 3 can be promoted to a section of SU(4) over S7 by including a
U(1) factor as

S7 3 (y1, y2, y3, ϕ) 7→ Ṽ := V × diag(e3iϕ, e−iϕ, e−iϕ, e−iϕ). (4.6)
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4.1 Geometric structure

The resulting canonical flat connection Ã0 = Ṽ †dṼ of this fibration reads

Ã0 =
(
−a+ 3idϕ e−4iϕβ†

−βe4iϕ B − i dϕ 13

)
(4.7)

=:


3iµ7e

7 ζ1Θ1 ζ2Θ2 ζ3Θ3

−ζ1Θ1̄ −iµ7e
7 + 2iµ8e

8 λ4Θ4 λ5Θ5

−ζ2Θ2̄ −λ4Θ4̄ −iµ7e
7 − iµ8e

8 − iµ9e
9 λ6Θ6

−ζ3Θ3̄ −λ5Θ5̄ −λ6Θ6̄ −iµ7e
7 − iµ8e

8 + iµ9e
9

 ,

and its flatness yields the structure equations (B.1). The real parameters ζ1, ζ2, ζ3
and µ7 will be fixed by the Sasaki-Einstein geometry in the following discussion. The
other paramaters, describing the subgroup H = SU(3), can be arbitrarily chosen and
henceforth we will set λ4 = λ5 = λ6 = 1, µ8 = 1

6 and µ9 = 1
2 for simplicity.

4.1.2 Sasaki-Einstein structure

We now introduce real 1-forms e2α−1 − ie2α := Θα for α = 1, 2, 3 and consider the
orthonormal metric ds2 = ∑7

µ=1 e
µ ⊗ eµ on the tangent space TeS7 ∼= m. It is

convenient to verify the Sasaki-Einstein property of this metric by checking that its
cone is Calabi-Yau, which is guaranteed by the closure of some defining tensors,
following the procedure in [27] for instance.

With a fourth complex 1-form Θ0 := dr
r − ie7 =: eτ − ie7, one obtains an integrable2

complex structure J on the metric cone by setting JΘα = iΘα for α = 0, 1, 2, 3. The
cone metric then takes the form ds2c = r2δαβΘα ⊗Θβ̄, and the corresponding Kähler
form reads

Ω1,1 = − i
2r

2(Θ00̄ + Θ11̄ + Θ22̄ + Θ33̄). (4.8)

Its closure requires ζ1 = ζ2 = ζ3 and 3µ7 = ζ2
1 , as the calculation (B.2) shows. For

the further reduction of the holonomy from U(4) to SU(4), one needs the closure of
the holomorphic top-degree form (ensuring the triviality of the canonical bundle)

Ω4,0 = r4Θ1 ∧Θ2 ∧Θ3 ∧Θ0, (4.9)

which yields the condition ζ2 = 1 and µ7 = 1
3 . The relevant structure equations

therefore read

dΘ1 = −4
3 ie7 ∧Θ1 + 1

3 ie8 ∧Θ2 + Θ24̄ + Θ35̄,

dΘ2 = −4
3 ie7 ∧Θ2 − 1

6 ie8 ∧Θ2 − 1
2 ie9 ∧Θ2 −Θ14 + Θ36̄,

dΘ3 = −4
3 ie7 ∧Θ3 − 1

6 ie8 ∧Θ3 + 1
2 ie9 ∧Θ3 −Θ15 −Θ26,

de7 = −i(Θ11̄ + Θ22̄ + Θ33̄) = 2ω, (4.10)

where ω is the Kähler form on the leaf space of the Sasakian manifold, i.e. the Kähler
form on CP 3.

2The intergrability, i.e. the vanishing of the Nĳenhuis tensor N(X,Y ), can be easily seen due to
JΘα = iΘα and the relevant commutators (B.9).
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4 Quiver gauge theory on the round seven-sphere

4.1.3 Canonical connection

Based on the Sasaki-Einstein structure of S7, we construct the associated canonical
connection [19], as reviewed in Section 2.2.1. The 3-form P and 4-form Q (2.15) that
govern the generalized self-duality condition read

P = η ∧ ω = e7 ∧ (e12 + e34 + e56), Q = 1
2ω ∧ ω = e1234 + e1256 + e3456, (4.11)

so that the torsion components (2.16) are given by

T 1 = 4
3e

27, T 2 = −4
3e

17, T 3 = 4
3e

47, T 4 = −4
3e

37,

T 5 = 4
3e

67, T 6 = −4
3e

57, T 7 = 2(e12 + e34 + e56). (4.12)

Plugging this torsion into the Maurer-Cartan equation deµ = −Γµν ∧ eν + Tµ, one
identifies the canonical connection

Γ = I8 ⊗ e8 + I9 ⊗ e9 +
6∑

β=4
(I+
β ⊗Θβ + I−

β̄
⊗Θβ̄) =:

15∑
µ=8

Iµ ⊗ eµ, (4.13)

where the definition of the generators is based on (4.7) and collected in Appendix B.2.
In accordance with the general theory and as claimed above, the expression (4.13)
coincides with the canonical connection of the homogeneous space G/H, which is
obtained by setting the torsion to be T (X,Y ) = −[X,Y ]m. The field strength
FΓ = dΓ + Γ ∧ Γ of (4.13) is given by

FΓ = I+
4 ⊗Θ1̄2+I+

5 ⊗Θ1̄3 + I+
6 ⊗Θ2̄3 + I−4̄ ⊗Θ12̄ + I−5̄ ⊗Θ13̄ + I−6̄ ⊗Θ23̄ (4.14)

+ I8 ⊗ (2iΘ11̄ − iΘ22̄ − iΘ33̄) + I9 ⊗ (−iΘ22̄ + iΘ33̄),

which obeys the generalized instanton equation (2.10) with 4-form Q from (4.11).

4.2 Equivariance condition and instanton equation

We now consider the gauge theory on a Hermitian vector bundle E of rank k over
the manifold Md ×G/H, as discussed in Section 3.2. Since the canonical connection
Γ is an instanton, we (locally) apply the typical ansatz (3.10) for invariant gauge
connections on Md × SU(4)/SU(3), writing

A = Γ +A+
7∑

µ=1
Xµ ⊗ eµ = Γ +A+

3∑
α=1

(Yα ⊗Θα + Yᾱ ⊗Θᾱ) +X7 ⊗ e7. (4.15)

Here A denotes a connection on the vector bundle E over Md which is compatible
with the decomposition (3.3) of the H-representations on the fibers and which takes
values in the Lie algebra of the broken structure group (3.5).3 The matrices Xµ

3More precisely, the connection is of the form A =
⊕

l
1dl ⊗ Al ∈

⊕
l
u(kl) ⊂ u(k) [37, Eq. (5.1)].

Otherwise mixed contributions of Γ and components of A would arise, spoiling the equivariance.
Recall that the generators of H, which enter Γ in (4.13), decompose as Ij =

⊕
l
I

(l)
j ⊗1kl , see for

instance [34].
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4.2 Equivariance condition and instanton equation

and Yα := 1
2(X2α−1 + iX2α) denote the endomorphism part of the connection and

are called Higgs fields. Being valued in u(k), the matrices Xµ are skew-Hermitian,
X†µ = −Xµ, and we write φ(α) := Yᾱ := −Y †α for the complex combinations. According
to the bundle structure of the Sasaki-Einstein manifold S7 (over CP 3), the field X7

accompanying the contact form e7 is referred to as vertical Higgs fields, while φ(α)

are horizontal Higgs fields.

The canonical connection Γ lifts to an instanton on the metric cone, so that we
will use the very same ansatz for connections on R+× SU(4)/SU(3), including radial
dependence of the endomorphisms, Xµ = Xµ(τ), and a possible eighth matrix Xτ

associated to the cone direction. Therefore, the quiver diagrams for both the round
sphere S7 and its metric cone R8 take the same form.

4.2.1 Equivariance condition

With the explicit form of the canonical connection (4.13) and the structure constants
(B.9) the equivariance condition (3.13) reads

[Ĩ8, φ(1)] = 2φ(1), [Ĩ8, φ(2)] = −φ(2), [Ĩ8, φ(3)] = −φ(3), [Ĩ8, X7] = 0,

[Ĩ9, φ(1)] = 0, [Ĩ9, φ(2)] = −φ(2), [Ĩ9, φ(3)] = φ(3), [Ĩ9, X7] = 0, (4.16a)

with respect to the two Cartan generators of h, and the ladder operators require

[I+
4 , φ

(2)] = φ(1), [I−4̄ , φ
(1)] = −φ(2), [I+

5 , φ
(3)] = φ(1),

[I−5̄ , φ
(1)] = −φ(3), [I+

6 , φ
(3)] = φ(2), [I−6̄ , φ

(2)] = −φ(3), (4.16b)

as well as the analogous expressions for the conjugated fields and the vanishing of all
other commutators, in particular those involving X7. The equations (4.16a) fix the
action of the Higgs fields in the weight diagrams of SU(4) representations to be

φ(1) : (ν7, ν8, ν9) 7−→ (∗, ν8 + 2, ν9) φ(2) : (ν7, ν8, ν9) 7−→ (∗, ν8 − 1, ν9 − 1)

φ(3) : (ν7, ν8, ν9) 7−→ (∗, ν8 − 1, ν9 + 1) X7 : (ν7, ν8, ν9) 7−→ (∗, ν8, ν9) , (4.17)

while (4.16b) ensures compatibility with the ladder operators of the subgroup SU(3).

We encounter the typical feature of Sasakian quiver gauge theories: the equivariance
with respect to H as in (3.13) does not necessarily fix the action of the Higgs fields
to coincide with the action of the ladder operators in the weight diagrams but may
allow for further contributions, since the action on ν7 is undetermined.

As discussed in Section 3.3, our primary definition of quiver gauge theories involves
the ansatz (3.3) with H-representations ρj , stemming from a G-representation D, and
the Higgs fields are given by the generators of g after collapsing along the subalgebra h

and extending by bundle maps. Hence, we consider Higgs fields that act according to
(B.11). Equivalently, this can be ensured by imposing equivariance also with respect
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4 Quiver gauge theory on the round seven-sphere

to the third Cartan generator I7, resembling the case of flag manifolds. Indeed,
this approach yields the quiver associated to the underlying flag manifold modified
by vertex loops due to the vertical Higgs field, as the examples in Section 4.3 will
illustrate.

4.2.2 Yang-Mills functional and instanton equation on S7

Having imposed the equivariance conditions (4.16), we now determine the Yang-Mills
action of the invariant gauge connection (4.15),

SYM = −1
4

∫
Md×S7

Tr (F ∧ ?F). (4.18)

With the Sasaki-Einstein metric ds2 = δαβΘα⊗Θβ̄ + e7⊗ e7 in terms of the complex
forms, the Lagrangian reads

LYM = −1
4Tr FMNFMN = −1

4Tr {FmnFmn + 8gmnFmαFnᾱ + 2gmnFm7Fn7

+8FαβFᾱβ̄ + 8Fαβ̄Fᾱβ + 8Fα7Fᾱ7}, (4.19)

where capital indices refer to the entire space Md × S7, the indices m and n to Md

only, and {α, β̄, 7} denote indices on S7. Inserting the curvature components of the
equivariant gauge connection (4.15) into the above expression yields

SYM = Vol(S7)
∫
Md

ddy√g Tr
{

1
4Fmn(F

mn)† + 2
∑
m,α

∣∣∣Dmφ
(α)
∣∣∣2 + 1

2
∑
m

|DmX7|2

+ 2
∣∣∣[φ(1), φ(1)†]− iX7 + 2iI8

∣∣∣2 + 2
∣∣∣[φ(2), φ(2)†]− iX7 − iI8 − iI9

∣∣∣2
+ 2

∣∣∣[φ(3), φ(3)†]− iX7 − iI8 + iI9
∣∣∣2 + 4

∣∣∣[φ(2), φ(1)†] + I−4̄

∣∣∣2
+ 4

∣∣∣[φ(3), φ(1)†] + I−5̄

∣∣∣2 + 4
∣∣∣[φ(3), φ(2)†] + I−6̄

∣∣∣2 + 2
∑
α

∣∣∣[X7, φ
(α)] + 4

3 iφ(α)
∣∣∣2

+4
∣∣∣[φ(1), φ(2)]

∣∣∣2 + 4
∣∣∣[φ(1), φ(3)]

∣∣∣2 + 4
∣∣∣[φ(2), φ(3)]

∣∣∣2} , (4.20)

where Fmn = Fmn = (dA+A∧A)mn is the curvature of the gauge connection A over
Md. We have introduced the notation |X|2 := XX† and defined the usual covariant
derivatives

DXµ := dXµ + [A,Xµ]. (4.21)

Due to equivariance the matrices Xµ must not depend on coordinates of S7, and
therefore the integral over the seven-sphere in the action functional simply yielded
its volume. That is, Yang-Mills theory on Md × G/H has been reduced to a Yang-
Mills-Higgs theory on Md, where the contributions to the potential stem form the
Sasaki-Einstein geometry of the coset space.
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4.2 Equivariance condition and instanton equation

Instanton equation on S7. The instanton equation (2.10) on the round seven-sphere
takes the form ?7F = −ω ∧ η ∧ F , which yields the conditions

F13 = F24, F14 = −F23, F15 = F26, F12 + F34 + F56 = 0, (4.22)

F16 = −F25, F35 = F46, F36 = −F45, Fµ7 = 0 for µ = 1, . . . 6.

Of course, these conditions are the Hermitian Yang-Mills equations on the under-
lying Kähler manifold CP 3 with fundamental form ω, together with the additional
condition

0 = Fµ7 = [Xµ, X7]− fνµ7Xν . (4.23)

Imposing these instanton equations leads to the vanishing of the last four poten-
tial terms in the action functional (4.20). The vanishing of the torsion term in the
generalized Yang-Mills equation (2.11) is explicitly verified in Appendix B.1.1.

4.2.3 Hermitian Yang-Mills instantons on the cone

We are particularly interested in instantons on the metric cone over S7, which can
be obtained by evaluating the Hermitian Yang-Mills equations

Fαβ = 0 α, β = 0, . . . , 3 and F00̄ + F11̄ + F22̄ + F33̄ = 0. (4.24)

Recall from Section 2.2.1 that the HYM equations are equivalent to the generalised
self-duality equation (2.10) with QZ = dτ∧P+Q on the cylinder or the corresponding
form QC = 1

2Ω1,1∧Ω1,1 on the conformally equivalent cone. The torsion term in (2.11)
vanishes in the latter case since QC is self-dual and therefore co-closed, as claimed
for special holonomy manifolds [19].

However, here we focus on the first-order BPS equation itself rather than on the
second-order Yang-Mills equation, so that cone and cylinder can be used interchange-
ably. With the structure equations (4.10) and the curvature components from (4.20),
the HYM equations turn into the algebraic conditions

[φ(1), φ(2)] = [φ(1), φ(3)] = [φ(2), φ(3)] = 0, (4.25)

and the flow equations

φ̇(α) = −4
3φ

(α) − i[φ(α), X7], for α = 1, 2, 3, (4.26a)

Ẋ7 = −6X7 − 2i[φ(1), φ(1)†]− 2i[φ(2), φ(2)†]− 2i[φ(3), φ(3)†]. (4.26b)

In order to emphasize the holomorphic picture, one may keep the endomorphism Xτ

associated to the cone direction in the ansatz (4.15). Then one has simply to replace
− i

2X7 by Y0̄ := 1
2(Xτ − iX7) without any further changes, neither in the equivariance

conditions nor in the instanton equations.
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4 Quiver gauge theory on the round seven-sphere

The algebraic conditions (4.25) impose commutativity as relations on the quiver
diagram. The HYM instanton equations (4.25) and (4.26) on the metric cone over
the seven-sphere correspond to the general results of [51] for n = 3. In particular,
one can apply their discussion of the moduli space in terms of coadjoint orbits and
Kähler quotients, which we will be the content of Section 4.5.

4.3 Examples of quiver diagrams

This section treats the quiver diagrams and instanton equations for the representa-
tions 4, 6, 10, and 15 of SU(4), whose weight diagrams and generators are collected
in Appendix B.2. Placing the focus on explicit examples, we will not use the whole
machinery of representation theory of SU(4) and SL(4,C), details of which are given
in [108, Ch. 15] for instance.

We will provide the quiver diagrams and the resulting instanton matrix equations,
while the bundle structure (3.4) itself follows from the “dictionary” presented in
Chapter 3. Recall that each example represents entire families of quiver gauge theories
since the dimensions of the internal spaces Ej attached to the vertices are not further
specified.

4.3.1 Fundamental representation 4

The fundamental representation 4 of SU(4), given by the generators (B.8) and the
weight diagram (B.13), decomposes under restriction to the subgroup SU(3) into one
trivial and one fundamental representation thereof,

4|SU(3) = (3,0,0)1 ⊕ (−1,−1,1)3. (4.27)

The subscripts denote the dimension and the three numbers label the quantum num-
bers of the state which represents the corresponding subalgebra ρj . This decompo-
sition provides the representation spaces Vj in (3.3) and (3.4). Both the collapsing
procedure and the evaluation of the equivariance conditions (4.16) yield the quiver
diagram

(−1)3 (3)1

ψ−1 ψ3

φ

(4.28)

and the Higgs fields read

φ(α) =

 0 0
φ⊗ I(α) 03

 and X7 =

ψ3 0
0 ψ−1 ⊗ 13

 (4.29)

with
I(1) :=

(
1, 0, 0

)T
, I(2) :=

(
0, 1, 0

)T
, I(3) :=

(
0, 0, 1

)T
. (4.30)
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4.3 Examples of quiver diagrams

The constant matrices I(α) constitute the part acting on the representation spaces
Vj in the isotopical decomposition (3.4). The two vertices of the quiver represent
the two vector spaces Ej , and the arrows describe the allowed homomorphisms φ ∈
Hom(E3, E−1), ψ3 ∈ End(E3) and ψ−1 ∈ End(E−1). For a better readibility, we will
always refrain from depicting also the adjoint maps φ† in the quiver diagrams. The
equivariant connection (4.15) associated to the quiver (4.28) reads

A = Γ +


A3 + ψ3 ⊗ e7 −φ† ⊗Θ1 −φ† ⊗Θ2 −φ† ⊗Θ3

φ⊗Θ1̄

φ⊗Θ2̄ (A−1 + ψ−1 ⊗ e7) 13

φ⊗Θ3̄

 , (4.31)

and one notices that the gauge connection is an extension of the canonical flat con-
nection (4.7) by bundle maps. Taking up the motivation for dimensional reduction
in Section 3.1, the fundamental representation can be used for modelling a breaking
of the structure group (of the bundle E →Md) as

U(k3 + 3k−1)→ U(k3)×U(k−1). (4.32)

Imposing the Hermitian Yang-Mills equations on the equivariant gauge connection
(4.31) restricts the matrices φ, ψ3 and ψ−1. While the algebraic conditions (4.25) are
automatically satisfied, the flow equations (4.26) read

φ̇ = −4
3φ− iφψ3 + iψ−1φ, ψ̇3 = −6ψ3 + 6iφ†φ, ψ̇−1 = −6ψ−1 − 2iφφ†. (4.33)

The quiver diagram (4.28) and the resulting instanton matrix equations (4.33) for the
defining representation 4 are the higher-dimensional analogue of the result for the
fundamental representation of SU(3) on the five-sphere SU(3)/SU(2) in [46], which,
in turn, consists of the results for CP 2 modified by vertex loops. The flow equations
for the entries of the vertical Higgs field, represented by the loops, show a coupling
to terms of the form φφ† and φ†φ, which is a typical feature of Sasakian quiver gauge
theory, induced by the stability-like condition (2.23b) of the HYM equations.

4.3.2 Representation 6

According to the weight diagram (B.14), the 6-dimensional representation (B.15)
decomposes into one fundamental and one anti-fundamental representation of SU(3),

6|SU(3) = (2,−1,1)3 ⊕ (−2,−2,0)3 . (4.34)

Imposing the equivariance conditions or applying the collapsing procedure yield the
2-quiver

(−2)3 (2)3

ψ−2 ψ2

φ

(4.35)
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4 Quiver gauge theory on the round seven-sphere

where the endomorphisms are given by

φ(α) =

 0 0
φ⊗ I(α) 0

 and X7 =

ψ2 ⊗ 13 0
0 ψ−2 ⊗ 13

 , (4.36)

with the matrices I(α) from (B.15) and the maps φ ∈ Hom(E2, E−2), ψ2 ∈ End(E2)
and ψ−2 ∈ End(E−2). The quiver diagram has the same shape as that of the fun-
damental representation (4.28), but now the dimensions of the representation spaces
Vj of the two vertices are equal. Therefore, the structure group of the equivariant
bundle associated to 6 is broken as

U(3k2 + 3k−2)→ U(k2)×U(k−2). (4.37)

As in the previous example, the algebraic conditions (4.25) are automatically sat-
isfied, while the flow equations of the HYM instantons yield

φ̇ = −4
3φ− iφψ2 + iψ−2φ, ψ̇2 = −6ψ2 + 4iφ†φ, ψ̇−2 = −6ψ−2 − 4iφφ†. (4.38)

The 6-dimensional representation is based on an exceptional isomorphism of the rele-
vant Dynkin diagrams, so that there is no analogue in the case of S5. Since the quiver
has the same shape as (4.28), the flow equation for φ is the same, while for the vertical
Higgs field X7 different numerical factors occur due to the different dimensions of the
subrepresentations ρj in (4.27) and (4.34).

4.3.3 Representation 10

The representation 10 with weight diagram (B.16) and generators (B.17) decomposes
under restriction to the subgroup SU(3) as

10|SU(3) = (−2,−2,2)6 ⊕ (2,−1,1)3 ⊕ (6,0,0)1 (4.39)

and yields a modified holomorphic chain of length 3 as quiver diagram:

(−2)6 (2)3 (6)1

ψ−2 ψ2 ψ6

φ2 φ6
(4.40)

The explicit form of the Higgs fields is the following:

X7 =


ψ6 0 0
0 ψ2 ⊗ 13 0
0 0 ψ−2 ⊗ 16

 , φ(α) =


0 0 0

φ6 ⊗ I(α)
1 0 0

0 φ2 ⊗ I(α)
2 0

 (4.41)
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with the I(α)
1 from (4.29), and matrices I(α)

2 given by

I
(1)
2 =



√
2 0 0

0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


, I

(2)
2 =



0 0 0
1 0 0
0 0 0
0 0 1
0
√

2 0
0 0 0


, I

(3)
2 =



0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0

√
2


. (4.42)

The structure group of the SU(3)-equivariant bundle E → Md now reduces to a
product of three unitary groups, according to (3.5):

U(6k−2 + 3k2 + k6)→ U(k−2)×U(k2)×U(k6). (4.43)

The algebraic instanton conditions, [φ(α), φ(β)] = 0, are automatically satisfied, while
the differential equations read

φ̇6 = −4
3φ6 − iφ6ψ6 + iψ2φ6, φ̇2 = −4

3φ2 − iφ2ψ2 + iψ−2φ2,

ψ̇6 = −6ψ6 + 6iφ†6φ6, ψ̇2 = −6ψ2 − 2iφ6φ
†
6 + 8iφ†2φ2,

ψ̇−2 = −6ψ−2 − 4iφ2φ
†
2. (4.44)

The quiver diagram (4.40) with these instanton equations is the higher-dimensional
analogue of the C2,0-quiver in [46].

Remark. It is straighforward to generalize the discussion of the representations 4
and 10 to quivers associated to the representations C l,0,0, whose highest weight state
is given by applying l times one of the generators I−ᾱ , α = 1, 2, 3; see the root sys-
tem (B.12). Therefore, the weight diagram of the representation C l,0,0 comprises
a tetrahedron of length l which consists of triangles of increasing length 0, 1, . . . , l
as subrepresentations of SU(3). Consequently, the dimensions of the representa-
tion spaces Vj are given by dj = 1

2j(j + 1) and the total dimension of C l,0,0 reads
Dl = ∑

dj = 1
6(l + 1)(l + 2)(l + 3). Under restriction to SU(3) this representation

decomposes as

Dl|SU(3) =
l+1⊕
j=1

(3l + 4(1− j),−j + 1, j− 1)dj , (4.45)

which reproduces the above results for the special cases of l = 1 and l = 2. The
quiver diagrams are therefore modified holomorphic chains with l + 1 vertices, i.e.
Al+1-quivers with U(1) vertex loops. They yield instanton matrix equations of the
typical form, such as (4.44), and only the numerical values of the coefficients are
subject to changes.
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4 Quiver gauge theory on the round seven-sphere

4.3.4 Representation 15

Due to the large dimension of the adjoint representation 15 of SU(4) we discuss the
resulting instanton matrix equations only schematically, emphasizing the advantages
of the diagrammatic approach in terms of quivers to construct the invariant gauge
connection A. From the structure constants (B.9) or the root system (B.12) one
derives the weight diagram (B.18) and therefore obtains the splitting

15|SU(3) = (0,0,2)8 ⊕ (4,1,1)3 ⊕ (−4,−1,1)3 ⊕ (0,0,0)1 (4.46)

into adjoint, fundamental, anti-fundamental and trivial representations ofH = SU(3).
Collapsing the weight diagram along the ladder operators of h yields the quiver

(4)3 (−4)3

(0)1

(0)8

ψ4 ψ−4

ψ0

ψ̃0

φ2φ1

φ3 φ4

(4.47)

The Higgs fields are given by

φ(α) =


0 φ1 ⊗ I

(α)
1 0 0

0 0 0 0
φ2 ⊗ I

(α)
2 0 0 φ4 ⊗ I

(α)
4

0 φ3 ⊗ I
(α)
3 0 0

 (4.48)

as well as X7 = diag(ψ̃0, ψ4 ⊗ 13, ψ−4 ⊗ 13, ψ0 ⊗ 18), where the concrete form of the
matrices I(α)

j follows from the generators in the adjoint representation. The quiver
diagram (4.47) is the higher-dimensional analogue of the adjoint representation C1,1

of SU(3) in [46].

This representation is our first example4 for which the conditions (4.16a) and
(4.16b) alone might yield further contributions since they are compatible with a ho-
momorphism connecting the fundamental and anti-fundamental representations as
well. Furthermore, the equivariance conditions do not obstruct the endomorphisms
ψ0 and ψ̃0, which would not follow from twisting the generator Ĩ7 with bundle maps
because it acts with eigenvalue zero on the vertices (0)8 and (0)1. We keep these two

4We discuss a further example in Appendix B.2.5.
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endomorphisms here (and also in later examples) for the symmetry of the exposition
in the matrix equations; they can be set to zero consistently at any time.

Without the need of knowing the matrices I(α)
j precisely, one obtains the flow

equations for the horizontal Higgs fields:

φ̇1 = −4
3φ1 − i(φ1ψ4 − ψ̃0φ1), φ̇2 = −4

3φ2 − i(φ2ψ0 − ψ−4φ2),

φ̇3 = −4
3φ3 − i(φ3ψ−4 − ψ0φ3), φ̇4 = −4

3φ4 − i(φ4ψ0 − ψ−4ψ̃0). (4.49)

The general structure of the matrix equations for the entries of the vertical field X7

and the non-trivial algebraic relation, which amounts to commutativity of the square
(4.47), can be deduced from the quiver diagram as well. The explicit form of the
generators is only necessary to derive the numerical constants therein.

4.4 Reduction to CP 3 and orbifolding

This section deals with quiver gauge theory on two geometries intimately related
to S7, namely on orbifolds S7/Zq+1 and on the underlying Kähler manifold CP 3.
In both cases an additional equivariance condition with respect to the third Cartan
generator I7 has to be imposed.

4.4.1 Reduction to CP 3

Due to the construction of the local section (4.1) as a U(1)-bundle over CP 3, it is
natural to consider the reduction of the quiver gauge theory on S7 to that on CP 3.
The complex projective space CP 3 appears as compactification manifold in type IIA
supergravity, which can be derived from the 11-dimensional setup [104,109,110].

In order to obtain the quiver gauge theory on Md × CP 3, one sets X7 = I7 in
the ansatz for the gauge connection (4.15) and has to impose, besides (4.16), the
additional equivariance condition

[Ĩ7, φ(α)] = −4φ(α) for α = 1, 2, 3. (4.50)

This further condition uniquely fixes the endomorphisms φ(α) to have the same action
in the weight diagrams as the ladder operators I−ᾱ , i.e. the quiver diagram coincides
with the collapsed weight diagram of the chosen representation, without ambiguity
between the two approaches for the construction of the quivers. On the other hand, for
Higgs fields acting according to the G-action (B.11), as have been applied throughout
the previous discussion, it is automatically satisfied. Of course, the U(1)-loops in the
quiver diagrams disappear because X7 is not a degree of freedom any more.
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4 Quiver gauge theory on the round seven-sphere

Examples. Let us consider this limit explicitly for the examples of the previous
section. In the fundamental representation 4 of SU(4), we have to set ψ3 = i 1k3 and
ψ−1 = − i

31k−1 , so that the instanton equations (4.33) reduce to

φ̇ = 0, 1k3 = φ†φ, 1k−1 = φφ†. (4.51)

These equations correspond to the commutative version of the BPS equations [42, Eq.
(4.24)] on CP 2 for the fundamental representation, and therefore constitute their
higher-dimensional counterpart on CP 3.

For the exceptional representation 6, taking the limit CP 3 comprises the substitu-
tions ψ2 = 2

3 i 1k2 and ψ−2 = −2
3 i 1k−2 , and therefore the instanton equations (4.38)

yield
φ̇ = 0, 1k2 = φ†φ, 1k−2 = φφ†. (4.52)

Finally, the reduction for the representation 10 requires ψ6 = 2i 1k6 , ψ2 = 2
3 i 1k2 ,

and ψ−2 = −2
3 i 1k−2 , so that the instanton equations (4.44) turn into

φ̇6 = 0 = φ̇2, 1k6 = 1
2φ
†
6φ6, 1k2 = −1

2φ6φ
†
6 + 2φ†2φ2, 1k−2 = φ2φ

†
2, (4.53)

which resemble the structure of the BPS equations [42, Eq. (4.25)].

As expected, the BPS condition for the examples of quiver diagrams on S7 con-
structed here take the familiar form of instanton equations on complex projective
spaces, in analogy to the reduction from S5 to CP 2 [46]. An agreement between this
limit of the Sasakian quiver gauge theory and the known results on the underlying
Kähler manifold will be obtained for the reduction from T 1,1 to CP 1 × CP 1 in the
following chapter as well; this verifies consistency of our construction of Sasakian
quiver gauge theories.

4.4.2 Orbifold S7/Zq+1

A typical setup for compactifications in string theory is to consider orbifolds of highly
symmetric spaces, which reduces the amount of supersymmetry of the theory in
consideration. For implementing the orbifold action of the cyclic subgroup Zq+1

in our setup, we closely follow the exposition in [44,46].

For having a well defined quotient, the cyclic group Zq+1 has to commute with the
subgroup H = SU(3). Therefore it is embedded into the group U(1) generated by I7,
i.e. Zq+1 acts in the fundamental representation by elements

h = diag(ζ3
q+1, ζ

−1
q+1, ζ

−1
q+1, ζ

−1
q+1), ζq+1 := exp( 2πi

q+1). (4.54)

For a local section of the orbifold, the U(1)-factor in (4.6) has to be modified to

(y1, y2, y3,
ϕ
q+1) 7→ Ṽ := V × exp

(
diag(3i ϕ

q+1 ,−i ϕ
q+1 ,−i ϕ

q+1 ,−i ϕ
q+1)

)
. (4.55)
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Defining the 1-forms as in (4.7) still yields a Sasaki-Einstein space, where in all
expressions the substitution ϕ 7→ ϕ

q+1 has to be employed. For equivariant gauge
connections on the homogeneous space Md × S7/Zq+1, not only equivariance with
respect to H = SU(3) has to be satisfied but also a condition with respect to the
cyclic group Zq+1. It acts onto both the endomorphism part Xµ of a connection and
the forms eµ. More precisely, equivariance requires [44,46]

γ(h)Xµγ(h)−1 = π(h)−1Xµ, (4.56)

where γ(h) is a representation of Zq+1 on the fibers of the gauge bundle and π(h) de-
notes the action on the 1-forms. The representation γ(h) follows from the embedding
into the subgroup U(1) generated by I7 in the chosen SU(4)-representation, i.e. it
acts as γ(h) = ζν7

q+11l on each l-dimensional SU(3) subrepresentation (ν7)l with (con-
stant) quantum number ν7. In order to determine π(h), one considers the action of
Zq+1 on vectors w ≡ (w0, w1, w2, w3)T ∈ C4 according to (4.54). From the definition
of the local 1-forms based on the CP 3-quotient (4.2) or from the expression (4.7) one
deduces the following action:

π(h)Θα = ζ−4
q+1Θα, π(h)Θᾱ = ζ4

q+1Θᾱ, π(h)e7 = e7. (4.57)

Plugging this action into the additional equivariance condition (4.56) and imposing
it for all values of q requires the matrices Xµ to act in the weight diagram as the
generators of m do; thus, it has the same effect as imposing equivariance also with
respect to I7. However, it is worth emphasizing that equivariance with respect to I7,
as imposed for CP 3, is a stronger condition. The reason is that, for a fixed value q,
equation (4.56) holds only modulo q+ 1 powers of ζq+1, so that there might be more
general contributions for special values of q under this form of equivariance.

Since imposing equivariance on the orbifold amounts to basically the same addi-
tional condition on I7 as the CP 3 limit, it does not constrain the quiver diagrams
discussed above further, as the arrows have already been chosen according to (B.11).
In contrast to the quiver gauge theory on Md × CP 3, there are still the vertex loops
caused by the vertical Higgs field X7 as degrees of freedom, of course.

4.5 Moduli space of HYM instantons

In this section we discuss the moduli space of the Hermitian Yang-Mills equations
(4.25) and (4.26) on the Calabi-Yau cone over the seven-sphere by applying ap-
proaches from the literature.

4.5.1 Constant endomorphisms

Before we proceed with the general discussion of the moduli space of the Hermitian
Yang-Mills equations under the contraints imposed by equivariance, we consider the
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4 Quiver gauge theory on the round seven-sphere

special case of constant endomorphisms φ(α). Then the radial coordinate r enters the
setup just as a label of foliations consisting of the underlying Sasaki-Einstein manifold
along the cone direction. Applying the temporal gauge Xτ = 0, one obtains from the
flow equations (4.26a) the conditions

[X7, φ
(α)] = −4

3 iφ(α), for α = 1, 2, 3, (4.58)

which lead to the vanishing of the sum in the second line of (4.20). As we have seen
before, the above condition can be satisfied, for instance, by the quiver gauge theory
on the complex projective space CP 3. Of course, due to the “bridging property” of
Sasakian manifolds between two Kähler manifolds, this result is not unexpected

4.5.2 Moduli space of HYM equations

For the discussion of the flow equations under the given constraints, one can apply
the results of [51] for Hermitian Yang-Mills instantons on Calabi-Yau cones over
generic Sasaki-Einstein manifoldsM2n+1, based on an adaptation of Donaldson’s and
Kronheimer’s studies of Nahm’s equations [111,112]. We review the main aspects of
this description, referring to [51] and the references therein for details.

The space of gauge connections A over a Kähler manifold (M2n, g,Ω) naturally
inherits a Kähler structure from the underlying manifold. Explicitly, the metric in a
point A ∈ A is defined as [51]

g̃|A(X1, X2) =
∫
M2n

Tr(X1 ∧ ?X2), (4.59)

and a Kähler form follows from the base manifold M2n as

Ω̃|A(X1, X2) =
∫
M2n

Tr(X1 ∧X2) ∧ Ωn−1. (4.60)

The space of connections is therefore an (infinite-dimensional) Kähler manifold, on
which an infinite-dimensional gauge group (see below) acts.

Coadjoint orbits. The HYM equations on the Calabi-Yau cone over S7 yielded the
set of equations (4.25) and (4.26). Rescaling the Higgs fields

φ(α) =: e−
4
3 τWα for α = 1, 2, 3 and Y0̄ =: e−6τZ (4.61)

and changing the argument to s := −1
6e−6τ leads to the flow equations

dWα

ds = 2[Wα, Z], for α = 1, 2, 3 , (4.62a)

0 = d
ds(Z + Z†) + 2[Z,Z†] + 2

3∑
α=1

(−6s)−
14
9 [Wα,W

†
α] =: µ(s), (4.62b)

and the algebraic condition
[Wα,Wβ] = 0, (4.63)
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4.5 Moduli space of HYM instantons

in correspondence with the general results of [51] for n = 3. The first equations,
(4.62a), are referred to as complex equations, and (4.62b) is called the real equation,
in analogy to Nahms’s equations (cf. Appendix A.2). The further discussion of the
moduli space of these Nahm-type equations is based on the invariance of the complex
equations under the gauge transformation

Wα 7→W g
α := g(s)Wαg(s)−1, Z 7→ Zg := g(s)Zg(s)−1 − 1

2

(dg(s)
ds

)
g(s)−1, (4.64)

for g ∈ GC ⊂ C∞ ((−∞, 0],GL(C, k)). For compatibility with the equivariance con-
ditions, the gauge transformations have to be restricted such that they preserve the
structure of the quiver diagrams, which corresponds to the breaking of the structure
group (3.5). Moreover, note that the real equation is only invariant under the real
gauge group G ⊂ C∞ ((−∞, 0],U(k)), i.e. g−1 = g†.

By virtue of the gauge invariance (4.64), Kronheimer’s and Donaldson’s techniques
can be applied here. Consider a local gauge in which Zg vanishes, i.e. Z = 1

2g
−1g′ is

pure gauge. Then the complex equations imply that the matrices Wα are constant,
i.e. one has the local solution [51]

Z = 1
2g
−1g′ and Wα = Ad(g−1)Tα with [Tα, Tβ] = 0, (4.65)

for constant matrices Tα, which can be chosen from a Cartan subalgebra. Hence,
over some interval I ⊂ (−∞, 0], solutions to the complex equations are described as
orbits of a tuple (T1, T2, T3, 0) under the adjoint action of the complex gauge group
GC. The real equation can be interpreted as the equation of motion, δL = 0, of a
suitably constructed Lagrangian [51,111],

L[g] =
∫
I

ds Tr
{
|Zg + Zg†|2 + 2 (−6s)−

14
9

3∑
α=1
|W g

α|2
}
. (4.66)

Using δWα = [δg,Wα] and δZ = [δg, Z] − 1
2

d
ds(δg) for g = 1 + δg (with variation

(δg)† = δg), one verifies that the real equation (4.62b) indeed follows from the varia-
tion of (4.66). Rewriting the Lagrangian in terms of the local solution (4.65) to the
complex equations casts the real equation into a variational problem (with a non-
negative potential) on gauge transformations h := g†g, and the existence of a solution
is guaranteed by standard arguments concerning variational problems.

For uniqueness of the solution and in order to apply this approach on the entire
range of s ∈ R≤0, one restricts to framed5 instantons and has to impose certain
boundary conditions for s→ −∞, i.e. for the conical singularity at r = 0, [51]

∃ g0 ∈ GC s.t. lim
s→−∞

Wα(s) = Ad(g0)Tα. (4.67)

5This means that one considers real gauge transformations h := g†g with h = 1 at the bound-
aries [51].
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4 Quiver gauge theory on the round seven-sphere

With these boundary conditions and assuming that the elements Tα are regular, it
is shown [51] that the boundary conditions for s → 0 are determined by (4.67),
and that the solutions are described as coadjoint orbit of the regular tuple. To
sum it up, the gauge transformation (4.65) allowed finding a local solution of the
complex equations, which also solves the real equation and extends to the entire range
of s if suitable boundary conditions are imposed; for more details of this approach,
see [46,51,111,112].

Kähler quotient. The moduli space also admits a description as a Kähler quo-
tient [51]. The space of solutions to the complex equations and the equivariance
conditions, denoted as

A1,1 := {equivariant A | F (2,0) = 0 = F (0,2)}, (4.68)

inherits a Kähler structure from A, which is preserved by the action of the (real)
gauge group G. The real equation (4.62b) can be interpreted as a moment map
µ : A1,1 −→ Lie(G), and the moduli space can be written as the Kähler quotient

M = µ−1(0)/G. (4.69)

It turns out that this quotient can be related to the set of stable points as well [51].

4.6 Translationally invariant instantons on R8/Zk

The concept of Sasakian quiver gauge theories has been introduced [44] on orbifolds
SU(2)/Γ, with a discrete subgroup Γ ⊂ SU(2), so that the metric cones were given
by C2/Γ. The known brane configurations at orbifold singularities of type ADE
and constructions of ALE gravitational instantons in these settings [64, 100, 101]
motivated considering translationally invariant gauge connections and instantons,
whose structure is determined by the discrete subgroup only. Similarly, transla-
tionally invariant instantons have been studied on C3/Zk as the metric cone over the
lens spaces S5/Zk [45, 46]. Here we briefly sketch the analogous situation of trans-
lationally invariant instantons on C4/Zk, closely following [44–46, 113], for SU(4)-
representations Γl,0,0.

4.6.1 Equivariant connections

Let us consider a vector bundle E → C4/Zk of rank r and use the coordinates
(z1, z2, z3, z4) on C4, which is equipped with the standard metric and complex struc-
ture J dzα = i dzα. The differentials of the coordinates provide a translationally
invariant basis of 1-forms, and any connection can be written as

A =
4∑

α=1
(Yα ⊗ dzα + Yᾱ ⊗ dzᾱ) (4.70)
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4.6 Translationally invariant instantons on R8/Zk

with the Higgs fields Yᾱ = −Y †α describing the endomorphism part of the connection
(acting on the fibers Cr of the vector bundle E), as before. Translational invariance
of this connection, i.e. dA = 0, then implies

dYα = 0 = dYᾱ . (4.71)

The form of the endomorphisms is determined by equivariance with respect to the
discrete subgroup Γ = Zk only. As before, the condition of equivariance reads [44,46]

γ(h)Yᾱ γ(h)−1 = π(h)−1Yᾱ , (4.72)

but now the action both on the fibers and on the form part is different compared to
(4.56). When introducing the orbifold in Section 4.4, the action π on 1-forms followed
from the construction of the local section: it was induced by the fundamental action
of SU(4) on C4 in (4.55) and the ensuing quotient leading to the local patch in CP 3.
Now, however, we directly start from the space C4 and one can define for h ∈ Zk,
according to the action of I7 in the fundamental representation,

π(h) : dza 7−→ ζ−1
k dza , a = 1, 2, 3 , dz4 7−→ ζ3

k dz4 (4.73)

with ζk a primitive k-th root of unity. In [46, Section 6.1] there is a detailed dis-
cussion of the choices for the Zk-action γ(h) on the fibers, explaining the differences
between H-equivariant connections and the translationally-invariant case. Following
this reference, we do not consider the weights associated to the generator I7, which
has been used for our discussion of SU(4)-equivariant instantons on orbifolds of S7

above, but consider the weights pertaining to the other Cartan generators, as the
examples below will clarify.

Hermitian Yang-Mills equations. With the standard metric and complex structure
on C4, the Kähler form is given by Ω = − i

2
∑4
α=1 dzα∧dzᾱ and the holomorphicity

condition Fαβ = 0 = Fᾱβ̄ of the Hermitian Yang-Mills equation yields commutativity,

[Yα, Yβ] = 0 = [Yᾱ, Yβ̄] for α, β = 1, 2, 3, 4. (4.74)

due to (4.71). On the space C4/Zk, one can include a Fayet-Iliopoulos (FI) term Ξ
in the stability-like condition Ω F = Ξ,

4∑
α=1

[Yα, Yᾱ] = Ξ , (4.75)

where Ξ is a constant element in the center of the Lie algebra u(r) of the structure
group. This parameter determines the properties of the Kähler quotient, which can
be applied for the description of the moduli space, and the mimimal resolution of the
singularity; see for instance [113] and the references therein.
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4 Quiver gauge theory on the round seven-sphere

4.6.2 Examples of quiver diagrams

For choosing an action γ(h) on the fibers of E, we keep the decompositions of the
SU(4)-representations from the previous discussion, but now assign to the subspaces
(each of them carrying a constant quantum number ν7) an action with respect to the
quantum number ν8 of the weight state that labels the subrepresentation6. Note that
this choice of γ(h) is neither unique nor necessary, but just a possible choice for the
action on the fibers which allows us to obtain solutions to equation (4.72), as in [46].

Representation 4. For the fundamental representation of SU(4), the generator of Zk
is chosen based on the decomposition (4.27) and the quantum numbers with respect
to Ĩ8 as

γ(h) =

ζ−1
k 13 ⊗ 1r−1 0

0 1⊗ 1r3

 , (4.76)

where rj denotes the dimension of the vector spaces Ej attached to the two vertices.
The equivariance condition (4.72) then yields the 3-Kronecker quiver

(−1,−1,1)3 (3,0,0)
Φα

(4.77)

and the Higgs fields take the form

Yᾱ =

0 Φα

0 03

 for α = 1, 2, 3 and Y4 = 0 . (4.78)

As expected, this is the higher-dimensional analogue of the quiver for the fundamental
representation of SU(3) in [46]. The holomorphicity condition [Yα, Yβ] = 0 is trivially
satisfied, while the stability condition (4.75) yields

Φ1 Φ†1 + Φ2 Φ†2 + Φ3 Φ†3 = −ξ−1 13 ⊗ 1r−1 ,

Φ†1 Φ1 + Φ†2 Φ2 + Φ†3 Φ3 = ξ3 1⊗ 1r3 , (4.79)

where ξi are the components of Ξ, decomposed according to (4.76).

Representation 10. For the 10-dimensional representation we use the embedding

γ(hk) =


ζ−2
k 16 ⊗ 1r−2 0 0

0 ζ−1
k 13 ⊗ 1r2 0

0 0 1⊗ 1r6

 , (4.80)

to obtain the quiver

(−2,−2,2)6 (2,−1,1)3 (6,0,0)
Φ1
α Φ2

α

(4.81)

6Since SU(4) has rank three, another obvious choice is to use the weights associated to the Cartan
generator I9. For the examples considered here, this yields the same quivers due to (4.45).
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4.6 Translationally invariant instantons on R8/Zk

and the Higgs fields

Yᾱ =


06 Φ1

α 0
0 03 Φ2

α

0 0 0

 for α = 1, 2, 3 and Y4 = 0 . (4.82)

The Hermitian Yang-Mills equations impose the quiver relations

Φ1
α Φ2

β − Φ1
β Φ2

α = 0 (4.83)

as well as the stability conditions
3∑

α=1
Φ1
α Φ1 †

α = −ξ−2 16 ⊗ 1r−2 ,
3∑

α=1

(
Φ2
α Φ2 †

α − Φ1 †
α Φ1

α

)
= −ξ2 13 ⊗ 1r2 ,

3∑
α=1

Φ2 †
α Φ2

α = ξ6 1⊗ 1r6 . (4.84)

Here the arrows related to Yᾱ for α = 1, 2, 3 occur whenever the difference in the
powers of ζk in (4.72) is equal to one, so that the underlying structure of the quivers
shares the main features with the diagrams in [46]. On the five-sphere, the morphisms
induced by the distinguished Higgs field only appear for differences of 2, while our
higher-dimensional version requires differences of 3 in the powers of the root of unity.
Thus, there is no arrow Y4 in the quiver diagram for the 10-dimensional representation
of SU(4). By virtue of (4.45), the results are generalized to representations C l,0,0

straightforwardly: these representations yield Al+1-quivers with three independent
Higgs fields between adjacent vertices, and an arrow Y4 connects any two vertices at
a distance of 3.

Representation 20. The above result is illustrated by the 20-dimensional represen-
tation C3,0,0. Its decomposition

20
∣∣
SU(3) = (−3,−3,3)10 ⊕ (1,−2,2)6 ⊕ (5,−1,1)3 ⊕ (9,0,0)1 (4.85)

and the corresponding choice of γ(h) lead to the quiver diagram

(−3,−3,3)10 (1,−2,2)6 (5,−1,1)3 (9,0,0)
Φ1
α Φ2

α Φ3
α

Ψ (4.86)

Note that the allowed transitions Yα for α = 1, 2, 3 in the above examples of quiver
diagrams are those which follow from the actions considered on the orbifold S7/Zq+1

in Section 4.4.2 if only equivariance with respect to the discrete subgroup is imposed.
This confirms the choice of the group action on the fibers, based on the discussion
of [46], in this section.
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4 Quiver gauge theory on the round seven-sphere

4.7 Higher-dimensional spheres and discussion

The examples of quiver diagrams on S7 and the resulting instanton equations studied
in this chapter turned out to be the higher-dimensional analogues of those obtained
for (orbifolds of) the five-sphere. Of course, dealing with a quiver gauge theory of
rank 3, new types of quiver diagrams may be found for more complicated representa-
tions of SU(4), for which exactly the same construction procedure, based on the root
system (B.12), applies. An exhaustive survey is left for future work.

The analogy of the results on the five- and on the seven-sphere for the represen-
tations C l,0,... as well as the adjoint representation motivate to spend some words
on higher-dimensional spheres. Due to the completely regular construction of odd-
dimensional spheres as coset spaces S2n+1 ∼= SU(n + 1)/SU(n) and analogous fibra-
tions over CPn (cf. [114]), one expects the typical quiver diagrams for representations
C l,0,... and the adjoint representation to look the same for all dimensions n. It is worth
pointing out that also the results for Calabi-Yau cones over generic Sasaki-Einstein
manifolds [19,34,51] rely on such a universality of the construction.

4.7.1 Generalization to odd-dimensional spheres S2n+1

By virtue of the standard embedding of H = SU(n) into G = SU(n+ 1),

SU(n) 7−→

 1 0
0 SU(n)

 ⊂ SU(n+ 1), (4.87)

and the analogues of the local section (4.1), one obtains from the canonical flat
connection and the Lie algebra splitting su(n+ 1) = su(n)⊕m immediately

m =


ine2n+1 Θ1 . . . Θn

−Θ1̄ −ie2n+1 . . . 0
...

... . . . ...
−Θn̄ 0 . . . −ie2n+1

 , (4.88)

which yields structure equations analogous to (B.1) for the geometry of the coset
space m ∼= Te(G/H) = TeS

2n+1.

Fundamental representation. The structure of the coset space (4.88) implies the
splitting n + 1|SU(n) = (n, . . .)1 ⊕ (−1, . . .)n of the fundamental representation n + 1
of SU(n+1) under restriction to SU(n), generalizing the decomposition (4.27). There-
fore, the fundamental representation always yields the A2-quiver with vertex loops
(4.28), where the Higgs fields are given by

φ(α) =

 0 0
φ⊗ I(α) 0

 with I(α) = (δiα)T1≤i≤n (4.89)
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4.7 Higher-dimensional spheres and discussion

as well as X7 = diag(ψn, ψ−1⊗1n). This may serve as a model for symmetry breaking
in equivariant dimensional reduction according to

U(kn + nk−1)→ U(kn)×U(k−1). (4.90)

The discussion [34, 51] of the Hermitian Yang-Mills equations on Calabi-Yau cones
over generic Sasaki-Einstein manifolds M2n+1 provides the equations

φ̇(α) = −n+1
n φ(α) − i[φ(α), X7], Ẋ7 = −2nX7 − 2i

n∑
α=1

[φ(α), φ(α)†] (4.91)

with the algebraic conditions [φ(α), φ(β)] = 0. Hence, the fundamental representation
n + 1 of SU(n+ 1) yields the instanton matrix equations

φ̇ = −n+1
n φ− iφψn + iψ−1φ,

ψ̇n = −2nψn + 2niφ†φ, ψ̇−1 = −2nψ−1 − 2iφφ†, (4.92)

which generalizes the result (4.33). We will comment on the general structure of
the equations below, but we can consider the special case of constant solutions here.
Stationary points must satisfy

ψn = iφ†φ, ψ−1 = − i
nφφ

†, φ(−1kn + φ†φ) = (−1k−1 + φφ†)φ , (4.93)

which holds for the trivial solution φ = 0, corresponding to the canonical connection,
as well as for Higgs fields such that φ†φ = 1kn and φφ† = 1k−1 . The latter conditions
are exactly those we have encountered for the reduction to the complex projective
space CP 3 in (4.51), as already mentioned in Section 4.5. Choosing the attached
vector spaces 1-dimensional yields ψn ∝ ψ−1 and reproduces the scalar ansatz studied
in [19]. Thus, in order to obtain new instanton solutions one has actually to consider
matrix-valued Higgs fields, where the off-diagonal parts might reveal new insights.

Representations C l,0,.... Similarly, SU(n+1) representations consisting of l adjacent
SU(n) representations, denoted as C l,0,... according to their highest weights, always
lead to Al+1-quiver diagrams with the typical loop modification due to the U(1)-factor
of the vertical Higgs field.

Adjoint representation. One also expects the adjoint representation (n + 1)2 − 1
of SU(n + 1) to yield the square quiver diagram (4.47) for all dimensions n because
the adjoint representation splits under restriction to SU(n) into the adjoint, one
fundamental, one anti-fundamental and one trivial representation thereof,

n2 + 2n|SU(n) = 1⊕ n + n̄⊕ n2 − 1. (4.94)

This decomposition can be easily obtained from representation theory or recalling that
by the embedding (4.87) the subgroup SU(n) acts on a trivial part, an n-dimensional
column vector, an n-dimensional row vector and an su(n)-matrix in (4.88), which
yields the four subrepresentations in the above splitting.
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4 Quiver gauge theory on the round seven-sphere

4.7.2 On the matrix equations

We have seen that the instanton equations for the explicit examples of quiver diagrams
on the 7-dimensional round sphere correspond to the general results derived in [34,51]
for n = 3. Due to these results and the regularity of the construction of the round
spheres, one expects similar instanton equations in all cases.

The striking feature of Sasakian quiver gauge theories consists of the loop contribu-
tions caused by the U(1)-factor of the contact direction, which yields a characteristic
coupling in the instanton equations: there always occur terms of the form φφ† or φ†φ
in the flow equation for the vertical Higgs field X2n+1, which renders the system of
equations intricate. Finding analytic solutions to the instanton equations therefore
seems unlikely, and also the scalar ansatz in [19, Sec. 4.2] provided an analytic result
only in three dimensions. Furthermore, it is noteworthy that the description of the
moduli spaces solves the real equation, which is responsible for the challenging terms,
only implicitly by general existence arguments on variational problems.

Therefore, the instanton matrix equations we have derived for the various represen-
tations of SU(4) in this chapter should be studied numerically, as it has been carried
out for the scalar ansatz in [19]. While diagonal Higgs fields reproduce copies of
the scalar ansatz, the dynamics of the off-diagonal contributions of the matrices Xµ

might yield interesting new solutions. As a possible starting point, one may study
small perturbations around (non-stable) stationary solutions.
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5 Quiver gauge theory on the space T 1,1

The previous chapter has shown that – on the level of the examples taken into account
– the quiver gauge theory on the round seven-sphere S7 leads to results analogous to
those on the sphere S5 [46]. In five dimensions the two most prominent (and the only
compact homogeneous [65]) examples of Sasaki-Einstein manifolds are S5 as U(1)-
bundle over CP 2 and a certain U(1)-bundle over CP 1×CP 1. The latter is known as
T 1,1 = SU(2) × SU(2)/U(1) due to Romans [115] in physics and as Stiefel manifold
V4,2 = SO(4)/SO(2) = SO(3)× SO(3)/SO(2) in mathematics.1

While string theory on AdS5×S5 leads to N = 4 Super-Yang-Mills (SYM) theory,
the compactification AdS5× T 1,1 gives rise to an N = 1 super-conformal field theory
[116, 117]. The supersymmetry equations for backgrounds AdS5 ×M5 in type IIB
supergravity can be found in [85], and this setting also allows for exceptional Sasaki-
Einstein structures [90]. The metric cone over T 1,1 is the famous conifold whose
conical singularity provides the background for certain D-brane configurations [118–
120]. The singularity can be removed either by a deformation or by a small resolution,
and the transition between both approaches is known as conifold transition [121].

The focus of our work here will be placed on constructing (SU(2)×SU(2))-equivariant
gauge connections on Md × T 1,1 and on studying the conditions imposed by the in-
stanton equation on the conifold. We will compare the results to quiver gauge theory
of the underlying Kähler manifold CP 1×CP 1, which has been studied in [43], and also
to the case of the five-sphere [46]. In contrast to Chapter 4, the simplicity of the rep-
resentation theory of G = SU(2)× SU(2) allows us to discuss the quiver gauge theory
associated to a generic representation of G without obtaining lengthy expressions.

The content and parts of the discussion here are based on the collaboration [47] with
O. Lechtenfeld, A. D. Popov and R. J. Szabo. However, this chapter also provides
some extensions and a comparison with quiver gauge theories on round spheres.

1Stiefel manifolds are defined as the set of all k-frames in Rn, which is diffeomorphic to the quotient
SO(n)/SO(n− k), see [93] for instance. In order to obtain the above expression of T 1,1, one also
employs the exceptional isomorphism Spin(4) = SU(2)× SU(2).
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5 Quiver gauge theory on the space T 1,1

5.1 Geometric structure

In this section we will review the geometric structure of the homogeneous space
T 1,1 = SU(2)×SU(2)/U(1). A description of the five-dimensional Stiefel manifold V4,2

as a naturally reductive space can be found in [122, Section 9.1] and in [123, Sec. 5]
for example.

5.1.1 Local section

We start by describing explicit local coordinates on SU(2) ' S3 and CP 1 ' S2, based
on the defining representation of the Lie group SU(2) on C2 and the Maurer-Cartan
form. Each element of SU(2) can be locally written as [31]

1
(1 + yl ȳl)1/2

1 −ȳl
yl 1


︸ ︷︷ ︸

=gl ∈ CP 1 ⊂ SU(2)

eiϕl 0
0 e−iϕl


︸ ︷︷ ︸

∈ U(1)

, (5.1)

where yl and ȳl are stereographic coordinates on S2, defined as in [43], and the index
l = 1, 2 refers to the two copies of S2 which are contained in T 1,1. The Maurer-Cartan
form Al = g−1

l dgl on the homogeneous spaces CP 1 is given by

Al = 1
1 + yl ȳl

1
2 (ȳl dyl − yl dȳl) −dȳl

dyl 1
2 (yl dȳl − ȳl dyl)

 =:

al −β̄l
βl −al

 . (5.2)

This provides SU(2)-invariant 1-forms on CP 1 × CP 1,

al = −āl = 1
2

(
ȳl βl − yl β̄l

)
, βl = dyl

1 + yl ȳl
(5.3)

with differentials

dal = −βl ∧ β̄l , dβl = 2al ∧ βl , dβ̄l = −2al ∧ β̄l . (5.4)

Since the geometry of T 1,1 involves the Hopf fibration S3 → S2 in (5.1), it has a close
relation to quantities associated with magnetic monopoles, as the appearance of the
monopole forms (5.3) indicates. To deal with the two copies of SU(2) contained in
T 1,1, we express an arbitrary element of SU(2)× SU(2) locally as

diag (g1, g2)︸ ︷︷ ︸
∈ CP 1×CP 1

×diag
(
eiϕ1 , e−iϕ1 , eiϕ2 , e−iϕ2

)
︸ ︷︷ ︸

∈ U(1)×U(1)

. (5.5)

To pass to the coset spaces T p,q, one has to factor by the U(1) subgroup whose
embedding is described by the integers p and q. We specialize to the Sasaki-Einstein
case p = q = 1, so that the subalgebra is embedded2 as h = 〈I3

(1) − I
3
(2)〉, where I3

(l)

2 The minus sign of the embedding is a convention chosen for aesthetic reasons. Changing to the
opposite convention simply inverts the complex structure on one of the two-spheres S2 contained
in T 1,1.

60



5.1 Geometric structure

denote the Cartan generators of the two copies of su(2). Therefore we change the
U(1) coordinates to ϕ := 1

2 (ϕ1 + ϕ2) and ψ := 1
2 (ϕ1 − ϕ2), so that the U(1) × U(1)

factor in (5.5) reads

diag
(
ei(ϕ+ψ), e−i(ϕ+ψ), ei(−ϕ+ψ), ei(ϕ−ψ))

= diag
(
eiϕ, e−iϕ, eiϕ, e−iϕ

)
× diag

(
eiψ, e−iψ, e−iψ, eiψ) . (5.6)

By passing to the coset space T 1,1, the second factor is divided out and one ends up
with elements of the form

V = diag (g1, g2)× diag
(
eiϕ, e−iϕ, eiϕ, e−iϕ

)
. (5.7)

Hence, our description of T 1,1 is founded on using a local section of the bundle
SU(2)× SU(2)→ T 1,1 with coordinates (y1, ȳ1, y2, ȳ2, ϕ), and we derive a basis of
(SU(2)× SU(2))-left-invariant 1-forms on T 1,1 by considering the canonical flat con-
nection

A0 := V −1 dV =


i dϕ+ a1 −e−2iϕ β̄1 0 0
e2iϕ β1 − (i dϕ+ a1) 0 0

0 0 i dϕ+ a2 −e−2iϕ β̄2

0 0 e2iϕ β2 − (i dϕ+ a2)

 . (5.8)

After introducing real 1-forms

a := 1
2 (a1 − a2) , iκ e5 := i dϕ+ 1

2 (a1 + a2) ,

α1Θ1 := α1
(
e1 − ie2

)
:= e2iϕ β1 , α2Θ2 := α2

(
e3 − ie4

)
:= e2iϕ β2 , (5.9)

where α1, α2 and κ are real constants to be determined from the Sasaki-Einstein
condition, one obtains the structure equations

de1 = 2κe52 − 2ia ∧ e2, de2 = −2κe51 + 2ia ∧ e1,

de3 = 2κe54 + 2ia ∧ e4, de4 = −2κe53 − 2ia ∧ e3,

de5 = − 1
κ(α2

1e
12 + α2

2e
34), (5.10)

from the flatness of the connection (5.8).

Sasaki-Einstein condition. A five-dimensional Sasaki-Einstein manifold can be de-
scribed [32, 124] as a special SU(2) structure consisting of an orthonormal basis of
1-forms e1, . . . , e5 (with contact form e5 ≡ η) and 2-forms

ω1 = e23 + e24, ω2 = e31 + e24, ω3 = e12 + e34 (5.11)

which satisfy the equations

dη = 2ω3, dω1 = −3η ∧ ω2, dω2 = 3η ∧ ω1. (5.12)
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5 Quiver gauge theory on the space T 1,1

With the structure equations (5.10) one derives

dω1 = 4κη ∧ ω2, dω2 = −4κη ∧ ω1, dη = − 1
κ(α2

1e
12 + α2

2e
34), (5.13)

which fixes the real parameters to the values κ = −3
4 and α2

1 = α2
2 = 3

2 . Equivalently,
the Sasaki-Einstein property is verified by showing that the metric cone over T 1,1 is
Calabi-Yau, as carried out in Appendix C.1.

Since we study an extension of the quiver gauge theory on CP 1×CP 1, let us briefly
comment on the implication of these fixed parameters. Our geometry consists of two
copies of CP 1 ∼= S2, and therefore the round Kähler metric [43]

gS2×S2 = 4R2
1 β1 ⊗ β̄1 + 4R2

2 β2 ⊗ β̄2, (5.14)

parameterized by two radii Rl, appears. On the other hand, the metric on T 1,1 reads

g =
∑
µ

eµ ⊗ eµ = 2
3 β1 ⊗ β̄1 + 2

3 β2 ⊗ β̄2 + η ⊗ η , (5.15)

so that imposing the Sasaki-Einstein condition requires R2
1 = R2

2 = 1
6 (see also the

metric [120, Eq. (2.11)]). In particular, one cannot rescale the radii as for Kähler
structures on the coset space CP 1 × CP 1.

5.1.2 Canonical connection

The 3-form P and 4-form Q (2.15) that enter the canonical connection and the in-
stanton equation now read

P = e125 + e345, Q = e1234, (5.16)

and the torsion components (2.16) of the canonical connection are given by

T 1 = −3
2e

52, T 2 = 3
2e

51, T 1 = −3
2e

54, T 4 = 3
2e

53, T 5 = 2e12 + 2e34. (5.17)

Plugging this torsion into the structure equations (C.5), recalling deµ = −Γµν∧eν+Tµ,
one identifies the canonical connection

Γ = a⊗ I6 with I6 := I
(1)
3 − I(2)

3 . (5.18)

Similar to the Sasaki-Einstein manifold S7 in the previous chapter, the canonical
connection (5.18) in the sense of manifolds with Killing spinors coincides with that
of T 1,1 as a homogeneous space G/H. This U(1)-connection yields the curvature

FΓ = dΓ = 3
2 i I6 ⊗ (−e12 + e34), (5.19)

which satisfies the instanton equation (2.10) for Q given above.
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5.2 Equivariance and instanton equation

5.2 Equivariance and instanton equation

We use the canonical connection associated to the Sasaki-Einstein structure of T 1,1

to apply the typical ansatz (3.10) for the gauge connection in the Hermitian vector
bundle E over the base Md × T 1,1:

A = A+ Γ +
5∑

µ=1
Xµ ⊗ eµ = A+ a⊗ I6 +

2∑
α=1

(φ(α) ⊗Θᾱ − h.c.) +X5 ⊗ e5, (5.20)

where the connection A on the bundle E → Md is compatible with the isotopical
decomposition (3.4) of the fibers. We have introduced the two complex Higgs fields
φ(1) := 1

2(X1 − iX2) and φ(2) := 1
2(X3 − iX4) as well as the vertical field X5.

5.2.1 Equivariance condition

Invariance of the gauge connection (5.20) is ensured by the equivariance condition
(3.13). For the case at hand, it requires conditions with respect to the Cartan gener-
ator I6 only:

[I6, X1] = −2iX2, [I6, X2] = 2iX1,

[I6, X3] = 2iX4, [I6, X4] = −2iX3, [I6, X5] = 0. (5.21)

Denoting the quantum numbers with respect to the two Cartan generators by (ν5, ν6),
one therefore obtains the action of the Higgs fields according to

φ(1) : (ν5, ν6) 7−→ (∗, ν6 + 2) , φ(2) : (ν5, ν6) 7−→ (∗, ν6 − 2) ,

X5 : (ν5, ν6) 7−→ (∗, ν6) . (5.22)

Since only one of the two Cartan generators of G is involved in the equivariance
condition (5.21), the action of the Higgs fields on the quantum numbers might, in
principle, comprise more general contributions than the ladder operators of G, as
discussed in Section 3.3. Due to the ansatz with quiver bundles induced by the
G-action on the vertices in the weight diagram, it is again reasonable to restrict our
attention to Higgs fields3 that act according to (C.23).

In particular, one then finds a grading with each φ(l) acting only on one of the
two copies of SU(2). The resulting equivariant bundle is that constructed in [43]
with a U(1)-modification due to the vertical Higgs field X5. To make the structure
of the Higgs fields more evident, one may introduce projection operators as in [43]
(see Appendix C.2.1) for representations of G on Cm1+1⊗Cm2+1, where Latin indices
always refer to the first factor and Greek indices to the second one. Writing Iiα,jβ for

3We provide an example of Higgs fields with more general contributions in (C.16) and refer to [47]
for details.
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5 Quiver gauge theory on the space T 1,1

the square matrix with entry 1 at the position (iα, jβ) and zero otherwise, we express
the Higgs fields as

φ(α) =
m1∑
j,k=0

m2∑
β,γ=0

Ijβ,kγ φ
(a)
jβ,kγ with φ

(a)
jβ,kγ ∈ Hom(Ekγ , Ejβ). (5.23)

Using the representation (C.21), one obtains the commutation relation

[Υ(1) ±Υ(2), φ(a)] =
m1∑
j,k=0

m2∑
β,γ=0

2 (k − j ± (γ − β)) Ijβ,kγ φ(a)
jβ,kγ , (5.24)

and the equivariance condition (5.21) therefore restricts the Higgs fields as follows:

φ
(1)
jβ,kγ = δk−j−γ+β,1 φ

(1)
jβ,kγ , φ

(2)
jβ,kγ = δk−j−γ+β,−1 φ

(2)
jβ,kγ ,

ψjβ,kγ = δk−j−γ+β,0 ψjβ,kγ , (5.25)

where ψjβ,kγ are the components of the vertical Higgs field X5. Indeed, these condi-
tions are more general since only the relative charge ciα := m1 −m2 − 2i+ 2α of the
vertices (iα) enters. If also the conditions

[I5, φ(1)] = 2φ(1), [I5, φ(2)] = −2φ(2), [I5, X5] = 0, (5.26)

are imposed, the fields are further restricted to the form of the ladder operators,

φ
(1)
jβ,kγ = δk−j,1δγ−β,0 φ

(1)
jβ,kγ , φ

(2)
jβ,kγ = δk−j,0δγ−β,1 φ

(2)
jβ,kγ ,

ψjβ,kγ = δk−j,0δγ−β,0 ψjβ,kγ . (5.27)

That is, φ(1) acts only on the first copy of SU(2), φ(2) only on the second one, and X5

leads to the typical loop contributions of Sasakian quiver gauge theories. We will see
in Section 5.3.3 that this grading yields a discussion of quiver diagrams for generic
representations of G similar to [43].

5.2.2 Action functional and instanton equations

Using the orthonormality of the basis e1, . . . , e5, one obtains as Yang-Mills action
functional for the equivariant gauge connection (5.20) the expression

SYM = Vol
(
T 1,1)

∫
Md

ddy √g 1
2 Tr

(
1
2 Fmn (Fmn)† +

d∑
m=1

5∑
µ=1
|DmXµ|2

+
∣∣∣[X1, X2] + 2X5 − 3

2 iI6
∣∣∣2 +

∣∣∣[X3, X4] + 2X5 + 3
2 iI6

∣∣∣2 + |[X1, X3]|2

+ |[X1, X4]|2 + |[X2, X3]|2 + |[X2, X4]|2 + |[X1, X5]− 3
2X2|2

+ |[X2, X5] + 3
2X1|2 + |[X3, X5]− 3

2X4|2 + |[X4, X5] + 3
2X3|2

)
, (5.28)

where the covariant derivatives Dm are defined as in (4.21). We will evaluate this
expression for generic representations of G later, making use of the grading of the
gauge connection. The volume of the coset space T 1,1, appearing as prefactor in the
above functional, is given by Vol(T 1,1) = 16π3

27 [117,125].
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5.3 Quiver diagrams

Instanton equation on T 1,1. The instanton equations on T 1,1 read

F12 = −F34, F13 = F24, F14 = −F23, Fa5 = 0, a = 1, . . . 4, (5.29)

in analogy to (4.22). The last condition can also be formulated as

[X5, φ
(1)] = −3

2 iφ(1), [X5, φ
(2)] = −3

2 iφ(2), (5.30)

resembling the form of equivariance conditions on CP 1×CP 1, which will be discussed
in Section 5.4. Inserting the instanton conditions into the action functional (5.28)
leads to the vanishing of the last four terms.

Instanton equation on the conifold. The evaluation of the HYM equations on the
conifold yields

φ̇(α) = −3
2φ

(α) − i[φ(α), X5], α = 1, 2, with [φ(1), φ(2)] = 0, (5.31a)

Ẋ5 = −4X5 − 2i[φ(1), φ(1)†]− 2i[φ(2), φ(2)†] . (5.31b)

Like the instanton equations (4.26) on the round seven-sphere, they agree with the
general result (4.91), derived in [34,51], for the case n = 2.

5.3 Quiver diagrams

We start by studying two examples of quiver diagrams for low-dimensional repre-
sentations of G and then describe the generic case, using the grading of the gauge
connection. The product structure of the group G and choices for representations
thereof are collected in Appendix C.

5.3.1 Representation (m,0)

Choosing as representation for the second factor SU(2) the trivial representation
yields a holomorphic chain of length m+ 1 with vertex loops as quiver diagram4,

(0) (1) (2) . . . (m1)

ψ0 ψ1 ψ2 ψm1

φ
(1)
1 φ

(1)
2 φ

(1)
3 φ

(1)
m1 (5.32)

with φ(1)
i ∈ Hom(Ei, Ei−1), ψi ∈ End(Ei) and E0, . . . , Em1 the vector spaces attached

to the vertices. Consistency required recasting this modified version of the holomor-
phic chain from Section 3.3.1 if the representation of one factor of G = SU(2)×SU(2)

4To keep the double index notation simple, we label the vertices here, in contrast to the previous
chapter, with their indices (i, α) rather than the quantum numbers ciα = m1 −m2 − 2i+ 2α.
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5 Quiver gauge theory on the space T 1,1

is chosen to be trivial. Since I5, which determines the shape of the vertical Higgs
field X5, acts with eigenvalue c̃iα = m1 + m2 − 2i − 2α on the vertices, some loops
ψiα may be set to zero, as already mentioned for the adjoint representation of SU(4)
in the previous chapter.

Specializing to the case m = 1, one obtains a “holomorphic triple” [36,43] modified
by vertex loops, and the equivariant gauge connection (5.20) takes the form

A =

A0 + ψ0 ⊗ e5 + 1k0 ⊗ a φ⊗Θ1̄

−φ† ⊗Θ1 A1 + ψ1 ⊗ e5 − 1k1 ⊗ a

 (5.33)

with φ := φ
(1)
1 ∈ Hom(E1, E0), ψ0 ∈ End(E0) and ψ1 ∈ End(E1). The instanton

equations on the conifold (5.31) yield the flow equations

φ̇ = −3
2φ− iφψ1 + iψ0φ,

ψ̇0 = −4ψ0 − 2iφφ†, ψ̇1 = −4ψ1 − 2iφ†φ. (5.34)

whereas the algebraic condition [φ(1), φ(2)] = 0 is trivially satisfied. Arising from
a 2-quiver, the instanton equations (5.34) have the same structure as those for the
diagrams (4.28) and (4.35). This setup is the counterpart of the fundamental represen-
tation C1,0 of SU(3) in [46, Sec. 4.3.1], with different dimensions of the representation
spaces Vj and coefficients in the equations of the vertical field, of course.

5.3.2 Representation (1,1)

Our second example is the tensor product of the defining representations for both
factors SU(2), which yields as quiver diagram5 the square

(0,0) (1,0)

(0,1) (1,1)

ψ01 ψ11

ψ00 ψ10

φ
(1)
10

φ
(1)
11

φ
(2)
11φ

(2)
01

(5.35)

with φ
(1)
iα ∈ Hom(Eiα, Ei−1α), φ(2)

iα ∈ Hom(Eiα, Ei α−1) and ψiα ∈ End(Eiα). As
above one may set ψ10 = 0 = ψ01 because the U(1)-charge c̃iα vanishes on these

5We describe more general Higgs fields in (C.16), see also [47].

66



5.3 Quiver diagrams

vertices. The quiver (5.35) encodes the gauge connection

A =


A00 + ψ00 e

5 φ
(2)
01 ⊗Θ2̄ φ

(1)
01 ⊗Θ1̄ 0

−φ(2)†
01 ⊗Θ2 A01 + ψ01 e

5 0 φ
(1)
11 ⊗Θ1̄

−φ(1)†
10 ⊗Θ1 0 A10 + ψ10 e

5 φ
(2)
11 ⊗Θ2̄

0 −φ(1)†
11 ⊗Θ1 −φ(2)

11 ⊗Θ2 A11 + ψ11 e
5

+ Γ (5.36)

with Γ = diag(0,1k01 2a,−1k10 2a, 0). In this expression one recognizes the twist of
the ladder operators (C.15) in the trivial flat bundle with homomorphisms.

The instanton equations (5.31) for this case comprise

φ̇
(1)
10 = −3

2φ
(1)
10 − iφ(1)

10 ψ10 + iψ00φ
(1)
10 , φ̇

(1)
11 = −3

2φ
(1)
11 − iφ(1)

11 ψ11 + iψ10φ
(1)
11 ,

φ̇
(2)
01 = −3

2φ
(2)
01 − iφ(2)

01 ψ01 + iψ00φ
(2)
01 , φ̇

(2)
11 = −3

2φ
(2)
11 − iφ(2)

11 ψ11 + iψ10φ
(2)
11 ,

ψ̇00 = −4ψ00 − 2iφ(1)
10 φ

(1)†
10 − 2iφ(2)

01 φ
(2)†
01 , ψ̇01 = −4ψ01 − 2iφ(1)

11 φ
(1)†
11 + 2iφ(2)†

01 φ
(2)
01 ,

ψ̇10 = −4ψ10 + 2iφ(1)†
10 φ

(1)
10 − 2iφ(2)

11 φ
(2)†
11 , ψ̇11 = −4ψ11 + 2iφ(1)†

11 φ
(1)
11 + 2iφ(2)†

11 φ
(2)
11 ,

0 = φ
(1)
10 φ

(2)
11 − φ

(2)
01 φ

(1)
11 . (5.37)

Again the flow equations show the characteristic behavior expected for Sasakian
quiver gauge theories, and the grading as A2 ⊗ A2-quiver is eminent. In contrast
to the first example, the instanton conditions comprise a quiver relation which im-
poses commutativity of the diagram (5.35) due to the last line of (5.37).

The quiver (5.35) looks like the quiver diagram (4.47) obtained on round spheres
SU(n+ 1)/SU(n) for the adjoint representation, in particular the quiver diagram
for the adjoint representation C1,1 on the five-sphere in [46, Sec. 4.3.3]. Setting
ψ01 = 0 = ψ10 due to the vanishing of c̃iα on the corresponding vertices, one obtains
almost exactly the same structure6 of the equations as (4.27) and (4.28) in [46], apart
from different numerical factors.

5.3.3 Generic case (m1,m2)

We now consider quiver gauge theories associated to a generic representation (m1,m2)
with generators given by (C.14). The non-vanishing parts of the invariant gauge con-
nection read

Aiα,iα = Aiα + φ
(3)
iα ⊗ e

5 + ciα 1kiα ⊗ a with ciα = m1 −m2 − 2i+ 2α ,

Ai α,i+1α = φ
(1)
i+1α ⊗Θ1̄ = −

(
Ai+1α,i α

)†
,

Ai α,i α+1 = φ
(2)
i α+1 ⊗Θ2̄ = −

(
Ai α+1,i α

)†
, (5.38)

6For a comparison of the quiver diagram (5.35) with [46, Eq. (4.24)] one identifies
(φ(1)

11 , φ
(2)
11 , φ

(2)
01 , φ

(1)
10 , ψ11, ψ00) from this work with (φ+

1 , φ
−
1 , φ

−
0 , φ

+
0 , ψ

−, ψ+) in the reference.

67



5 Quiver gauge theory on the space T 1,1

where we again denote the homomorphisms as φ(1)
i+1α := φ

(1)
iα,i+1α ∈ Hom(Ei+1,α, Eiα)

and φ(2)
iα+1 := φ

(1)
iα,iα+1 ∈ Hom(Ei,α+1, Eiα) as well as ψiα ∈ End(Eiα) to simplify the

notation. As for the previous examples, the quantum number associated to I5 is given
by c̃iα := m1 +m2− 2i− 2α, so that one may set some entries of X5 to zero; we keep
them for the symmetry of the exposition here and recall that they are compatible
with the equivariance condition.

The quiver diagram associated to the gauge connection (5.38) is the lattice which
describes quiver gauge theories on CP 1 × CP 1 [43], modified by vertex loops:

(0,0) (1,0) (2,0) . . . (m1,0)

(0,1) (1,1) (2,1) . . . (m1,1)

...
...

...
...

(0,m2) (1,m2) (2,m2) . . . (m1,m2)

φ
(1)
10 φ

(1)
20 φ

(1)
30 φ

(1)
m10

φ
(1)
11 φ

(1)
21 φ

(1)
m11

φ
(2)
01 φ

(2)
11 φ

(2)
21 φ

(2)
m11

φ
(2)
02 φ

(2)
12 φ

(2)
22 φ

(2)
m12

φ
(2)
0m2

φ
(2)
1m2

φ
(2)
2m2 φ

(2)
m1m2

φ
(1)
1m2

φ
(1)
2m2

φ
(1)
m1m2

(5.39)

Using the graded gauge connection (5.38), one derives the non-vanishing contributions
of the field strength (C.24) and the action functional on Md × T 1,1 as

SYM =16π3

27

∫
Md

ddx
√

det(gMd)
m1∑
i=0

m2∑
α=0

Triα
{ 1

4 F
iα
ab
† F iα ab (5.40)

+ 1
2
(
Daψiα

) (
Daψiα

)† +
(
Daφ

(1)
iα

)† (
Daφ

(1)
iα

)
+
(
Daφ

(1)
i+1α

) (
Daφ

(1)
i+1α

)†
+
(
Daφ

(2)
iα

)† (
Daφ

(2)
iα

)
+
(
Daφ

(2)
i α+1

) (
Daφ

(2)
i α+1

)†
+ 2
∣∣φ(1)
iα
† φ

(1)
iα − φ

(1)
i+1α φ

(1)
i+1α

† + iψiα + 3
4 ciα 1kiα

∣∣2
+ 2
∣∣φ(2)
iα
† φ

(2)
iα − φ

(2)
i α+1 φ

(2)
i α+1

† + iψiα − 3
4 ciα 1kiα

∣∣2
+ 2
∣∣φ(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

∣∣2 + 2
∣∣ (φ(1)

i α−1 φ
(2)
iα − φ

(2)
i−1α φ

(1)
iα

)† ∣∣2
+ 2
∣∣φ(2)
iα
† φ

(1)
i+1α−1 − φ

(1)
i+1α φ

(2)
i+1α

†∣∣2 + 2
∣∣ (φ(2)

i−1α+1
† φ

(1)
iα − φ

(1)
i α+1 φ

(2)
i α+1

†)† ∣∣2
+
∣∣ (φ(1)

iα ψiα − ψi−1α φ
(1)
iα − 3

2 iφ(1)
iα

)† ∣∣2 +
∣∣φ(1)
i+1α ψi+1α − ψiα φ(1)

i+1α − 3
2 iφ(1)

i+1α
∣∣2

+
∣∣ (φ(2)

iα ψiα − ψi α−1 φ
(2)
iα − 3

2 iφ(2)
iα

)† ∣∣2 +
∣∣φ(2)
i α+1 ψi α+1 − ψiα φ(2)

i α+1 − 3
2 iφ(2)

i α+1
∣∣2} ,

where we use the abbreviation |X|2 := XX†, and the covariant derivatives now take
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the form

Dφ
(1)
i+1α = dφ(1)

i+1α +Aiα φ
(1)
i+1α − φ

(1)
i+1αA

i+1α ,

Dφ
(2)
i α+1 = dφ(2)

i α+1 +Aiα φ
(2)
i α+1 − φ

(2)
i α+1A

i α+1 ,

Dφ
(3)
iα = dφ(3)

iα +Aiα φ
(3)
iα − φ

(3)
iα A

iα . (5.41)

Due to the quiver approach, the overall trace in the Yang-Mills action splits into the
sum of the traces taken over each single vector space Eiα attached to the vertices of
the quiver diagram. Plugging the field strength (C.24d) into the instanton equations
(5.31) on the conifold yields the algebraic relation

φ
(1)
i+1αφ

(2)
i+1α+1 = φ

(2)
i α+1φ

(1)
i+1α+1 (5.42)

for all i = 0, 1, . . .m1 − 1 and α = 0, 1, . . . ,m2 − 1. That is, the instanton condition
requires all cells of the quiver diagram (5.39) to commute, analogously to the result
for (1,1). The curvature components (C.24b) and (C.24c) lead to the flow equations

φ̇
(1)
i+1α = −3

2φ
(1)
i+1α − iφ(1)

i+1αψi+1α + iψi αφ(1)
i+1α, (5.43a)

φ̇
(2)
i α+1 = −3

2φ
(2)
i α+1 − iφ(2)

i α+1ψi α+1 + iψi αφ(2)
i α+1, (5.43b)

generalizing the systems of equations obtained for the two previous examples. Finally,
the equation of motion for the entries of X5 follows from the curvature component
(C.24a), which yields

ψ̇i α = −4ψi α − 2iφ(1)
i+1αφ

(1)†
i+1α + 2iφ(1)†

i α φ
(1)
i α − 2iφ(2)

i α+1φ
(2)†
i α+1 + 2iφ(2)†

i α φ
(2)
i α . (5.44)

Thus, the flow equation for the entry of the vertical Higgs field at a given vertex
couples to all in- and out-going arrows of the horizontal Higgs fields. For vertices
(i, α) with vanishing U(1)-charge c̃iα, i.e. setting ψiα = 0, this equation yields a
further algebraic constraint.

5.4 Reduction to CP 1 × CP 1

We now consider the reduction of the quiver gauge theory on T 1,1 to that on the
Kähler base CP 1 × CP 1, analogously to the procedure in Section 4.4.1. For this
purpose, one has to fix the endomorphism X5 by setting X5 = −3

4 iI5 (according to
(5.8)), where I5 = I

(1)
3 + I

(2)
3 denotes the second Cartan generator of G. This yields

the additional equivariance condition (5.26), which is already satisfied for the Higgs
fields we have been considering so far.

The quiver diagrams are therefore given by the lattices (5.39) without vertex loops,
and this reproduces the results of [35, 43]. From (5.40) one obtains the following
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5 Quiver gauge theory on the space T 1,1

expression for the Yang-Mills action functional on Md × CP 1 × CP 1:

Sr = 16π3

27

∫
Md

ddx
√

det(gMd)
m1∑
i=0

m2∑
α=0

Tr
{

1
4 F

iα
ab
† F iα ab +

(
Daφ

(1)
iα

)† (
Daφ

(1)
iα

)
+
(
Daφ

(2)
iα

)† (
Daφ

(2)
iα

)
+
(
Daφ

(1)
i+1α

) (
Daφ

(1)
i+1α

)† +
(
Daφ

(2)
i α+1

) (
Daφ

(2)
i α+1

)†
+ 2
∣∣φ(1)
iα
† φ

(1)
iα − φ

(1)
i+1α φ

(1)
i+1α

† + 3
2 (m1 − 2i) 1kiα

∣∣2
+ 2
∣∣φ(2)
iα
† φ

(2)
iα − φ

(2)
i+1α φ

(2)
i+1α

† + 3
2 (m2 − 2α) 1kiα

∣∣2
+ 2
∣∣φ(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

∣∣2 + 2
∣∣ (φ(1)

i α−1 φ
(2)
iα − φ

(2)
i−1α φ

(1)
iα

)† ∣∣2
+ 2
∣∣φ(2)
iα
† φ

(1)
i+1α−1 − φ

(1)
i+1α φ

(2)
i+1α

†∣∣2 + 2
∣∣ (φ(2)

i−1α+1
† φ

(1)
iα − φ

(1)
i α+1 φ

(2)
i α+1

†)† ∣∣2} . (5.45)

For comparison with the findings of [43] one has to recall that the definitions of the
Higgs fields φ(1) and φ(2) differ by a factor of

√
3
2 , due to Θα =

√
2
3βα in the limit

ϕ = 0. This correctly reproduces the result and, moreover, shows once more that the
Sasaki-Einstein condition has fixed the two S2-radii as R2

1 = R2
2 = 1

6 .

In the instanton equations on the conifold, one has to replace the entries ψiα of
X5 by identity operators with suitable prefactors c̃iα. The equations (5.34) for the
modified holomorphic triple, for example, turn into

φ̇ = 0, 2
3φφ

† = 1k0 − 2
3φ
†φ = 1k1 , (5.46)

which are part of the equations for a holomorphic triple and chain vortex equa-
tions [35,36,43].

For generic (m1,m2), one has to set ψiα = −3
4 iI5 = −3

4 i(m1 +m2 − 2i− 2α)1kiα ,
which reduces the expressions (5.43) and (5.44) to

ciα 1kiα = 2
3φ

(1)
i+1αφ

(1)†
i+1α − 2

3φ
(1)†
iα φ

(1)
iα + 2

3φ
(2)
i α+1φ

(2)†
i α+1 − 2

3φ
(2)†
iα φ

(2)
iα (5.47)

and requires that the fields φ(1)
i+1α and φ

(2)
i α+1 are constant. Furthermore, the Higgs

fields are still subject to the quiver relation (5.42). Taking into account the appearance
of the factor of

√
2
3 , one regains the BPS equations [43, Eq. (4.7)] and [35, Eq.

(5.3)]. In our discussion, the metric cone is considered as Md × T 1,1 with Md = R+

without a further external part, but also a Kähler manifold M2n may be included.
Then the HYM equations also comprise the Kähler form of M2n and yield additional
contributions. In particular, for obtaining non-trivial solutions to the BPS conditions
on Md×CP 1×CP 1, one may consider a noncommutative external manifold R2n

θ [37,
43].

5.5 Moduli space of HYM instantons

Since the instanton equations on the conifold (5.31) take the expected form [34,51] for
a Calabi-Yau cone over a five-dimensional Sasaki-Einstein manifold, we stick to [46,51]
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and repeat the discussion from Section 4.5. Using the rescaled matrices7

φ(α) =: e−
3
2 τWα for α = 1, 2 and i

2X5 =: e−4τZ , (5.48)

and the coordinate s := −1
4e−4τ , one obtains the flow equations

dWα

ds = 2[Wα, Z], α = 1, 2 , (5.49a)

0 = d
ds(Z + Z†) + 2[Z,Z†] + 2

2∑
α=1

(−4s)−
5
4 [Wα,W

†
α] =: µ(s), (5.49b)

and the algebraic condition [W1,W2] = 0. These Nahm-type equations are those
obtained for the case n = 2 in [51], and due to the generality of the approach, they
also occur for HYM instantons on the cone over the five-sphere S5 [46]. However, the
equivariance conditions are not universal and depend on the geometry of the explicit
coset space G/H. The real equation now follows as the equation of motion of the
Lagrangian

L[g] =
∫
I

ds Tr
{
|Zg + Zg†|2 + 2 (−4s)−

5
4

2∑
α=1
|W g

α|2
}
, (5.50)

by the same arguments as in the previous case. Hence, the moduli space of (SU(2)×
SU(2))-equivariant HYM instantons on the conifold can be described as coadjoint or-
bit of two commuting complex matrices (T1, T2), where the same boundary conditions
(4.67) are imposed [46,51]. The description of the moduli space as a Kähler quotient
is also applicable.

5.6 Discussion

The construction of Sasakian quiver gauge theories on the space T 1,1 has completed
the picture in five dimensions since it is the only other compact homogeneous Sasaki-
Einstein space in that dimension besides the five-sphere. As expected, the instanton
matrix equations on the conifold and the description of their moduli space match the
general results from [51] for the case n = 2.

The equivariant gauge connection on bundles over T 1,1 and over the conifold inherits
a grading from the product structure of the Kähler base CP 1 × CP 1, which yields
quiver diagrams of the form Am1+1 ⊗ Am2+1 with vertex loops and a description
analogous to [43]. The bundle structure of the five-sphere – being a U(1)-bundle over
CP 2 – is different, but one ends up with similar quiver diagrams since in both cases
Lie algebras of rank 2 are considered (see for instance the weight and quiver diagrams
in [35, 40, 46]). Differences appear in the dimensions of the representation spaces
attached to the vertices and in the contribution of the canonical connection: on T 1,1

7Again one may re-introduce the matrix Xτ .
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5 Quiver gauge theory on the space T 1,1

the vertices carry monopole charges, while they carry non-abelian gauge connections
on the five-sphere. Although T 1,1 and the sphere S5 yield different gauge theories,
their quiver diagrams and instanton equations require a similar treatment.

Since the construction procedure essentially yields U(1)-modifications of the un-
derlying Kähler quiver gauge theories, the comparison between the Sasakian theories
on T 1,1 and S5 can be traced back to comparing equivariant dimensional reduction
on CP 2 [40] to that on CP 1 × CP 1 [43]. In both cases, the U(1)-factor induced by
the contact direction of the Sasaki-Einstein structure gives rise to vertex loops in the
quiver diagrams and the typical structure of the differential equations for the vertical
Higgs field X5.
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3-Sasakian quiver gauge theories
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6 Quiver gauge theory on the squashed
seven-sphere

After considering Sasakian quiver gauge theories in the two previous chapters, we now
turn to quiver gauge theories on 7-dimensional manifolds endowed with 3-Sasakian
structures. The archetype of such a 3-Sasakian manifold is the squashed seven-sphere
Sp(2)/Sp(1).

Being a particular 7-dimensional Sasaki-Einstein manifold, it appears in Freund-
Rubin compactifications of the form AdS4×M7 in M-theory [22,103]. As anticipated
in the discussion of the round seven-sphere, the squashed metric leads to N = 1
supergravity1 [105, 106, 126], in contrast to the effective N = 8 supergravity on the
round sphere. Tri-Sasakian reductions of M-theory solutions have been discussed
in [50], where the squashed seven-sphere turned out to be the prototype of universal
reductions. Generalized instantons associated to the G2 and Spin(7) geometry of
Sp(2)/Sp(1), inherent in its 3-Sasakian structure, have been considered in [28]. By
virtue of the local bundle structure as SU(2) × S4, the geometry of the squashed
seven-sphere comprises the setup for SU(2) gauge fields on S4, in particular BPST
instantons from the quaternionic Hopf bundle S3 ↪→ S7 → S4 (see e.g. [127]).

The construction of 3-Sasakian quiver gauge theories on the coset space Sp(2)/Sp(1)
resembles the procedure for the previously discussed Sasakian quiver gauge theories,
but the description of the moduli space is not exhaustive since its structure is not yet
fully understood. Parts of the following exposition and most results are based on a
collaboration [49] with O. Lechtenfeld, A. D. Popov and R. J. Szabo. The discussion
of the moduli space of hyper-Kähler instantons partially relies on joint work with
M. Sperling [128].

6.1 Geometric structure

This section describes the fundamental geometric properties of the homogeneous space
Sp(2)/Sp(1), starting from a local section and the resulting structure equations. A
description of the squashed seven-sphere as coset space may also be found in [28, Sec.

1Recall the breaking to 3/8 maximal supersymmetry by 3-Sasakian structures and the reduction to
1/8 by a nearly parallel G2 structure [54].
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6 Quiver gauge theory on the squashed seven-sphere

3.5] and in [22, Sec. 8]. For details on generic 3-Sasakian manifolds, beyond the
review in Section 2.1, we again refer to [53,56,65].

6.1.1 Local section

While the Sasaki-Einstein manifolds of the previous chapters have been described as
U(1)-bundles over Kähler (-Einstein) manifolds, regular 3-Sasakian structures admit
a fibration as SU(2) – or SO(3) – bundles over a quaternionic Kähler manifold [65].
In this way, the symplectic group Sp(2) ⊂ SU(4) can be locally constructed as an
(Sp(1)× Sp(1))-bundle2 over S4,

Sp(2) −→ S4 ∼= Sp(2)
/

(Sp(1)× Sp(1)) , (6.1)

where we are following the explicit form given in [31, Sec. 4]. A local section of this
bundle can be written as

Sp(2) 3 Q := f−1/2

12 −x
x† 12

 with x = xµ τµ , (τµ) = (−iσi,12) (6.2)

and f := 1 + x† x = 1 + δµν x
µ xν ; here σi for i = 1, 2, 3 are the standard Pauli

matrices. The canonical flat connection is locally given by

A0 = Q−1 dQ =:

A− −φ
φ† A+

 (6.3)

with φ = f−1dx and the other contributions defined as in [31], providing left-invariant
1-forms on S4. An element of the fiber Sp(1) ∼= SU(2) can be written in local
coordinates as in Section 5.1,

Sp(1) 3 g · h := 1
(1 + z z̄)1/2

1 −z̄
z 1

 ·
eiϕ 0

0 e−iϕ

 , (6.4)

so that a section of Sp(2)→ Sp(2)/Sp(1) is obtained by

Sp(2) 3 Q̃ := Q×

g h 0
0 12

 . (6.5)

Consider first the flat connection on the twistor space Sp(2)/(Sp(1)×U(1)) given by
the Maurer-Cartan form of the section Q̂ := Qg:

Â0 = Q̂−1 dQ̂ = g−1A0 g + g−1 dg =:

g−1A− g + g−1 dg −g−1 φ

φ† g A+

 , (6.6)

2It is useful, also for the relation to hyper-Kähler geometry on the cone, to recall the construction
using the quaternions H explicitly, see [127] for example.
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6.1 Geometric structure

where the explicit form of the contributions in terms of the coordinates x1, . . . , x4 on
the 4-sphere and the CP 1 coordinate z are given in [31]. In the final step, the matrix
Q̃ := Q̂ h provides a local section of the bundle Sp(2)→ Sp(2)/Sp(1), yielding

Ã0 =

h−1 Â− h+ h−1 dh −h−1 φ̂

φ̂† h A+

 =:


ie7 Θ3 Θ2 Θ1

−Θ3̄ −ie7 Θ1̄ −Θ2̄

−Θ2̄ −Θ1 −ie8 −Θ4̄

−Θ1̄ Θ2 Θ4 ie8

 , (6.7)

where Â− := g−1A− g + g−1 dg and φ̂ := g−1 φ. For a better geometric intuition3, it
is worth emphasizing the structure of this expression as a quaternionic (2×2)-matrix:

Ã0 =:

Im(q0) q1

−q̄1 Im(q2)

 (6.8)

with qi ∈ Ω1(H). Due to Im(H) ∼= su(2) ∼= sp(1), the imaginary parts of the two
quaternionic forms q0 and q2 represent the two commuting subalgebras sp(1) that are
contained in sp(2). This quaternionic point of view will be useful for the generalization
to higher-dimensional squashed spheres in (6.62) and the comparison with round
spheres.

The flatness of Ã0 leads to the structure equations (D.1) with structure constants
(D.2) for the Sp(2)-invariant complex 1-forms from (6.7). We have already defined
them in such a way that they give rise to a 3-Sasakian structure on the coset space
with left-invariant metric4

ds2 =
7∑

µ=1
eµ ⊗ eµ . (6.9)

To verify the 3-Sasakian property, one considers the structure equations

de1 = e27 − e28 − e35 − e46 + e39 + e4,10, de2 = −e17 + e18 + e45 − e36 + e49 − e3,10,

de3 = e47 + e48 + e15 + e26 − e19 + e2,10, de4 = −e37 − e38 − e25 + e16 − e29 − e1,10,

de5 = 2e67 − 2e13 + 2e24, de6 = −2e57 − 2e14 − 2e23,

de7 = 2e56 + 2e12 + 2e34, (6.10a)

together with

de8 = −2e12 + 2e34 + 2e9,10, de9 = 2e13 + 2e24 − 2e8,10,

de10 = 2e14 − 2e23 + 2e89 (6.10b)

3See also the construction in terms of quaternions in [22, Sec. 8].
4This metric agrees with the result ||m||2 = −B(σ, σ)− 1

2B(m′,m′) [129, Thm. 4], where B denotes
the Killing form and m = σ + m′ ∈ sp(1) ⊕ m′ = m with m′ the quaternionic part; the Killing
form on sp(2) is given in (D.19).
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6 Quiver gauge theory on the squashed seven-sphere

for the real 1-forms eµ defined as

e1 − ie2 := Θ1, e3 − ie4 := Θ2, e5 − ie6 := Θ3, e9 − ie10 := Θ4. (6.11)

From these structure equations, one deduces that the triple (η5, η6, η7) := (e5, e6, e7)
satisfies the defining relations of a 3-Sasakian structure (as employed5 e.g. in [19])

dηα = εαβγ η
β ∧ ηγ + 2ωα, dωα = 2 εαβγ ηβ ∧ ωγ , α, β, γ = 5, 6, 7 , (6.12a)

where we identify the 2-forms

ω5 := −e13 + e24 , ω6 := −e14 − e23 and ω7 := e12 + e34 . (6.12b)

Alternatively, one checks the closure of the defining forms of hyper-Kähler geometry,
as it has been done for the Kähler form (4.8) and top-degree form (4.9) on the metric
cone over S7 in Chapter 4; the relevant forms can be found in (D.4) and (D.5).

6.1.2 Canonical connection

Following the construction of the canonical connection, reviewed in Section 2.2.1, we
determine the 3-form P from (2.19):

P = 1
3 η

567 + 1
3

7∑
α=5

ηα ∧ ωα

= 1
3

(
e567 − e135 + e245 − e146 − e236 + e127 + e347

)
. (6.13)

Plugging the torsion components (2.20) into the structure equations (6.10a), we find
the connection matrix

d


e1

e2

e3

e4

 =


0 e8 −e9 −e10

−e8 0 e10 −e9

e9 −e10 0 −e8

e10 e9 e8 0

 ∧

e1

e2

e3

e4

+


T 1

T 2

T 3

T 4

 (6.14)

and deα = Tα for α = 5, 6, 7. Recalling the adjoint representation on the tangent
space, one identifies the canonical connection

Γ = I8 ⊗ e8 + I9 ⊗ e9 + I10 ⊗ e10 . (6.15)

As expected from the general theory, also for this coset space the canonical connection
in the sense of [19] is identical with that of the reductive homogeneous space, defined
by the torsion components T (X,Y ) = −[X,Y ]m. However, the canonical connection
of [19] associated to one of the Sasaki-Einstein structures would not coincide with this

5To obtain the same notation as in [19, 128], one has to transform our choice of indices as
(e1, e2, e3, e4, e5, e6, e7) 7→ (e4, e5, e6, e7,−e2,−e3, e1).
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6.2 Equivariance condition and instantons on the cone

connection. This observation will have some important consequences for the treat-
ment of the moduli space in Section 6.5. The curvature of the canonical connection
(6.15) reads

FΓ = 2 I8 ⊗
(
− e12 + e34

)
+ 2 I9 ⊗

(
e13 + e24)+ 2 I10 ⊗

(
e14 − e23) , (6.16)

and solves the generalized self-duality equation (2.10) for the 4-form QZ = e1234.

Instanton equations on Sp(2)/Sp(1). Written in components of the field strength,
the instanton equations on the squashed seven-sphere read

F12 = −F34 , F13 = F24 , F14 = −F23 , (6.17a)

Faα = 0 = Fαβ for a = 1, 2, 3, 4 , α, β = 5, 6, 7 . (6.17b)

The first line (6.17a) consists of the usual 4-dimensional self-duality equations, which
was to be expected because the quaternionic Hopf fibration yields a BPST instan-
ton on S4 (see e.g. [127]). The further conditions (6.17b) require the vanishing of
all vertical curvature contributions, analogously to (4.22) and (5.29), where in the
3-Sasakian case the vertical part is a group SU(2) rather than U(1) only.

6.2 Equivariance condition and instantons on the cone

Also in this setup, we employ the typical ansatz (3.10) for the gauge connection A in
a Hermitian vector bundle E over Md × Sp(2)/Sp(1), writing

A = A+ Γ +
7∑
a=1

Xµ ⊗ eµ = A+
10∑
j=8

Ij ⊗ ej +
7∑
a=1

Xµ ⊗ eµ (6.18)

with A a connection on the vector bundle E over Md. On the metric cone and the
conformally equivalent cylinder, one applies exactly the same approach, where the
endomorphisms then may depend on the radial coordinate, Xµ = Xµ(τ). According
to the bundle structure of 3-Sasakian manifolds, the fields X1, . . . , X4 are referred to
as horizontal Higgs fields and X5, X6, X7 as vertical ones.

Despite the 3-Sasakian structure inherent in all relations, it is useful to intro-
duce the complex matrices φ(1) = 1

2 (X1 − iX2), φ(2) = 1
2 (X3 − iX4) and even

φ(3) = 1
2 (X5 − iX6) (which is now a vertical Higgs field) with respect to the com-

plex structure determined by Ω7. They simplify the notation in the quiver diagrams
and improve the comparison with Sasakian quiver gauge theories; since we use the
generator dual to e7 as Cartan generator, this choice is natural.
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6 Quiver gauge theory on the squashed seven-sphere

6.2.1 Equivariance

As before in the case of Sasakian quiver gauge theories, equivariance requires the
vanishing of the mixed curvature terms, which now requires

[Ĩ8, φ(1)] = φ(1) , [Ĩ8, φ(2)] = −φ(2) , [Ĩ8, Xα] = 0 (6.19a)

with respect to the Cartan generator Ĩ8 (dual to ie8) and

[I+
4 , φ

(1)] = 0 , [I+
4 , φ

(2)] = φ(1) , [I+
4 , Xα] = 0 ,

[I−4̄ , φ
(1)] = −φ(2) , [I−4̄ , φ

(2)] = 0 , [I−4̄ , Xα] = 0 (6.19b)

with respect to the ladder operators of the subalgebra sp(1). The equations (6.19a)
fix the action of the Higgs fields in the weight diagram to be

φ(1) : (ν7, ν8) 7−→ (∗, ν8 + 1) , φ(2) : (ν7, ν8) 7−→ (∗, ν8 − 1) ,

Xα : (ν7, ν8) 7−→ (∗, ν8) , (6.20)

for α = 5, 6, 7. Again, these conditions are weaker than the action (D.20) of the ladder
operators in the weight diagrams. However, as for the other examples of quiver gauge
theories before, we restrict to endomorphisms that are induced by the G-action and
therefore consider Higgs fields which act in the weight diagrams according to (D.20).

The scalar ansatz for G-invariant connections on the squashed seven-sphere has
been applied in [28] and the resulting instanton equations with respect to the G2 and
Spin(7) structure have been derived there.

6.2.2 Action functional

After the implementation of the equivariance conditions (6.19), the Yang-Mills action
functional on Md × Sp(2)/Sp(1) reads

SYM = Vol
(
Sp(2)/Sp(1)

) ∫
Md

ddy √g 1
2 Tr

(
1
2 Fmn (Fmn)† +

d∑
m=1

7∑
µ=1
|DmXµ|2

+ |[X1, X2] + 2X7 − 2 I8|2 + |[X1, X3]− 2X5 + 2 I9|2 + |[X1, X4]− 2X6 + 2 I10|2

+ |[X2, X3]− 2X6 − 2 I10|2 + |[X2, X4] + 2X5 + 2 I9|2 + |[X3, X4] + 2X7 + 2 I8|2

+ |[X1, X5] +X3|2 + |[X1, X6] +X4|2 + |[X1, X7]−X2|2 + |[X2, X5]−X4|2

+ |[X2, X6] +X3|2 + |[X2, X7] +X1|2 + |[X3, X5]−X1|2 + |[X3, X6]−X2|2

+ |[X3, X7]−X4|2 + |[X4, X5] +X2|2 + |[X4, X6]−X1|2 + |[X4, X7] +X3|2

+ |[X5, X6] + 2X7|2 + |[X5, X7]− 2X6|2 + |[X6, X7] + 2X5|2
)
, (6.21)

where the covariant derivatives Dm are defined as in (4.21) and Fmn denotes the field
strength of the gauge connection A in the vector bundle E →Md. The symmetry of
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6.2 Equivariance condition and instantons on the cone

the 3-Sasakian manifold consisting of the vertical SU(2)-triplet and the quaternionic
quadruple (X1, X2, X3, X4) is manifest in the above expression.

When imposing the instanton equations (6.17) on Sp(2)/Sp(1), the terms in the
last four lines of (6.21) vanish and the action functional simplifies to

Sinst
YM = Vol

(
Sp(2)/Sp(1)

) ∫
Md

ddy √g 1
2 Tr

(
1
2 Fmn (Fmn)† +

d∑
m=1

7∑
µ=1
|DmXµ|2

+ 2 |[X1, X2] + 2X7 − 2 I8|2 + 2 |[X1, X3]− 2X5 + 2 I9|2

+ 2 |[X1, X4]− 2X6 + 2 I10|2
)
. (6.22)

The vanishing of the torsion term in the generalized Yang-Mills equation (2.11) is
explicitly verified in Appendix D.1, and also the form of the Chern-Simons-type term
from (2.12) can be found there.

6.2.3 Orbifold

As for the round seven-sphere, one may introduce the action of the cyclic group
Zq+1 which gives rise to orbifolds of the squashed sphere. For having an action that
commutes with the subgroup H = Sp(1) which is divided out, one considers the
action given by multiplication with elements

h = diag(ζq+1, ζ
−1
q+1, 1, 1), ζq+1 := e2πi/(q+1). (6.23)

Only the last step (6.7) in the local section has to be adapted by setting ϕ 7→ ϕ
q+1 .

The action on the form part can be directly deduced from (6.7):

Θα 7→ ζ−1
q+1 Θα, α = 1, 2, Θ3 7→ ζ−2

q+1 Θ3, e7 7→ e7. (6.24)

As in Section 4.4.2, the additional equivariance condition (4.56) has to be included
and this requires that the Higgs fields act on states in the weight diagrams in the
same way as the ladder operators; thus, it does not further restrict Higgs fields that
are already constructed according to (D.20).

However, note that this way of orbifolding breaks the SU(2)-symmetry of the
fibers and therefore the 3-Sasakian structure, but it still preserves the Sasaki-Einstein
structure with respect to I7 [54, Ex. 43]. The 3-Sasakian lens space L(p; q) is con-
structed [65, Ex. 2.2.6] by considering the squashed seven-sphere as the unit sphere
in H2 3 (u1, u2) and dividing by the action (u1, u2) 7→ (τu1, τ

qu2) with τp = 1
and (p, q) = 1.

6.2.4 Sp(2) instanton equations on the metric cone

The metric cone over the 3-Sasakian manifold Sp(2)/Sp(1) is hyper-Kähler and there-
fore admits Sp(2) instantons. Such instantons can be defined in terms of the general-
ized self-duality equation ?8F = −F ∧ ?8QZ with r4QZ := 1

3
∑7
a=5 Ω1,1

α ∧ Ω1,1
α , where

81



6 Quiver gauge theory on the squashed seven-sphere

Ω1,1
α are the three induced Kähler forms on the cone. Equivalently, Sp(2) instantons6

are described [75] as Hermitian Yang-Mills instantons with respect to all three com-
plex structures Jα. Evaluating the holomorphicity conditions associated to the three
Kähler forms Ω1,1

α , one obtains the set of equations (D.10).

Note that the holomorphicity conditions with respect to any two Kähler forms imply
also those of the third one. This is not surprising since two orthogonal characteristic
vector fields (uniquely) imply a 3-Sasakian structure [53], and the corresponding
property also holds for the metric cone. Moreover, the holomorphicity conditions
already include the three stability-like conditions Ω1,1

α F = 0, as can be seen from
the explicit expressions (D.10) and (D.11); this result has also been shown generally
in [49, 128]. While in the special case of 4-dimensional hyper-Kähler structures the
three instanton equations can be equally well considered either as holomorphicity or
as moment map conditions (see Appendix A.2), in the higher-dimensional cases the
holomorphicity conditions turn out to be more fundamental, simply because of the
higher number of relations necessary to restrict the curvature.

By the choice of the canonical connection Γ as starting point in the matrix formu-
lation of the gauge connection (6.18), the components occurring in the fields strength
are completely determined by the universal geometry of the 3-Sasakian manifold,
once the equivariance conditions have been implemented. Explicitly, the instanton
equations (D.10) then yield the flow equations

Ẋ1 = −X1 + [X3, X5] = −X1 + [X4, X6] = −X1 − [X2, X7],

Ẋ2 = −X2 − [X4, X5] = −X2 + [X3, X6] = −X2 + [X1, X7],

Ẋ3 = −X3 − [X1, X5] = −X3 − [X2, X6] = −X3 − [X4, X7],

Ẋ4 = −X4 + [X2, X5] = −X4 − [X1, X6] = −X4 + [X3, X7], (6.25a)

and
Ẋα = −2Xα − 1

2ε
αβγ [Xβ, Xγ ], α = 5, 6, 7 (6.25b)

together with the algebraic relations

4X5 = [X1, X3]− [X2, X4], 4X6 = [X1, X4] + [X2, X3],

4X7 = −[X1, X2]− [X3, X4]. (6.25c)

By virtue of these algebraic relations, the differential equations (6.25b) for the ver-
tical Higgs fields are implied by the equations (6.25a); see Appendix D.2 for details.
Furthermore, the flow equations (6.25a) are cubic in the horizontal Higgs fields due
to the algebraic conditions. The above flow equations agree with the general results
derived in [34].

6A description of instantons on hyper-Kähler cones applying a completely quaternionic picture can
also be found in [130].
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6.2 Equivariance condition and instantons on the cone

Complex fields. For the further discussion and comparison with the Calabi-Yau
setup of the previous chapters it is worth providing the complex form of these equa-
tions:

φ̇(1) = −φ(1) − [φ(2)†, φ(3)] = −φ(1) − i[φ(1), X7] (6.26a)

φ̇(2) = −φ(2) + [φ(1)†, φ(3)] = −φ(2) − i[φ(2), X7] (6.26b)

together with the algebraic relations

[φ(1), φ(2)] = 2φ(3), [φ(1), φ(3)] = 0 = [φ(2), φ(3)], (6.27a)

[φ(1), φ(1)†] + [φ(2), φ(2)†] = 2iX7 . (6.27b)

HYM equations with respect to Ω7. For a direct comparison with the Sasakian
instanton equations, we also consider the subset of equations that has to be solved if
the Hermitian Yang-Mills equations with respect to only one Kähler form are imposed;
without loss of generality we consider Ω7. The instanton condition then reads

φ̇(α) = −φ(α) − i[φ(α), X7] for α = 1, 2, (6.28a)

Ẋ7 = −6X7 − 2i[φ(1), φ(1)†]− 2i[φ(2), φ(2)†]− 2i[φ(3), φ(3)†], (6.28b)

[φ(1), φ(2)] = 2φ(3), [φ(1), φ(3)] = 0 = [φ(2), φ(3)], (6.28c)

and differentiating the algebraic relation gives us also φ̇(3) = −2φ(3) − i[φ(3), X7].
These HYM equations differ from those obtained for Sasaki-Einstein manifolds, (4.25)
and (4.26), in some important aspects. Firstly, the fields φ(1) and φ(2) do not commute
with each other (apart from setting φ(3) ≡ 0), so that the structure of the moduli
space will be more involved (see the discussion in Section 6.5).

Secondly, while the coefficient of the linear term in the flow equation (6.28b) for X7

matches the Sasaki-Einstein case, those of the other Higgs fields differ. In particular,
the field φ(3) stemming from the vertical part scales differently than the horizontal
Higgs fields φ(1) and φ(2) in (6.28a).

The differences in the instanton equations can be attributed to the fact that the
geometry is not that of a U(1)-bundle over a Kähler manifold but an SU(2)-bundle
over a quaternionic manifold. Therefore, the triplet (X5, X6, X7) differs from the other
four matrices. Moreover, the starting point Γ in the ansatz for the gauge connection
(6.18) is the canonical connection with respect to the 3-Sasakian geometry, which
is a Hermitian Yang-Mills instanton. However, it is not (the lift of) the canonical
connection with respect to the Sasaki-Einstein geometry, and therefore the generic
discussion of [34, 51] does not apply here. This different situation has already been
observed in the discussion of HYM instantons on the metric cone over the Aloff-
Wallach space X1,1 in [48].
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6 Quiver gauge theory on the squashed seven-sphere

Scalar ansatz. Despite the more complicated structure, the system of instanton
equations admits – in contrast to the Sasaki-Einstein case – an analytic solution for
the scalar ansatz of [19]: setting Xa = φ(τ)Ia for a = 1, . . . , 4 and Xα = ψ(τ)Iα for
α = 5, 6, 7 turns the instanton equations (6.25) into

φ̇ = φ(ψ − 1), ψ̇ = 2ψ(ψ − 1), φ2 = ψ, (6.29)

which yields the analytic solution

ψ(τ) =
(
1 + e2(τ−τ0)

)−1
and φ(τ) = ±ψ(τ)1/2. (6.30)

6.3 Examples of quiver diagrams

In this section we study four examples of quiver diagrams which arise from the rep-
resentations 4, 5, 10 and 14, collected in Appendix D.3 (see also [108, Ch. 16]). We
do not aim at a discussion of quiver diagrams for generic representations of Sp(2).
As for the quiver gauge theories on T 1,1 and SU(4)/SU(3), we will consider the re-
sulting quiver diagrams and derive the instanton matrix equations on the metric
cone/cylinder.

6.3.1 Representation 4

The simplest example stems from the fundamental representation (D.18) with the
diamond (D.22) as weight diagram. It splits under restriction to the subgroup Sp(1)
as

4|Sp(1) = (1,0)1 ⊕ (−1,0)1 ⊕ (0,−1)2. (6.31)

Collapsing the weight diagram along the subalgebra sp(1) yields the following quiver:7

(1)1(−1)1

(0)2

φ1φ0

χ

ψ1ψ−1

ψ0 (6.32)

7The most general form of Higgs fields that are compatible with the equivariance conditions (6.19)
alone is given in (D.24); for details, see also [49].
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6.3 Examples of quiver diagrams

with the Higgs fields

φ(1) =


0 0 0 0
0 0 φ0 0
0 0 0 0
φ1 0 0 0

 , φ(2) =


0 0 0 0
0 0 0 −φ0

φ1 0 0 0
0 0 0 0

 , φ(3) =


0 0 0 0
χ 0 0 0
0 0 0 0
0 0 0 0

 ,

X7 = diag(ψ1, ψ−1, ψ0 ⊗ 12) , (6.33)

where the degrees of freedom are three homomorphisms φ0 ∈ Hom(E0, E−1), φ1 ∈
Hom(E1, E0) and χ ∈ Hom(E1, E−1) as well as the endomorphisms ψj ∈ End(Ej) for
j ∈ {0,±1}. Since I7 acts with eigenvalue zero on the vertex (0)2, one may set the
corresponding endomorphism ψ0 to zero, but we again keep it for the symmetry of
the exposition, as done for the adjoint representation of SU(4) in (4.47) too.

In contrast to the Sasakian quiver gauge theories, one has obtained a triangular
quiver with an arrow χ stemming from two of the vertical Higgs fields. In the spirit
of the discussion in [48] and partially anticipating the reduction to S4, which yields
the quiver diagram (6.52), one might consider the result from a quaternionic point of
view, based on the expression (6.8). Then the quiver diagram (6.32) is interpreted
as a 2-quiver with a triplet X := (X5, X6, X7) – combined into a single quaternionic
quantity X– acting diagonally on the two vertices: it acts trivially on the lower
vertex and with fundamental action on the upper one. This approach corresponds
to identifying vertices with the same quantum number ν8, i.e. identifying along
horizontal lines in the quiver diagrams.

Although it might be instructive to pursue this approach, in particular with respect
to the quaternionic behavior of the instanton equations (6.25) and the generalization
to higher-dimensional spheres (6.62), we will keep the normal complex weight dia-
grams for the description of the gauge connections.

The underlying triangular structure of the above quiver diagram (without the ver-
tex loops) resembles the “holomorphic triangle” [42, Eq. (3.48)] in quiver gauge theory
on the flag manifold Q3 (cf. Section 7.4.2). The equivariant gauge connection (6.18)
takes the form

A = Γ +


A1 + ψ1e

7 −χ† ⊗Θ3 −φ†1 ⊗Θ2 −φ†1 ⊗Θ1

χ⊗Θ3̄ A−1 + ψ−1e
7 φ0 ⊗Θ1̄ −φ0 ⊗Θ2̄

φ1 ⊗Θ2̄ −φ†0 ⊗Θ1 A0 + ψ0e
7 0

φ1 ⊗Θ1̄ φ†0 ⊗Θ2 0 A0 + ψ0e
7

 . (6.34)

As expected, this connection is an extension of the flat connection (6.7) by bundle
maps, where the form of the canonical connection (6.15) follows from the generators
(D.18). Equivariance requires the breaking of the structure group of the bundle
E →Md as

U(2k0 + k1 + k−1)→ U(k0)×U(k1)×U(k−1) , (6.35)
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6 Quiver gauge theory on the squashed seven-sphere

where kj := dim(Ej) denote the dimensions of the attached vector spaces of the quiver
representation. The instanton matrix equations (6.26) and (6.27) consist of the two
flow equations

φ̇0 = −φ0 + χφ†1 = −φ0 − iφ0ψ0 + iψ−1φ0,

φ̇1 = −φ1 + φ†0χ = −φ1 − iφ1ψ1 + iψ0φ1 (6.36a)

and the quiver relations

iψ1 = −φ†1φ1, iψ−1 = φ0φ
†
0, 2iψ0 = φ1φ

†
1 − φ

†
0φ0, χ = φ0φ1. (6.36b)

As a necessary consequence of the 3-Sasakian structure and in contrast to the Sasaki-
Einstein case in the previous chapters, we observe the coupling to all three vertical
fields in the flow equations (6.36a). The equations of motions for the vertical compo-
nents can be obtained by differentiating the algebraic relations (6.36b) above, which
yields χ̇ = −2χ−iχψ1+iψ−1χ for instance. Due to the non-trivial algebraic relations,
the entries of X7 themselves (and not only the derivatives as on Sasaki-Einstein man-
ifolds) couple to the horizontal fields. Similarly, the vertical field χ enters a quiver
relation which requires commutativity of the triangle (6.32).

The instanton equations (6.36) admit the analytic solution (6.30) for the scalar
ansatz. Stationary solutions, which might give some first insights into the moduli
space of instantons and serve as starting points for numerical studies, require the
homomorphisms φ0 and φ1 to satisfy

φ0(1k0 − φ1φ
†
1) = 0, (φ†0φ0 − 1k0)φ1 = 0, (6.37)

which again motivates setting ψ0 = 0, due to (6.36b). Considering matrix-valued
functions, one might find more general solutions than φ1φ

†
1 = φ†0φ0 = 1k0 and the

trivial solution.

6.3.2 Representation 5

The 5-dimensional representation of Sp(2) is given by the generators (D.28) and the
weight diagram (D.27), so that the decomposition under Sp(1) yields

5|Sp(1) = (−1,−1)2 ⊕ (0,0)1 ⊕ (1,−1)2 . (6.38)

The collapsing procedure of the weight diagram gives rise to the quiver

(−1)2

(0)1

(1)2

φ0 φ1

χ

ψ−1

ψ0

ψ1 (6.39)
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6.3 Examples of quiver diagrams

and the Higgs fields

φ(1) =



0 0 φ0 0 0
0 0 0 0 0
0 0 0 0 φ1

0 0 0 0 0
0 0 0 0 0


, φ(2) =



0 0 0 0 0
0 0 φ0 0 0
0 0 0 φ1 0
0 0 0 0 0
0 0 0 0 0


,

φ(3) =



0 0 0 χ 0
0 0 0 0 −χ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, X7 = diag(ψ−1 ⊗ 12, ψ0, ψ1 ⊗ 12) (6.40)

with φ0 ∈ Hom(E0, E−1), φ1 ∈ Hom(E1, E0), χ ∈ Hom(E1, E−1), and ψj ∈ End(Ej)
for j ∈ {0,±1}, where one may set ψ0 = 0 due to the action of I7. The structure
group of the equivariant bundle is broken, according to (3.5), as

U(k0 + 2k1 + 2k−1)→ U(k0)×U(k1)×U(k−1) . (6.41)

Since the quiver diagram resembles the quiver (6.32) of the fundamental repre-
sentation, one obtains instanton equations with the same structure, similar to the
correspondences between quiver diagrams for different representations in Sasakian
quiver gauge theory. More precisely, the instanton conditions comprise the differen-
tial equations

φ̇0 = −φ0 + χφ†1 = −φ0 − iφ0ψ0 + iψ−1φ0,

φ̇1 = −φ1 + φ†0χ = −φ1 − iφ1ψ1 + iψ0φ1 (6.42a)

and the quiver relations

2iψ−1 = φ0φ
†
0, iψ0 = φ1φ

†
1 − φ

†
0φ0, 2iψ1 = −φ†1φ1, 2χ = φ0φ1. (6.42b)

The flow equations (6.42a) coincide with (6.36a), while the algebraic conditions
(6.42b) differ from the equations derived for the fundamental representation only
in numerical values of the coefficients. Despite yielding the same quivers and simi-
lar instanton equations, this representation constitutes a different gauge theory since
the dimensions of the internal spaces Vj in the quiver bundle and the form of the
canonical connection differ from the case 4.

Stationary points (φ0, φ1) of the instanton equations (6.42) have to satisfy

φ0(1k0 − 1
2φ1φ

†
1) = −φ0 + 1

2φ0φ
†
0φ0 = 0 = (1k0 − 1

2φ
†
0φ0)φ1 = −φ1 + 1

2φ1φ
†
1φ1, (6.43)

which is solved for 1
2φ1φ

†
1 = 1

2φ
†
0φ0 = 1k0 and the trivial solution.
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6 Quiver gauge theory on the squashed seven-sphere

6.3.3 Adjoint representation 10

According to the weight diagram (D.30), the 10-dimensional adjoint representation
(D.32) of Sp(2) decomposes into six subspaces,

10|Sp(1) = (−2,0)1 ⊕ (−1,−1)2 ⊕ (0,−2)3 ⊕ (0,0)1 ⊕ (1,−1)2 ⊕ (2,0)1. (6.44)

Collapsing the weight diagram of 10 along the action of I−4̄ yields the quiver

(−2)1

(−1)2

(0)3

(0)1

(1)2

(2)1

φ1

φ2

φ4 φ5

φ3

φ6

χ1

χ2

χ3

ψ−2 ψ̃0 ψ2

ψ0

ψ−1 ψ1

(6.45)

and the Higgs fields schematically take the block matrix form

φ(α) =



0 φ1 ⊗ I
(α)
1 0 0 0 0

0 0 φ2 ⊗ I
(α)
2 φ4 ⊗ I

(α)
4 0 0

0 0 0 0 φ3 ⊗ I
(α)
3 0

0 0 0 0 φ5 ⊗ I
(α)
5 0

0 0 0 0 0 φ6 ⊗ I
(α)
6

0 0 0 0 0 0


(6.46a)

for α = 1, 2, where the matrices I(α)
i act inside the H representations according to

the entries of the generators (D.32). The vertical Higgs fields are given by

φ(3) =



0 0 0 χ1 ⊗ I
(3)
1 0 0

0 0 0 0 χ2 ⊗ I
(3)
2 0

0 0 0 0 0 0
0 0 0 0 0 χ3 ⊗ I

(3)
3

0 0 0 0 0 0
0 0 0 0 0 0


(6.46b)

and the diagonal contribution X7 = diag(ψ−2, ψ−1⊗12, ψ0⊗13, ψ̃0.ψ1⊗12, ψ2), where
the same comments as before apply to ψ0 and ψ̃0. The structure group is broken into
a product of six smaller unitary groups. Evaluating the instanton equations (6.26)
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6.3 Examples of quiver diagrams

and (6.27) yields the following system of differential equations:

φ̇1 = −φ1 + χ1φ
†
4 = −φ1 − iφ1ψ−1 + iψ−2φ1,

φ̇2 = −φ2 + χ2φ
†
3 = −φ2 − iφ2ψ0 + iψ−1φ2,

φ̇3 = −φ3 + φ†2χ2 = −φ3 − iφ3ψ1 + iψ0φ3,

φ̇4 = −φ4 + φ†1χ1 − χ2φ
†
5 = −φ4 − iφ4ψ̃0 + iψ−1φ4,

φ̇5 = −φ5 − φ†4χ2 + χ3φ
†
6 = −φ5 − iφ5ψ1 + iψ̃0φ5,

φ̇6 = −φ6 + φ†5χ3 = −φ6 − iφ6ψ2 + iψ1φ6. (6.47a)

The algebraic conditions read

χ1 = φ1φ4, χ3 = φ5φ6, φ1χ2 = χ1φ5,

χ2φ6 = φ4χ3, 2χ2 = 3φ2φ3 − φ4φ5, (6.47b)

as well as

iψ−2 = φ1φ
†
1, 2iψ−1 = 3φ2φ

†
2 − φ

†
1φ1 + φ4φ

†
4,

iψ0 = φ3φ
†
3 − φ

†
2φ2, iψ̃0 = φ5φ

†
5 − φ

†
4φ4,

2iψ1 = −3φ†3φ3 + φ6φ
†
6 − φ

†
5φ5, iψ2 = −φ†6φ6, (6.47c)

which impose quiver relations on the diagram (6.45). A priori, one recognizes com-
mutativity of the two triangles in the upper left and upper right corner of (6.44)
as well as commutativity of the two rhombi (2, 0,−1, 1) and (−2,−1, 1, 0). Includ-
ing also the last condition in (6.47b) and manipulating the expressions, we find that
commutativity of all cells in the quiver diagram satisfies the algebraic conditions.

6.3.4 Representation 14

From the weight diagram (D.33) one sees that the 14-dimensional representation
(D.35) decomposes under restriction to the subgroup Sp(1) as

14|Sp(1) = (−2,−2)3 ⊕ (−1,−1)2 ⊕ (0,−2)3 ⊕ (0,0)1 ⊕ (1,−2)2 ⊕ (2,−2)3. (6.48)

This splitting and the equivariance condition lead to the following quiver diagram:

(−2)3

(−1)2

(0)3

(0)1

(1)2

(2)3

φ1 φ4

φ2 φ3

φ5 φ6

χ1 χ3

χ2

ψ−2 ψ0 ψ2

ψ̃0

ψ−1 ψ1

(6.49)
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6 Quiver gauge theory on the squashed seven-sphere

It has the same shape as that of the adjoint action, and the form of the Higgs fields
shows the same block structure as (6.46), so that we refrain from presenting them
again. Consequently, also the matrix equations for Sp(2) instantons are very similar:

φ̇1 = −φ1 − χ1φ
†
4 = −φ1 − iφ1ψ−1 + iψ−2φ1,

φ̇2 = −φ2 − χ2φ
†
3 = −φ2 − iφ2ψ̃0 + iψ−1φ2,

φ̇3 = −φ3 − φ†2χ2 = −φ3 − iφ3ψ1 + iψ̃0φ3,

φ̇4 = −φ4 − φ†1χ1 + χ2φ
†
5 = −φ4 − iφ4ψ0 + iψ−1φ4,

φ̇5 = −φ5 + φ†4χ2 − χ3φ
†
6 = −φ5 − iφ5ψ1 + iψ0φ5,

φ̇6 = −φ6 − φ†5χ3 = −φ6 − iφ6ψ2 + iψ1φ6, (6.50a)

together with the algebraic relations

χ1 = −φ1φ4, 2χ2 = 3φ4φ5 − φ2φ3, χ3 = −φ5φ6,

χ1φ5 = φ1χ2, χ2φ6 = φ4χ3, (6.50b)

and

iψ−2 = 2φ1φ
†
1, 2iψ−1 = 3φ4φ

†
4 − 3φ†1φ1 + φ2φ

†
2,

iψ0 = φ5φ
†
5 − φ

†
4φ4, iψ̃0 = φ3φ

†
3 − φ

†
2φ2,

iψ2 = −φ†6φ6, 2iψ1 = 3φ6φ
†
6 − 3φ†5φ5 − φ

†
3φ3. (6.50c)

The same structure of the quiver diagram compared to the adjoint representation has
again induced the same flow equations with minor changes in coefficients occurring
in the algebraic relations (6.50b) and (6.50c).

6.4 Reduction to S4

The structure of the squashed seven-sphere as Sp(1)-bundle over S4 motivates to
study the reduction of the 3-Sasakian quiver gauge theory from Sp(2)/Sp(1) to S4.
Similarly to the reductions discussed in Sections 4.4.1 and 5.4, one has to set the
Higgs fields proportional to the relevant generators to be divided out, which reads
φ(3) = I−3̄ and X7 = I7 in the case at hand.8 One obtains the additional equivariance
conditions

[Ĩ8, φ(1)] = φ(1), [Ĩ8, φ(2)] = −φ(2), (6.51a)

[I−3̄ , φ
(1)] = 0 = [I−3̄ , φ

(2)], [I−3̄ , φ
(1)†] = −φ(2), [I−3̄ , φ

(2)†] = φ(1), (6.51b)

8The reduction X7 = I7 yields quiver gauge theories on the twistor space over S4, whose quiver
diagrams simply constitute the quivers for the squashed seven-sphere without the vertex loops.
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6.4 Reduction to S4

which require a (further) collapsing of the weight and quiver diagrams along the
action of the ladder operator I−3̄ , according to the root system (D.21).

The first example we consider is the fundamental representation 4, which yielded
the quiver diagram (6.32). Imposing the additional conditions (6.51) requires φ1 = −φ†0,
and the quiver diagram (after collapsing) is given by the chain

(−1)2

(0)2

φ0

(6.52)

The remaining two complex Higgs fields read

φ(1) =


0 0 0 0
0 0 φ0 0
0 0 0 0
−φ†0 0 0 0

 , φ(2) =


0 0 0 0
0 0 0 −φ0

−φ†0 0 0 0
0 0 0 0

 , (6.53)

with the homomorphism φ0 ∈ Hom(Ek0 , Ek−1) being the only remaining degree of
freedom. By repeating the quaternionic interpretation given above, the quiver (6.32)
may be thought of as the “quaternionic chain” (6.52) acted on by a triplet (X5, X6, X7)
of vertical fields, according to the 3-Sasakian bundle structure.

The Sp(2)-instanton equations (6.36a) and (6.36b) simplify to φ0φ
†
0 = 1k−1 and re-

quire a constant field φ0. Thus, as expected, they satisfy the conditions for stationary
solutions (6.37).

In the case of the adjoint representation 10, the additional equivariance conditions
(6.51) turn the quiver (6.45) into a chain of length 3:

(−2)3

(−1)4

(0)3

φ1

φ2

(6.54)

On the level of the Higgs fields (6.46), this comprises the relations φ3 = −φ†2,
φ4 = 1√

2φ
†
1, φ5 = − 1√

2φ1, and φ6 = φ†1. Hence, the instanton equations (6.47a)
and (6.47b) reduce to the conditions

1k−2 = 1
2φ1φ

†
1, 1k−1 = 3

2φ2φ
†
2 − 1

4φ
†
1φ1 (6.55)

and require constant fields φ1 and φ2; again one encounters BPS equations of the
typical form.
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6 Quiver gauge theory on the squashed seven-sphere

6.5 Moduli space of Sp(2) instantons

This section deals with the description of the moduli space of Sp(2) instantons, which
applies not only to the hyper-Kähler cone over Sp(2)/Sp(1) [49], but also to the cone
over X1,1 (cf. Chapter 7). A detailed discussion of Sp(n) instantons on metric cones
over generic 3-Sasakian manifolds, analogous to the study of HYM instantons on
cones over generic Sasaki-Einstein manifolds [51], can be found in [128]. The result
of [75] and the discussion of the Sp(2)-instanton equations in Section 6.2.4 imply the
following features of the moduli spaceM:

(i) The moduli space M of Sp(2) instantons is given by the intersection of three
Hermitian Yang-Mills moduli spaces Mα with respect to the Kähler forms Ωα,
M =M5 ∩M6 ∩M7.

(ii) Each of these single moduli spacesMα can be discussed similarly to the moduli
spaces of instantons on Calabi-Yau cones, but the algebraic conditions differ.

(iii) The intersection of the three moduli spacesMα is completely characterized by
the holomorphicity conditions alone.

Orbit construction. Let us first discuss the moduli space Mα defined by a single
set of HYM equations, w.l.o.g. (6.28). By a rescaling of the Higgs fields similar to
(4.61) and (5.48), the instanton equations (6.28) turn into [48,128]

dWα

ds = 2[Wα, Z], for α = 1, 2, 3 , (6.56a)

[W1,W2] = 2W3, [W1,W3] = 0 = [W2,W3], (6.56b)

0 = d
ds(Z + Z†) + 2[Z,Z†] + 2

2∑
α=1

(−6s)−
5
3 [Wα,W

†
α] + 2 (−6s)−

4
3 [W3,W

†
3 ], (6.56c)

where one has defined s := −1
6e−6τ as in the Sasaki-Einstein case, but the other

scaling functions differ. The gauge transformation (4.64) is still applicable, so that
one obtains a local solution as orbit of a constant tuple that satisfies the algebraic
conditions (6.56b). As before, the real equation can be solved as equation of motion
of a suitable Lagrangian, where the different scaling of the matrices causes minor
changes in the functions in front of the commutators of the Higgs fields, compared to
(4.66), (5.50) and [51, Eq. (3.24)]. More precisely, the real equation now follows as
the equation of motion of the Lagrangian [48,128]

L[g] =
∫
I

ds Tr
{
|Zg + Zg†|2 + 2 (−6s)−

5
4

2∑
α=1
|W g

α|2 + 2 (−6s)−
4
3 |W g

3 |
2
}
, (6.57)

which holds for the same arguments as (4.66). Therefore, the discussion of the moduli
space reduces to describing orbits of constant solutions of the complex equations
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6.5 Moduli space of Sp(2) instantons

under certain boundary conditions. For Sasakian quiver gauge theories these matrices
could be chosen as elements of a Cartan subalgebra because the algebraic conditions
required mutually commuting Higgs fields φ(α) (cf. (4.25) and (5.31)). In the hyper-
Kähler case, however, the algebraic conditions (6.56b) constitute a (complexified)
Heisenberg algebra, comprising the non-trivial relation [φ(1), φ(2)] = 2φ(3). Therefore,
one cannot consider regular elements of a Cartan subalgebra as model solutions to
the instanton equations only, as it was applicable in [51, 111, 112], unless one sets
φ(3) ≡ 0. The latter subcase is, of course, not of particular interest because then the
truly new features of 3-Sasakian quiver gauge theories are lost.

It is worth recalling the importance of boundary conditions for the description of
the moduli space of Nahm’s equations and its adaptation to instantons on Calabi-Yau
cones [45]. General solutions are not only characterized by elements of a Cartan sub-
algebra but may include a second set of matrices which satisfy the su(2) commutation
relations of the original equations and which commute with the elements of the Cartan
subalgebra [112, Sec. 4] (see also [44, Sec. 6]). The extreme case in which solutions
are only described by this set has been studied by Kronheimer in [131] and led to
nilpotent orbits. This treatment can be extended to HYM instantons on Calabi-Yau
cones of any dimension [128]. Intermediate cases containing both sets of matrices
have been considered by Biquard [132] and Kovalev [133] for Nahm’s equations.

For the single HYM moduli spaces arising in the context of hyper-Kähler instan-
tons it seems necessary to study possible boundary conditions and their implications
in more detail, analogously to the more general cases that can occur for Nahm’s
equations. Such an exhaustive treatment of the equations (6.28) requires a suitable
description of the (complexified) Heisenberg algebra contained in the algebraic rela-
tions (6.28c).

Structure of the intersection. While a single moduli spaceMα still admits a similar
description by virtue of the gauge transformation (4.64), the intersectionM = ⋂

αMα

is very restrictive. Because of the SU(2)-symmetry of the equations (6.25a), all three
vertical Higgs fields have to transform in the very same way. However, the non-
trivial algebraic relations (6.25c) and the corresponding flow equations then only
allow for constant gauge transformations (4.64). Hence, a description in terms of
orbits of constant elements is not applicable for the intersection, unless a suitable
gauge transformation which preserves the 3-Sasakian symmetries is found. A purely
quaternionic formulation may prove useful for this purpose.

The moduli spaceM = ⋂
αMα constitutes a tri-holomorphic or quaternionic space

because it satisfies the holomorphicity conditions with respect to all three complex
structures Jα, which are compatible with the equivariance conditions [128].9 Using

9As discussed in Section 2.4, the invariant 4-form (2.22) also occurs as calibration form for quater-
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6 Quiver gauge theory on the squashed seven-sphere

the real structure constants defined by (6.10a) and the complex forms as in (D.11),
one verifies the compatibility of the equivariance conditions

[I8, X1] = X2, [I8, X2] = −X1, [I8, X3] = −X4, [I8, X4] = X3, (6.58)

with the three complex structures:

[I8, J5X1] = [I8,−X3] = X4 = J5X2,

[I8, J6X1] = [I8,−X4] = −X3 = J6X2,

[I8, J7X1] = [I8, X2] = −X1 = J7X2. (6.59)

The compatibility of the remaining conditions follows from the symmetries inherent
in the 3-Sasakian and hyper-Kähler geometry.

Remark on quotient construction. As mentioned earlier, the case of 4-dimensional
hyper-Kähler instantons is very special because then the three instanton equations
may be considered as the zero locus of the three moment map conditions, without
further conditions [62]. This directly leads to a description of the moduli space as a
hyper-Kähler quotient.

On the 8-dimensional cone over Sp(2)/Sp(1), however, one has to impose the set
of holomorphicity conditions that already imply the three moment map conditions.
Therefore, the space of tri-holomorphic connections may be regarded as a quaternionic
subspace of the zero locus of the moment maps, but its geometric structure is not yet
fully understood. In particular, one cannot deduce that this subspace is hyper-Kähler.
Even if it was hyper-Kähler, the usual quotient construction would be trivial because
the moment maps, which correspond to the stability-like conditions, are identically
zero on the space of tri-holomorphic connections.

6.6 Higher-dimensional spheres and discussion

We conclude this chapter by sketching some aspects of the generalization to higher-
dimensional squashed spheres and summarizing the main differences compared to
Sasakian quiver gauge theories. Some features of quiver gauge theories on generic
squashed spheres can be deduced by simple dimension arguments.

Fundamental representation. The Lie group Sp(m) has dimension 2m2+m, and the
fundamental representation acts on C2m because of the embedding Sp(m) ↪→ U(2m)

nionic submanifolds of R8 ∼= H2 [92, Sec. 3.2], so that the characterization ofM as a quaternionic
subspace of the space of connections fits into the close relationship between both fields.
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(or simply because of H = C2). When restricting the fundamental representation
2(m + 1) of Sp(m+ 1) to the subgroup Sp(m), one therefore obtains the splitting

2(m + 1)|Sp(m) = 2m⊕ 1⊕ 1, (6.60)

which suggests the triangular quiver diagram (6.32) for all dimensions m. More
precisely, the embedding of Sp(m) into Sp(m+ 1) is similar to the case of the round
spheres (4.87), but now one has to arrange all contributions in complex (2×2)-blocks
(allowing for the quaternionic action):

Sp(m) 7−→

 12 0
0 Sp(m)

 ⊂ Sp(m+ 1), (6.61)

and the local section (6.8) is generalized to

A0 =


Im(q0) q1 . . . qm

−q̄1
... sp(m)
−q̄m

 . (6.62)

Here the qj denote quaternionic 1-forms (or certain complex (2× 2)-matrices) which
may be parametrized as the matrix x in the local section (6.2). The SU(2)-factor
giving rise to the family of Sasaki-Einstein structures is identified with the imagi-
nary quaternions Im(q0) ∈ Im(H) ∼= su(2). Therefore, the quiver diagram for the
fundamental representation of any squashed sphere is indeed given by

(1)1(−1)1

(0)2m

φ1φ0

χ

ψ1ψ−1

(6.63)

where the form of the Higgs fields directly follows from the choice of the generators
based on (6.62). This yields a breaking of the structure group as

U(k1 + k−1 + 2mk0)→ U(k1)×U(k−1)×U(k0). (6.64)

Adjoint representation. For the adjoint representation 2m2 + 5m + 3 of Sp(m+ 1),
a simple counting argument yields the decomposition

2m2 + 5m + 3|Sp(m) = 2m2 + m⊕ 2m⊕ 2m⊕ 1⊕ 1⊕ 1, (6.65)

i.e. a splitting into one adjoint, one fundamental and one anti-fundamental as well as
three trivial representations of Sp(m). This splitting can be directly seen in (6.62) as
well. It induces the generalization of the quiver diagram (6.45) with six vertices for
all dimensions m.
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6 Quiver gauge theory on the squashed seven-sphere

Instanton equations. Based on the general expressions for the torsion components of
the canonical connection on 3-Sasakian manifolds, one derives the instanton equations
for generic hyper-Kähler cones [34,128], which are collected in Appendix D.2.1.

These equations reveal the same properties of instantons on the metric cones over
any squashed sphere Sp(m + 1)/Sp(m) for m ≥ 1. In particular, one again faces
the non-trivial algebraic conditions that cause the more complicated structure of the
moduli space, compared to HYM instantons on Calabi-Yau cones. On the other hand,
due to the completely regular instanton equations for any m, one can easily discuss
the generic case once instantons on the cone over the squashed seven-sphere are fully
understood.

In other words, the description of instantons on generic Calabi-Yau cones was
possible as a generalization of Nahm’s equations on the cone over SU(2) ' U(1)×CP 1

to the case of cones over Sasaki-Einstein manifolds as U(1)-bundles over CPn (or,
more generally, 2n-dimensional Kähler manifolds). For hyper-Kähler cones however,
the literature approach deals only with the trivial 3-Sasakian manifold SU(2), whose
bundle structure is of the form {point}×SU(2). The squashed seven-sphere represents
the first non-trivial example, being of the local form QK4 × SU(2).

Therefore, the proper description of the moduli space seems to require new methods
that are adapted to both the underlying quaternionic symmetry and the SU(2) triplet
of vertical Higgs fields. Tools for the description of the quaternionic base might be
borrowed from algebraic discussions of quaternionic instantons, such as [75,130], but
one has to include the differential equations (6.25a) with their inherent symmetries
as well.

6.6.1 Comparison with Sasakian quiver gauge theories

The most fundamental difference to the case of Sasakian quiver gauge theory is the
occurrence of the SU(2)-triplet of vertical Higgs fields in the 3-Sasakian setup, as a
manifestation of the different bundle structure of 3-Sasakian manifolds compared to
Sasaki-Einstein structures.

As a consequence, the examples of quiver diagrams studied here typically contain
“holomorphic triangles” with vertex loops as building blocks, in contrast to the chains
or rectangles we have seen for the Sasakian quiver gauge theories. This is caused by
the fact that two of the vertical Higgs fields represent a further ladder operator in the
weight diagrams. We sketched a quaternionic interpretation in which one combines
the three vertical Higgs fields into a single quaternionic quantity. It corresponds to
collapsing the quiver along the vertical ladder operator. This point of view is beneficial
for the general understanding and for elaborating the analogies to the round spheres.
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6.6 Higher-dimensional spheres and discussion

It might prove useful also for the instanton equations since their more complicated
structure seems to require an entirely quaternionic formulation.

Since the Lie algebra sp(2) is of rank 2 and symmetrically contains two subalgebras
sp(1), its weight diagrams [108] are typically squares or diamonds, rotated by π/4.
Hence, collapsing such weight diagrams yields triangles and leads to correspondences
of quiver diagrams for different representations of Sp(2). For example, both the
fundamental and the 5-dimensional representation induced the same quiver diagram,
and the representations 10 and 14 also yielded a quiver of the same shape. Like the
similarities of some quivers found in the previous chapters, triangular quiver diagrams
of the same shape encode the same flow equations, and only the algebraic conditions
differ in some coefficients.
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7 Quiver gauge theory on the
Aloff-Wallach space X1,1

Having constructed 3-Sasakian quiver gauge theories on the squashed seven-sphere
in the previous chapter, we now include examples of quiver diagrams on the Aloff-
Wallach space X1,1 [134], given as coset SU(3)/U(1)1,1. The Sasaki-Einstein mani-
fold T 1,1 completed the studies in dimension 5, being the only homogeneous compact
Sasaki-Einstein manifold besides the sphere. Similarly, the Aloff-Wallach space X1,1

is a natural candidate for 3-Sasakian quiver gauge theory in dimension 7 since every
simply-connected compact spin manifold with regular 3-Sasakian structure is isomet-
ric either to X1,1 or the squashed seven-sphere [53,59]. Applications of X1,1 in string
theory arise due to its Sasaki-Einstein geometry or because of the G2 and Spin(7)
structure inherent in 7-dimensional 3-Sasakian manifolds [21, 135, 136]. Instantons
with respect to the Spin(7) structure on metric cones over 3-Sasakian coset spaces,
including X1,1, have been considered in [27,28].

The author’s article [48] has studied Sasakian quiver gauge theory on X1,1 asso-
ciated to one of the three Sasaki-Einstein structures, which comprises examples of
quiver diagrams for low-dimensional representations of SU(3). We extend this discus-
sion to the full 3-Sasakian picture here. The results will be compared to the quiver
gauge theories on Sp(2)/Sp(1) from Chapter 6 as well as to those on the underlying
flag manifold Q3, constructed in [41,42,98].

7.1 Geometric structure

As for the other homogeneous spaces before, the geometric structure of X1,1 is de-
scribed by starting from a local section. The choice of generators and the discussion
of the 3-Sasakian geometry closely follows [27]. A detailed discussion of the spinors
on X1,1 can be found in [53], while descriptions of the related flag manifold Q3 are
given e.g. in [41, 42]. The Aloff-Wallach1 spaces [134] Xk,l (with coprime integers k
and l) are defined as quotients

Xk,l := SU(3)/U(1)k,l, (7.1)

1The notations Nk,l and N(k, l) for the Aloff-Wallach spaces Xk,l appear in the literature as well,
and the flag manifold Q3 is also known as F3 or F (1, 2).
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7 Quiver gauge theory on the Aloff-Wallach space X1,1

where the embedding of h ∈ U(1)k,l into G = SU(3) is given by

h = diag(ei(k+l)ϕ, e−ikϕ, e−ilϕ). (7.2)

In this thesis, we are only interested in the case k = l = 1, which leads not only to
a Sasaki-Einstein but even a 3-Sasakian manifold; the study of Spin(7) instantons
in [27] includes the general case Xk,l.

7.1.1 Local section

Making use of the 3-Sasakian bundle structure of the space X1,1, one obtains a local
section starting from the underlying quaternionic manifold and then attaching the
fiber SO(3), analogously to the procedure in Section 6.1. Since the twistor space over
CP 2 has already been constructed in [31,41] explicitly, we have to add the U(1)-fiber
only. Similarly to (4.3), one introduces local coordinates on CP 2 as

T := (y2, y1)T (7.3)

and obtains a section of the bundle SU(3)→ CP 2 from the matrix

V := 1
γ

1 −T †

T W

 , γ2 := 1 + T †T, W := γ12 − 1
γ+1TT

†. (7.4)

Note the twist in the choice of the coordinates in (7.3), which is already adapted to
our purposes. The canonical flat connection V −1dV yields SU(3)-left-invariant forms
on CP 2 whose structure equations can be found in [31, Sec. 5]. This fibration is
promoted to a local section of the twistor space T (CP 2) ∼= CP 2 × CP 1 by

V̂ := V ×

1 0
0 g

 , g := 1
(1 + zz̄)1/2

1 −z̄
z 1

 ∈ CP 1 . (7.5)

The resulting structure equations and the choices necessary for Kähler geometry are
discussed in [31]. Finally, the factor U(1) is included in the same way as in (6.4),
yielding a local section Ṽ := V̂ ×h of the bundle SU(3)→ X1,1. Based on the results
of [27, 31], we already choose the basis 1-forms such that the tensors defining the
3-Sasakian geometry take their standard expressions by setting

Ã0 = Ṽ −1dṼ =:


2i√
3e

8 √
2Θ2 −

√
2Θ1̄

−
√

2Θ2̄ − i√
3e

8 − ie7 −Θ3̄
√

2Θ1 Θ3 − i√
3e

8 + ie7

 . (7.6)

This provides SU(3)-invariant 1-forms on X1,1 described by the local coordinates
{y1, y1, y2, y2, z, z, ϕ}. The flatness of the connection Ã0 yields the structure equa-
tions (E.1) with structure constants (E.2). In terms of real 1-forms defined via

100



7.1 Geometric structure

e1 − ie2 := Θ1, e3 − ie4 := Θ2 and e5 − ie6 := Θ3, one obtains the equations

de1 =
√

3e82 − e72 − e35 − e46, de2 = −
√

3e81 + e71 − e36 + e45,

de3 = −
√

3e84 − e74 + e15 + e26, de4 =
√

3e83 + e73 + e16 − e25,

de5 = 2e67 − 2e13 + 2e24, de6 = 2e75 − 2e14 − 2e23,

de7 = 2e12 + 2e34 + 2e56, de8 = −2
√

3e12 + 2
√

3e34. (7.7)

The structure equations for the triplet (η5, η6, η7) := (e5, e6, e7) coincide with those
of the squashed seven-sphere (6.10a) and the same discussion of the geometry applies
here. Therefore, the orthonormal metric g = ∑7

µ=1 e
µ⊗eµ defines a 3-Sasakian struc-

ture on X1,1. Again, this property could be also verified by the closure of the Kähler
form, the holomorphic top-degree form and the complex symplectic form on the met-
ric cone; they take the same form as for the squashed seven-sphere, given in (D.4)
and (D.5). In particular, the Kähler form which fixes our notation of holomorphicity
on the metric cone reads

Ω1,1
7 := − i

2 r
2 (Θ11̄ + Θ22̄ + Θ33̄ + Θ00̄). (7.8)

From the bundle construction above, it can be seen that X1,1 is a U(1)-bundle
over the Kähler manifold Q3, which is, in turn, the twistor space over the self-dual
manifold CP 2 (cf. [53]). By this web of fibrations, the quiver gauge theories and
instanton equations obtained on (the metric cone over) X1,1 may be related to similar
studies on these spaces, which will be considered in Section 7.4.

7.1.2 Canonical connection

Since the internal geometry described by the structure equations (7.7) is the same as
that of the squashed seven-sphere, the forms P and Q again – as in (6.13) – read

Q = e1234, P = 1
3e

567 − 1
3e

135 + 1
3e

245 − 1
3e

146 − 1
3e

236 + 1
3e

127 + 1
3e

347. (7.9)

Using the torsion components of the canonical connection, Tα = 3Pαµνeµν and
T a = 3

2Paµνe
µν (for α = 5, 6, 7 and a = 1, 2, 3, 4), one derives the connection ma-

trix

d


e1

e2

e3

e4

 =


0

√
3 0 0

−
√

3 0 0 0
0 0 0 −

√
3

0 0
√

3 0




e1

e2

e3

e4

+


T 1

T 2

T 3

T 4

 , (7.10)

and deα = Tα. Therefore, the canonical connection of the 3-Sasakian structure on
X1,1 is the U(1)1,1-connection

Γ = I8 ⊗ e8, (7.11)

which is also adapted to the bundle structure ofX1,1 as coset spaceG/H. This abelian
connection served as starting point for constructing G2 and Spin(7) instantons in [27]
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7 Quiver gauge theory on the Aloff-Wallach space X1,1

since the 3-Sasakian metric is nearly parallel G2 as well. Furthermore, it has been
used for the study of HYM instantons on the metric cone over X1,1 with respect to
the Kähler form Ω7 [48], whose discussion we are extending here. The curvature of
the canonical connection (7.11),

FΓ = dΓ = 2
√

3I8 ⊗ (−e12 + e34), (7.12)

satisfies the instanton equations (6.17) of a 3-Sasakian manifold.

7.2 Equivariance condition and action functional

As in the previous examples of quiver gauge theories, the ansatz (3.10) for the gauge
connection on the Hermitian vector bundle E →Md ×X1,1 reads

A = A+ Γ +
7∑

µ=1
Xµ ⊗ eµ = A+ I8 ⊗ e8 +

7∑
µ=1

Xµ ⊗ eµ, (7.13)

where A denotes a connection diagonal on the vertices, according to the isotopical
decomposition which is induced by the decomposition of the G-representation under
the subgroup H = U(1)1,1. Once more, the matrices Xµ are valued in the Lie algebra
u(k) and therefore skew-Hermitian, X†µ = −Xµ.

7.2.1 Equivariance condition

Since the canonical connection is a U(1)-connection (like that on T 1,1), the equivari-
ance condition does not involve any ladder operators of SU(3) and one has to impose
the following equivariance conditions only:

[I8, X1] =
√

3X2, [I8, X2] = −
√

3X1,

[I8, X3] = −
√

3X4, [I8, X4] =
√

3X3,

[I8, Xα] = 0 for α = 5, 6, 7. (7.14)

In complex notation φ(1) := 1
2(X1 − iX2) and φ(2) := 1

2(X3 − iX4), the Higgs fields
act on vertices in the weight diagrams as

φ(1) : (ν7, ν8) 7−→ (∗, ν8 + 3) , φ(2) : (ν7, ν8) 7−→ (∗, ν8 − 3) ,

Xα : (ν7, ν8) 7−→ (∗, ν8) , (7.15)

where the quantum numbers are defined with respect to the rescaled Cartan gen-
erators Ĩ7 = −iI7 and Ĩ8 = −i

√
3I8. Comparing with (6.20), one notices that the

equivariance condition on X1,1 imposes the same action with respect to the Cartan
generator of the subgroup H (up to a numerical constant in the definition of the quan-
tum number ν8). As before, we will not only impose (7.15) but restrict the Higgs
fields2 to the action of the ladder operators (E.5).

2The arising of additional contributions is discussed in [48] and resembles the analogous discussion
for the squashed seven-sphere.
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Since the subgroup H is a torus, the subrepresentations are 1-dimensional, so that
one can construct the quiver diagram directly from the weight diagram without col-
lapsing along ladder operators and without the need of knowing the precise numerical
values of the entries. On the other hand, this implies a large number of arrows even
for low-dimensional representations of G, as the examples in Section 7.3 will show.

7.2.2 Action functional and instanton equations

Due to the same internal 3-Sasakian geometry of X1,1 and Sp(2)/Sp(1), the Yang-
Mills functional on Md ×X1,1 resembles (6.21). Explicitly, one finds

SYM = Vol
(
X1,1)

∫
Md

ddy √g 1
2 Tr

{
1
2 Fmn (Fmn)† +

d∑
m=1

7∑
µ=1
|DmXµ|2

+
∣∣∣[X1, X2] + 2X7 − 2

√
3I8
∣∣∣2 + |[X1, X3]− 2X5|2 + |[X1, X4]− 2X6|2

+ |[X2, X3]− 2X6|2 + |[X2, X4] + 2X5|2 +
∣∣∣[X3, X4] + 2X7 + 2

√
3I8
∣∣∣2

+ |[X1, X5] +X3|2 + |[X1, X6] +X4|2 + |[X1, X7]−X2|2 + |[X2, X5]−X4|2

+ |[X2, X6] +X3|2 + |[X2, X7] +X1|2 + |[X3, X5]−X1|2 + |[X3, X6]−X2|2

+ |[X3, X7]−X4|2 + |[X4, X5] +X2|2 + |[X4, X6]−X1|2 + |[X4, X7] +X3|2

+ |[X5, X6] + 2X7|2 + |[X5, X7]− 2X6|2 + |[X6, X7] + 2X5|2
}
, (7.16)

where the notation |X|2 := XX† is employed again. The only difference occurs in the
contribution of the canonical connection Γ which is a U(1)-connection in the case at
hand, in contrast to the non-abelian connection (6.15) on the squashed seven-sphere.
The 3-Sasakian instanton equations (6.17) yield the same set of matrix equations as
on Sp(2)/Sp(1), and the action functional reduces to

Sinst
YM = Vol

(
X1,1

) ∫
Md

ddy √g 1
2 Tr

{
1
2 Fmn (Fmn)† +

d∑
m=1

7∑
µ=1
|DmXµ|2 (7.17)

+ 2
∣∣∣[X1, X2] + 2X7 − 2

√
3I8
∣∣∣2 + 2 |[X1, X3]− 2X5|2 + 2 |[X1, X4]− 2X6|2

}
for matrices Xµ which are subject to the equivariance and instanton conditions. The
torsion term in (2.11) vanishes by the same calculation as in Appendix D.1, and
the expression for the Chern-Simons term in (2.12) follows from inserting the above
curvature components into (D.8).

Similarly, the flow equations and algebraic relations (6.25) from the previous chap-
ter also describe instantons on the hyper-Kähler cone over the Aloff-Wallach spaceX1,1.

7.3 Examples of quiver diagrams

In this section we consider the quiver diagrams and resulting instanton matrix equa-
tions for the representations 3, 6, and 8 of SU(3) as explicit examples. The relevant
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weight diagrams are collected in Appendix E.2.

7.3.1 Fundamental representation

The simplest example follows from the fundamental representation (E.3) whose weight
diagram (E.7) induces the triangular quiver

(−1,−1)

(0,2)

(1,−1)

φ0 φ1

χ

ψ−1

ψ0

ψ1 (7.18)

with the Higgs fields

φ(1) =


0 0 φ1

0 0 0
0 0 0

 , φ(2) =


0 0 0
φ0 0 0
0 0 0

 , φ(3) =


0 0 0
0 0 χ

0 0 0

 , (7.19)

as well as X7 = diag(ψ0, ψ−1, ψ1). The arrows in the diagram represent the ho-
momorphisms φ1 ∈ Hom(E1, E0), φ0 ∈ Hom(E0, E−1), χ ∈ Hom(E1, E−1) and the
endomorphism ψj for j ∈ {0,±1}. As for the other quiver gauge theories, one could
set ψ0 to zero because I7 acts with eigenvalue zero on the corresponding vertex.
Since the equivariance condition does not involve ladder operators of the subalgebra,
all entries of the Higgs fields φ(α) are independent, in contrast to the situation on
SU(4)/SU(3) or Sp(2)/Sp(1). The structure group of the quiver bundle is broken
according to

U(k0 + k1 + k−1)→ U(k0)×U(k1)×U(k−1) , (7.20)

where the dimensions of the vector spaces Ej are denoted as kj . The equivariant
gauge connection (7.13) takes the form

A = A+


2i√
31k0e

8 + ψ0e
7 −φ†0 ⊗Θ2 φ1 ⊗Θ1̄

φ0 ⊗Θ2̄ − i√
31k−1e

8 + ψ−1e
7 χ⊗Θ3̄

−φ†1 ⊗Θ1 −χ† ⊗Θ3 i√
3 i1k1e

8 + ψ1e
7

 , (7.21)

which is again seen to be a twisted version of the flat connection (7.6). Imposing the
instanton equations (6.26) on the Higgs fields yields

φ̇0 = −φ0 − χφ†1 = −φ0 − iφ0ψ0 + iψ−1φ0,

φ̇1 = −φ1 − φ†0χ = −φ1 − iφ1ψ1 + iψ0φ1, (7.22a)
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while the algebraic conditions (6.27) impose the quiver relations

2χ = −φ0φ1, 2iψ0 = φ1φ
†
1 − φ

†
0φ0,

2iψ−1 = φ0φ
†
0, 2iψ1 = −φ†1φ1. (7.22b)

The quiver (7.18) resembles the diagrams obtained for the representations 4 and 5 of
Sp(2) on the squashed seven-sphere. Therefore, the instanton matrix equations are
similar to (6.36) and (6.42), only differing in the values of some coefficients in the
algebraic relations.

7.3.2 Representation 6

The next example is based on the 6-dimensional representation with weight diagram
(E.8), which leads to the quiver diagram

(−2,−2)

(−1,1)

(0,−2)

(0,4)

(1,1)

(2,−2)

φ1 φ4

φ2 φ3

φ5 φ6

χ1 χ3

χ2

ψ−2 ψ0 ψ2

ψ̃0

ψ−1 ψ1

(7.23)

This diagram looks like the quivers (6.45) and (6.49), obtained for the representations
10 and 14 of Sp(2) on the squashed seven-sphere. The instanton conditions comprise
the matrix flow equations

φ̇1 = −φ1 − χ1φ
†
4 = −φ1 − iφ1ψ−1 + iψ−2φ1,

φ̇2 = −φ2 − χ2φ
†
3 = −φ2 − iφ2ψ̃0 + iψ−1φ2,

φ̇3 = −φ3 − φ†2χ2 = −φ3 − iφ3ψ1 + iψ̃0φ3,

φ̇4 = −φ4 − φ†1χ1 + χ2φ
†
5 = −φ4 − iφ4ψ0 + iψ−1φ4,

φ̇5 = −φ5 + φ†4χ2 − χ3φ
†
6 = −φ5 − iφ5ψ1 + iψ0φ5,

φ̇6 = −φ6 − φ†5χ3 = −φ6 − iφ6ψ2 + iψ1φ6, (7.24a)

and the quiver relations

2iψ−2 = φ1φ
†
1, 2iψ−1 = φ4φ

†
4 + φ2φ

†
2 − φ

†
1φ1,

2iψ0 = −φ†4φ4 + φ5φ
†
5, 2iψ̃0 = φ3φ

†
3 − φ

†
2φ2,

2iψ1 = φ6φ
†
6 − φ

†
3φ3 − φ

†
5φ5, 2iψ2 = −φ†6φ6, (7.24b)
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as well as

φ4χ3 = χ2φ6, φ1χ2 = χ1φ5, 2χ1 = −φ1φ4,

2χ3 = −φ5φ6, 2χ2 = φ4φ5 − φ2φ3. (7.24c)

These equations are the counterparts of (6.47) and (6.50), and the same comments
from those discussions apply here.

7.3.3 Adjoint representation

The last example of a quiver diagram is derived from the 8-dimensional adjoint rep-
resentation of SU(3) with weight diagram (E.9):

(1,−3)(−1,−3)

(2,0)(0,0)2(−2,0)

(1,3)(−1,3)

ψ−1

ψ+
1

ψ−−1

ψ+
−1

ψ−2 ψ2

σ6φ4,φ5

φ2,φ3 σ4,σ5

σ2,σ3

φ6

φ1

σ1

χ2

χ1 χ4

χ3

(7.25)

The quiver gauge theory encoded in this diagram contains the differential equations

φ̇1 = −φ1 + χ1σ
†
2 = −φ1 − iφ1ψ

−
−1 + iψ−2φ1,

φ̇2 = −φ2 − σ†1χ1 + χ3σ
†
4 = −φ2 − iφ2ψ0 + iψ+

−1φ2,

φ̇3 = −φ3 + χ3σ
†
5 = −φ3 − iφ3ψ̃0 + iψ+

−1φ3,

φ̇4 = −φ4 − σ†2χ2 + χ4σ
†
6 = −φ4 − iφ4ψ

−
1 + iψ0φ4,

φ̇5 = −φ5 − σ†3χ2 = −φ5 − iφ5ψ
−
1 − ψ̃0φ5,

φ̇6 = −φ6 − σ†4χ4 = −φ6 − iφ6ψ2 + iψ+
1 φ6, (7.26a)

and similar matrix equations for the entries of φ(2):

σ̇1 = −σ1 + χ1φ
†
2 = −σ1 − iσ1ψ

+
−1 + iψ−2σ1,

σ̇2 = −σ2 + φ†1χ1 − χ2φ
†
4 = −σ2 − iσ2ψ0 + iψ−−1σ2,

σ̇3 = −σ3 − χ2φ
†
5 = −σ3 − iσ3ψ̃0 + iψ−−1σ3,

σ̇4 = −σ4 + φ†2χ3 − χ4φ
†
6 = −σ4 − iσ4ψ

+
1 + iψ0σ4,

σ̇5 = −σ5 + φ†3χ3 = −σ5 − iσ5ψ
+
1 + iψ̃0σ5,

σ̇6 = −σ6 + φ†4χ4 = −σ6 − iσ6ψ2 + iψ−1 σ6. (7.26b)

106



7.4 Reduction to related geometries

The algebraic conditions consist of the relations

2iψ−2 = φ1φ
†
1 + σ1σ

†
1, 2iψ2 = −φ†6φ6 − σ

†
6σ6,

2iψ−−1 = −φ†1φ1 + σ2σ
†
2 + σ3σ

†
3, 2iψ+

−1 = −σ†1σ1 + φ2φ
†
2 + φ3φ

†
3,

2iψ0 = φ4φ
†
4 + σ4σ

†
4 − φ

†
2φ2 − σ

†
2σ2, 2iψ̃0 = φ5φ

†
5 + σ5σ

†
5 − φ

†
3φ3 − σ

†
3σ3,

2iψ−1 = σ6σ
†
6 − φ

†
4φ4 − φ

†
5φ5, 2iψ+

1 = −σ†4σ4 − σ
†
5σ5 + φ6φ

†
6, (7.26c)

as well as

φ1σ3 = σ1φ3, φ5σ6 = σ5φ6, φ1χ2 = χ1φ4,

φ2χ4 = χ3φ6, σ1χ3 = χ1σ4, σ2χ4 = χ2σ6,

2χ1 = φ1σ2 − σ1φ2, 2χ2 = −σ2φ4 − σ3φ5, 2χ3 = φ2σ4 + φ3σ5,

2χ4 = φ4σ6 − σ4φ6, 0 = φ4φ
†
5 + σ4σ

†
5 − φ

†
2φ3 − σ

†
2σ3. (7.26d)

The system of equations is more complicated due to the large number of arrows and
the degeneracy of the origin, but it admits the typical features already encountered in
all previous examples. Once more it is instructive to visualize the paths and relations
imposed by the above equations in the quiver diagram (7.25).

7.4 Reduction to related geometries

Following the previous discussions, we now include the reduction from the quiver
gauge theory on the 3-Sasakian manifold X1,1 to that on the underlying quaternionic
manifold in dimension 4 and on the 6-dimensional Kähler manifold Q3.

7.4.1 Reduction along the SO(3) fiber

When considering the gauge theory on the quaternionic base of the fibration, one has
to impose, as in Section 6.4, the additional equivariance conditions

[Ĩ8, φ(1)] = φ(1), [Ĩ8, φ(2)] = −φ(2), (7.27a)

[I−3̄ , φ
(1)] = 0 = [I−3̄ , φ

(2)], [I−3̄ , φ
(1)†] = −φ(2), [I−3̄ , φ

(2)†] = φ(1). (7.27b)

Because of the analogy to the procedure in Section 6.4 and the appearance of quiver
diagrams of the same shape, the corresponding discussion applies here. Therefore, we
study only the implications for the 3-dimensional representation of SU(3) explicitly.
The collapsing of the quiver diagram (7.18) yields the 2-quiver

(−1,−1)2

(0,2)
φ0

(7.28)
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7 Quiver gauge theory on the Aloff-Wallach space X1,1

which resembles the quiver diagram (6.52), of course. Since the ladder operator I−3̄ is
involved in the additional equivariance condition (7.27), both Higgs fields now depend
on the same homomorphism. More precisely, the two remaining Higgs fields read

φ(1) =


0 0 φ†0

0 0 0
0 0 0

 , φ(2) =


0 0 0
φ0 0 0
0 0 0

 , (7.29)

i.e. one has to set φ0 = φ†1 in (7.19). The instanton equations (7.22) then reduce to
the conditions

1k−1 = 1
2φ0φ

†
0, φ0 = const., (7.30)

which is again the typical form of BPS equations in even-dimensional quiver gauge
theories. Due to the bundle structure and the collapsing procedure, one can compare
these results with quiver gauge theory on CP 2 [40,42]. Recall that those quiver gauge
theories are constructed on the Kähler manifold CP 2, whereas our fibration is based
on the quaternionic structure of CP 2. Therefore, the quiver diagrams will be of the
same shape, but the orientations of the arrows may differ.

Taking the limit to the underlying quaternionic base casts the quiver diagram (E.9)
of the adjoint representation into the typical square-quiver which occurs for adjoint
representations of SU(3) [40,42].

7.4.2 Reduction to the underlying twistor space

For this reduction, one has to fix the Higgs field X7 by setting X7 = I7, which yields
the quiver diagram (7.18) without the loop contributions. The Hermitian Yang-Mills
equations associated to the complex structure determined by Ω7 then reduce to the
set of conditions

2χ = −φ0φ1, φ1φ
†
1 = φ†0φ0, 1k−1 = 1

3(φ0φ
†
0 +χχ†), 1k1 = 1

3(φ†1φ1 +χ†χ) (7.31)

and require φ0, φ1, χ = const. As expected, taking the limit to the underlying Kähler
manifold T (CP 2) ∼= CP 2×CP 1 ∼= Q3 yields the “holomorphic triangle” found for the
fundamental representation of SU(3) [42,98]. Bearing in mind the different notation3,
one notices that the above BPS equations correctly reproduce the results (4.29) and
(4.30) of [42].

In considering the reduction for this example, we have checked consistency of the
constructed quiver gauge theories with known results, as it was also carried out for
Sasakian quiver gauge theories on S7 (over CP 3) and on T 1,1 (over CP 1×CP 1) above.

3Our labeling of the vertices in the quiver diagram (7.18) differs from the conventions used for [42,
Eq. (3.48)]. The comparison is established via the identifications 0φ−0,−2 ≡ φ†0,

0φ+
0,−2 ≡ χ† and

1φ0
−1,1 ≡ φ†1 (up to prefactors).
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7.5 Discussion

7.5 Discussion

The inclusion of the Aloff-Wallach space X1,1 in the framework of 3-Sasakian quiver
gauge theories yields examples of quiver diagrams and instanton equations similar to
those on the squashed seven-sphere. More precisely, our findings for the fundamental
representation of SU(3) resemble the results obtained for the representations 4 and 5
of Sp(2), while the 6-dimensional representation of SU(3) leads to a quiver similar to
that for the representations 10 and 14 on the squashed seven-sphere. In contrast to
the coset Sp(2)/Sp(1), where the vertices carry SU(2) gauge connections, the case at
hand only involves a canonical connection which is abelian. To conclude, the compar-
ison of the 3-Sasakian quiver gauge theories on X1,1 with the results on Sp(2)/Sp(1)
resembles the direct comparison of Sasakian quiver gauge theories on T 1,1 with those
on S5. Namely, within each class of quiver gauge theories of the same dimension,
one finds diagrams and instanton equations of the same form which arise for different
representations and coset spaces.

Like for the Sasakian quiver gauge theories in dimension 5, the two examples
Sp(2)/Sp(1) and X1,1 basically exhaust the list of 3-Sasakian manifolds and therefore
of corresponding quiver gauge theories in dimension 7. Although we considered only
a few examples of quiver diagrams, we elaborated the main features of 3-Sasakian
quiver gauge theories. For the Aloff-Wallach space X1,1 one may aim at a discussion
of the quiver diagrams and instanton equations associated to generic representations
of SU(3), as in [40, 42, 46] for instance. However, also the generic case will consist of
holomorphic triangles with vertex loops as building blocks.
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8 Conclusions and outlook

In this thesis, I have constructed new Sasakian quiver gauge theories on the homo-
geneous spaces T 1,1 = SU(2) × SU(2)/U(1) and SU(4)/SU(3) as well as 3-Sasakian
quiver gauge theories on Sp(2)/Sp(1) and X1,1 = SU(3)/U(1). The studies of all four
cases comprised explicit examples of quiver diagrams for low-dimensional represen-
tations of the relevant Lie groups, which have been compared with the results for
similar geometric setups. I discussed the instanton equations on the Calabi-Yau and
hyper-Kähler cones over the coset spaces and the description of their moduli spaces.

Results in detail

The manifold T 1,1 yields a second class of Sasakian quiver gauge theory in dimen-
sion 5 besides the existing study on S5 [46]. The product structure of the group
G = SU(2)× SU(2) induces a grading of the gauge connection and yields quiver dia-
grams of the form Am1+1⊗Am2+1 with vertex loops. Therefore, a discussion of quiver
gauge theory for generic representations of G, analogous to [43], is applicable, and
taking the limit CP 1 × CP 1 correctly reproduces the results for quiver gauge theory
on this Kähler base. As expected, the instanton equations reveal the typical quadratic
terms in the differential equations for the vertical Higgs field, as a consequence of the
vertex loops.

Stemming from another rank-2 quiver gauge theory in dimension 5, our results on
T 1,1 resemble the quiver diagrams and instanton equations obtained on S5 to some
extent, as we illustrated in the course of the discussion. Since we employed the ansatz
starting from the canonical connection, the instanton equations match the expecta-
tions: the moduli space can be discussed following the general results for instantons
on metric cones over generic Sasaki-Einstein manifolds from the literature [51].

In dimension 7, we constructed new examples of Sasakian quiver gauge theo-
ries on SU(4)/SU(3), which enabled us to compare Sasakian quiver gauge theories
of different dimensions within the class of round spheres. We studied quiver dia-
grams for low-dimensional representations of SU(4), and they turned out to be the
higher-dimensional analogues of the results for the five-sphere [46], apart from the
exceptional representation 6. We therefore sketched some generalizations to arbitrary
round spheres, showing that quiver diagrams of type Al occur on all odd-dimensional
spheres. Due to the higher rank of the Lie group SU(4), one expects also new types
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of quiver diagrams from more complicated weight diagrams, which can be obtained
by applying the collapsing procedure according to the root system of SU(4). As a
by-product, one can derive quiver gauge theories on the Kähler base CP 3. The in-
stanton equations on the Calabi-Yau cone over S7 yield the expected results, so that
the moduli space can be described according to the general treatment [51].

3-Sasakian quiver gauge theories have been constructed on the squashed seven-
sphere and the Aloff-Wallach space X1,1. The examples of quiver diagrams considered
here show as typical feature a triangular shape, based on holomorphic triangles with
vertex loops as building blocks, in constrast to the chains or rectangular quivers in
Sasakian quiver gauge theory. This difference is easily attributed to the different bun-
dle structure of 3-Sasakian manifolds whose vertical part comprises both vertex loops
and a ladder operator in the weight diagrams. We also employed a purely quater-
nionic interpretation which (schematically) renders the quiver diagrams in the typical
form known from Sasakian quiver gauge theories and emphasizes the connection to
the underlying quaternionic manifold. Analogously to some similarities between quiv-
ers for T 1,1 and for S5, several representations of Sp(2) yield quiver diagrams of the
same form, and these diagrams also resemble quivers of X1,1. The reduction of the
quiver gauge theories to the underlying twistor and quaternionic manifolds has been
considered as well.

According to [75] and the explicit equations here, Sp(2) instantons on the metric
cones over X1,1 and Sp(2)/Sp(1) can be described by the intersection of three HYM
moduli spaces with respect to the triplet of Kähler forms. The discussion of each
single moduli space may be adapted to the different algebraic conditions, compris-
ing a complexified Heisenberg algebra rather than an abelian algebra, as it appears
for instantons on Calabi-Yau cones. However, the structure of the intersection and
therefore the Sp(2)-instanton moduli space itself is not yet fully understood.

Future research

After deriving various sets of instanton matrix equations, based on certain quiver dia-
grams, it is desirable to find explicit solutions beyond the special subclass of constant
solutions arising from the underlying manifolds. Due to the larger number of degrees
of freedom in quiver gauge theories, one may hope to find new solutions. In par-
ticular, the dynamics of the off-diagonal contributions in the homomorphisms might
provide interesting novel insights, whereas purely diagonal fields reproduce copies of
the scalar ansatz. The quadratic coupling in the flow equations for the vertical Higgs
field in Sasakian quiver gauge theory seems unlikely to admit analytic solutions, so
that one should apply numerical studies as in [19]. Also the implications of the pos-
sible additional arrows, which we have briefly discussed, on the level of the instanton
equations should be studied in detail.
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Once the approach has proved useful for the construction of new instantons, one
may aim at discussing further representations of G in the above examples and may
even include G2 and Spin(7)-instantons [28] in the framework of quiver gauge theo-
ries. Including more examples might also clarify the similarities of quiver diagrams
found among different representations and coset spaces. In addition, it might be in-
teresting to consider also homogeneous spaces involving exceptional Lie algebras like
the quotient G2/Sp(1).

Since quiver bundles are intimately related to symmetry breaking in gauge theories,
one may study these effects in detail for phenomenologically interesting dimensions kj
of the vector spaces Ej attached to the vertices of the quiver, as done in [38–40]. More-
over, fermionic terms can be included, in order to create a physically more realistic
theory. Following the approaches in [37, 43, 102, 137], one may apply a noncommu-
tative deformation of the external manifold Md in order to obtain noncommutative
BPS solutions, which might yield new brane interpretations.

The description of the moduli space of Sp(m) instantons on hyper-Kähler cones over
3-Sasakian manifolds should be completed. This requires a better understanding of
the intersection, for which one has to take into account both the SU(2)-symmetry of
the vertical Higgs fields and the quaternionic symmetry of the base. In particular, by
virtue of the non-trivial algebraic relations, the flow equations turn into a system of
cubic ODEs which only involves the fields associated to the quaternionic Kähler base.
Therefore, it seems beneficial to search for a suitable adaptation of existing (algebraic)
methods for the description of quaternionic instantons, such as generalized ADHM
constructions, to our system with the radial dependence.
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A Details on instantons

This appendix collects some standard properties of 4-dimensional instantons and
provides details on their generalization to higher dimensions. Since the discussion
of the moduli spaces of HYM instantons on cones over Sasaki-Einstein manifolds is
based on an adaptation [51] of Donaldson’s and Kronheimer’s approaches [111, 112]
to Nahm’s equations, we review these equations as well.

A.1 Yang-Mills action and generalized instantons

In this section, we briefly report some basic features on gauge theory which can be
found in standard textbooks and reviews of instantons, see [12,138,139] for example.

Let G be a compact semi-simple Lie group with Lie algebra g. On the space of
g-valued p-forms Ωp(Md, g) an inner product can be defined via

(A,B) := −
∫
Md

Tr(A ∧ ?dB) (A.1)

for A,B ∈ Ωp(Md, g), where the metric of the underlying manifold Md enters via the
Hodge star operator ?d. Although we will provide final results which are independent
of the choice of the Hodge star operator or use different techniques (like the HYM
equations) in most cases, let us fix the convention. For an orthornomal basis e1, . . . , ed,
we use the definition

?d (ep1 ∧ . . . ∧ epk) = 1
(d−k)! εp1p2...pkq1...qd−k e

q1 ∧ . . . ∧ eqd−k (A.2)

with the completely anti-symmetric tensor ε12...d = 1 (for all combinations of indices
raised or lowered). In Euclidean signature the Hodge star operator satisfies

?d (?dω) = (−1)k(d−k)ω (A.3)

for any k-form ω. In particular, it follows that ?2 = 1 when acting on 2-forms,
and therefore one can decompose the curvature 2-form into a self-dual (SD) and an
anti-self-dual (ASD) component in four dimensions, ?F± = ±F±.

A.1.1 Yang-Mills equation

With the inner product (A.1) one defines the Yang-Mills action of a gauge connection
A ∈ Ω1(Md, g) with curvature F = dA+A ∧A over a Riemannian manifold Md as

SYM = −1
4

∫
Md

Tr(F ∧ ?F). (A.4)
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Varying the gauge connection A 7→ A+ δA and employing the definition of the field
strength yields

δSYM ∝
∫
Md

Tr [(d(δA) +A ∧ δA+ δA ∧A) ∧ ?F ]

∝
∫
Md

Tr
[
δA(−d ? F −A ∧ ?F + (−1)d−1 ? F ∧A)

]
, (A.5)

where one has used integration by parts and cyclicity of the trace. Consequently, one
obtains from δSYM = 0 the Yang-Mills equation

0 = d ? F + [A, ?F ] =: DA ? F (A.6)

as equation of motion of the Yang-Mills functional (A.4). The definition of the cur-
vature immediately implies the Bianchi identity DAF = 0 since

DAF := dF +A ∧ F − F ∧A = dA ∧A−A ∧ dA+A ∧ F − F ∧A

= (F −A ∧A) ∧ A−A ∧ (F −A ∧A) +A ∧ F − F ∧A = 0. (A.7)

Thus, (anti-)self-dual connections ?4F = ±F automatically satisfy the Yang-Mills
equation (A.6) in four dimensions.

Bogomolny bound. Conversely, recall the Bogomolny trick for the 4-dimensional
Yang-Mills action: Using F ∧F = ?F ∧?F and Tr(F ∧?F) = Tr(?F ∧F) one obtains
a bound of the Yang-Mills functional from below by completing the square as follows
(see e.g. [12, 138,139])

SYM =− 1
4

∫
M4

Tr [F ∧ ?F ] ,

=− 1
8

∫
M4

Tr [(F ± ?F) ∧ ?(F ± ?F)]± 1
4

∫
M4

Tr [F ∧ F ] . (A.8)

Recall that the first two Chern classes are given by

c1 = i
2πTr(F), c2 = 1

8π [Tr(F ∧ F)− Tr(F) ∧ Tr(F)] , (A.9)

where one has Tr(F) = 0 in the typical setup of SU(n) gauge theories. In that case,
the term

∫
M4 Tr [F ∧ F ] is a topological invariant, and since the first summand in

(A.8) is non-negative and non-degenerate, the Yang-Mills action is bounded by the
second Chern number with equality if and only if the connection is (anti-)self-dual.

Therefore, instantons not only satisfy the Yang-Mills equation, but actually mini-
mize the action functional within their topological sector, which is characterized by
the instanton number ∝

∫
Tr (F ∧ F). That this contribution is topological can

be seen as follows: the integrand is the differential of the Chern-Simons term (see
e.g. [138])

CS3 := 1
8π2 Tr

[
dA ∧A+ 2

3A ∧A ∧A
]
. (A.10)
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Taking the differential of this expression, employing the definition of F and using
Tr(A4) = 0 (due to cyclicity of the trace and anti-symmetry of the form part), yields
the second Chern class c2 in (A.9). Hence, the lower bound of the action for instantons
is a topological term.

A.1.2 Generalized self-duality equation

We review some details related to the definition of higher-dimensional instantons,
which are discussed in [20,25,28,33,70,71] for instance. Given a gauge connection A
whose curvature satisfies the generalized self-duality equation

0 = ?F + F ∧ ?Q, (A.11)

one takes the exterior derivative to obtain

0 = d ? F + dF ∧ ?Q+ F ∧ d ? Q

= d ? F + (dA ∧A−A ∧ dA) ∧ ?Q+ F ∧ d ? Q

= d ? F + [(F −A ∧A) ∧ A−A ∧ (F −A ∧A)] ∧ ?Q+ F ∧ d ? Q

= d ? F + (−1)dF ∧ ?Q ∧ A−A ∧ F ∧ ?Q+ F ∧ d ? Q

= DA ? F + F ∧ d ? Q, (A.12)

where the instanton equation (A.11) has been used in the last step. The first part is
the usual Yang-Mills equation (A.6), while the second contribution is a torsion term,
also written as 3-form ?H := d ? Q. It follows from the variation of a Chern-Simons
term:

δ

∫
Md

Tr [F ∧ F ∧ ?Q] = 2
∫
Md

Tr [(d(δA) ∧ F + δA ∧A ∧ F +A ∧ δA ∧ F) ∧ ?Q] ,

= 2
∫
Md

Tr [−δA ∧ dF ∧ ?Q− δA ∧A ∧ F ∧ d ? Q

+ δA ∧A ∧ F ∧ ?Q− δA ∧ F ∧A ∧ ?Q]

= −2
∫
Md

Tr [δA ∧ F ∧ d ? Q] , (A.13)

where the Bianchi identity has been used to obtain the last line. To sum it up,
the Yang-Mills equation with torsion (A.12) is the equation of motion of the action
functional

S ∝
∫
Md

Tr
[
F ∧ ?F + (−1)dF ∧ F ∧ ?Q

]
. (A.14)

Since for our cases of interest the torsion term vanishes, we will not consider the
second contribution of the above action functional in detail, even if we do not impose
the instanton equation from the very beginning.
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Remark. This thesis is only concerned with the evaluation of the BPS equation
(A.11), which is an algebraic condition on the curvature F implying the differential
equation (A.12). Equation (A.11) is conformally invariant for the metric cone and the
cylinder (see [34, Eq. (1.5)] for instance) so that we need not distinguish and usually
use both expressions interchangeably. However, due to the derivative, the Yang-Mills
equation (A.6) is not conformally equivalent and the difference between cylinder and
cone does matter, as is discussed, for example, in [33].

A.2 Instantons and Nahm’s equations

This section briefly reviews Nahm’s equations because their discussion by Donald-
son and Kronheimer yielded inspiration for the description of instantons on Calabi-
Yau cones [51]. Furthermore, the setting is closely related to the Sasaki-Einstein
3-manifolds SU(2)/Γ in [44], where the notion of Sasakian quiver gauge theories has
been introduced. The following exposition is based on the standard references [62,
111,112,131].

SU(2)-invariant connection. One considers R4 \{0} as metric cone over SU(2) ∼= S3

and studies the gauge connection

A = A0 ⊗ e0 +
3∑
i=1

Ai(r)⊗ ei, (A.15)

where the ei denote the usual left-invariant 1-forms on su(2) with structure equations
dei = εijke

j ∧ ek and the definition e0 := eτ := dr/r. The gauge connection (A.15)
is nothing else than the typical formulation (3.10) of equivariant connections on ho-
mogeneous spaces, where the base space here may be interpreted as trivial quotient
SU(2)/{1}, and which has also been considered in [44, Sec. 6]. The curvature of this
SU(2)-equivariant gauge connection reads

F =
3∑
i=1

([A0, Ai] + Ȧi)⊗ e0i + ([A1, A2] + 2A3)⊗ e12

+ ([A2, A3] + 2A1)⊗ e23 + ([A3, A1] + 2A2)⊗ e31, (A.16)

where we write Ȧi := d
dτAi with respect to the rescaled cone-coordinate τ := ln(r).

Evaluating the 4-dimensional instanton equations yields

Ȧ1 = −2A1 − [A0, A1]− [A2, A3],

Ȧ2 = −2A2 − [A0, A2]− [A3, A1],

Ȧ3 = −2A3 − [A0, A3]− [A1, A2]. (A.17)

The linear terms can be eliminated by rescalingBi = e2τAi and writing s(τ) := −1
2e−2τ

as in [111]. Setting B0 = 0, the system reduces to the famous Nahm’s equations
dBi
ds = −1

2εijk[Bj , Bk]. (A.18)
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They arise in the context of the Nahm transform for the construction of magnetic
monopoles [139], and they can also be considered as the gradient flow equations [112]
of

Ψ(B1, B2, B3) := 〈B1, [B2, B3]〉. (A.19)

The discussion of their moduli space is based on the gauge transformation [111]

B0 7→ Ad(g)B0 − dg
dsg
−1, Bj 7→ Ad(g)Bj , j = 1, 2, 3. (A.20)

Real and complex equation. After introducing the complex combinations α :=
1
2(B0 + iB1) and β := 1

2(B2 + iB3), the rescaled equations (A.17) take the form

d
dsβ + 2[α, β] = 0, (A.21a)

d
ds(α+ α†) + 2([α, α†] + [β, β†]) = 0, (A.21b)

where the first equation is referred to as complex equation and the second one as real
equation. Based on the gauge transformation (A.20), it is shown that the moduli space
(for suitable boundary conditions) can be described by coadjoint orbits of regular
triples of a Cartan subalgebra [111,112], where the real equation is solved as equation
of motion of the Lagrangian [111, Lem. 2.3]

L[g] =
∫
I
|α+ α†|2 + 2|β|2. (A.22)

The most general case is not only characterized by the regular triple, but also de-
pends on a second set of matrices, which lead to nilpotent varieties in the extreme
case studied in [131]. Both approaches can be promoted to Hermitian Yang-Mills
instantons on cones over generic Sasaki-Einstein manifolds [51,128].

Hyper-Kähler quotient. For comparison with the space of Sp(2)-instantons, it is
useful to recall that the flat manifold R4/Γ ∼= H/Γ admits a hyper-Kähler structure
with the three moment maps [62]

µ1 := [A0, A1] + [A2, A3], µ2 := [A0, A2] + [A3, A1],

µ3 := [A0, A3] + [A1, A2], (A.23)

or, in complex notation, µC := [α, β] and µR := [α, α†] + [β, β†]. Therefore, the
4-dimensional self-duality equations can be understood as the zero locus of a triplet
of moment maps, as explained in [62]. Including non-vanishing Fayet-Iliopoulos terms
Ξα in the three stability-like conditions of the HYM equations corresponds to defor-
mations of the complex structures and leads to Yang-Mills theory with sources, as
discussed in [113] for instance.

It is worth pointing out that the case of instantons on 4-dimensional hyper-Kähler
manifolds is rather special: the set of instanton equations consists of three conditions
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A Details on instantons

that can be equally well interpreted either as three holomorphicity or as the three
stability-like conditions, which are naturally related to moment maps. In higher
dimensions, however, as the study of the squashed seven-sphere and the discussion of
generic hyper-Kähler manifolds show, the three moment map conditions are already
implied by the three sets of holomorphicity conditions. They are not sufficient to
recover the instanton equations due to the higher dimension.
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B Details of the round seven-sphere

This appendix provides details on the Sasaki-Einstein geometry of S7 ∼= SU(4)/SU(3)
and explicit representations of the Lie group G = SU(4) which yield the quiver
diagrams discussed in the main text.

B.1 Geometry of SU(4)/SU(3)

The definition of the 1-forms in (4.7) and the flatness of the connection lead to the
structure equations

dΘ1 = −4iµ7e
7 ∧Θ1 + 2iµ8e

8 ∧Θ1 + ζ2
ζ1

Θ24̄ + ζ3
ζ1

Θ35̄,

dΘ2 = −4iµ7e
7 ∧Θ2 − iµ8e

8 ∧Θ2 − iµ9e
9 ∧Θ2 − ζ1

ζ2
Θ14 + ζ3

ζ2
Θ36̄,

dΘ3 = −4iµ7e
7 ∧Θ3 − iµ8e

8 ∧Θ3 + iµ9e
9 ∧Θ3 − ζ1

ζ3
Θ15 − ζ2

ζ3
Θ26,

de7 = − i
3µ7

(ζ2
1Θ11̄ + ζ2

2Θ22̄ + ζ2
3Θ33̄), (B.1a)

as well as

dΘ4 = −3iµ8e
8 ∧Θ4 − iµ9e

9 ∧Θ4 + ζ1ζ2Θ1̄2 + Θ56̄,

dΘ5 = −3iµ8e
8 ∧Θ5 + iµ9e

9 ∧Θ5 + ζ1ζ3Θ1̄3 −Θ46,

dΘ6 = 2iµ9e
9 ∧Θ6 + ζ2ζ3Θ2̄3 + Θ4̄5,

de8 = − i
6µ8

(−2ζ2
1Θ11̄ + ζ2

2Θ22̄ + ζ2
3Θ33̄ + 3Θ44̄ + 3Θ55̄),

de9 = − i
2µ9

(ζ2
2Θ22̄ − ζ2

3Θ33̄ + Θ44̄ −Θ55̄ − 2Θ66̄), (B.1b)

where the shorthand notation Θαβ := Θα ∧ Θβ etc. is applied. The values of the
parameters µ7 and ζi in (4.7) and (B.1) have to be fixed by the Sasaki-Einstein
geometry. From the closure of the Kähler form (4.8) one obtains

2i dΩ1,1 = r2
[(

ζ2
ζ1
− ζ1

ζ2

) (
Θ1̄24̄ −Θ12̄4

)
+
(
ζ2
ζ3
− ζ3

ζ2

) (
Θ23̄6 −Θ2̄36̄

)
(B.2)

+
(
ζ1
ζ3
− ζ3

ζ1

) (
Θ13̄5 −Θ1̄35̄

)
+
(
1− ζ2

3µ7

) (
Θ0 + Θ0̄

)
∧
(
Θ11̄ + Θ22̄ + Θ33̄

)]
,

where we have already used the condition ζ1 = ζ2 = ζ3 ≡ ζ, imposed by the first
terms, to simplify the last summand. The differential of the holomorphic 4-form
reads

dΩ4,0 = 4r4(1− 3µ7)Θ0̄ ∧Θ0 ∧Θ1 ∧Θ2 ∧Θ3, (B.3)

which leads to µ7 = 1
3 and therefore ζ2 = 1.
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B Details of the round seven-sphere

B.1.1 Vanishing of the torsion term

Let us show explicitly, without using the general theory, that upon imposing the
instanton equations (4.22) the torsion term F ∧ d ? Q in (2.11) vanishes. Because of
?7Q = (e12 + e34 + e56) ∧ e7 = ω ∧ e7, the differential is given by

d ?7 Q = d(ω ∧ e7) = 2ω ∧ ω = 4(e1234 + e1256 + e3456). (B.4)

Already using Fµ7 = 0 from (4.22), we obtain

F ∧ d ?7 Q = 4 [F12 + F34 + F56] e123456 = 0 , (B.5)

which indeed vanishes due to the instanton equations (4.22). The Chern-Simons term
in (2.12), without specializing to instanton solutions, reads

Tr(F ∧ F ∧ ?Q) = 4 Tr(F12F34 + F12F56 + F34F56 −F13F24 + F14F23

+ F14F23 −F15F26 + F16F25 −F35F46 + F36F45) e1 ∧ . . . ∧ e7. (B.6)

Imposing the instanton equations (4.22) turns (B.6) into

Tr(F ∧ F ∧ ?Q)|inst = −Tr
[
2(F2

12 + F2
34 + F2

56)

+ 4 (F2
13 + F2

14 + F2
15 + F2

16 + F2
35 + F2

36)
]
e1 ∧ . . . ∧ e7. (B.7)

B.2 Representations of SU(4)

This section contains the representations of SU(4) used in Section 4.3. We will always
work with the complexified version, i.e. representations of SL(4,C), whose represen-
tation theory is discussed in [108, Ch. 15] for instance.

The definition of the 1-forms in (4.7) has fixed the dual generators of the Lie algebra
su(4) in the fundametal representation:

I+
1 :=


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , I+
2 :=


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , I+
3 :=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

I+
4 :=


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , I+
5 :=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , I+
6 :=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , (B.8a)

with the other ladder operators defined by I−ᾱ = −
(
I+
α

)† for α = 1, . . . 6, and the
rescaled Cartan generators Ĩj := −iµ−1

j Ij :

Ĩ7 = diag(3,−1,−1,−1), Ĩ8 = diag(0, 2,−1,−1), Ĩ9 = diag(0, 0,−1, 1). (B.8b)

122



B.2 Representations of SU(4)

With respect to these generators the non-vanishing structure constants are given by

C4
84 = C5

85 = 3, C4
94 = 1, C5

95 = −1, C6
96 = −2, C8

44̄ = C8
55̄ = −1

2 , C
9
44̄ = −1

2 ,

C9
55̄ = 1

2 , C
9
66̄ = 1, C4

56̄ = −1, C5
46 = 1, C6

4̄5 = −1, C1
71 = C2

72 = C3
73 = 4,

C1
81 = −2, C2

82 = C3
83 = 1, C2

92 = 1, C3
93 = −1, C7

11̄ = C7
22̄ = C7

33̄ = −1
3 , C

8
11̄ = 1

3 ,

C8
22̄ = −1

6 , C
8
33̄ = −1

6 , C
9
22̄ = −1

2 , C
9
33̄ = 1

2 , C
1
24̄ = −1, C1

35̄ = −1, C2
14 = 1,

C2
36̄ = −1, C3

15 = 1, C3
26 = 1, C4

1̄2 = −1, C5
1̄3 = −1, C6

2̄3 = −1, (B.9)

as well as the conjugated ones Cαjα = −Cᾱjᾱ, C
γ
αβ = C γ̄

ᾱβ̄
and Cγ

αβ̄
= C γ̄ᾱβ for

α, β, γ = 1, . . . , 6 and j = 7, 8, 9. Expressing the complex forms Θα in (4.7) in terms
of real 1-forms would provide unitary generators I1, . . . , I15, as chosen in [70, Sec. 7]
for instance. Since we are always working in the holomorphic setup, it is convenient
to keep (B.8) here. The Killing form has the only non-vanishing contributions

Tr(I−ᾱ I+
α ) = −1, Tr(Ĩ7 Ĩ7) = 12, Tr(Ĩ8 Ĩ8) = 6, Tr(Ĩ9 Ĩ9) = 2, (B.10)

for α = 1, . . . 6, so that the (real) generators are orthogonal and the induced metric
on the coset space is indeed given by (piecewise) rescaling of the Killing form.

Denoting the quantum numbers with respect to the Cartan generators Ĩj by νj ,
the action of the ladder operators reads

I−1̄ : (ν7, ν8, ν9) 7−→ (ν7 − 4, ν8 + 2, ν9) , I−4̄ : (ν7, ν8, ν9) 7−→ (ν7, ν8 − 3, ν9 − 1) ,

I−2̄ : (ν7, ν8, ν9) 7−→ (ν7 − 4, ν8 − 1, ν9 − 1) , I−5̄ : (ν7, ν8, ν9) 7−→ (ν7, ν8 − 3, ν9 + 1) ,

I−3̄ : (ν7, ν8, ν9) 7−→ (ν7 − 4, ν8 − 1, ν9 + 1) , I−6̄ : (ν7, ν8, ν9) 7−→ (ν7, ν8, ν9 + 2) .
(B.11)

Consequently, the root system consists of the two triangular lattices

(−4,−1,1)

(−4,−1,−1)

(−4,2,0)

(0,0,2)

(0,−3,−1)

(0,−3,1)

I−1̄

I−3̄

I−2̄

I−6̄

I−4̄

I−5̄

(B.12)

Since the quiver diagrams in the main text are obtained by collapsing along the
ladder operators of SU(3), we stress the corresponding operators I−4̄ , I−5̄ , I−6̄ by de-
picting them as blue arrows. Using this root system, we will construct some SU(4)
representations, referring to [108] for details and a more systematic treatment.
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B Details of the round seven-sphere

B.2.1 Fundamental representation 4

The generators are those of the defining representation (B.8), and the weight diagram
is the tetrahedron

(−1,2,0)

(−1,−1,1)

(−1,−1,−1)

(3,0,0)

(B.13)

Under restriction to SU(3) it therefore decomposes into a trivial and a fundamen-
tal representation of the subalgebra and yields the quiver diagram (4.28) with two
vertices.

B.2.2 Representation 6

Due to the isomorphism SU(4) ∼= Spin(6) (or, on Lie algebra level, the coincidence
of the Dynkin diagrams A3 and D3) one has also a six-dimensional representation of
SU(4). By virtue of the root system (B.12) one can construct the weight diagram

(2,2,0)

(−2,1,1)

(−2,1,−1)(2,−1,−1)

(2,−1,1)

(−2,−2,0)

(B.14)

For a more detailed discussion of this octahedron, we again refer to [108, Ch. 15].
The Cartan generators read Ĩ7 = diag(2, 2, 2,−2,−2,−2), Ĩ8 = diag(2,−1,−1,−2, 1, 1)
and Ĩ9 = diag(0, 1,−1, 0, 1,−1), while the ladder operators take the form (with
α = 1, 2, 3 and β = 4, 5, 6)

I−ᾱ =

 03 03

I(α) 03

 , I(1) =


0 0 0
0 1 0
0 0 −1

 , I(2) =


0 1 0
0 0 0
1 0 0

 , I(3) =


0 0 −1
−1 0 0
0 0 0

 ,

I−
β̄

=

I(β)
1 03

03 I
(β)
2

 , I
(4)
1 =


0 0 0
0 0 0
−1 0 0

 , I(4)
2 =


0 −1 0
0 0 0
0 0 0

 , I(5)
1 =


0 0 0
−1 0 0
0 0 0

 ,

I
(5)
2 =


0 0 −1
0 0 0
0 0 0

 , I
(6)
1 =


0 0 0
0 0 −1
0 0 0

 , I
(6)
2 =


0 0 0
0 0 1
0 0 0

 , (B.15)

with I−ᾱ = −(I+
α )† and I−

β̄
= −(I+

β )†. Under restriction to SU(3) this diagram yields
the quiver (4.35) with two vertices, induced by the sum of fundamental and anti-
fundamental representation of SU(3).
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B.2 Representations of SU(4)

B.2.3 Representation 10

The weight diagram of the 10-dimensional representation is a tretrahedron of length
2, consisting of three layers of triangular SU(3) representations with fixed charges
ν7 ∈ {−2, 2, 6}:

(−2,4,0)(2,2,0)

(−2,1,1)

(−2,1,−1)

(6,0,0)

(2,−1,1)

(2,−1,−1)

(−2,−2,2)

(−2,−2,0)

(−2,−2,−2) (B.16)

An explicit realization of the Cartan generators is given by

Ĩ7 = diag(6, 2, 2, 2,−2,−2,−2,−2,−2,−2),

Ĩ8 = diag(0, 2,−1,−1, 4, 1, 1,−2,−2,−2),

Ĩ9 = diag(0, 0,−1, 1, 0,−1, 1, 0,−2, 2), (B.17a)

and the non-vanishing entries of the ladder operators I−ᾱ = −(I+
α )† may be chosen as(

I−1̄
)
2,1 =

√
2,

(
I−1̄
)
5,2 = −

√
2,

(
I−1̄
)
6,3 = −1,

(
I−1̄
)
7,4 = −1,(

I−2̄
)
3,1 =

√
2,

(
I−2̄
)
6,2 = −1,

(
I−2̄
)
9,3 = −

√
2,

(
I−2̄
)
8,4 = −1,(

I−3̄
)
4,1 =

√
2,

(
I−3̄
)
7,2 = −1,

(
I−3̄
)
8,3 = −1,

(
I−3̄
)
10,4 = −

√
2,(

I−4̄

)
3,2

= −1,
(
I−4̄

)
8,7

= −1,
(
I−4̄

)
6,5

= −
√

2,
(
I−4̄

)
9,6

= −
√

2,

(
I−5̄
)
4,2 = −1,

(
I−5̄
)
7,5 = −

√
2,

(
I−5̄
)
8,6 = −1,

(
I−5̄
)
10,7 = −

√
2,(

I−6̄
)
4,3 = −1,

(
I−6̄
)
7,6 = −1,

(
I−6̄
)
10,8 = −

√
2,

(
I−6̄
)
8,9 = −

√
2. (B.17b)

B.2.4 Representation 15

Based on the root system (B.12), one constructs the following weight diagram for the
15-dimensional adjoint representation:

(0, 0, 2)

(0,−3, 1) (−4,−1, 1) (4, 1, 1) (0, 3, 1)

(4,−2, 0) (0, 0, 0)3 (−4, 2, 0)

(0,−3,−1) (−4,−1,−1) (4, 1,−1) (0, 3,−1)

(0, 0,−2) (B.18)
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B Details of the round seven-sphere

The degeneracy of the arrows involving the origin is not indicated for a better readi-
bility of the diagram. This representation yields the decomposition

15|SU(3) = (0,0,2)8 ⊕ (4,1,1)3 ⊕ (−4,−1,1)3 ⊕ (0,0,0)1, (B.19)

and collapsing the weight diagram (B.18) along the ladder operators of h induces the
quiver (4.47).

B.2.5 Higgs fields for 6⊕ 4

As discussed in Section 3.2, the construction of quiver diagrams by collapsing the
generators of the complement m along the action of the ladder operators of h and
twisting the resulting matrices by bundle maps is more restrictive than the evaluation
of the equivariance condition (3.13) alone, for Sasakian coset spaces G/H. In the case
at hand, the equivariance condition requires (4.16), which is not sufficient to recast
the action according to (B.11) in general.

As discussed in the main text, for the adjoint representation 15 also an arrow
between fundamental and anti-fundamental representation of SU(3) in (4.47) would
be compatible with (4.16). Here we illustrate the same effect by considering the
reducible representation 6⊕ 4. If we stick to the construction of quiver bundles from
Section 3.1, which we follow in the main text, the resulting quiver will consist of the
known diagrams (4.28) and (4.35) for 6 and 4 separately since the G-action does not
intertwine them.

In constrast, let us start from the explicit form of the generators of h = su(3) in
the chosen representation 6⊕ 4 and then forget about their origin from su(4). Based
on the above representations, they take the form Ij = ⊕

l I
(l)
j × 1kl , and imposing

only (4.16) on the matrices Xµ ∈ u(k) is compatible with the quiver

(−2)3 (2)3

(−1)3 (3)1

ψ−2 ψ2

ψ−1 ψ3

ψχ−2

φ2

φ3

χ−1 χ3

(B.20)

which connects the two quiver diagrams for 4 and 6 by additional arrows, indicated
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B.2 Representations of SU(4)

as dashed lines. The endomorphisms therefore take the following block shape

φ(α) =


0 0 χ3 ⊗ Ĩ

(α)
3 0

φ2 ⊗ I
(α)
2 0 0 χ−1 ⊗ I

(α)
−1

0 χ−2 ⊗ I
(α)
−2 0 0

0 0 φ3 ⊗ I
(α)
3 0

 , (B.21)

where I(α)
2 and I(α)

3 are given by the matrices I(α) in (4.30) and (4.36). The further
contributions are defined as

Ĩ
(1)
3 = (1, 0, 0)T , Ĩ

(2)
3 = (0, 0, 1)T , Ĩ

(3)
3 = (0, 1, 0)T ,

I
(1)
−2 = (1, 0, 0)T , I

(2)
−2 = (0,−1, 0)T , I

(3)
−2 = (0, 0,−1)T ,

I
(1)
−1 =


0 0 0
0 0 1
0 −1 0

 , I
(2)
−1 =


0 0 1
0 0 0
1 0 0

 , I
(3)
−1 =


0 −1 0
−1 0 0
0 0 0

 . (B.22)

The vertical field reads

X7 =


ψ2 ⊗ 13 0 0 ψ ⊗ Ĩ

0 ψ−2 ⊗ 13 0 0
0 0 ψ3 0

−ψ† ⊗ Ĩ† 0 0 ψ−113

 with Ĩ =


1 0 0
0 0 1
0 1 0

 . (B.23)

Of course, under restriction to the action of the SU(4) generators, the additional
arrows are ruled out and the quiver (B.20) decomposes into two separate diagrams
since we consider, by construction, a reducible representation of G. As we have seen
in the main text, the possibility of additional contributions which are compatible
with the equivariance condition only appears for the sphere itself, since its orbifolds
impose a condition also with respect to I7 (cf. Section 4.4.2).

The Hermitian Yang-Mills equations for the gauge connection characterized by
(B.20) comprise the differential equations

φ̇2 = −4
3φ2 − iφ2ψ2 + iψ−2φ2 + iχ−1ψ

†, φ̇3 = −4
3φ3 − iφ3ψ−1 + iψ−1φ3 − iψ†χ3,

ψ̇2 = −6ψ2 + 4iφ†2φ2 − 2iχ3χ
†
3, ψ̇−1 = −6ψ−1 − 2iφ3φ

†
3 + 4iχ†−1χ−1,

ψ̇−2 = −6ψ−2 − 4iφ2φ
†
2 + 2iχ†−2χ−2 − 4iχ−1χ

†
−1,

ψ̇3 = −6ψ3 + 6iφ†3φ3 − 6iχ−2χ
†
−2 + 6iχ†3χ3, (B.24a)

as well as

χ̇3 = −4
3χ3 − iχ3ψ3 + iψ2χ3 + iψφ3, χ̇−1 = −4

3χ−1 − iχ−1ψ−1 + iψ−2χ−1 − iφ2ψ,

χ̇−2 = −4
3χ−2 − iχ−2ψ−2 + iψ3χ−2, ψ̇ = −6ψ − 2iχ3φ

†
3 + 4iφ†2χ−1. (B.24b)
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B Details of the round seven-sphere

Furthermore, one obtains the quiver relations

χ3χ−2 = 0, χ−2φ2 = 0, φ3χ−2 = 0, χ−2χ−1 = 0, φ2χ3 = −χ−1φ3. (B.24c)

As claimed before and as it is necessary, one can consistently set the additional maps
in (B.24b) to zero, and the flow equations (B.24a) then reduce to those of 4 and 6
separately. The algebraic relations (B.24c) motivate to set (at least) the arrow χ−2

to zero, on the level of instanton solutions.
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C Details of the space T 1,1

This appendix provides details on the geometric structure of T 1,1, the chosen rep-
resentations and some technical expressions for the field strength components of the
graded gauge connection.

C.1 Geometry of SU(2)× SU(2)/U(1)

By the choice of the forms in the Maurer-Cartan form (5.8) one obtains from the
flatness of the connection the following complex structure equations

dΘ1 = 2iκe5 ∧Θ1 + 2a ∧Θ1, dΘ2 = 2iκe5 ∧Θ2 − 2a ∧Θ2,

de5 = i
2κα

2
1Θ1 ∧Θ1̄ + i

2κα
2
2Θ2 ∧Θ2̄, da = −1

2α
2
1Θ1 ∧Θ1̄ + 1

2α
2
2Θ2 ∧Θ2̄. (C.1)

After introducing the third holomorphic form Θ0 := dτ − ie5 on the metric cone, the
Kähler form and top-degree form read

Ω1,1 := − i
2r

2(Θ00̄ + Θ11̄ + Θ22̄), Ω3,0 := r3Θ0 ∧Θ1 ∧Θ2. (C.2)

The vanishing of the differential of the Kähler form yields the condition

0 = (Θ0 + Θ0̄) ∧
[(

1 + α2
1

2κ

)
Θ11̄ +

(
1 + α2

2
2κ

)
Θ22̄

]
, (C.3)

and the closure of Ω3,0 requires

0 =
(
dτ + 4

3κie
5
)
∧Θ0 ∧Θ1 ∧Θ2, (C.4)

so that one obtains κ = −3
4 and α2

1 = α2
2 = 3

2 . Then the structure equations in terms
of the real 1-forms are given by

de1 = −3
2e

52 − 2ia ∧ e2, de2 = 3
2e

51 + 2ia ∧ e1,

de3 = −3
2e

54 + 2ia ∧ e4, de4 = 3
2e

53 − 2ia ∧ e3,

de5 = 2e12 + 2e34, da = −3
2 ie12 + 3

2 ie34. (C.5)

Curvature of the Levi-Civita connection. While the canonical connection (5.18)
was obtained by using the torsion components (5.17), the structure equations (C.5)
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C Details of the space T 1,1

yield for the Levi-Civita connection, i.e. Tµ ≡ 0, the connection matrix with the only
non-vanishing contributions

Γ1
2 = −1

2e
5 − 2ia, Γ1

5 = e2, Γ2
5 = −e1,

Γ3
4 = −1

2e
5 + 2ia, Γ3

5 = e4, Γ4
5 = −e3. (C.6)

They lead to the curvature components

R1
2 = 3e12 − 2e34 , R1

3 = −e24 , R1
4 = e23 , R1

5 = e15 R2
3 = e14 ,

R3
4 = −2e12 + 3e34 R2

4 = −e13 , R2
5 = e25 , R3

5 = e35 , R4
5 = e45 . (C.7)

Contraction over the indices gives us the Ricci-tensor Ric = 4 g and the scalar curva-
ture s = 20, as expected from the general result s = 2n(2n+ 1) on a Sasaki-Einstein
manifold of dimension 2n + 1. One also recognizes the known property that the
curvature (C.7) spans the entire Lie algebra so(5), i.e. has generic holonomy [54].

Vanishing of the torsion term. Similarly to Section B.1.1, the vanishing of the
torsion term in the generalized Yang-Mills equation (A.12) is easily verified. On T 1,1

one obtains ?5Q = ?5e
1234 = e5 and therefore d ?5 Q = 2ω = 2(e12 + e34). For

connections subject to the instanton equation (5.29), the torsion term is given by

d ?5 Q ∧ F = 2(e12 + e34) ∧ F = 4(F12 + F34) ∧ e1234 = 0 , (C.8)

analogously to (B.5). The Chern-Simons term in (2.12) on a five-dimensional Sasaki-
Einstein manifold reads

Tr (F ∧ F ∧ ?Q) = 2 Tr (F12F34 −F13F24 + F14F23) e12345, (C.9)

and imposing the instanton equations (5.29) turns it into

Tr (F ∧ F ∧ ?Q) = −2 Tr (F12F12 + F13F13 + F14F14) e12345. (C.10)

C.2 Representations of SU(2)× SU(2)

We construct representations of the Lie algebra of G = SU(2) × SU(2) by using
tensor products of single SU(2) representations. For the fundamental representation
of SU(2) we choose the Cartan generator and the two ladder operators

I+ =

0 1
0 0

 , I− =

 0 0
−1 0

 , I3 =

1 0
0 −1

 , (C.11)

with their usual commutation relations

[I3, I±] = ±2I±, [I+, I−] = −I3. (C.12)
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The above representation can be generalized to an irreducible representation of SU(2)
on Cm+1 for any positive m by using the generators

I+
(m) :=



0 γ0 0 . . . 0
0 0 γ1 . . . 0
...

...
... . . . ...

0 0 0 . . . γm−1

0 0 0 . . . 0


, I−(m) := −

(
I+
(m)

)†
(C.13)

and I3
(m) := diag(m,m−2, . . . ,−m+2,−m) with the definition γ2

i := (i+1)(m−i) for
i = 0, 1, . . . ,m− 1. For any pair of integers (m1,m2) a representation of SU(2)×SU(2)
on Cm1+1 ⊗ Cm2+1 is obtained by taking the tensor products

I
(1)
± := I±(m1) ⊗ 1m2+1, I

(1)
3 := I3

(m1) ⊗ 1m2+1,

I
(2)
± := 1m1+1 ⊗ I±(m2), I

(2)
3 := 1m1+1 ⊗ I3

(m2). (C.14)

For instance, in the fundamental representation of both SU(2) factors, the generators
read

I
(1)
+ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 = −
(
I

(1)
−

)†
, I

(2)
+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 = −
(
I

(2)
−

)†
,

I
(1)
3 = diag(1, 1,−1,−1), I

(2)
3 = diag(1,−1, 1,−1). (C.15)

These generators lead to the Higgs fields and equivariant connection (5.36) encoded
in the quiver diagram (5.36).

General Higgs fields. According to the discussion in the main text, without spe-
cializing to the G-action when considering the induced equivariant quiver bundle, the
condition (5.22) alone is compatible with more general arrows. For the representation
(1,1) one obtains

(0,0) (1,0)

(0,1) (1,1)

ψ01 ψ11

ψ00 ψ10

φ
(1)
10

φ
(2)
00

φ
(1)
11

φ
(2)
01

φ
(2)
11φ

(1)
10φ

(2)
01φ

(1)
01

(C.16)
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as the most general quiver diagram, where arrows not belonging to generators of
G = SU(2)× SU(2) are denoted as dashed lines. In particular, this quiver diagram
admits two different arrows between adjacent vertices and even a new transition
between (0, 0) and (1, 1) since only the relative quantum number ciα determines the
relations. Effectively, in terms of the relevant quantum number, one might even think
of a modified holomorphic chain with double arrows which is obtained by identifying
vertices along the diagonal lines. For details on more general Higgs fields see the
discussion in [47], which also includes the explicit example (2,1).

C.2.1 Projection operators

The discussion of the equivariance condition benefits from expressing the generator
I6 = I

(1)
3 − I(2)

3 of h on Ck by natural projection operators [43, 47] on Cm1+1 and
Cm2+1, respectively,

Πi : Cm1+1 −→ C , Πi = (δi,jδi,k)1≤j,k≤m1+1 , i = 0, 1, . . . ,m1,

Πα : Cm2+1 −→ C , Πα = (δα,βδα,γ)1≤α,γ≤m2+1 , α = 0, 1, . . . ,m2, (C.17)

where Latin indices always refer to the first copy of SU(2) and Greek indices to the
second copy. The projection from the tensor product Cm1+1⊗Cm2+1 to the component
with indices i and α is given by the operator

Πiα : Cm1+1 ⊗ Cm2+1 −→ C , Πiα := Πi ⊗Πα, (C.18)

and thus by the diagonal square matrix

Πiα =
(
δij δαβ δik δαγ

)j,k=0,1,...,m1
β,γ=0,1,...,m2

(C.19)

of size [(m1 + 1) (m2 + 1)]2. Furthermore, one introduces the operators

Π(1)
i :=

m2∑
α=0

Πiα = Πi ⊗
m1∑
α=0

Πα = Πi ⊗ 1m2+1 ,

Π(2)
α :=

m1∑
i=0

Πiα =
m1∑
i=0

Πi ⊗Πα = 1m1+1 ⊗Πα , (C.20)

which project on all components with a fixed value of the first or second index,
respectively. This yields a representation of the generators of the maximal torus of
SU(2)× SU(2) by the diagonal matrices

Υ(1) :=
m1∑
i=0

(m1 − 2i) Π(1)
i = I3

(m1) ⊗ 1m2+1 ,

Υ(2) :=
m2∑
α=0

(m2 − 2α) Π(2)
α = 1m1+1 ⊗ I3

(m2) . (C.21)

In particular, the Lie algebra h is generated by

I6 = Υ(1) −Υ(2) =
m1∑
i=0

m2∑
α=0

(m1 −m2 − 2i+ 2α) Πiα , (C.22)
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and we define the corresponding U(1)-charge ciα := m1−m2− 2i+2α. The action of
the ladder operators on the quantum numbers associated to I6 and I5 := I

(1)
3 + I

(2)
3

reads

I
(1)
+ : (ν5, ν6) 7−→ (ν5 + 2, ν5 + 2), I

(2)
+ : (ν5, ν6) 7−→ (ν5 + 2, ν6 − 2). (C.23)

C.3 Details graded connection

This section provides technical details for the discussion of quiver diagrams and in-
stantons for generic representations (m1,m2) which encode the graded gauge con-
nection (5.38). The non-vanishing parts of the field strength are given by

F iα,iα = dAiα,iα +Aiα,iα ∧ Aiα,iα +Ai α,i+1α ∧ Ai+1α,i α

+Ai α,i−1α ∧ Ai−1α,i α + Ai α,i α+1 ∧ Ai α+1,i α +Ai α,i α−1 ∧ Ai α−1,i α

= F iα +Dψiα ∧ e5

+
(
φ

(1)
i+1α φ

(1)
i+1α

† − φ(1) †
iα φ

(1)
iα − iψiα − 3

4 ciα 1kiα
)
Θ1 ∧Θ1̄

+
(
φ

(2)
i α+1 φ

(2)
i α+1

† − φ(2) †
iα φ

(2)
iα − iψiα + 3

4 ciα 1kiα
)
Θ2 ∧Θ2̄ , (C.24a)

F i α,i+1α = dAi α,i+1α +Aiα,iα ∧ Ai α,i+1α +Ai α,i+1α ∧ Ai+1α,i+1α

= Dφ
(1)
i+1α ∧Θ1̄ +

(
φ

(1)
i+1α ψi+1α − ψi αφ(1)

i+1α − 3i
2 φ

(1)
i+1α

)
Θ1̄ ∧ e5,

= −
(
F i+1α,i α

)†
, (C.24b)

F i α,i α+1 = dAi α,i α+1 +Aiα,iα ∧ Ai α,i α+1 +Ai α,i α+1 ∧ Ai α+1,i α+1

= Dφ
(2)
i α+1 ∧Θ2̄ +

(
φ

(2)
i α+1 ψi α+1 − ψiα φ(2)

i α+1 − 3i
2 φ

(2)
i α+1

)
Θ2̄ ∧ e5

= −
(
F i α+1,i α

)†
, (C.24c)

F i α,i+1α+1 = Ai α,i+1α ∧ Ai+1α,i+1α+1 +Ai α,i α+1 ∧ Ai α+1,i+1α+1

=
(
φ

(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

)
Θ1̄2̄ = −

(
F i+1α+1,i α

)†
, (C.24d)

F i α,i+1α−1 = Ai α,i+1α ∧ Ai+1α,i+1α−1 +Ai α,i α−1 ∧ Ai α−1,i+1α−1

=
(
φ

(2)†
iα φ

(1)
i+1α−1 − φ

(1)
i+1α φ

(2)
i+1α

)
Θ1̄2 = −

(
F i+1α−1,i α

)†
. (C.24e)

In order to express the Lagrangian FMN FMN in terms of the homomorphisms, one
recalls g = δµν e

µ ⊗ eν = Θ1 ⊗Θ1̄ + Θ2 ⊗Θ2̄ + e5 ⊗ e5 and obtains

FMN FMN = FabFab + 4gab (Fa1Fb1̄ + Fa1̄Fb1 + Fa2Fb2̄ + Fa2̄Fb2) + 2gabFa5Fb5
+ 8 (F11̄F1̄1 + F12F1̄2̄ + F12̄F1̄2 + F1̄2F12̄ + F1̄2̄F12 + F22̄F2̄2)

+ 4 (F15F1̄5 + F1̄5F15 + F25F2̄5 + F2̄5F25) . (C.25)

Inserting the above curvature components (C.24) leads to the action functional (5.40).
Moreover, imposing the instanton equations (5.31) on the explicit components of the
field strength yields the flow equations and quiver relations discussed in Section 5.3.3.
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D Details of the squashed seven-sphere

This appendix collects technical aspects related to the discussion of 3-Sasakian quiver
gauge theories on the squashed seven-sphere. In particular, we provide some details
on the Sp(2)-instanton equations and the representations of Sp(2) used for the quiver
diagrams in Section 6.3.

D.1 Geometry of Sp(2)/Sp(1)

In terms of complex forms, the structure equations for the Lie algebra of Sp(2),
induced by the flatness of the connection (6.7), read

dΘ1 = −ie7 ∧Θ1 + ie8 ∧Θ1 −Θ2̄3 + Θ24̄, dΘ2 = −ie7 ∧Θ2 − ie8 ∧Θ2 + Θ1̄3 −Θ14,

dΘ3 = −2ie7 ∧Θ3 − 2 Θ12, dΘ4 = −2ie8 ∧Θ4 + 2 Θ1̄2,

de7 = −i
(
Θ11̄ + Θ22̄ + Θ33̄), de8 = i

(
Θ11̄ −Θ22̄ −Θ44̄) . (D.1)

They yield the non-vanishing structure constants

C1
71 = −C 1̄

71̄ = 1 , C2
72 = −C 2̄

72̄ = 1 , C3
73 = −C 3̄

73̄ = 2 , C1
81 = −C 1̄

81̄ = −1 ,

C2
82 = −C 2̄

82̄ = 1 , C4
84 = −C 4̄

84̄ = 2 , C 1̄
23̄ = C1

2̄3 = 1 , C1
24̄ = C 1̄

2̄4 = −1 ,

C3
12 = C 3̄

1̄2̄ = 2 , C2
14 = C 2̄

1̄4̄ = 1 , C2
1̄3 = C 2̄

13̄ = −1 , C4
1̄2 = C 4̄

12̄ = −2 ,

C7
11̄ = C7

22̄ = C7
33̄ = −1 , C8

11̄ = −C8
22̄ = 1 , C8

44̄ = −1 (D.2)

with respect to the Cartan generators rescaled by a factor of −i.

3-Sasakian property. To show that the coset space Sp(2)/Sp(1) is 3-Sasakian, one
can use, equivalently to the definition applied in Section 6.1, that its metric cone
must be hyper-Kähler. Introducing again a fourth holomorphic form

Θ0 := dr
r
− ie7 , (D.3)

the metric cone is Calabi-Yau due to the closure of the forms

Ω1,1 := − i
2 r

2 (Θ11̄ + Θ22̄ + Θ33̄ + Θ00̄) and Ω4,0 := r4 Θ1230 . (D.4)

For the holonomy to be further reduced from SU(4) to Sp(2), one additionally requires
the closure of the complex symplectic form [4, 27]

Ω2,0 := r2
(
Θ12 + Θ30) , (D.5)

which follows from the structure equations (D.1) as well.
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Vanishing of the torsion term. Also for the 3-Sasakian structure of Sp(2)/Sp(1)
the vanishing of the torsion term F ∧ d ?7 Q in (2.11) for instanton solutions can be
verified easily. Using the result Q = e1234 and the structure equations (6.10a), we
obtain

d ?7 Q = d(e567) = 2ω5 ∧ e67 − 2ω6 ∧ e57 + 2ω7 ∧ e56

= 2(−e13 + e24) ∧ e67 + 2(e14 + e23) ∧ e57 + 2(e12 + e34) ∧ e56. (D.6)

Therefore, the torsion term for instanton solutions, obeying (6.17), indeed vanishes:

(d ?7 Q) ∧ F = 2e1234 ∧
[
(F24 −F13)e67 + (F23 + F14)e57 + (F12 + F34)e56

]
= 0.
(D.7)

The second contribution in the action functional (2.12) is given by

Tr (F ∧ F ∧ ?Q) = 2 Tr (F12F34 −F13F24 + F14F23) e1 ∧ . . . ∧ e7, (D.8)

and imposing the instanton equations (6.17) yields

Tr (F ∧ F ∧ ?Q)|inst = −2 Tr (F12F12 + F13F13 + F14F14) e1 ∧ . . . ∧ e7. (D.9)

D.2 Details of Sp(2) instantons

This section provides some lengthy expressions for Sp(2) instantons on the hyper-
Kähler cone over the squashed seven-sphere. The evaluation of the three sets of
holomorphicity conditions, F2,0 = 0 with respect to Jα for α = 5, 6, 7, yields

Ω5 : F14 = −F23, F12 = −F34, F17 = F36, F16 = −F37,

F26 = F47, F27 = −F46, F1τ = −F35, F2τ = F45,

F3τ = F15, F4τ = −F25, F6τ = −F57, F7τ = F56, (D.10a)

Ω6 : F12 = −F34, F13 = F24, F15 = F47, F17 = −F45,

F25 = F37, F27 = −F35, F1τ = −F46, F2τ = −F36,

F3τ = F26, F4τ = F16, F5τ = F67, F7τ = F56, (D.10b)

Ω7 : F13 = F24, F14 = −F23, F15 = F26, F16 = −F25,

F35 = F46, F36 = −F45, F1τ = F27, F2τ = −F17,

F3τ = F47, F4τ = −F37, F5τ = F67, F6τ = −F57. (D.10c)

These expressions show that the holomorphicity conditions with respect to any two
Kähler forms already imply the third set and, moreover, also the three stability-like
conditions,

Ω5 F = −F13 + F24 + F67 + Fτ5 = 0 , (D.11a)

Ω6 F = −F14 −F23 −F57 + Fτ6 = 0 , (D.11b)

Ω7 F = F12 + F34 + F56 + Fτ7 = 0 . (D.11c)
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For our choice of the fundamental forms (6.12b) defining the 3-Sasakian geometry,
the 4-form QZ (2.21) which enters the generalized self-duality equation (2.10) on the
cylinder reads

QZ = e1234 + eτ567 + 1
3(e67 + eτ5) ∧ (−e13 + e24) + 1

3(e75 + eτ6) ∧ (−e14 − e23)

+ 1
3(e56 + eτ7) ∧ (e12 + e34). (D.12)

The explicit evaluation of F = −F ∧ ?8QZ actually yields the same conditions as
the three systems of holomorphicity conditions (D.10), which explicitly proves the
equivalence of both approaches claimed in Section 6.2.4.

We now demonstrate sufficiency of taking into account only the differential equa-
tions (6.25a) for the horizontal Higgs fields and the algebraic conditions (6.25c).
Considering X5, without loss of generality, one obtains from the algebraic conditions
and the flow equations (6.25a)

4Ẋ5 = [Ẋ1, X3] + [X1, Ẋ3]− [Ẋ2, X4]− [X2, Ẋ4]

= [−X1, X3] + [−[X2, X7], X3] + [X1,−X3] + [X1,−[X4, X7]]

− [−X2, X4]− [[X1, X7], X4]− [X2,−X4]− [X2, [X3, X7]]

= −2([X1, X3]− [X2, X4]) + [[X3, X2], X7]− [[X1, X4], X7]

= −8X5 − 4[X6, X7], (D.13)

where we have used the Jacobi identity. It reproduces indeed the flow equation
(6.25b). Therefore, it is sufficient to study the system (6.25a), interpreting (6.25c) as
definition of the three vertical Higgs fields.

We note that the Sp(2)-instanton equations (D.10) on the metric cone contain the
usual four-dimensional self-duality conditions (6.17a) and those of the 3-Sasakian base
Sp(2)/Sp(1) as well. The canonical connection (6.16) of the 3-Sasakian manifold lifts
to an instanton on the metric cone.

D.2.1 Instanton equations on generic hyper-Kähler cones

Because of the general formulation of the torsion components of the canonical connec-
tion on 3-Sasakian manifolds in [19,20], one can easily derive the instanton equations
on the cones over generic 3-Sasakian manifoldsM4m+3 [34,128]. With the conventions
of [19] for the Kähler forms, i.e.

Ω1 = r2
m∑
i=0

(
e4i ∧ e4i+1 + e4i+2 ∧ e4i+3

)
, Ω2 = r2

m∑
i=0

(
e4i ∧ e4i+2 − e4i+1 ∧ e4i+3

)
,

Ω3 = r2
m∑
i=0

(
e4i ∧ e4i+3 + e4i+1 ∧ e4i+2

)
, (D.14)
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the flow equations read [34,128]

Ẋ4j = −X4j + [X1, X4j+1] = −X4j + [X2, X4j+2] = −X4j + [X3, X4j+3],

Ẋ4j+1 = −X4j+1 − [X1, X4j ] = −X4j+1 − [X2, X4j+3] = −X4j+1 + [X3, X4j+2],

Ẋ4j+2 = −X4j+2 + [X1, X4j+3] = −X4j+2 − [X2, X4j ] = −X4j+2 − [X3, X4j+1],

Ẋ4j+3 = −X4j+3 − [X1, X4j+2] = −X4j+3 + [X2, X4j+1] = −X4j+3 − [X3, X4j ],
(D.15)

for j = 1, . . . ,m. In addition, one obtains the algebraic conditions

4δijX1 = −[X4i, X4j+1]− [X4i+2, X4j+3] = −[X4i, X4j+1]− [X4j+2, X4i+3],

4δijX2 = −[X4i, X4j+2] + [X4i+1, X4j+3] = −[X4i, X4j+2] + [X4j+1, X4i+3],

4δijX3 = −[X4i, X4j+3]− [X4i+1, X4j+2] = −[X4i, X4j+3]− [X4j+1, X4i+2], (D.16a)

and

[X4i, X4j+1] = [X4j , X4i+1], [X4i+2, X4j+3] = [X4j+2, X4i+3],

[X4i, X4j+2] = [X4j , X4i+2], [X4i+1, X4j+3] = [X4j+1, X4i+3],

[X4i, X4j+3] = [X4j , X4i+3], [X4i+1, X4j+2] = [X4j+1, X4i+2], (D.16b)

as well as

[X4i, X4j ] = [X4i+1, X4j+1] = [X4i+2, X4j+2] = [X4i+3, X4j+3] (D.16c)

for i, j = 1, . . . ,m. Again, differentiating the algebraic conditions (D.16a) yields the
correct flow equations for the vertical Higgs fields,

Ẋα = −2Xα − 1
2ε

βγ
α [Xβ, Xγ ]. (D.17)

In the above equations, the SU(2)-symmetry of the vertical Higgs fields and the
quaternionic symmetry of the 4m-dimensional base are manifest. The equations show
that the case of m = 0, i.e. 4-dimensional hyper-Kähler instantons, is rather special
because then only the conditions (D.17) have to be solved and the challenges due
to the non-trivial algebraic conditions do not occur. As already pointed out in Ap-
pendix A.2, the three instanton equations can be equivalently interpreted either as
holomorphicity or as moment map conditions [62] in that case. One should bear in
mind that in four dimensions the definitions of being Calabi-Yau and hyper-Kähler
coincide because of Sp(1) ∼= SU(2).

D.3 Representations of Sp(2)

This section collects the representations of Sp(2) which have been employed in the
main text. By the choice of the basis 1-forms in (6.7), the corresponding generators
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read

I+
1 =


0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0

 , I+
2 =


0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

 , I+
3 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

I+
4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , Ĩ7 = diag(1,−1, 0, 0), Ĩ8 = diag(0, 0,−1, 1), (D.18)

with I−ᾱ := −(I+
α )† for α = 1, . . . 4 and Ĩj := −iIj for j = 7, 8. The Killing form

B(X,Y ) ∝ Tr(XY ) yields for these generators the only non-vanishing combinations

Tr (I−1̄ I+
1 ) = Tr (I−2̄ I+

2 ) = −2, Tr (I−3̄ I+
3 ) = Tr (I−4̄ I+

4 ) = −1,

Tr (I7 I7) = Tr (I8 I8) = −2, (D.19)

and the induced metric g = ∑7
µ=1 e

µ ⊗ eµ on the coset space is therefore given by
the (rescaled) Killing form, according to [129, Thm. 4]. The generators act on states
in the weight diagram, labeled by their quantum numbers (ν7, ν8) with respect to Ĩ7
and Ĩ8, as follows

I−1̄ : (ν7, ν8) 7−→ (ν7 − 1, ν8 + 1) , I−2̄ : (ν7, ν8) 7−→ (ν7 − 1, ν8 − 1) ,

I−3̄ : (ν7, ν8) 7−→ (ν7 − 2, ν8) , I−4̄ : (ν7, ν8) 7−→ (ν7, ν8 − 2) , (D.20)

which is encoded in the root system

(−1,1)

(−2,0)

(−1,−1)

(0,−2)

I−1̄

I−3̄
I−2̄ I−4̄

(D.21)

In the following, we will collect some low-dimensional representations of the Lie al-
gebra of Sp(2) constructed from the root system (D.21). For more details and a
systematic description, we again refer to [108].
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D.3.1 Representation 4

The generators of Sp(2) in the fundamental representation 4 (denoted as Γ1,0 in [108])
are given by (D.18) and yield the diamond

(1,0)

(0,1)

(−1,0)

(0,−1) (D.22)

as weight diagram. Consequently, the representation decomposes under restriction to
the subgroup Sp(1) as

4|Sp(1) = (−1,0)1 ⊕ (0,−1)2 ⊕ (1,0)1 (D.23)

and induces the quiver diagram (6.32).

General Higgs fields. Analogously to (C.16) and (B.20), we also comment on the
most general form of the matrices Xµ ∈ u(k) which are compatible with the equivari-
ance conditions (6.19) alone, i.e. without the restriction to generators of G. Starting
from theH-representation on the right-hand side of (D.23), forgetting about its origin
as restriction of a G-representation, we obtain the most general Higgs fields

φ(1) =


0 0 φ2 0
0 0 φ0 0
0 0 0 0
φ1 φ3 0 0

 , φ(2) =


0 0 0 −φ2

0 0 0 −φ0

φ1 φ3 0 0
0 0 0 0

 , Xα =


ψα1 −χα† 0 0
χα ψα−1 0 0
0 0 ψα0 0
0 0 0 ψα0


for α = 5, 6, 7. The quiver diagram is given by

(1)1(−1)1

(0)2

φ1

φ3φ2

φ4

χα

ψα1ψα−1

ψα0 (D.24)

containing more contributions than the corresponding ladder operators of Sp(2) and
the quiver (6.32). Plugging these Higgs fields into the instanton equations on the
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hyper-Kähler cone yields

φ̇2 = −φ2 − (φ†1ψ5
0 − ψ5

1 + χ†5φ
†
3) = −φ2 + i(φ†1ψ6

0 − ψ6
1 + χ†6φ

†
3),

= −φ2 − i(φ2ψ
7
0 − ψ7

1φ2 + χ†7φ0),

φ̇0 = −φ0 − (φ†3ψ5
0 − χ5φ

†
1 − ψ

5
−1φ

†
3) = −φ0 + i(φ†3ψ6

0 − χ6φ
†
1 − ψ

6
−1φ

†
3),

= −φ0 − i(φ0ψ
7
0 − χ7φ0 − ψ7

−1φ0),

φ̇1 = −φ1 − (−φ†2ψ5
1 − φ

†
0χ5 + ψ5

0φ
†
2) = −φ1 + i(−φ†2ψ6

1 − φ
†
0χ6 + ψ6

0φ
†
2),

= −φ1 − i(φ1ψ
7
1 + φ3χ7 − ψ7

0φ1),

φ̇3 = −φ3 − (φ†2χ
†
5 − φ

†
0ψ

5
−1 + ψ5

0φ0) = −φ3 + i(φ†2χ
†
5 − φ

†
0ψ

5
−1 + ψ5

0φ0),

= −φ3 − i(−φ1χ
†
7 + φ3ψ

7
−1 − ψ7

0φ3) , (D.25)

where we kept the real form of the vertical Higgs fields Xα to emphasize their
SU(2)-symmetry. The algebraic conditions for this case read

iψ7
1 = φ2φ

†
2 − φ

†
1φ1, iψ7

−1 = φ0φ
†
0 − φ

†
3φ3, χ7 = 0,

2iψ7
0 = φ1φ

†
1 + φ3φ

†
3 − φ

†
2φ2 − φ†0φ0, ψ5

0 − iψ6
0 = −φ1φ2 − φ3φ0,

ψ5
1 − iψ6

1 = 2φ2φ1, ψ5
−1 − iψ6

−1 = 2φ0φ3,

χ5 − iχ6 = 2φ0φ1, χ†5 − iχ†6 = −2φ2φ3 (D.26)

and they again imply the flow equations for the vertical fields. Recall that the orbifold
case requires also an equivariance condition with respect to I7, which uniquely leads
to the quiver (6.32) and the resulting instanton equations in the main text.

D.3.2 Representation 5

Due to the isomorphism sp(2) ∼= so(5), the Lie algebra of Sp(2) admits also a five-
dimensional representation (denoted as Γ0,1 in [108]) with the square

(0,0)

(1,1)(−1,1)

(−1,−1) (1,−1) (D.27)
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as weight diagram. A concrete choice for the representation of the generators is given
by

I−1̄ =


0 0

√
2 0 0

0 0 0 0 0
0 0 0 0 −

√
2

0 0 0 0 0
0 0 0 0 0

 , I−2̄ =


0 0 0 0 0
0 0

√
2 0 0

0 0 0 −
√

2 0
0 0 0 0 0
0 0 0 0 0

 , I−3̄ =


0 0 0 −1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

I−4̄ =


0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

 , Ĩ7 = diag (−1,−1, 0, 1, 1) , Ĩ8 = diag (1,−1, 0, 1,−1) .

(D.28)

This representation yields the splitting

5|Sp(1) = (−1,−1)2 ⊕ (0,0)1 ⊕ (1,−1)2, (D.29)

which gives rise to the quiver diagram (6.39).

D.3.3 Representation 10

The 10-dimensional adjoint representation (also referred to as Γ2,0 in [108]) of Sp(2)
is described by the weight diagram

(0,0)2

(1,1)

(0,2)

(−1,1)

(−2,0)

(−1,−1)

(0,−2)

(1,−1)

(0,2)

(D.30)

where the double-headed arrows represent two arrows involving the degenerate origin.
This representation admits the decomposition

10|Sp(1) = (−2,0)1 ⊕ (−1,−1)2 ⊕ (0,−2)3 ⊕ (0,0)1 ⊕ (1,−1)2 ⊕ (2,0)1. (D.31)

The explicit realization of the generators is either obtained by the structure constants
with respect to the real 1-forms e1, . . . , e10 (with a suitable rescaling such that the
structure constants become completely antisymmetric) or can be constructed from
scratch using the weight diagram (D.30). The latter approach yields, for instance,
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the choice

(I−1̄ )1,2 = −
√

2, (I−1̄ )2,4 = −
√

2, (I−1̄ )3,5 = −1, (I−1̄ )3,7 = −1,

(I−1̄ )5,8 = 1, (I−1̄ )6,9 = −
√

2, (I−1̄ )7,8 = 1, (I−1̄ )9,10 = −
√

2,

(I−2̄ )1,3 =
√

2, (I−2̄ )2,5 = 1, (I−2̄ )2,7 = −1, (I−2̄ )3,6 = −
√

2,

(I−2̄ )4,8 =
√

2, (I−2̄ )5,9 = 1, (I−2̄ )7,9 = −1, (I−2̄ )8,10 = −
√

2,

(I−3̄ )1,7 =
√

2, (I−3̄ )1,8 = −1, (I−3̄ )3,9 = −1, (I−3̄ )7,10 = −
√

2,

(I−4̄ )2,3 = −1, (I−4̄ )4,5 = −
√

2, (I−4̄ )5,6 =
√

2, (I−4̄ )8,9 = −1, (D.32a)

with I+
α = −(I−ᾱ )† for α = 1, . . . , 4 and the Cartan generators

Ĩ7 = diag(−2,−1,−1, 0, 0, 0, 0, 1, 1, 2),

Ĩ8 = diag(0,−1, 1,−2, 0, 2, 0,−1, 1, 0). (D.32b)

D.3.4 Representation 14

The 14-dimensional representation (also known as Γ0,2) of Sp(2) is described by the
weight diagram

(2,2)(0,2)(−2,2)

(1,1)(−1,1)

(2,0)(0,0)2(−2,0)

(1,−1)(−1,−1)

(2,−2)(0,−2)(−2,−2) (D.33)

and the decomposition under restriction to the subgroup Sp(1) reads

14|Sp(1) = (−2,−2)3 ⊕ (−1,−1)2 ⊕ (0,−2)3 ⊕ (0,0)1 ⊕ (1,−2)2 ⊕ (2,−2)3. (D.34)

The non-vanishing components of an explicit choice for the generators read

(I−1̄ )2,4 = −
√

2, (I−1̄ )3,5 = −2, (I−1̄ )4,6 = −
√

2, (I−1̄ )5,7 = −1, (I−1̄ )5,9 = −
√

5,

(I−1̄ )7,10 = 1, (I−1̄ )8,11 = −
√

2, (I−1̄ )9,10 =
√

5, (I−1̄ )11,12 = −2, (I−1̄ )11,13 = −
√

2,

(I−2̄ )1,4 = −2, (I−2̄ )2,5 = −
√

2, (I−2̄ )4,7 = 1, (I−2̄ )4,9 = −
√

5, (I−2̄ )5,8 = −
√

2,

(I−2̄ )6,10 =
√

2, (I−2̄ )7,11 = 1, (I−2̄ )9,11 = −
√

5, (I−2̄ )10,13 =
√

2, (I−2̄ )11,14 = −2,

(I−3̄ )1,6 = −
√

2, (I−3̄ )2,7 = −
√

2, (I−3̄ )3,8 =
√

2, (I−3̄ )4,10 = 1,

(I−3̄ )5,11 = 1, (I−3̄ )6,12 =
√

2, (I−3̄ )7,13 =
√

2, (I−3̄ )8,14 =
√

2,

(I−4̄ )1,2 = −
√

2, (I−4̄ )2,3 = −
√

2, (I−4̄ )4,5 = −1, (I−4̄ )6,7 = −
√

2,

(I−4̄ )7,8 =
√

2, (I−4̄ )10,11 = −1, (I−4̄ )12,13 = −
√

2, (I−4̄ )13,14 =
√

2, (D.35a)
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with I+
α = −(I−ᾱ )† and the two Cartan generators

Ĩ7 = diag(−2,−2,−2,−1,−1, 0, 0, 0, 0, 1, 1, 2, 2, 2) ,

Ĩ8 = diag(−2, 0, 2,−1, 1,−2, 0, 2, 0,−1, 1,−2, 0, 2) . (D.35b)

The decomposition under the subgroup H is given by (6.48) and leads to the quiver
diagram (6.49).
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This appendix contains details related to the 3-Sasakian quiver gauge theory on X1,1.
Since the instanton equations coincide with those on the squashed seven-sphere and
only the weight diagrams of the well-known Lie group SU(3) are necessary, this part
is significantly shorter than Appendix D discussing Sp(2)/Sp(1).

E.1 Geometry of SU(3)/U(1)1,1

The choice of the 1-forms in (7.6) yields the structure equations

dΘ1 = −ie7 ∧Θ1 +
√

3ie8 ∧Θ1 −Θ2̄3, dΘ2 = −ie7 ∧Θ2 −
√

3ie8 ∧Θ2 + Θ1̄3,

dΘ3 = −2ie7 ∧Θ3 − 2Θ12, de7 = −i(Θ11̄ + Θ22̄ + Θ33̄),

de8 =
√

3i(Θ11̄ −Θ22̄), (E.1)

and the non-vanishing structure constants read [27]

C1
32̄ = −C2

31̄ = −1 = −C 1̄
23̄ = C 2̄

13̄, C3
12 = 2 = C 3̄

1̄2̄,

C1
71 = C2

72 = 1 = −C 1̄
71̄ = −C 2̄

72̄, C3
73 = 2 = −C 3̄

73̄,

C1
81 = −C2

82 = −
√

3 = −C 1̄
81̄ = C 2̄

82̄, C3
83 = 0 = C 3̄

83̄,

C7
11̄ = C7

22̄ = C7
33̄ = −1, C8

11̄ = −C8
22̄ =

√
3, (E.2)

with respect to the Cartan generators I7 and I8 rescaled by a factor of −i.

The conventions here follow [27], but for a detailed geometric description, including
the Killing spinors, it is worth consulting [53, Ch. 4.4] as well.

E.2 Representations of SU(3)

In this section we briefly describe the SU(3) representations studied in the main text.
Since the subgroup H = U(1) is just a circle, there is no collapsing of the weight
diagrams, and arrows compatible with the G-action can occur for any non-zero entry
in the ladder operators. Therefore, it is sufficient to identify the non-vanishing entries
from the weight diagrams, without the need of determining the numerical coefficients,
in contrast to the procedure for SU(4) or Sp(2).
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By the definition of the 1-forms in (7.6), the ladder generators in the defining
representation read

I+
1 =

√
2


0 0 0
0 0 0
1 0 0

 , I+
2 =

√
2


0 1 0
0 0 0
0 0 0

 , I+
3 =


0 0 0
0 0 0
0 1 0

 , (E.3a)

with I−ᾱ = −(I+
α )† for α = 1, 2, 3, and the two Cartan generators are given by

Ĩ7 := −iI7 = diag(0,−1, 1), Ĩ8 := −i
√

3I8 = diag(2,−1,−1). (E.3b)

The Killing form admits the only non-vanishing contributions

Tr(I+
1 I
−
1̄ ) = Tr(I+

2 I
−
2̄ ) = Tr(I7I7) = Tr(I8I8) = −2, Tr(I+

3 I
−
3̄ ) = −1, (E.4)

which corresponds to (D.19). In particular, this confirms the 3-Sasakian metric used
in the main text, by virtue of [129, Thm. 4]. The generators act in the weight
diagrams as

I−1̄ : (ν7, ν8) 7−→ (ν7 − 1, ν8 + 3) , I−2̄ : (ν7, ν8) 7−→ (ν7 − 1, ν8 − 3) ,

I−3̄ : (ν7, ν8) 7−→ (ν7 − 2, ν8) , (E.5)

which is depicted in the root system

(−1,3)

(−2,0)

(−1,−3)

I−1̄

I−3̄

I−2̄

(E.6)

The notation of the ladder operators relevant for the arrows in the quiver diagrams
is the same as for Sp(2) in (D.21), so that the quiver diagrams will have the same
shape.

E.2.1 Fundamental Representation

The fundamental representation, defined by the generators (E.3), yields the weight
diagram

(−1,−1)

(0,2)

(1,−1) (E.7)

and gives rise to the quiver (7.18).
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E.2.2 Representation 6

The 6-dimensional representation of SU(3) determines the weight diagram

(−2,−2)

(−1,1)

(0,−2)

(0,4)

(1,1)

(2,−2) (E.8)

which induces the quiver (7.23).

E.2.3 Adjoint representation 8

The adjoint representation is described by the weight diagram

(1,−3)(−1,−3)

(2,0)(0,0)2(−2,0)

(1,3)(−1,3)

(E.9)

Since SU(3) has rank two, the origin of this diagram is twice degenerate, and we use
double-headed arrows as shorthand notation. This representation yields the quiver
diagram (7.25).
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