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ZUSAMMENFASSUNG

Die Resultate, die in dieser Arbeit vorgestellt werden, lassen sich im Wesentlichen zwei
Forschungsrichtungen in der Stringtheorie zuordnen: Nichtantikommutative Feldtheorie
sowie Twistorstringtheorie.

Nichtantikommutative Deformationen von Superrdumen entstehen auf natiirliche Wei-
se bei Typ II Superstringtheorie in einem nichttrivialen Graviphoton-Hintergrund, und
solchen Deformationen wurde in den letzten zwei Jahren viel Beachtung geschenkt. Zu-
néchst konzentrieren wir uns auf die Definition der nichtantikommutativen Deformation
von N = 4 super Yang-Mills-Theorie. Da es fiir die Wirkung dieser Theorie keine Super-
raumformulierung gibt, weichen wir statt dessen auf die dquivalenten constraint equations
aus. Wahrend der Herleitung der deformierten Feldgleichungen schlagen wir ein nichtan-
tikommutatives Analogon zu der Seiberg-Witten-Abbildung vor.

Eine nachteilige Eigenschaft nichantikommutativer Deformationen ist, dass sie Super-
symmetrie teilweise brechen (in den einfachsten Fillen halbieren sie die Zahl der erhal-
tenen Superladungen). Wir stellen in dieser Arbeit eine sog. Drinfeld-Twist-Technik vor,
mit deren Hilfe man supersymmetrische Feldtheorien derart reformulieren kann, dass die
gebrochenen Supersymmetrien wieder manifest werden, wenn auch in einem getwisteten
Sinn. Diese Reformulierung erméglicht es, bestimmte chirale Ringe zu definieren und
ergibt supersymmetrische Ward-Takahashi-Identitéaten, welche von gewohnlichen super-
symmetrischen Feldtheorien bekannt sind. Wenn man Seibergs naturalness argument,
welches die Symmetrien von Niederenergie-Wirkungen betrifft, auch im nichtantikom-
mutativen Fall zustimmt, so erhélt man Nichtrenormierungstheoreme selbst fiir nichtan-
tikommutative Feldtheorien.

Im zweiten und umfassenderen Teil dieser Arbeit untersuchen wir detailliert geome-
trische Aspekte von Supertwistorrdumen, die gleichzeitig Calabi-Yau-Supermannigfal-
tigkeiten sind und dadurch als target space fiir topologische Stringtheorien geeignet sind.
Zunichst stellen wir die Geometrie des bekanntesten Beispiels fiir einen solchen Super-
twistorraum, (DP3|4, vor und fihren die Penrose-Ward-Transformation, die bestimmte
holomorphe Vektorbiindel tiber dem Supertwistorraum mit Losungen zu den N = 4
supersymmetrischen selbstdualen Yang-Mills-Gleichungen verbindet, explizit aus. An-
schlieBend diskutieren wir mehrere dimensionale Reduktionen des Supertwistorraumes
CP?* und die implizierten Verénderungen an der Penrose-Ward-Transformation.

Fermionische dimensionale Reduktionen bringen uns dazu, exotische Supermannig-
faltigkeiten, d.h. Supermannigfaltigkeiten mit zusétzlichen (bosonischen) nilpotenten Di-
mensionen, zu studieren. Einige dieser Rdume konnen als target space fiir topologische
Strings dienen und zumindest beziiglich des Satzes von Yau fiigen diese sich gut in das
Bild der Calabi-Yau-Supermannigfaltigkeiten ein.

Bosonische dimensionale Reduktionen ergeben die Bogomolny-Gleichungen sowie Ma-
trixmodelle, die in Zusammenhang mit den ADHM- und Nahm-Gleichungen stehen.
(Tatséchlich betrachten wir die Supererweiterungen dieser Gleichungen.) Indem wir bes-
timmte Terme zu der Wirkung dieser Matrixmodelle hinzufiigen, kénnen wir eine kom-
plette Aquivalenz zu den ADHM- und Nahm-Gleichungen erreichen. Schliefilich kann
die natiirliche Interpretation dieser zwei Arten von BPS-Gleichungen als spezielle D-
Branekonfigurationen in Typ IIB Superstringtheorie vollstiandig auf die Seite der topo-
logischen Stringtheorie iibertragen werden. Dies fiihrt zu einer Korrespondenz zwischen
topologischen und physikalischen D-Branesystemen und eréffnet die interessante Perspek-
tive, Resultate von beiden Seiten auf die jeweils andere iibertragen zu kénnen.






ABSTRACT

There are two major topics within string theory to which the results presented in this
thesis are related: non-anticommutative field theory on the one hand and twistor string
theory on the other hand.

Non-anticommutative deformations of superspaces arise naturally in type II super-
string theory in a non-trivial graviphoton background and they have received much at-
tention over the last two years. First, we focus on the definition of a non-anticommutative
deformation of A/ = 4 super Yang-Mills theory. Since there is no superspace formulation
of the action of this theory, we have to resort to a set of constraint equations defined on

‘16, which are equivalent to the N' = 4 super Yang-Mills equations. In

the superspace IR;{L
deriving the deformed field equations, we propose a non-anticommutative analogue of the
Seiberg-Witten map.

A mischievous property of non-anticommutative deformations is that they partially
break supersymmetry (in the simplest case, they halve the number of preserved super-
charges). In this thesis, we present a so-called Drinfeld-twisting technique, which allows
for a reformulation of supersymmetric field theories on non-anticommutative superspaces
in such a way that the broken supersymmetries become manifest even though in some
sense twisted. This reformulation enables us to define certain chiral rings and it yields su-
persymmetric Ward-Takahashi-identities, well-known from ordinary supersymmetric field
theories. If one agrees with Seiberg’s naturalness arguments concerning symmetries of
low-energy effective actions also in the non-anticommutative situation, one even arrives
at non-renormalization theorems for non-anticommutative field theories.

In the second and major part of this thesis, we study in detail geometric aspects
of supertwistor spaces which are simultaneously Calabi-Yau supermanifolds and which
are thus suited as target spaces for topological string theories. We first present the
geometry of the most prominent example of such a supertwistor space, CP3*, and make
explicit the Penrose-Ward transform which relates certain holomorphic vector bundles
over the supertwistor space to solutions to the A/ = 4 supersymmetric self-dual Yang-Mills
equations. Subsequently, we discuss several dimensional reductions of the supertwistor
space CP?* and the implied modifications to the Penrose-Ward transform.

Fermionic dimensional reductions lead us to study exotic supermanifolds, which are
supermanifolds with additional even (bosonic) nilpotent dimensions. Certain such spaces
can be used as target spaces for topological strings, and at least with respect to Yau’s
theorem, they fit nicely into the picture of Calabi-Yau supermanifolds.

Bosonic dimensional reductions yield the Bogomolny equations describing static mo-
nopole configurations as well as matrix models related to the ADHM- and the Nahm
equations. (In fact, we describe the superextensions of these equations.) By adding cer-
tain terms to the action of these matrix models, we can render them completely equivalent
to the ADHM and the Nahm equations. Eventually, the natural interpretation of these
two kinds of BPS equations by certain systems of D-branes within type IIB superstring
theory can completely be carried over to the topological string side via a Penrose-Ward
transform. This leads to a correspondence between topological and physical D-brane sys-
tems and opens interesting perspectives for carrying over results from either sides to the
respective other one.
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CHAPTER 1

INTRODUCTION

I.1 High-energy physics and string theory

Today, there are essentially two well-established approaches to describing fundamental
physics, both operating in different regimes: Einstein’s theory of General Relativity?,
which governs the dynamics of gravitational effects on a large scale from a few millimeters
to cosmological distances and the framework called quantum field theory, which incorpo-
rates the theory of special relativity into quantum mechanics and captures phenomena

0~'9m. In particular, there is the quantum

at scales from a fraction of a millimeter to 1
field theory called the standard model of elementary particles, which is a quantum gauge
theory with gauge group SU(3) x SU(2) x U(1) and describes the electromagnetic, the
weak and the strong interactions on equal footing. Although this theory has already been
developed between 1970 and 1973, it still proves to be overwhelmingly consistent with
the available experimental data today.

Unfortunately, a fundamental difference between these two approaches is disturbing
the beauty of the picture. While General Relativity is a classical description of spacetime
dynamics in terms of the differential geometry of smooth manifolds, the standard model
has all the features of a quantum theory as e.g. uncertainty and probabilistic predictions.
One might therefore wonder whether it is possible or even necessary to quantize gravity.

The first question for the possibility of quantizing gravity is already not easy to
answer. Although promoting supersymmetry to a local symmetry almost immediately
yields a classical theory containing gravity, the corresponding quantum field theory is
non-renormalizable. That is, an infinite number of renormalization conditions is needed
at the very high energies near the Planck scale and the theory thus looses all its predictive
power?. Two remedies to this problem are conceivable: either to assume that there are
additional degrees of freedom between the standard model energy scale and the Planck
scale or to assume some underlying dependence of the infinite number of renormalization
conditions on a finite subset?.

Today, there are essentially two major approaches to quantizing gravity, which are
believed to overcome the above mentioned shortcoming: string theory, which trades the
infinite number of renormalization conditions for an infinite tower of higher-spin gauge
symmetries, and the so-called loop quantum gravity approach [242]. As of now, it is not
even clear whether these two approaches are competitors or merely two aspects of the
same underlying theory. Furthermore, there is no help to be expected from experimental
input since on the one hand, neither string theory nor loop quantum gravity have yielded
any truly verifiable (or better: falsifiable) results so far and on the other hand there is

Yor more appropriately: General Theory of Relativity
It is an amusing thought to imagine that supergravity was indeed the correct theory and therefore
nature was in principle unpredictable.

3See also the discussion in http://golem.ph.utexas.edu/~distler/blog/archives/000639.html.



16 Introduction

simply no quantitative experimental data for any kind of quantum gravity effect up to
now.

The second question of the need for quantum gravity is often directly answered posi-
tively, due to the argument given in [93] which amounts to a violation of uncertainty if a
classical gravitational field is combined with quantum fields®. This line of reasoning has,
however, been challenged until today, see e.g. [52], and it seems to be much less powerful
than generally believed.

There is another reason for quantizing gravity, which is, however, of purely aesthe-
tical value: A quantization of gravity would most likely allow for the unification of all
the known forces within one underlying principle. This idea of unification of forces dates
back to the electro-magnetic unification by James Clerk Maxwell, was strongly supported
by Hermann Weyl and Albert Einstein and found its present climax in the electroweak
unification by Abdus Salam and Steven Weinberg. Furthermore, there is a strong argu-
ment which suggest that quantizing gravity makes unification or at least simultaneous
quantization of all other interactions unavoidable from a phenomenological point of view:
Because of the weakness of gravity compared to the other forces there is simply no decou-
pling regime which is dominated by pure quantum gravity effects and in which all other
particle interactions are negligible.

Unification of General Relativity and the standard model is difficult due to the fun-
damental difference in the ways both theories describe the world. In General Relativity,
gravitational interactions deform spacetime, and reciprocally originate from such defor-
mations. In the standard model, interactions arise from the exchange of messenger par-
ticles. It is furthermore evident that in order to quantize gravity, we have to substitute
spacetime by something more fundamental, which still seems to be completely unknown.

Although the critical superstring theories, which are currently the only candidate for
a unified description of nature including a quantum theory of gravity, still do not lead
to verifiable results, they may nevertheless be seen as a guiding principle for studying
General Relativity and quantum field theories. For this purpose, it is important to find
string/gauge field theory dualities, of which the most prominent example is certainly
the AdS/CFT correspondence [187]. These dualities provide a dictionary between cer-
tain pairs of string theories and gauge theories, which allows to perform field theoretic
calculations in the mathematically often more powerful framework of string theory.

The recently proposed twistor string theory [297] gives rise to a second important
example of such a duality. It has been in its context that string theoretical methods
have led for the first time® to field theoretic predictions, which would have been almost
impossible to make with state-of-the-art quantum field theoretical® technology.

As a large part of this thesis will be devoted to studying certain aspects of this
twistor string theory, let us present this theory in more detail. Twistor string theory was
introduced in 2003 by Edward Witten [297] and is essentially founded on the marriage

4Tt is argued that if measurement by a gravitational wave causes a quantum mechanical wave function
to collapse then the uncertainty relation can only be preserved if momentum conservation is violated. On
the other hand, if there is no collapse of the wave function, one could transmit signals faster than with
light.

5 Another string inspired prediction of real-world physics has arisen from the computation of shear
viscosity via AdS/CFT-inspired methods in [224].

50ne might actually wonder about the perfect timing of the progress in high energy physics: These
calculations are needed for the interpretation of the results at the new particle accelerator at CERN,
which will start collecting data in 2007.
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of Calabi-Yau and twistor geometry in the supertwistor space CP34. Both of these
geometries will therefore accompany most of our discussion.

Calabi-Yau manifolds are complex manifolds which have a trivial first Chern class.
They are Ricci-flat and come with a holomorphic volume element. The latter property
allows to define a Chern-Simons action on these spaces, which will play a crucial role
throughout this thesis. Calabi-Yau manifolds naturally emerge in string theory as candi-
dates for internal compactification spaces. In particular, topological strings of B-type — a
subsector of the superstrings in type IIB superstring theory — can be consistently defined
on spaces with vanishing first Chern number only and their dynamics is then governed
by the above-mentioned Chern-Simons theory.

Twistor geometry, on the other hand, is a novel description of spacetime, which was
introduced in 1967 by Roger Penrose [216]. Although this approach has found many
applications in both General Relativity and quantum theory, it is still rather unknown
in the mathematical and physical communities and it has only been recently that new
interest was sparked among string theorists by Witten’s seminal paper [297]. Interestingly,
twistor geometry was originally designed as a unified framework for quantum theory and
gravity, but so far, it has not yielded significant progress in this direction. Its value in
describing various aspects of field theories, however, keeps growing.

Originally, Witten showed that the topological B-model on the supertwistor space

7 D5-superbranes is equivalent to N = 4

CP3* in the presence of n “almost space-filling
self-dual Yang-Mills theory. By adding D1-instantons, one can furthermore complete the
self-dual sector to the full N' = 4 super Yang-Mills theory. Following Witten’s paper,
various further target spaces for twistor string theory have been considered as well [231),
4, 244] 215, 104, 298, 63, 229, [64], which lead, e.g., to certain dimensional reductions
of the supersymmetric self-dual Yang-Mills equations. There has been a vast number of
publications dedicated to apply twistor string theory to determining scattering amplitudes
in ordinary and supersymmetric gauge theories (see e.g. [I81] and [234] for an overview),
but only half a year after Witten’s original paper, disappointing results appeared. In
[31], it was discovered that it seems hopeless to decouple conformal supergravity from
the part relevant for the description of super Yang-Mills theory in twistor string theory
already at one-loop level. Therefore, the results for gauge theory loop amplitudes are
mostly obtained today by “gluing together” tree level amplitudes.

Nevertheless, research on twistor string theory continued with a more mathematically
based interest. As an important example, the usefulness of Calabi-Yau supermanifolds
in twistor string theory suggests an extension of the famous mirror conjecture to super-
geometry. This conjecture states that Calabi-Yau manifolds come in pairs of families,
which are related by a mirror map. There is, however, a class of such manifolds, the
so-called rigid Calabi-Yau manifolds, which cannot allow for an ordinary mirror. A reso-
lution to this conundrum had been proposed in [259], where the mirror of a certain rigid
Calabi-Yau manifold was conjectured to be a supermanifold. Several publications in this
direction have appeared since, see [167, 4, 24, 238, 3] and references therein.

Returning now to the endeavor of quantizing gravity, we recall that it is still not known
what ordinary spacetime should exactly be replaced with. The two most important exten-
sions of spacetime discussed today are certainly supersymmetry and noncommutativity.
The former extension is a way to avoid a severe restriction in constructing quantum
field theories: An ordinary bosonic symmetry group, which is nontrivially combined with

"a restriction on the fermionic worldvolume directions of the D-branes



18 Introduction

the Poincaré group of spacetime transformations renders all interactions trivial. Since
supersymmetry is a fermionic symmetry, this restriction does not apply and we can ex-
tend the set of interesting theories by some particularly beautiful ones. Furthermore,
supersymmetry seems to be the ingredient to make string theory well-defined. Although,
supersymmetry preserves the smooth underlying structure of spacetime and can be nicely
incorporated into the quantum field theoretic framework, there is a strong hint that this
extension is a first step towards combining quantum field theory with gravity: As stated
above, we naturally obtain a theory describing gravity by promoting supersymmetry to
a local symmetry. Besides being in some cases the low-energy limit of certain string
theories, it is believed that this so-called supergravity is the only consistent theory of an
interacting spin %—particle, the superpartner of the spin 2 graviton.

Nevertheless, everything we know today about a possible quantum theory of gravity
seems to tell us that a smooth structure of spacetime described by classical manifolds can
not persist to arbitrarily small scales. One rather expects a deformation of the coordinate
algebra which should be given by relations like

[24,2Y] ~ ©" and {0%,0°} ~ C*F

for the bosonic and fermionic coordinates of spacetime. The idea of bosonic deformations
of spacetime coordinates can in fact be traced back to work by H. S. Snyder in 1947
[263]. In the case of fermionic coordinates, a first model using a deformed coordinate
algebra appeared in [249]. Later on, it was found that both deformations naturally arise
in various settings in string theory.

So far, mostly the simplest possible deformations of ordinary (super)spaces have been
considered, i.e. those obtained by constant deformation parameters ©** and C*? on flat
spacetimes. The non-(anti)commutative field theories defined on these deformed spaces
revealed many interesting features, which are not common to ordinary field theories.
Further hopes, as e.g. that noncommutativity could tame field theoretic singularities have
been shattered with the discovery of UV /IR mixing in amplitudes within noncommutative
field theories.

The fact that such deformations are unavoidable for studying nontrivial string back-
grounds have kept the interest in this field alive and deformations have been applied to
a variety of theories. For N’ = 4 super Yang-Mills theory, the straightforward superspace
approach broke down, but by considering so-called constraint equations, which live on
an easily deformable superspace, also this theory can be rendered non-anticommutative,
and we will discuss this procedure in this thesis.

Among the most prominent recent discoveries®

in noncommutative geometry is cer-
tainly the fact that via a so-called Drinfeld twist, one can in some sense undo the defor-
mation. More explicitly, Lorentz invariance is broken to some subgroup by introducing a
nontrivial deformation tensor ©#*¥. The Drinfeld twist, however, allows for a recovering
of a twisted Lorentz symmetry. This regained symmetry is important for discussing fun-
damental aspects of noncommutative field theory as e.g. its particle content and formal
questions like the validity of Haag’s theorem. In this thesis, we will present the applica-
tion of a similar twist in the non-anticommutative situation and regain a twisted form of
the supersymmetry, which had been broken by non-anticommutativity. This allows us to
carry over several useful aspects of supersymmetric field theories to non-anticommutative
ones.

8or better: “recently recalled discoveries”
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I.2 Epistemological remarks

String theory is certainly the physical theory which evokes the strongest emotions among
professional scientists. On the one hand, there are the advocates of string theory, never
tired of stressing its incredible inherent beauty and the deep mathematical results arising
from it. On the other hand, there are strong critics, who point out that so far, string
theory had not made any useful predictions” and that the whole endeavor had essentially
been a waste of money and brain power, which had better been spent on more down-
to-earth questions. For this reason, let us briefly comment on string theory from an
epistemological point of view.

The epistemological model used implicitly by today’s physics community is a mixture
of rationalism and empiricism as both doctrines by themselves have proven to be insuf-
ficient in the history of natural sciences. The most popular version of such a mixture is
certainly Popper’s critical rationalism [232], which is based on the observation that no
finite number of experiments can verify a scientific theory but a single negative outcome
can falsify it. For the following discussion we will adopt this point of view.

Thus, we assume that there is a certain pool of theories, which are in an evolutionary
competition with each other. A theory is permanently excluded from the pool if one of
its predictions contradicts an experimental result. Theories can be added to this pool if
they have an equal or better predictive power as any other member of this pool. Note
that the way these models are created is — contrary to many other authors — of no
interest to Popper. However, we have to restrict the set of possible theories, which we are
admitting in the pool: only those, which can be experimentally falsified are empirical and
thus of direct scientific value; all other theories are metaphysicallV. One can therefore
state that when Pauli postulated the existence of the neutrino which he thought to be
undetectable, he introduced a metaphysical theory to the pool of competitors and he was
aware that this was a rather inappropriate thing to do. Luckily, the postulate of the
existence of the neutrino became an empirical statement with the discovery of further
elementary forces and the particle was finally discovered in 1956. Here, we have therefore
the interesting example of a metaphysical theory, which became an empirical one with
improved experimental capabilities.

In Popper’s epistemological model, there is furthermore the class of self-immunizing
theories. These are theories, which constantly modify themselves to fit new experimental
results and therefore come with a mechanism for avoiding being falsified. According
to Popper, these theories have to be discarded altogether. He applied this reasoning
in particular to dogmatic political concepts like e.g. Marxism and Plato’s idea of the
perfect state. At first sight, one might count supersymmetry to such self-immunizing
theories: so far, all predictions for the masses of the superpartners of the particles in
the standard model were falsified which resulted in successive shifts of the postulated
supersymmetry breaking scales out of the reach of the then up-to-date experiments.
Besides self-immunizing, the theory even becomes “temporarily metaphysical” in this
way. However, one has to take into account that it is not supersymmetry per se which is
falsified, but the symmetry breaking mechanisms it can come with. The variety of such
imaginable breaking mechanisms remains, however, a serious problem.

9Tt is doubtful that these critics would accept the exception of twistor string theory, which led to new
ways of calculating certain gauge theory amplitudes.

0Contrary to the logical positivism, Popper attributes some meaning to such theories in the process
of developing new theories.
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When trying to put string theory in the context of the above discussed framework,
there is clearly the observation that so far, string theory has not made any predictions
which would allow for a falsification. At the moment, it is therefore at most a “temporarily
metaphysical” theory. Although it is reasonable to expect that with growing knowledge
of cosmology and string theory itself, many predictions of string theory will eventually
become empirical, we cannot compare its status to the one of the neutrino at the time
of its postulation by Pauli, simply for the reason that string theory is not an actually
fully developed theory. So far, it appears more or less as a huge collection of related and
interwoven ideas!! which contain strong hints of being capable of explaining both the
standard model and General Relativity on equal footing. But without any doubt, there
are many pieces still missing for giving a coherent picture; a background independent
formulation — the favorite point brought regularly forth by advocates of loop quantum
gravity — is only one of the most prominent ones.

The situation string theory is in can therefore be summarized in two points. First,
we are clearly just in the process of developing the theory; it should not yet be officially
added to our competitive pool of theories. For the development of string theory, it is both
necessary and scientifically sound to use metaphysical guidelines as e.g. beauty, consis-
tency, mathematical fertility and effectiveness in describing the physics of the standard
model and General Relativity. Second, it is desirable to make string theory vulnerable
to falsification by finding essential features of all reasonable string theories. Epistemo-
logically, this is certainly the most important task and, if successful, would finally turn
string theory into something worthy of being called a fully physical theory.

Let us end these considerations with an extraordinarily optimistic thought: It could
also be possible that there is only one unique theory, which is consistent with all we
know so far about the world. If this were true, we could immediately abandon most of
the epistemological considerations made so far and turn to a purely rationalistic point of
view based on our preliminary results about nature so far. That is, theories in our pool
would no longer be excluded from the pool by experimental falsification but by proving
their mathematical or logical inconsistency with the need of describing the standard model
and General Relativity in certain limits. This point of view is certainly very appealing.
However, even if our unreasonably optimistic assumption was true, we might not be able
to make any progress without the help of further experimental input.

Moreover, a strong opposition is forming against this idea, which includes surprisingly
many well-known senior scientists as e.g. Leonard Susskind [266] and Steven Weinberg
[286]. In their approach towards the fundamental principles of physics, which is known
as the landscape, the universe is divided into a statistical ensemble of sub-universes,
each with its own set of string compactification parameters and thus its own low-energy
effective field theory. Together with the anthropic principle’?, this might explain why our
universe actually is as it is. Clearly, the danger of such a concept is that questions which
might in fact be answerable by physical principles can easily be discarded as irrelevant
due to anthropic reasoning.

1Eor convenience sake, we will label this collection of ideas by string theory, even though this nomen-
clature is clearly sloppy.

12 . . . . . . ..
Observers exist only in universes which are suitable for creating and sustaining them.
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1.3 Outline

In this thesis, the material is presented in groups of subjects, and it has been mostly
ordered in such a way that technical terms are not used before a definition is given. This,
however, will sometimes lead to a considerable amount of material placed between the
introduction of a concept and its first use. By adding as many cross-references as possible,
an attempt is made to compensate for this fact.

Definitions and conventions which are not introduced in the body of the text, but
might nevertheless prove to be helpful, are collected in appendix A.

The thesis starts with an overview of the necessary concepts in complex geometry.
Besides the various examples of certain complex manifolds as e.g. flag manifolds and
Calabi-Yau spaces, in particular the discussion of holomorphic vector bundles and their
description in terms of Dolbeault and Cech cohomologies is important.

It follows a discussion about basic issues in supergeometry. After briefly review-
ing supersymmetry, which is roughly speaking the physicist’s name for a Zs-grading,
an overview of the various approaches to superspaces is given. Moreover, the new re-
sults obtained in [244] on exotic supermanifolds are presented here. These spaces are
supermanifolds endowed with additional even nilpotent directions. We review the ex-
isting approaches for describing such manifolds and introduce an integration operation
on a certain class of them, the so-called thickened and fattened complex manifolds. We
furthermore examine the validity of Yau’s theorem for such exotic Calabi-Yau supermani-
folds, and we find, after introducing the necessary tools, that the results fit nicely into the
picture of ordinary Calabi-Yau supermanifolds which was presented in [239]. We close
the chapter with a discussion of spinors in arbitrary dimensions during which we also fix
all the necessary reality conditions used throughout this thesis.

The next chapter deals with the various field theories which are vital for the fur-
ther discussion. It starts by recalling elementary facts on supersymmetric field theories,
in particular their quantum aspects as e.g. non-renormalization theorems. It follows a
discussion of super Yang-Mills theories in various dimensions and their related theories
as chiral or self-dual subsectors and dimensional reductions thereof. The second group
of field theories that will appear in the later discussion are Chern-Simons-type theories
(holomorphic Chern-Simons theory and holomorphic BF-theories), which are introduced
as well. Eventually, a few remarks are made about certain aspects of conformal field
theories which will prove useful in what follows.

The aspects of string theory entering into this thesis are introduced in the following
chapter. We give a short review on string theory basics and superstring theories before
elaborating on topological string theories. One of the latter, the topological B-model,
will receive much attention later due to its intimate connection with holomorphic Chern-
Simons theory. We will furthermore need some background information on the various
types of D-branes which will appear naturally in the models on which we will focus our
attention. We close this chapter with a few rather general remarks on several topics in
string theory.

Noncommutative deformations of spacetime and the properties of field theories defined
on these spaces is the topic of the next chapter. After a short introduction, we present
the result of [245], i.e. the non-anticommutative deformation of ' = 4 super Yang-Mills
equations using an equivalent set of constraint equations on the superspace R*16. The
second half of this chapter is based on the publication [136], in which the analysis of [57] on
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a Lorentz invariant interpretation of noncommutative spacetime was extended to the non-
anticommutative situation. This Drinfeld-twisted supersymmetry allows for carrying over
various quantum aspects of supersymmetric field theories to the non-anticommutative
situation.

The following chapter on twistor geometry constitutes the main part of this thesis.
After a detailed introduction to twistor geometry, integrability and the Penrose-Ward
transform, we present in four sections the results of the publications [228| 244 229, 243].

First, the Penrose-Ward transform using supertwistor spaces is discussed in complete
detail, which gives rise to an equivalence between the topological B-model and thus
holomorphic Chern-Simons theory on the supertwistor space CP3* and N = 4 self-dual
Yang-Mills theory. While Witten [297] has motivated this equivalence by looking at the
field equations of these two theories on the linearized level, the publication [228] analyzes
the complete situation to all orders in the fields. We furthermore scrutinize the effects of
the different reality conditions which can be imposed on the supertwistor spaces.

This discussion is then carried over to certain exotic supermanifolds, which are simul-
taneously Calabi-Yau supermanifolds. We report here on the results of [244], where the
possibility of using exotic supermanifolds as a target space for the topological B-model
was examined. After restricting the structure sheaf of Cpilt by combining an even num-
ber of Grafimann-odd coordinates into Grafimann-even but nilpotent ones, we arrive at
Calabi-Yau supermanifolds, which allow for a twistor correspondence with further spaces
having R* as their bodies. Also a Penrose-Ward transform is found, which relates holo-
morphic vector bundles over the exotic Calabi-Yau supermanifolds to solutions of bosonic
subsectors of N’ = 4 self-dual Yang-Mills theory.

Subsequently, the twistor correspondence as well as the Penrose-Ward transform are
presented for the case of the mini-supertwistor space, a dimensional reduction of the
N = 4 supertwistor space discussed previously. This variant of the supertwistor space
C P31 has been introduced in [63], where it has been shown that twistor string theory with
the mini-supertwistor space as a target space is equivalent to N' = 8 super Yang-Mills
theory in three dimensions. Following Witten [297], D1-instantons were added here to
the topological B-model in order to complete the arising BPS equations to the full super
Yang-Mills theory. Here, we consider the geometric and field theoretic aspects of the same
situation without the D1-branes as done in [229]. We identify the arising dimensional
reduction of holomorphic Chern-Simons theory with a holomorphic BF-type theory and
describe a twistor correspondence between the mini-supertwistor space and its moduli
space of sections. Furthermore, we establish a Penrose-Ward transform between this
holomorphic BF-theory and a super Bogomolny model on R3. The connecting link in this
correspondence is a partially holomorphic Chern-Simons theory on a Cauchy-Riemann
supermanifold which is a real one-dimensional fibration over the mini-supertwistor space.

While the supertwistor spaces examined so far naturally yield Penrose-Ward trans-
forms for certain self-dual subsectors of super Yang-Mills theories, the superambitwistor
space £56 introduced in the following section as a quadric in CcpP33 x cp3B yields an
analogue equivalence between holomorphic Chern-Simons theory on £°/% and full N = 4
super Yang-Mills theory. After developing this picture to its full extend as given in [22§],
we moreover discuss in detail the geometry of the corresponding dimensional reduction
yielding the mini-superambitwistor space £46.

The Penrose-Ward transform built upon the space £416 yields solutions to the N' = 8
super Yang-Mills equations in three dimensions as was shown in [243]. We review the con-
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struction of this new supertwistor space by dimensional reduction of the superambitwistor
space £°1% and note that the geometry of the mini-superambitwistor space comes with
some surprises. First, this space is not a manifold, but only a fibration. Nevertheless, it
satisfies an analogue to the Calabi-Yau condition and therefore might be suited as a target
space for the topological B-model. We conjecture that this space is the mirror to a cer-
tain mini-supertwistor space. Despite the strange geometry of the mini-superambitwistor
space, one can translate all ingredients of the Penrose-Ward transform to this situation
and establish a one-to-one correspondence between generalized holomorphic bundles over
the mini-superambitwistor space and solutions to the N' = 8 super Yang-Mills equations
in three dimensions. Also the truncation to the Yang-Mills-Higgs subsector can be con-
veniently described by generalized holomorphic bundles over formal sub-neighborhoods of
the mini-ambitwistor space.

We close this chapter with a presentation of the ADHM and the Nahm constructions,
which are intimately related to twistor geometry and which will allow us to identify
certain field theories with D-brane configurations in the following.

The next to last chapter is devoted to matrix models. We briefly recall basic aspects
of the most prominent matrix models and introduce the new models, which were studied
in [176]. In this paper, we construct two matrix models from twistor string theory: one
by dimensional reduction onto a rational curve and another one by introducing noncom-
mutative coordinates on the fibres of the supertwistor space P3* — CP'. Examining the
resulting actions, we note that we can relate our matrix models to a recently proposed
string field theory. Furthermore, we comment on their physical interpretation in terms
of D-branes of type IIB, critical A/ = 2 and topological string theory. By extending one
of the models, we can carry over all the ingredients of the super ADHM construction to
a D-brane configuration in the supertwistor space P3* and establish a correspondence
between a D-brane system in ten dimensional string theory and a topological D-brane
system. The analogous correspondence for the Nahm construction is also established.

After concluding in the last chapter, we elaborate on the remaining open questions
raised by the results presented in this thesis and mention several directions for future
research.

1.4 Publications
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CHAPTER 11

CoMPLEX GEOMETRY

In this chapter, we review the basic notions of complex geometry, which will be heavily
used throughout this thesis due to the intimate connection of this subject with super-
symmetry and the topological B-model. The following literature has proven to be useful
for studying this subject: [201} 135] (complex geometry), [145, 111}, 246] (Calabi-Yau
geometry), [225, 142] (Dolbeault- and Cech-description of holomorphic vector bundles),
[50, 188] (deformation theory), [113, [121] (algebraic geometry).

II.1 Complex manifolds

I1.1.1 Manifolds

Similarly to the structural richness one gains when turning from real analysis to complex
analysis, there are many new features arising when turning from real (and smooth) to
complex manifolds. For this, the requirement of having smooth transition functions
between patches will have to be replaced by demanding that the transition functions are
holomorphic.

§1 Holomorphic maps. A map f : C™ — C" : (z',...,2™) — (w!,... ,w") is called

holomorphic if all the w® are holomorphic in each of the coordinates 27, where 1 <1i < n
and 1 <j <m.

82 Complex manifolds. Let M be a topological space with an open covering {. Then
M is called a complex manifold of dimension n if for every U € i there is a homeomor-
phism! ¢ : U — € such that for each UNV # @ the transition function ¢yy := quQS‘jl,
which maps open subsets of C" to C", is holomorphic. A pair (U, ¢y) is called a chart
and the collection of all charts form a holomorphic structure.

83 Graflmannian manifolds. An ubiquitous example of complex manifolds are Grajs-
mannian manifolds. Such manifolds Gy, ,,(C) are defined as the space of k-dimensional
vector subspaces in C". The most common example is G'1 ,, which is the complex projective
space CP™. This space is globally described by homogeneous coordinates (w!,. .., w"t) €
C™\{(0,...,0)} together with the identification (w!,...,w"*!) ~ (tw?, ..., tw" ) for all
t € C*. An open covering of CP" is given by the collection of open patches U; for
which w/ # 0. On such a patch U;, we can introduce n inhomogeneous coordinates
(2. 40, 2" with 28 = g—;, where the hat indicates an omission. For conve-
nience, we will always shift the indices on the right of the omission to fill the gap, i.e.
28— 271 for i > j.

§4 Theorem. (Chow) Since we will often use complex projective spaces and their sub-
spaces, let us recall the following theorem by Chow: Any submanifold of CP™ can be

defined by the zero locus of a finite number of homogeneous polynomials. Note that the

!i.e. ¢u is bijective and ¢y and ¢, are continuous
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zero locus of a set of polynomials is in general not a manifold (due to singularities), but
an algebraic variety.

85 Flag manifolds. Complex flag manifolds are a major tool in the context of twistor
geometry and the Penrose-Ward correspondence, cf. chapter VII. They can be considered
as generalizations of projective spaces and Grafimann manifolds. An r-tuple (Lq,..., L;)
of vector spaces of dimensions dimg L; = d; with L1 € ... C L, C C" and 0 < dy <
... <d, <niscalled a flagin C". The (complex) flag manifold Fy, g, n is the compact
space

Fy, .a.n = {all flags (L1,...,L,) with dimg L; = d;, i@ = 1,...,r}. (I1.1)

Simple examples of flag manifolds are F, = CP" ! and Fin = Gipn(C). The flag
manifold Fy, g4, can also be written as the coset space

U(n)
U(n—dr) X ... X U(dz —dl) X U(dl) ’

Fay..apm = (I1.2)

and therefore its dimension is
dimg Fdl...dr,n = dl(n — dl) + (dQ — dl)(n — dg) 4+ ...+ (dr — dr_l)(n — dr) . (H.?))

86 Weighted projective spaces. A further generalization of complex projective spaces
are spaces which are obtained from (C™*!)\{0} with coordinates (z%) by the identi-
fication (z',22,...,2" ) ~ (2! 19222 . tdm+1mHD) with ¢+ € ©*. These spaces
are called weighted projective spaces and denoted by WCP™(q1,...,qm+1). Note that
wCepP™(1,...,1) =CP™.

A subtlety when working with weighted projective spaces is the fact that they may
not be smooth but can have non-trivial fixed points under the coordinate identification,
which lead to singularities. Therefore, these spaces are mostly used as embedding spaces
for smooth manifolds.

87 Stein manifolds. A complex manifold that can be embedded as a closed submanifold
into a complex Euclidean space is called a Stein manifold. Such manifolds play an im-
portant role in making Cech cohomology sets on a manifold independent of the covering,
see section [M1.2.3) §32.

88 Equivalence of manifolds. Two complex manifolds M and N are biholomorphic if
there is a biholomorphic map? m : M — N. This is equivalent to the fact that there is
an identical cover 4 of M and N and that there are biholomorphic functions h, on each
patch U, € U such that we have the following relation between the transition functions:

3= n

lo fﬁ ohy on U, NUy # &. Two complex manifolds are called diffeomorphic

if their underlying smooth manifolds are diffeomorphic. The transition functions of two
diffeomorphic manifolds on an identical cover 4 are related by f(% =s;to (% 0 Sp on
nonempty intersections U, N U, # &, where the s, are smooth functions on the patches
Us,.

We call complex manifolds smoothly equivalent if they are diffeomorphic and holomor-
phically equivalent if they are biholomorphic. In one dimension, holomorphic equivalence
implies conformal equivalence, cf. section 1V.4.1.

89 Functions on manifolds. Given a manifold M, we will denote the set of functions
{f: M — C} on M by #(M). Smooth functions will be denoted by C*°(M) and
holomorphic functions by O(M).

2a holomorphic map with a holomorphic inverse
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11.1.2 Complex structures

It is quite obvious that many real manifolds of even dimension might also be considered
as complex manifolds after a change of variables. The tool for making this statement
exact is a complex structure.

§10 Modules and vector spaces. A left module over a ring A (or an A-left-module)
is an Abelian group G together with an operation (A € A,a € G) — Aa € G, which is
linear in both components. Furthermore, we demand that this operation is associative,
ie. (An)a = A(ua) and normalized according to 1pa = a.

Analogously, one defines a right module with right multiplication and that of a bimod-
ule with simultaneously defined, commuting left and right multiplication.

A wvector space is a module over a field and in particular, a complex vector space is a
module over C. Later on, we will encounter supervector spaces which are modules over
Zo-graded rings, cf. TI1.2.3), §20.

8§11 Complex structures. Given a real vector space V, a complex structure on V
isamap I : V — V with I? = —1y. This requires the vector space to have even
dimensions and is furthermore to be seen as a generalization of i> = —1. After defining
the scalar multiplication of a complex number (a + ib) € C with a vector v € V as
(a +ib)v := av + blv, V is a complex vector space. On the other hand, each complex
vector space has a complex structure given by Iv = iv.

§12 Canonical complex structure. The obvious identification of C" with R?" is
obtained by equating z* = 2 4 iy’, which induces the canonical complex structure

Izl 2™yt o) = (b 2t )
_ 1I.4
and thus I = 0 Ln . (IL4)
1, O

8§13 Almost complex structure. Given a real differentiable manifold M of dimension
2n, an almost complez structure is a smooth tensor field I of type (1,1) on each patch
of M, such that at each point x € M, I, is a complex structure on T,M. The pair
(M, I) is called an almost complex manifold. Note that each real manifold with even

dimension locally admits such a tensor field, and the equations I;* 820‘ f= i% f are just

the Cauchy-Riemann equations. Thus, holomorphic maps f : C"* D U — C™ are exactly
those which preserve the almost complex structure.

8§14 Complexification. Given a real space S with a real scalar multiplication - : Rx .S —
S, we define its complexification as the tensor product S¢ = S i C. We will encounter
an example in the following paragraph.

8§15 Holomorphic vector fields. Consider the complexification of the tangent space
TM¢ = TM ®r C. This space decomposes at each point x into the direct sum of
eigenvectors of I with eigenvalues +i and —i, which we denote by Ta®M and TO M ,
respectively, and therefore we have TM¢ = TYOM @ TO'M. Sections of T OM and
TOM are called vector fields of type (1,0) and (0, 1), respectively. Vector fields of type
(1,0) whose action on arbitrary functions will be holomorphic will be called holomorphic

vector fields and antiholomorphic vector fields are defined analogously. This means in

el o)
557> where (571, ..

basis of THM , is a holomorphic vector field if the &% are holomorphic functions. We will

. %) is a local

particular that a vector field X given locally by X = &°

denote the space of vector fields on M by 2 (M). The above basis is complemented by
the basis (%, oy 722%5) of T M to a full local basis of TM¢.

)y Ozn
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8§16 Integrable complex structures. If an almost complex structure is induced from
a holomorphic structure, cf. [§2, one calls this almost complex structure integrable. Thus,
an almost complex manifold with an integrable complex structure is a complex manifold.
§17 Newlander-Nirenberg theorem. Let (M,I) be an almost complex manifold.
Then the following statements are equivalent:

(i) The almost complex structure I is integrable.

(41) The Nijenhuis tensor N(X,Y) = +([X, Y]+ I[X,IY] + I[IX,Y] — [IX,IY]) (the
torsion) vanishes for arbitrary vector fields X,Y € 2 (M).

(#ii) The Lie bracket [X,Y] closes in T"°M, i.e. for X, Y € TVOM, [X,Y] € T*OM.

8§18 Complex differential forms. Analogously to complex tangent spaces, we intro-
duce the space of complex differential forms on a complex manifold M as the complex-
ification of the space of real differential forms: Q4(M)° := Q¢(M) @ C. Consider now
a g-form w € QI(M)°. If w(Vi,...,V,) = 0 unless 7 of the V; are elements of T19M and
s = q — r of them are elements of T M, we call w a form of bidegree (r,s). We will
denote the space of forms of bidegree (r,s) on M by Q"%(M). It is now quite obvious
that Q7 (uniquely) splits into B, ,_, 2" (M).

Clearly, elements of Q10 and Q%! are dual to elements of 7100 and T%' M, respec-
tively. Local bases for Q50 and Q%! dual to the ones given in [§15 are then given by
(dzt,...,dz") and (dz',...,dz") and satisfy the orthogonality relations (dz’, %) = 6},
(dz", 525) = (d2', 25) = 0 and (dZ', ;%) = o
§19 The exterior derivative. The exterior derivative d maps a form of bidegree (r, s)
to a form which is the sum of an (r + 1, s)-form and an (r,s + 1)-form: Given an (r, s)
form w on a complex manifold M by

1 . . .
w = — Wiy i1 gy A2 AL d2' AL dE (I1.5)
rls!
we define
1 . . _ . _ _
dw = — (Bkwilmgrﬁdzk Az AL dE 4 Fwny L A2 AL AEE A .dEZ“‘S) :
rls!

which agrees with the definition of d on M interpreted as a real manifolds. One therefore
splits d = 0 + 0, where 9 : Q"5(M) — Q"T15(M) and 9 : Q"5(M) — Q™*TL(M). The
operators 9 and O are called the Dolbeault operators. A holomorphic r-form is given by
an w € Q"9(M) satisfying w = 0 and holomorphic 0-forms are holomorphic functions.
The Dolbeault operators are nilpotent, i.e. 8> = 9% = 0, and therefore one can construct
the Dolbeault cohomology groups, see section I1.2.3.

§20 Real structure. A real structure T on a complex vector space V is an antilinear
involution 7 : V' — V. This implies that 72(v) = v and 7(\v) = v for all A € C and
v € V. Therefore, a real structure maps a complex structure I to —I. One can use such a
real structure to reduce a complex vector space to a real vector subspace. A real structure
on a complex manifold is a complex manifold with a real structure on its tangent spaces.
For an example, see the discussion in section [VIL.3.1) |84.

I1.1.3 Hermitian structures

§21 Hermitian inner product. Given a complex vector space (V, I), a Hermitian inner
product is an inner product g satisfying g(X,Y) = g(IX,IY) for all vectors X,Y € V
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(“I is g-orthogonal”). Note that every inner product g can be turned into a Hermitian
one by defining g = 2(§(X,Y) +§(IX,IY)). To have an almost Hermitian inner product
on an almost complex manifold M, one smoothly defines a g, on T, M for every z € M.

8§22 Hermitian structure. Every Hermitian inner product g can be uniquely extended
to a Hermitian structure h, which is a map h : V x V — € satisfying

(i) h(u,v) is C-linear in v for every u € V

(i)
(i)

h(u,v) = h(v,u) for all vectors u,v € V.

h(u,w) > 0 for all vectors u € V and h(u,u) =0 < u = 0.

For Hermitian structures on an almost complex manifold M, we demand additionally
that h understood as a map h : I'(TM) x I'(TM) — % (M) maps every pair of smooth
sections to smooth functions on M.

§23 Hermitian metric. When interpreting a smooth manifold M as a complex manifold
via an integrable almost complex structure, one can extend the Riemannian metric g to
amap g, : I, M x T, M — C by

Gz (X +1Y,U+1iV) = g.(X,U) — gm(Y> V) +1(92(X, V) + g2 (Y, U)) . (IL.6)

A metric obtained in this way and satisfying g,([,X,I,Y) = §,(X,Y) is called a Her-

mitian metric. Given again bases (azi) and (a(z-i) spanning locally T19M and 7'M,

respectively, we have
gij = g7 = 0 and g = gijdzi®d27+ggjdii®dzj (I1.7)

for a Hermitian metric g. A complex manifold with a Hermitian metric is called a
Hermitian manifold.

§24 Theorem. A complex manifold always admits a Hermitian metric. Given a Rie-
mannian metric on a complex manifold, one obtains a Hermitian metric e.g. by the
construction described in [§21.

§25 Kahler form. Given a Hermitian manifold (M, g), we define a tensor field J of type
(1,1) by J(X,Y) = g(IX,Y) for every pair of sections (X,Y) of TM. As J(X,Y) =
g(IX,)Y)=g(IIX,1Y) = —g(IY,X) = —J(Y, X), the tensor field is antisymmetric and
defines a two-form, the Kdhler form of the Hermitian metric g. As easily seen, J is
invariant under the action of I. Let m be the complex dimension of M. One can show
that A" J is a nowhere vanishing, real 2m-form, which can serve as a volume element and
thus every Hermitian manifold (and so also every complex manifold) is orientable.

§26 Kahler manifold. A Kdhler manifold is a Hermitian manifold (M, g) on which one
of the following three equivalent conditions holds:

(i) The Kahler form J of ¢ satisfies dJ = 0.
(ii) The Kéhler form J of g satisfies V.J = 0.

(7ii) The almost complex structure satisfies VI = 0,

where V is the Levi-Civita connection of g. The metric g of a Kahler manifold is called
a Kdhler metric.
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§27 Kahler potential. Given a Kéhler manifold (M, g) with Kéahler form J, it follows
from dJ = (0 + 0)igi;dz* A dz7 = 0 that

09i7 8913‘ 09iz aglj

= , d = =, 11.8
o4~ 0z M ox T oz (IL8)
Thus, we can define a local real function # such that g = 00.# and J = i00.# . This

function is called the Kdhler potential of g. Conversely, if a metric is derived from a

Kéhler potential, it automatically satisfies (IL.8).
§28 Examples. A simple example is the Kahler metric on C” obtained from the Kéahler
potential & = % 3" 2¢7%, which is the complex analog of (R?™,§). Also easily seen is the
fact that any orientable complex manifold M with dimg M = 1 is Kahler: since J is a
real two-form, dJ has to vanish on M. These manifolds are called Riemann surfaces.
Furthermore, any complex submanifold of a Kéhler manifold is Kéhler.

An important example is the complex projective space CP™, which is also a Kéhler
manifold. In homogeneous coordinates (w®) and inhomogeneous coordinates (2%) (see §3),
one can introduce a positive definite function

n+1

=3
j=1

on the patch U;, which globally defines a closed two-form J by J := i09 In J;, as one easily
checks. From this form, we obtain a metric by g(X,Y) := J(X,IY), the Fubini-Study
metric of CP™. In components, it reads on the patch U;

w] 2 n )
=l = P +1 (IL.9)
j=1

.
gi(X,)Y) = 2)° S~ % iy (I1.10)
Note that S2 = CP! is the only sphere which admits a complex structure. Above we saw
that it is also a Ké&hler manifold.

§29 Kahler differential geometry. On a Kdhler manifold (M, g) with Kahler potential
J , the components of the Levi-Civita connection simplify considerably. We introduce
the Christoffel symbols as in Riemannian geometry by

Upon turning to complex coordinates and using the identity (IL.8), we see that

=00rs 7 7. Ogr.
o1 S 1 k
ij =g SW and ij =g s azj_s 5 (IIlQ)

and all other components vanish. Connections of this type, which are metric compatible
(Vigi; = Vigi7 = 0) are called Hermitian connections.
The torsion and curvature tensors are again defined by

T(X,Y) = VxY —VyX—[X,Y], (11.13)
R(X,Y)Z = VxVyZ-VyVxZ-VixyZ, (I.14)

and the only non-vanishing components of the Riemann tensor and the Ricci tensor are

Rijk[ = gigﬁ and Rlcij = Rﬁqj = — 8;? , (1115)

respectively.
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8§30 The Ricci form. Given the Ricci tensor Ric on a Kéhler manifold M, we define
the Ricci form Z by

Z(X,Y) = Ric(IX,Y). (11.16)

Thus we have in components #Z = iRiJ—dzi A dz7. Note that on a Kihler manifold with
metric g,,, the Ricci form is closed and can locally be expressed as # = i001n G, where
G = det(g,) = /9. Furthermore, its cohomology class is (up to a real multiple) equal
to the Chern class of the canonical bundle on M.

A manifold with vanishing Ricci form is called Ricci-flat. Kéhler manifolds with this
property are called Calabi- Yau manifolds and will be discussed in section I1.3l

8§31 Monge-Ampeére equation. A differential equation of the type
(0:0,1)(8y0yu) — (8:0,u)? = f(x,y,u,dpu, dyu) (I1.17)

is called a Monge-Ampére equation. The condition of vanishing Ricci form obviously
yields such an equation. We will explicitly discuss a related example in section 111.3.4.

8§32 Hyper-Kahler manifold. A hyper-Kdhler manifold is a Riemannian manifold with
three Kéahler structures I, J and K which satisfy IJK = —1. Equivalently, one can define
a hyper-Kéahler manifold as a Riemannian manifold with holonomy group contained in
Sp(m), which is the group of m x m quaternionic unitary matrices with m being half the
complex dimension of the manifold.

§33 't Hooft tensors. The 't Hooft tensors (or eta-symbols) are given by

M) = i £ 0004 F 6inOpa (IL.18)

and satisfy the relation 77%,;_L ) — 4« nfff ), where * is the Hodge star operator. They form

three Kahler structures, which give rise to a hyper-Kahler structure on the Euclidean
spacetime R*. Note furthermore that any space of the form R*™ with m € N is evidently
a hyper-Kéhler manifold.

I1.2 Vector bundles and sheaves

I1.2.1 Vector bundles

81 Homotopy lifting property. Let E, B, and X be topological spaces. A map
7w : ' — B is said to have the homotopy lifting property with respect to the space X if,
given the commutative diagram
Xx{0} v g
l p lw (IL.19)

h
Xx[0,1] —~ B

there is a map G : X x [0,1] — E, which gives rise to two commutative triangles. That
is, G(z,0) = h(x) and 7 o G(x,t) = hy(x). Note that we assumed that all the maps are
continuous.

§2 Fibration. A fibration is a continuous map 7 : E — B between topological spaces E
and B, which satisfies the homotopy lifting property for all topological spaces X.
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83 Complex vector bundles. A complex vector bundle E over a complex manifold M
is a vector bundle 7 : E — M, and for each x € M, 771(z) is a complex vector space. As
we will see in the following paragraph, holomorphic vector bundles are complex vector
bundles which allow for a trivialization with holomorphic transition functions.

Every vector bundle is furthermore a fibration. The prove for this can be found e.g.
in [125].

In the following, we will denote the space of smooth sections of the vector bundle
m:E— M by I'(M,E).
84 Holomorphic vector bundle. A holomorphic vector bundle E of rank k over a
manifold M with dimg M = n is a (k + n)-dimensional complex manifold E endowed
with a holomorphic projection 7 : F — M satisfying the conditions

(i) 7 1(p) is a k-dimensional complex vector space for all p € M.

(i) For each point p € M, there is a neighborhood U and a biholomorphism ¢y :
71 (U) — U x CF. The maps ¢y are called local trivializations.

(éii) The transition functions fyy are holomorphic maps U NV — GL(k, C).

Holomorphic vector bundles of dimension k£ = 1 are called line bundles.

85 Examples. Let M be a complex manifold of dimension m. The holomorphic tangent
bundle T19M, its dual, the holomorphic cotangent bundle 779V M/, in fact all the bundles
APOM with 0 < p < m are holomorphic vector bundles. The complex line bundle
Ky := A™9M is called the canonical bundle; Ky is also a holomorphic bundle.

On the spaces CP™, one defines the tautological line bundle as: C™t! — CP™. One

can proof that the canonical bundle over CP™ is isomorphic to the (m + 1)th exterior
power of the tautological line bundle. For more details on these line bundles, see also the
remarks in §28.
§6 Holomorphic structures. Given a complex vector bundle £ over M, we define the
bundle of E-valued forms on M by APYE := AP4M @ E. An operator 0 : I'(M, AP4E) —
(M, AP9TLE) is called a holomorphic structure if it satisfies 9% = 0. It is obvious that
the action of 0 is independent of the chosen trivialization, as the transition functions are
holomorphic and 0 does not act on them. Note furthermore that the operator 0 satisfies a
graded Leibniz rule when acting on the wedge product of a (p, ¢)-form w and an arbitrary
form o

OwNha) = (Ow) Ao+ (—=1)PTw A (Do) . (I1.20)

87 Theorem. A complex vector bundle F is holomorphic if and only if there exists a
holomorphic structure d on E. For more details on this statement, see section 11.2.3.

88 Connections and curvature. Given a complex vector bundle £ — M, a connection
is a C-linear map V : ['(M, E) — T'(M, A'E) which satisfies the Leibniz rule

V(fo) = df ® o+ fVo , (I1.21)

where f € C>°(M) and 0 € T'(M, E). A connection gives a means of transporting frames
of FE along a path in M. Given a smooth path 7 : [0,1] — M and a frame ey over ~(0),
there is a unique frame e; consisting of sections of v*F such that

Vﬁ(t)et =0 (1122)

for all t € [0,1]. This frame is called the parallel transport of ey along . As we can
parallel transport frames, we can certainly do the same with vector fields.



I1.2 Vector bundles and sheaves 33

The curvature associated to V is defined as the two-form Fy = V2. Given locally
constant sections (071, ...,0x) over U defining a basis for each fibre over U, we can rep-
resent a connection by a collection of one-forms w;; € T'(U, AU): Vo, = wij ® 0. The
components of the corresponding curvature Fyo; = F;; ® o; are easily calculated to be
Fij = dwij +wir, Awkj. Roughly speaking, the curvature measures the difference between
the parallel transport along a loop and the identity.

Identifying V%! with the holomorphic structure 0, one immediately sees from the
theorem §7) that the (0,2)-part of the curvature of a holomorphic vector bundle has to
vanish.

89 Chern connection. Conversely, given a Hermitian structure on a holomorphic vec-
tor bundle with holomorphic structure 0, there is a unique connection V, the Chern
connection, for which Vo1 = 9.
§10 Connections on Hermitian manifolds. On a Hermitian manifold (M, I, h), there
are two natural connections: the Levi-Civita connection and the Chern connection. They
both coincide if and only if A is Kahler.
8§11 Holonomy groups. Let M be a manifold of dimension d endowed with a connection
V. A vector V € T,M will be transformed to another vector V' € T,M when parallel
transported along a closed curve through p. The group of all such transformations is
called the holonomy group of the manifold M. Using the Levi-Civita connection which
will not affect the length of the vector V during the parallel transport, the holonomy
group will be a subgroup of SO(d) on real manifolds and a subgroup of U(d) for Kéhler
manifolds. Flat manifolds will clearly have the trivial group consisting only of the element
1 as their holonomy groups. Complex manifolds, whose holonomy groups are SU(d) are
called Calabi- Yau manifolds and will be discussed in section [I1.3.
8§12 Characteristic classes. Characteristic classes are subsets of cohomology classes
and are used to characterize topological properties of manifolds and bundles. Usually
they are defined by polynomials in the curvature two-form Fy. Therefore, every trivial
bundle has a trivial characteristic class, and thus these classes indicate the nontriviality
of a bundle. In the following, we will restrict our discussion mainly to Chern classes, as
they play a key role in the definition of Calabi-Yau manifolds.
§13 Chern class. Given a complex vector bundle E — M with fibres C* endowed with
a connection w defining a field strength F, we define the total Chern class® by
c¢(F) = det <IL+ L7:> . (I1.23)
27

One can split ¢(F) into the direct sums of forms of even degrees:

C(]:) = 1+Cl(f)+02(f)+... . (11.24)

The 2j-form ¢;(F) is called the j-th Chern class. Note that when talking about the Chern
class of a manifold, one means the Chern class of its tangent bundle calculated from the
curvature of the Levi-Civita connection.

8§14 Chern number. If M is compact and of real dimension 2d, one can pair any product
of Chern classes of total degree 2d with oriented homology classes of M which results in
integers called the Chern numbers of E. As a special example, consider the possible first
Chern classes of a line bundle L over the Riemann sphere CP! = §2. Tt is H?(S?) = Z
and the number corresponding to the first Chern class of the line bundle L is called the
first Chern number.

3named after Shiing-shen Chern, who introduced it in the 1940s
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815 Properties of Chern classes. The zeroth Chern class is always equal to 1. For a
manifold M with dimension d, we clearly have ¢, (F) = 0 for n > d.

§16 Calculating Chern classes. A simple method for calculating Chern classes is
available if one can diagonalize F by an element g € GL(k,C) such that ¢g~!Fg =
diag(x1,...,x,) =: D. One then easily derives that

det(1 + D) = det(diag(l + z1,...,1+xy))

. ) ) (I1.25)
= 1+ trD+5((trD)* — tr D)+ ... +det D .

817 Theorem. Consider two complex vector bundles £ — M and F — M with total
Chern classes ¢(E) and ¢(F). Then the total Chern class of a Whitney sum bundle*
(E® F) — M is given by ¢(E @ F) = ¢(E) A ¢(F). In particular, the first Chern classes
add: ci(E® F) = c1(E) + c1(F).
§18 Whitney product formula. Given a short exact sequence of vector bundles 4, B
and C' as

0 A — B —C — 0, (11.26)

we have a splitting B = A @ C and together with the above theorem, we obtain the
formula ¢(A) A ¢(C) = ¢(B). This formula will be particularly useful for calculating the
Chern classes of the superambitwistor space £5/6, see the short exact sequence (VIL.323).
819 Further rules for calculations. Given two vector bundles £/ and F over a complex
manifold M, we have the following formulze:

A(E®F) = tk(F)ci1(E) +1k(E)ei(F) (I1.27)
c (EV> = o1 (B). (I1.28)

8§20 Chern classes from degeneracy loci. Chern classes essentially make statements
about the degeneracy of sets of sections of vector bundles via a Gaufl-Bonnet formula.
More precisely, given a vector bundle E of rank e over M, the cey1_;th Chern class is
Poincaré-dual to the degeneracy cycle of i generic global sections. This degeneracy locus
is obtained by arranging the i generic sections in an e X i-dimensional matrix C' and
calculating the locus in M, where C' has rank less than i. We will present an example in
paragraph [§28. For more details, see e.g. [113].

8§21 Chern character. Let us also briefly introduce the characteristic classes called
Chern characters, which play an important réle in the Atiyah-Singer index theorem. We
will need them for instanton configurations, in which the number of instantons is given
by an integral over the second Chern character. One defines the total Chern character of
a curvature two-form F as

iF
h(F) = t — I1.29
nF) = e () (11.29)
and the j-th Chern character as a part of the corresponding Taylor expansion
1 (iF)

Note that ch(F) is a polynomial of finite order on a finite-dimensional manifold. Fur-
thermore, one can express Chern characters in terms of Chern classes, e.g.

chi(F) = c1(F) and cho(F) = L(e1(F)? —2e2(F)) . (I1.31)

4A Whitney sum of two vector bundles over a manifold M yields the vector bundle whose fibres are
the direct sums of the fibres of the original two bundles.
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The zeroth Chern character chy(F) is simply the dimension of the vector bundle associ-
ated to the curvature two-form F.

I1.2.2 Sheaves and line bundles

§22 Sheaf. A presheaf G on a topological space X is an association of a group® &(U)
to every open set U C X together with a restriction map pyy : &(V) — &(U) for
U CV C X, which satisfies pyw = pyyv o pyw for U CV C W C X and pyww =id. A
presheaf becomes a sheaf under two additional conditions:

(i) Sections are determined by local data: Given two sections o,7 € &(V) with
puv (o) = puy(7) for every open set U C V, we demand that o0 =7 on V.

(ii) Compatible local data can be patched together: If o € S(U) and 7 € &(V)
such that prvyu () = pwnv)v(7) then there exists an x € &(U U V) such that

puwuvy(x) = o and pyuvy(x) = 7.

8§23 Turning a presheaf into a sheaf. One can associate a sheaf & to a presheaf &g
on a topological space X by the following construction: Consider two local sections s
and s’ € &y(U) for an open set U C X. We call s and s’ equivalent at the point z € X
if there is a neighborhood V, C U, such that py,(s) = py,u(s’). The corresponding
equivalence classes are called germs of sections in the point x and the space of germs at
x is denoted by &,. We can now define the sheaf & as the union of the spaces of germs
S := U,cx Sz, as this union clearly has the required properties.

§24 Subsheaf. A subsheaf of a sheaf & over a topological space X is a sheaf & over X
such that &'(U) is a subgroup of &(U) for any open set U C X. The restriction maps
on & are inherited from the ones on &.

§25 Examples. Examples for sheaves are the sheaf of holomorphic functions &(U),
the sheaves of continuous and smooth functions® C(U) and C*°(U) and the sheaves of
smooth (7, s)-forms 2™*(U), where U is a topological space (a complex manifold in the
latter example).

§26 Structure sheaf. One can interpret a manifold M as a locally ringed space, which”
is a topological space M together with a sheaf F' of commutative rings on M. This sheaf
F is called the structure sheaf of the locally ringed space and one usually denotes it by
Opr. In the case that (M, Oyy) is a complex manifold, F' is the sheaf of holomorphic
functions on M.

8§27 Locally free sheaf. A sheaf € is locally free and of rank r if there is an open covering
{U;} such that €|y, = ﬁﬁzf. One can show that (isomorphism classes of) locally free
sheaves of rank r over a manifold M are in one-to-one correspondence with (isomorphism
classes of ) vector bundles of rank r over M. The sheaf & corresponding to a certain vector
bundle E is given by the sheaf dual to the sheaf of sections of E. For this reason, the
terms vector bundle and (locally free) sheaf are often used sloppily for the same object.

We will denote by &'(U) the sheaf of holomorphic functions, and the holomorphic
vector bundle over U, whose sections correspond to elements of (U), by O(U).

5Usually, the definition of a sheaf involves only Abelian groups, but extensions to non-Abelian groups
are possible, see e.g. the discussion in [226].
5Note that C°(U, &) will denote the set of Cech 0-cochains taking values in the sheaf &.

"A special case of locally ringed spaces are the better-known schemes.
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8§28 Holomorphic line bundles. A holomorphic line bundle is a holomorphic vector
bundle of rank 1. Over the Riemann sphere CP! = §2. these line bundles can be
completely characterized by an integer d € Z, cf. [§14.

Given the standard patches U, and U_ on the Riemann sphere CP! with the in-
homogeneous coordinates A+ glued via A+ = 1/A+ on the intersection Uy N U_ of the
patches, the holomorphic line bundle O(d) is defined by its transition function f,_ = Xfr
and thus we have z4 = )\iz,, where z4 are complex coordinates on the fibres over UL.

For d > 0, global sections of the bundle O(d) are polynomials of degree d in the
inhomogeneous coordinates A+ and homogeneous polynomials of degree d in homogeneous
coordinates. The O(d) line bundle has first Chern number d, since — according to the
Gauf3-Bonnet formula of paragraph 320 — the first Chern class is Poincaré dual to the
degeneracy loci of one generic global section. These loci are exactly the d points given
by the zeros of a degree d polynomial. Furthermore, the first Chern class is indeed
sufficient to characterize a complex line bundle up to topological (smooth) equivalence,
and therefore it also suffices to characterize a holomorphic line bundle up to holomorphic
equivalence.

The complex conjugate bundle to O(d) is denoted by O(d). Its sections have transition
functions 5\1: Zy = Xiz,.

This construction can be generalized to higher-dimensional complex projective spaces
CP"™. Recall that these spaces are covered by n+1 patches. In terms of the homogeneous
coordinates \;, i = 0,...,n, the line bundle O(d) — CP" is defined by the transition
function f;; = (Aj/\;)%.

We will sometimes use the notation O pr(d), to label the line bundle of degree d over
CP". Furthermore, Ogpr denotes the trivial line bundle over CP™, and O%(d) is defined
as the direct sum of k line bundles of rank d.

Note that bases of the (1,0)-parts of the tangent and the cotangent bundles of the

Riemann sphere CP! are sections of O(2) and O(—2), respectively. Furthermore, the
canonical bundle of CP" is O(—n — 1) and its tautological line bundle is O(—1).
§29 Theorem. (Grothendieck) Any holomorphic bundle E over CP* can be decomposed
into a direct sum of holomorphic line bundles. This decomposition is unique up to
permutations of holomorphically equivalent line bundles. The Chern numbers of the
line bundles are holomorphic invariants of E, but only their sum is also a topological
invariant.

I1.2.3 Dolbeault and Cech cohomology

There are two convenient descriptions of holomorphic vector bundles: the Dolbeault and
the Cech description. Since the Penrose-Ward transform (see chapter VII) heavily relies
on both of them, we recollect here the main aspects of these descriptions and comment
on their equivalence.

§30 Dolbeault cohomology groups. As the Dolbeault operator 0 is nilpotent, one
can introduce the Dolbeault complex

ooy 2 arty -2 2L arm(n) (I1.32)

on a complex manifold M together with the (r, s)th d-cohomology group

cocycles ng (M)

~ coboundaries  Bz*(M)

(11.33)
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Here, the cocycles Z°(M) are the elements w of Q*(M) which are closed, i.e. Ow =0
and the coboundaries are those elements w which are exact, i.e. for s > 0 there is a form
7€ Q" 1(M) such that 01 = w.

The Hodge number h™* is the complex dimension of Hz"(M). The corresponding
Betti number of the de Rham cohomology of the underlying real manifold is given by
b = Z’;:o hP*=P and the Buler number of a d-dimensional real manifold is defined as
X = Zﬁ:o(—l)pbp-

The Poincaré lemma can be directly translated to the complex situation and thus
every O-closed form is locally 0-exact.

§31 Holomorphic vector bundles and Dolbeault cohomology. Assume that G is
a group having a representation in terms of n x n matrices. We will denote by & the
sheaf of smooth G-valued functions on a complex manifold M and by 2 the sheaf of flat
(0,1)-connections on a principal G-bundle P — M, i.e. germs of solutions to

DAY 1 A% A A = 0. (I1.34)

Note that elements A%! of I'(M, 2l) define a holomorphic structure 94 = d+.4%! on a
trivial rank n complex vector bundle over M. The moduli space M of such holomorphic
structures is obtained by factorizing I'(M,2d) by the group of gauge transformations,
which is the set of elements g of I'(M, &) acting on elements A%! of I'(M,2l) as

A%t gAY g 4 ghgTt . (11.35)

Thus, we have M = T'(M,2()/I'(M,S) and this is the description of holomorphic vector
bundles in terms of Dolbeault cohomology.

§32 Cech cohomology sets. Consider a trivial principal G-bundle P over a complex
manifold M covered by a collection of patches 4 = {U,} and let G have a representation
in terms of n X n matrices. Let & be an arbitrary sheaf of G-valued functions on M. The
set of Cech q-cochains C9(4, ®) is the collection ¥ = {t4y...q,} of sections of & defined
on nonempty intersections Uy, N ... N Uy,. Furthermore, we define the sets of Cech 0-
and 1-cocycles by

Z0U,8) = {peCOU &) |y = YponU,NU, # @} = (YU, &),  (IL36)
Zl(i’[?G) = {XECl(LL@) | Xab = Xb_al on UamUb 7& 9,
XabXbeXca = Lon U, NU,NU:. # @} . (IL.37)

This definition implies that the Cech 0-cocycles are independent of the covering: it is
Z0(4,8) = Z9(M, ®), and we define the zeroth Cech cohomology set by HO(M,®) :=
ZO%(M,®). Two l-cocycles x and X are called equivalent if there is a 0-cochain v €
CO(4, ®) such that Yap = YaXxa?y ' on all U, N U, # @. Factorizing Z' (U, B) by this
equivalence relation gives the first Cech cohomology set H'(4, &) = Z1(U, &)/CO(4, &).

If the patches U, of the covering i are Stein manifolds, one can show that the first
Cech cohomology sets are independent of the covering and depend only on the manifold
M, e.g. H'(U4,8) = H'(M,&). This is well known to be the case in the situations we
will consider later on, i.e. for purely bosonic twistor spaces. Let us therefore imply that
all the coverings in the following have patches which are Stein manifolds unless otherwise
stated.

Note that in the terms introduced above, we have M = HO(M,A)/H(M, &).



38 Complexr Geometry

§33 Abelian Cech cohomology. If the structure group G of the bundle P defined
in the previous paragraph is Abelian, one usually replaces in the notation of the group
action the multiplication by addition to stress commutativity. Furthermore, one can then
define a full Abelian Cech complex from the operator® d : C(M, &) — CIT1(M, &) whose
action on Cech g-cochains 1) is given by

q+1

(aw)a07a17---7aq+1 = Z(_l)ywao,m,...,d,,,...,aq+1 ) (1138)
v=0

where the hat  denotes an omission. The nilpotency of d is easily verified, and the Abelian
Cech cohomology H‘I(M7 S) is the cohomology of the Cech complex.

More explicitly, we will encounter the following three Abelian Cech cohomology
groups: H%(M, &), which is the space of global sections of & on M, H'(M,&), for
which the cocycle and coboundary conditions read

Xac = Xab T Xbe and Xab = wa_wb, (1139)

respectively, where y € C'(M,&) and ¢ € C°(M, &), and H?*(M, &), for which the
cocycle and coboundary conditions read

Pabe — Pbed T Peda — Pdab = 0 and Pabe = Xab — Xac T Xbe > (1140)

where ¢ € C?(M, &), as one easily derives from (I.38).
§34 Holomorphic vector bundles and Cech cohomology. Given a complex mani-
fold M, let us again denote the sheaf of smooth G-valued functions on M by &. We
introduce additionally its subsheaf of holomorphic functions and denote it by $).
Contrary to the connections used in the Dolbeault description, the Cech description
of holomorphic vector bundles uses transition functions to define vector bundles. Clearly,
such a collection of transition functions has to belong to the first Cech cocycle set of a
suitable sheaf &. Furthermore, we want to call two vector bundles equivalent if there
exists an element h of C°(M, &) such that

fap = hi'faphy onall U,NU, # @ . (IL.41)

Thus, we observe that holomorphic and smooth vector bundles have transition functions
which are elements of the Cech cohomology sets H' (M, $)) and H' (M, &), respectively.
§35 Equivalence of the Dolbeault and Cech descriptions. For simplicity, let us
restrict our considerations to topologically trivial bundles, which will prove to be suffi-
cient. To connect both descriptions, let us first introduce the subset X of C°(M, &) given
by a collection of G-valued functions ) = {1}, which fulfill

Va0t = Yoy ! (I1.42)

on any two arbitrary patches U,, Uy from the covering U of M. Due to (I1.34), elements
of H(M,2l) can be written as 10y ! with ¢» € X. Thus, for every A% € HO(M,2A)
we have corresponding elements ¢ € X. One of these ¢ can now be used to define the
transition functions of a topologically trivial rank n holomorphic vector bundle E over
M by the formula

fao = W1y, on U,NU, # @ . (11.43)

8The corresponding picture in the non-Abelian situation has still not been constructed in a satisfactory
manner.
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It is easily checked that the fu; constructed in this way are holomorphic. Furthermore,
they define holomorphic vector bundles which are topologically trivial, but not holomor-
phically trivial. Thus, they belong to the kernel of a map p : H'(M, $) — H' (M, &).

Conversely, given a transition function f,; of a topologically trivial vector bundle on
the intersection U, N Uy, we have

0=0fw = 0wy ¥s) = o (Waluy" —vsdy, Ny = o' (Ao — Aty . (1L44)
Hence on U, N Uy, we have A, = Aj, and we have defined a global (0, 1)-form A%! :=
ETUR

The bijection between the moduli spaces of both descriptions is easily found. We have

the short exact sequence
i 50 ot
0—H — 6 — A — 0, (11.45)
where i denotes the embedding of $ in &, 6° is the map & 2 ) +— Iy~ € A and ' is
the map A 3 A% — 9 A%! 4 A% A A% This short exact sequence induces a long exact
sequence of cohomology groups

~ Z ~ 0 ~ 1 ~ ~
0 — HO(M,%) 5 BO0,) 5 A BN M,5) L BV M) — ...
and from this we see that ker p = HO(M,)/H°(M,S) = M. Thus, the moduli spaces
of both descriptions are bijective and we have the equivalence

(B, f+-= lnaAOJ) ~ (Evari’AO,l =0). (11.46)

This fact is at the heart of the Penrose-Ward transform, see chapter VII.

8§36 Remark concerning supermanifolds. In the later discussion, we will need to
extend these results to supermanifolds and exotic supermanifolds, see chapter III. Note
that this is not a problem, as our above discussion was sufficiently abstract. Furthermore,
we can assume that the patches of a supermanifold are Stein manifolds if and only if the
patches of the corresponding body are Stein manifolds since infinitesimal neighborhoods
cannot be covered partially. Recall that having patches which are Stein manifolds render
the Cech cohomology sets independent of the covering.

11.2.4 Integrable distributions and Cauchy-Riemann structures

Cauchy-Riemann structures are a generalization of the concept of complex structures to
real manifolds of arbitrary dimension, which we will need in discussing aspects of the
mini-twistor geometry in section VIL.6.

8§37 Integrable distribution. Let M be a smooth manifold of real dimension d and
TeM its complexified tangent bundle. A subbundle 7 C T M is said to be integrable if

(i) 7 NT has constant rank k,
(i) T and” T NT are closed under the Lie bracket.

Given an integrable distribution 7", we can choose local coordinates u!, ..., u!, v!, ... v¥,
', .., 2™, y', ..., y™ on any patch U of the covering of M such that 7 is locally spanned
by the vector fields

where w! = z! —iyl,... @™ = 2™ —iy™ [208].

9We use the same letter for the bundle 7 and a distribution generated by its sections.
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8§38 7T -differential. For any smooth function f on M, let dr f denote the restriction of
df to 7, i.e. dy is the composition

ce (M) -5 (M) — T(M,T*), (I1.48)

where Q'(M) := T'(M,T*M) and 7* denotes the sheaf of (smooth) one-forms dual to
7 [237]. The operator dr can be extended to act on relative ¢g-forms from the space
QI (M) :=T(M,AT™),

dr = QL(M) — QFN (M), for ¢ > 0. (I1.49)

This operator is called a 7T -differential.
839 7T-connection. Let F be a smooth complex vector bundle over M. A covariant
differential (or connection) on E along the distribution 7 — a 7 -connection [237] — is a
C-linear mapping

Vr : T(M,E) - T(M,T"®FE) (I1.50)

satisfying the Leibniz formula
Vr(fo) = fVro+drfeo, (I1.51)

for a local section o € I'(M, E) and a local smooth function f. This 7-connection extends
to a map
Vr @ Q4(M,E) — QWM E), (I1.52)

where Q1(M, E) := T'(M,AYT* ® E). Locally, V7 has the form
Vr = dr+ A7, (I1.53)

where the standard EndE-valued 7 -connection one-form A7 has components only along
the distribution 7.

840 7-flat vector bundles. As usual, VQT naturally induces a relative 2-form
Fr € T(M,\*T* @ EndE) (I11.54)

which is the curvature of Ay. We say that V1 (or Ar) is flat if 77 = 0. For a flat Vr,
the pair (E, V) is called a 7-flat vector bundle [237].

Note that the complete machinery of Dolbeault and Cech descriptions of vector bun-
dles naturally generalizes to 7-flat vector bundles. Consider a manifold M covered by
the patches U := {U(,)} and a topologically trivial vector bundle (E, f1_ = 1, V1) over
M, with an expression

Arly,, = Yadryy! (IL.55)

of the flat 7-connection, where the 1, are smooth GL(n,C)-valued superfunctions on
every patch Uy, we deduce from the triviality of E that ¢,drt, 1 — Ypd Ty ! on the
intersections U,y N Ug). Therefore, it is dT(wjrlw_) = 0 and we can define a 7-flat
complex vector bundle E with the canonical flat 7-connection d7 and the transition
function fab := 1, ". The bundles E and E are equivalent as smooth bundles but not
as 7-flat bundles. However, we have an equivalence of the following data:

(E7f+—: ]]-nvAT) ~ (Evf—l-—?AT = 0) ) (1156)

similarly to the holomorphic vector bundles discussed in the previous section.
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8§41 Cauchy-Riemann structures. A Cauchy-Riemann structure on a smooth mani-
fold M of real dimension d is an integrable distribution, which is a complex subbundle &
of rank m of the complexified tangent bundle T¢ M. The pair (M, 2) is called a Cauchy-
Riemann manifold of dimension d = dimg M, of rank m = dimg 2 and of codimension
d — 2m. In particular, a Cauchy-Riemann structure on M in the special case d = 2m is
a complex structure on M. Thus, the notion of Cauchy-Riemann manifolds generalizes
the one of complex manifolds. Furthermore, given a vector bundle £ over M, the pair
(E,V ), where V; is a P-connection, is a Cauchy-Riemann vector bundle.

I1.3 Calabi-Yau manifolds

Calabi-Yau manifolds are compact d-dimensional Kéhler manifolds with holonomy group
SU(d). E. Calabi conjectured in 1954 that such manifolds should admit a Ricci-flat metric
in every Kéahler class. In 1971, this conjecture was proven by S. T. Yau.

I1.3.1 Definition and Yau’s theorem

§1 Calabi-Yau manifolds. A local Calabi- Yau manifold is a complex Kéahler manifold
with vanishing first Chern class. A Calabi- Yau manifold is a compact local Calabi-Yau
manifold.

The notion of a local Calabi-Yau manifold stems from physicists and using it has es-
sentially two advantages: First, one can consider sources of fluxes on these spaces without
worrying about the corresponding “drains”. Second, one can easily write down metrics
on many local Calabi-Yau manifolds, as e.g. on the conifold [214]. We will sometimes
drop the word “local” if the context determines the situation.

§2 Theorem. (Yau) Yau has proven that for every complex Kéahler manifold M with
vanishing first Chern class ¢; = 0 and Kéhler form J, there exists a unique Ricci-flat
metric on M in the same Kéahler class as J.

This theorem is particularly useful, as it links the relatively easily accessible first Chern
class to the existence of a Ricci-flat metric. The latter property is hard to check explicitly
in most cases, in particular, because no Ricci-flat metric is known on any (compact)
Calabi-Yau manifold. Contrary to that, the first Chern class is easily calculated, and we
will check the Calabi-Yau property of our manifolds in this way.

§3 Holonomy of a Calabi-Yau manifold. Ricci-flatness of a d-dimensional complex
manifold M implies the vanishing of the trace part of the Levi-Civita connection, which in
turn restricts the holonomy group of M to SU(d). In fact, having holonomy group SU(d) is
equivalent for a d-dimensional compact complex manifold to being Calabi-Yau. For such
manifolds with holonomy group SU(d), it can furthermore be shown that h%% = p%0 =1
and h% = h"® = 0 for 1 < i < d. The nontrivial element of H%*(M) defines the
holomorphic volume form Q%9 one of the key properties of a Calabi-Yau manifold, which
we will exploit to define the action of holomorphic Chern-Simons theory, see section
IV.3.2. Arranging the Hodge numbers similarly as in Pascal’s triangle, one obtains the
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Hodge diamond, which looks, e.g. for d = 2 as

RO:0 1
ht0 ho 0 0
h%0 Rt %2 = 1 20 1. (I1.57)
h2,l h1,2 0 0
h??2 1

84 Equivalent definitions of Calabi-Yau manifolds. Let us summarize all equivalent
conditions on a compact complex manifold M of dimension n for being a Calabi-Yau
manifold:

M is a Kéahler manifold with vanishing first Chern class.

M admits a Levi-Civita connection with SU(n) holonomy.

>
>
> M admits a nowhere vanishing holomorphic (n, 0)-form Q0.
> M admits a Ricci-flat Kahler metric.

>

M has a trivial canonical bundle.

85 Deformations of Calabi-Yau manifolds. Let us briefly comment on the moduli
space parameterizing deformations of Calabi-Yau manifolds, which preserve Ricci flatness.
For a more general discussion of deformation theory, see section I1.4.

Consider a Calabi-Yau manifold M with Ricci-flat metric g in the Kahler class J.

Deformations of the metric consist of pure index type ones and such of mixed type ones
0g = (Sgijdzidzj + 5gijdzidz7 + c.c.. The deformation of mixed type are given by elements
of HY (M) and are associated to deformations of the Kihler class .J which — roughly
speaking — determines the size of the Calabi-Yau manifold. Deformations of pure type
are associated with elements of H?(M) and demand a redefinition of coordinates to yield
a Hermitian metric. Therefore the complex structure is deformed, which determines the
shape of the Calabi-Yau manifold.
§6 Comments on the moduli spaces. Above we saw that the moduli space of defor-
mations of a Calabi-Yau manifold apparently decomposes into a Kahler moduli space and
a complex structure moduli space. In fact, the situation is unfortunately more subtle,
and we want to briefly comment on this.

Given a Kahler form J = igi]—dzi A dz7 on a Calabi-Yau manifold M, there is the
positivity constraint for volumes |, s J AT > ( for submanifolds S, C M with complex
dimension r. For any allowed Kéhler structure J, s.J is also allowed for s € R™?. Thus,
the moduli space of Kéahler forms is a cone. Nevertheless, it is well known from string-
theoretic arguments that all elements of H?(M,R) should be admitted. The solution is,
to allow neighboring Kahler cones to exist, sharing a common wall and interpreting them
as belonging to a Calabi-Yau manifold with different topology, which solves the positivity
problem. Passing through the wall of a Kahler cone changes the topology but preserves
the Hodge numbers.

The complex structure moduli space has similar singularities: If the Calabi-Yau mani-
fold is defined by a homogeneous polynomial P in a projective space, points zy where
P(zp) = 0,iP(2)|s=2 = 0 are called the discriminant locus in the moduli space. The
Calabi-Yau manifold fails to be a complex manifold there, as the tangent space is not
well defined, but collapses to a point. Note, however, that in string theory, such geometric
transitions do not cause any problems.
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87 K3 manifolds. A K3 manifoldis a complex Kahler manifold M of complex dimension
2 with SU(2) holonomy and thus it is a Calabi-Yau manifold. All K3 manifolds can be
shown to be smoothly equivalent. They have Euler number x (M) = 24 and Pontryagin
classes py(M) = 1. Their only nontrivial Hodge number (i.e. the Hodge number not
fixed in the Hodge diamond by the Calabi-Yau property) is h*! = 20. K3 manifolds play
an important role in string theory compactifications. The K3 manifold’s name stems
from the three mathematicians Kummer, Kéhler and Kodaira who named it in the 1950s
shortly after the K2 mountain was climbed for the first time.

§8 Rigid Calabi-Yau manifolds. There is a class of so-called rigid Calabi- Yau mani-
folds, which do not allow for deformations of the complex structure. This fact causes
problems for the mirror conjecture, see section V.3.5, as it follows that the mirrors of
these rigid Calabi-Yau manifolds have no Kahler moduli, which is inconsistent with them
being Kéahler manifolds.

I1.3.2 Calabi-Yau 3-folds

Calabi-Yau 3-folds play a central role in the context of string compactification, see section
V.2.2,[§13. A ten-dimensional string theory is usually split into a four-dimensional theory
and a six-dimensional N = 2 superconformal theory. For a theory to preserve N' = 2
supersymmetry, the manifold has to be Kéahler, conformal invariance demands Ricci-
flatness. Altogether, the six-dimensional theory has to live on a Calabi-Yau 3-fold.

89 Triple intersection form. On a Calabi-Yau 3-fold M, one can define a topological
invariant called the triple intersection form:

A3

I (HU(M))

5 — R, IM(A,B,C) = / ANBAC. (I1.58)
M

8§10 Calabi-Yau manifolds in weighted projective spaces. Calabi-Yau manifolds
can be described by the zero locus of polynomials in weighted projective spaces, which is
the foundation of toric geometry. For example, a well-known group of Calabi-Yau mani-
folds are the quintics in CP* defined by a homogeneous'” quintic polynomial q(z0, ... 24):

M, = {(20,...,21) € CP*: q(20,...,21) =0} . (I1.59)

Another example is the complete intersection of two cubics in CP5:
M, = {(z0,...,21) € CP%: ¢1(20,...,25) = c2(20,...,25) =0} , (I1.60)

where ¢; and ¢y are homogeneous cubic polynomials.
§11 Calabi-Yau manifolds from vector bundles over CP!. A very prominent class
of local Calabi-Yau manifolds can be obtained from the vector bundles O(a) & O(b) —
CP!, where the Calabi-Yau condition of vanishing first Chern class amounts to a+b = —2.

To describe these bundles, we will always choose the standard inhomogeneous coor-
dinates A4+ on the patches Uy covering the base CP!, together with the coordinates Al
and 22 in the fibres over the patches U.. The transition functions on the overlap are
implicitly given by

1

o=t 2 = )\izz, Ay = PN (I1.61)

Homogeneity follows from the fact that p(Azo, ..., Azs) has to vanish for all .
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The holomorphic volume form on these spaces, whose existence is granted by vanishing
of the first Chern class, can be defined to be Qf’t’o = +dzl Adzi Ad)s.

In more physical terms, this setup corresponds to a (3, ~)-system of weight a/2 (and
b/2), where the two bosonic fields describe the sections of the O(a) ® O(b) vector bundle
over CP!.

One of the most common examples is the bundle O(0) & O(2) — CP?, which is,
e.g., the starting point in the discussion of Dijkgraaf and Vafa relating matrix model
computations to effective superpotential terms in supersymmetric gauge theories [78].
Switching to the coordinates x = z}r, u=222,v= 223, y = 222, we can describe the
above Calabi-Yau as C x A;, where the A; singularity is given by uv — y? = 0. Note
that A is a local K3 manifold.

Another example is the resolved conifold O(—1) @ O(—1) — CP!, which we will
discuss in the following section. Note that the (projective) twistor space of C*, O(1) @
O(1) — CP!, is not a Calabi-Yau manifold, however, it can be extended by fermionic
coordinates to a Calabi-Yau supermanifold, see section [VII.4.

I1.3.3 The conifold

8§12 The conifold. The conifold is the algebraic variety € defined by the equation
fw) = wi+ws +wi+wi =0 (I1.62)

in C* as a complex three-dimensional subspace of codimension 1. One immediately notes
that in the point @ = (w;) = 0, the tangent space of € collapses to a point which
is indicated by a simultaneous vanishing of the defining equation f(w) and all of its
derivatives. Such points on a algebraic variety are called double points and are points
at which varieties fail to be smooth. Thus, € is only a manifold for w # 0. As we
will see later on, there are two possible ways of repairing this singularity: a resolution
and a deformation (or smoothing). Away from the origin, the shape is most efficiently
determined by intersecting € with a seven sphere in R®:

w1 ” + wa | + [ws]* + |wa* = r* . (IL.63)

Splitting w; in real and imaginary components x; and y;, one obtains the equations
72 — 2i¥ - §j — 2 = 0 for the conifold and obviously #2 + 72 = r?2 for the sphere. The
intersection is given by the three equations

Fg=0 £ =g2="_. (IL.64)

The last two equations define 3-spheres, the first one reduces one 3-sphere to a 2-sphere,
since fixing # requires i to be orthogonal, leaving an S?. The radius of the spheres is
r/+/2, so that the conifold is indeed a cone over the base B = S? x S3. This base space
is also known as the space T1,

SU(2) SO(4)

B = T = SU(2) x ) o Ol (11.65)

By changing coordinates to z13 = w3 £ iw4 and 224 = iwy F w2, one obtains another
defining equation for %:
2123 — 2924 = 0. (11.66)

1n general, Ay, is the space C?/Z1.
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This equation leads to a definition using the determinant of a matrix, which will be quite
useful later on:

W = (Zl Z2>, detW = 0. (IL67)

Z4 23

From this matrix, one can introduce the radial coordinate of the conifold by
r=trWw)eR (I1.68)

which parameterizes the distance from the origin in C*: 2 + ¢ = r2. We see that the
geometry is invariant under r — Ar, so that 9, is a Killing vector.

Let the angles of the S® be denoted by (61, ¢1,%) and the ones of the S? by (62, ¢2).
Then by taking ¢ and combining it with the radius, to v = re'¥, one gets a complex cone
over CP! x CP.

8§13 The deformed conifold. The deformation %yes of the conifold is obtained by
deforming the defining equation (I1.62) to

f=wl+wi+wl+wl = 21232024 = €. (I1.69)

Due to Z2 — 2 = ¢, the range of the radial coordinate r? = 2 + % is ¢ < r < oo.

Thus, the tip of the conifold was pushed away from the origin to the point 72 = &2, which
corresponds to #2 = 2, 7 = 0. The deformed conifold can be identified with 7%53. In
the case of the singular conifold, the base S® x S? completely shrank to a point. Here,
we note that the S3 at the tip, given by 22 = ¢, has finite radius r = ¢ and only the S?
given by & - = 0, 72 = 0 shrinks to a point. This is depicted in figure IL.1.

Figure I1.1. The resolved, the singular and the deformed conifolds.

8§14 The resolved conifold. The resolved conifold %ies is defined by replacing the
defining equation of the conifold det W = 0 with

Aj zZ1 22 s 0 0
W i _ 1 = f Aa . I1.70
Here, (A4) # 0 is a homogeneous coordinate on the Riemann sphere CP! = 5%, Switching
to the inhomogeneous coordinates A := i—j and A\_ := :\\—;, we note that solutions to

(IL.70) are of the form

W = <_Z2A+ ZQ) - (Zl ZM‘) : (IL71)
—Z3A+ z3 Z4 Z’4A_
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and thus the coordinates (z2,23,\+) and (21, 24, A_) describe @es on two patches Uy
with transition functions z; = —A;2z9 and z4 = —A;2z3. Up to a sign, which can easily
be absorbed by a redefinition of the coordinates, this is the rank two vector bundle
O(—-1) @ O(—~1) — CP'. Contrary to the case of the deformed conifold, the S* at the
tip vanishes while the S? keeps its finite size.

8§15 Metric on the conifold. Recall that the metric for a real d-dimensional cone takes
the form

gmndz™dz™ = dp? +p2hijdxidxj, (I1.72)

where h;; is the metric on the (d —1)-dimensional base space. If this base is not the space
S4=1 there is a singularity at p = 0. In the case of the conifold, the base manifold is
52 x 83, and thus the singularity at p = 0 is the one already present in the discussion
above. A detailed discussion of the explicit form of the natural metric on the conifold is
found in [214] and the references therein.

8§16 The conifold transition. The transition from a deformed conifold through a sin-
gular conifold to a resolved conifold is an allowed process in string theory which amounts
to a topology change. An application of this transition is found in the famous large NV
duality in [276]: In type IIA string theory compactified on the deformed conifold, i.e. on
T*S3, wrapping N D6-branes around the S produces U(N) Yang-Mills theory in the
remaining four noncompact directions filling spacetime. In the large N limit, this is equi-
valent to type ITA string theory on the small resolution, i.e. on O(—1) ® O(—1) — CPL.
The inverse process is found in the mirror picture of this situation: N D5-branes wrapped
around the sphere of the small resolution give rise to U (V) Yang-Mills theory, the large N
limit corresponds to type IIB string theory compactified on the deformed conifold 7*S3.

I1.4 Deformation theory

Deformation theory is an important tool in twistor theory as well as in the Kodaira-
Spencer theory of gravity [32], the closed string theory corresponding to the topological
B-model. In the former theory, one considers deformations of a CP! which is holomor-
phically embedded in an open subspace of CP3. These deformations are called relative
deformations. The Kodaira-Spencer theory of gravity, on the other hand, is a theory
which describes the deformation of the total complex structure of a Calabi-Yau manifold

as a result of closed string interactions.

11.4.1 Deformation of compact complex manifolds

81 Deformation of complex structures. Consider a complex manifold M covered by
patches U, on which there are coordinates z, = (z%) together with transition functions f,;,
on nonempty intersections U, NU, # & satisfying the compatibility condition (cf. section
11.2.3, 834)) foc = fapo foc on all U,NU,NU, # &. A deformation of the complex structure
is obtained by making the coordinates z, and the transition functions f,; depend on an
additional set of parameters t = (¢!,¢2,...) such that

za(t) = fap(t;2p(t)) and  fae(t, ze(t)) = fan(t; foe(t; 2e(t))) (IL.73)

and z,(0) and fu,(0) are the coordinates and transition functions we started from.
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§2 Infinitesimal deformations. One linearizes the second equation in (IL.73) by dif-

ferentiating it with respect to the parameter t and considering Z,. := B(Z;‘;C lt=0. This leads

to the linearized cocycle condition
Zae = Zab+ Zye , (I1.74)

and thus the vector field Z,, is an element of the Cech 1-cocycles on M with values in the
sheaf of germs of holomorphic vector fields b (see section I1.2.3} [§33). Trivial deformations,
on the other hand, are those satisfying fup (¢, hy(t, 25(t))) = ha(t, z4(t)), where the h, are
holomorphic functions for fixed ¢, as then the manifolds for two arbitrary parameters of
t are biholomorphic and thus equivalent. Infinitesimally, this amounts to Z,, = Z, — Zp,

where Z, = 85;. The latter equation is the Abelian coboundary condition, and thus

we conclude!? that nontrivial infinitesimal deformations of the complex structure of a
complex manifold M are given by the first Cech cohomology group H (M, ).

These considerations motivate the following theorem:

§3 Theorem. (Kodaira-Spencer-Nirenberg) If H'(M,h) = 0, any small deformation of
M is trivial. If H'(M, ) # 0 and H?(M,h) = 0 then there exists a complex manifold M
parameterizing a family of complex structures on M such that the tangent space to M
is isomorphic to H'(M, ).

Thus, the dimension of the Cech cohomology group H' (M, h) gives the number of pa-
rameters of inequivalent complex structures on M, while H?(M, §) gives the obstructions
to the construction of deformations.

Note that this theorem can also be adapted to be suited for deformations of complex
vector bundles over a fixed manifold M.

84 Beltrami differential. Given a complex manifold M with a Dolbeault operator
0, one can describe perturbations of the complex structure by adding a T%°M-valued
(0,1)-form A, which would read in local coordinates (2%) as

0 = dzﬂazz +dz2A§(,ij . (IL.75)
For such an operator d to define a complex structure, it has to satisfy 9 = 0. One can
show that this integrability condition amounts to demanding that H 2(M,h) = 0.
§5 Rigid manifolds. A complex manifold M with vanishing first Cech cohomology
group is called rigid.
§6 Example. Consider the complex line bundles O(n) over the Riemann sphere CP'.
The Cech cohomology group H°(CP!, O(n)) vanishes for n < 0 and amounts to global
sections of O(n) otherwise. As h = O(2), we conclude by using Serre duality’® that
dim HY(CP', 0(2)) = dim H*(CP', O(-4)) = 0 and thus Ogp1(n) is rigid.

11.4.2 Relative deformation theory

87 Normal bundle. Given a manifold X and a submanifold ¥ C X, we define the
normal bundle N to Y in X via the short exact sequence

1 > TY - TXly - N — 1. (11.76)

12heing slightly sloppy

"®The spaces H'(M,O(E)) and H"*(M,O(EY ® A™°)) are dual, where M is a compact complex
manifold of dimension n, E a holomorphic vector bundle and A™° a (n,0)-form. One can then pair
elements of these spaces and integrate over M.
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Therefore, N' = T;%LY . This space can roughly be seen as the local orthogonal complement
to Y in X. For complex manifolds, it is understood that one considers the holomorphic
tangent spaces 710X and THO0Y.

88 Infinitesimal motions. Deformations of Y in X will obviously be described by
elements of H(Y, O(N)) at the infinitesimal level, but let us be more explicit.

Assume that Y is covered by patches U, with coordinates z,(t) and transition func-

tions fup(t, zp(t)) satisfying the linearized cocycle condition (IL.74). Furthermore, let
ha(t, zq(t)) be a family of embeddings of U, into X, which is holomorphic for each ¢ in
the coordinates z,(t) and satisfies the conditions

ha(0,2,(0)) = id and hy(t, z6(t)) = ha(t, fan(t, z(t))) on U, NUy . (I1.77)

One can again linearize the latter condition and consider the vectors only modulo tangent

vectors to Y (which would correspond to moving Y tangent to itself in X, leaving Y

invariant). One obtains 8{;;“ = % and therefore these vector fields define global sections

of the normal bundle.

Obstructions to these deformations can be analyzed by considering the second order
expansion of (I1.77), which leads to the condition that the first Cech cohomology group
HY(Y,O(N)) must be trivial.

Altogether, we can state that
§9 Theorem. (Kodaira) If H'(Y,O(N)) = 0 then there exists a d = dimg H(Y, O(N))
parameter family of deformations of Y inside X.

§10 Examples. Consider a projective line Y = C P! embedded in the complex projective
space CP? and let X be a neighborhood of Y in CP2. The normal bundle is just
N = O(1) ® O(1) and we have furthermore

HY(Y,0N)) = HY(Y,01)®H(Y,0(1)) = €* and HY(Y,OW)) = 0. (IL78)

We will make extensive use of this example later in the context of the twistor correspon-
dence.

As another example, consider the resolved conifold X = O(—1) @ O(-1) — CP!,
which we discussed above. There are no deformations of the base space Y = CP? inside
this vector bundle, as H(Y, O(N)) = @, and thus Y is rigid in X. For example, if one
would wrap D-branes around this CP', they are fixed and cannot fluctuate.



CHAPTER II1

SUPERGEOMETRY

The intention of this chapter is to give a concise review of the geometric constructions
motivated by supersymmetry and fix the relevant conventions. Furthermore, we discuss
so-called exotic supermanifolds, which are supermanifolds with additional even nilpotent
directions, reporting some novel results.

Physicists use the prefix “super” to denote objects which come with a Zs-grading.
With this grading, each superobject can be decomposed into an even or bosonic part
and an odd or fermionic part, the latter being nilquadratic. It can thus capture the
properties of the two fundamental species of elementary particles: bosons (e.g. photons)
and fermions (e.g. electrons).

The relevant material to this chapter is found in the following references: [8, [35,
186, [101] (general supersymmetry), [72, 27, 189, 56] (superspaces and supermanifolds),
[92, 91, 244] (exotic supermanifolds and thickenings).

II1.1 Supersymmetry

§1 Need for supersymmetry. The Coleman-Mandula theorem [65] states that if the
S-matrix of a quantum field theory in more than 1+1 dimensions possesses a symmetry
which is not a direct product with the Poincaré group, the S-matrix is trivial. The only
loophole to this theorem [117] is to consider an additional Zs-graded symmetry which we
call supersymmetry (SUSY). Although SUSY was introduced in the early 1970s and led to
a number of aesthetically highly valuable theories, it is still unknown if it actually plays
any role in nature. The reason for this is mainly that supersymmetry — as we have not
detected any superpartners to the particle spectrum of the standard model — is broken by
some yet unknown mechanism. However, there are some phenomenological hints for the
existence of supersymmetry from problems in the current non-supersymmetric standard
model of elementary particles. Among those are the following;:

> The gauge couplings of the standard model seem to unify at My ~ 2 - 10'6GeV in
the minimal supersymmetric standard model (MSSM), while there is no unification
in non-SUSY theories.

> The hierarchy problem, i.e. the mystery of the unnaturally big ratio of the Planck
mass to the energy scale of electroweak symmetry breaking (~ 300GeV), which
comes with problematic radiative corrections of the Higgs mass. In the MSSM,
these corrections are absent.

> Dark matter paradox: the neutralino, one of the extra particles in the supersymmet-
ric standard model, might help to explain the missing dark matter in the universe.
This dark matter is not observed but needed for correctly explaining the dynamics
in our galaxy and accounts for 25% of the total matter! in our universe.

Lanother 70% stem from so-called dark energy
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Other nice features of supersymmetry are seriously less radiative corrections and the
emergence of gravity if supersymmetry is promoted to a local symmetry. Furthermore,
all reasonable string theories appear to be supersymmetric. Since gravity has eventually
to be reconciled with the standard model (and — as mentioned in the introduction — string
theories are candidates with very few competitors) this may also be considered as a hint.

There might even be a mathematical reason for considering at least supergeometry:
mirror symmetry (see section V.3.5) essentially postulates that every family of Calabi-
Yau manifolds comes with a mirror family, which has a rotated Hodge diamond. For
some so-called “rigid” Calabi-Yau manifolds this is impossible, but there are proposals
that the corresponding mirror partners might be Calabi-Yau supermanifolds [259].

Be it as it may, we will soon know more about the phenomenological value of su-
persymmetry from the experimental results that will be found at the new large hadron
collider (LHC) at CERN.

I11.1.1 The supersymmetry algebra

§2 The supersymmetry algebra. The supersymmetric extension of the Poincaré al-
gebra on a pseudo-Euclidean four-dimensional space is given by

[ ] = i(nuppu - nupPu) ,

[ ,ul/; ] = _i(nupMua - T],u,O'MVp - anMMO' + nl/O'M,up) )

[ Qm] =0, [F.Q =0, (I11.1)

{QO&ZuQﬂ} = QO-ZBP}L&? ) {QO&UQB]} = €aﬁZi]‘ ) {QZCNQJB} = EQBZ’LJ P
where 7, is either the Euclidean metric, the Minkowskian one or the Kleinian one with
() = diag(—1, —1,+1,+1). The generators P, M, @ and @ correspond to translations,
Lorentz transformations and supersymmetry transformations (translations in chiral direc-
tions in superspace), respectively. The terms Z% = —Z7% are allowed central extensions
of the algebra, i.e. [Z¥,:] = 0. We will almost always put them to zero in the following.

The indices 4,7 run from 1 up to the number of supersymmetries, usually denoted
by N. In four dimensions, the indices o and ¢ take values 1,2. In particular, we have

therefore 4N supercharges Q,.; and Qfx
§3 Sigma matrix convention. On four-dimensional Minkowski space, we use

e (01) (1) e (57) A (00

and thus o, = (1, 0;) together with the definition 6, = (1, —0;), where o; denotes the

@)

e

three Pauli matrices. On Euclidean spacetime, we define

(o1 (o0 i (10 (i
710 M W = o 21 = 1o

with o, = (0y,i1), 6, = (—0;, —il) and on Kleinian space R*? we choose

(0o 0 (10 o
=021 0 27 4400 37l o —1 w0 4 )

In the above supersymmetry algebra, we also made use of the symbols

oo = L(o%,5" — ot 5YP)  and 5””‘5‘5 = i(&”daazg—ﬁwo‘agﬁ-). (II1.2)



1I1.1 Supersymmetry 51

84 Immediate consequences of supersymmetry. While every irreducible represen-
tation of the Poincaré algebra corresponds to a particle, every irreducible representation
of the supersymmetry algebra corresponds to several particles, which form a supermulti-
plet. As P? commutes with all generators of the supersymmetry algebra, all particles in
a supermultiplet have the same mass. Furthermore, the energy Py of any state is always
positive, as

2055 (WIPulY) = (WH{Qai Qa}lv) = 11Quil)I* + IQGI)I* > 0. (IIL.3)

And finally, we can deduce that a supermultiplet contains an equal number of bosonic
and fermionic degrees of freedom (i.e. physical states with positive norm). To see this,
introduce a parity operator P which gives —1 and 1 on a bosonic and fermionic state,
respectively. Consider then

200 tr(PP,) = tr(P{Qai, QL)) = tr(—QuiPQh + PQLQqai) = 0,  (IIL4)

where we used the facts that P anticommutes with (J,; and that the trace is cyclic. Any
non-vanishing P, then proves the above statement.

I11.1.2 Representations of the supersymmetry algebra

85 Casimir operators of the supersymmetry algebra. To characterize all irre-
ducible representations of the supersymmetry algebra, we need to know its Casimir
operators. Recall that the Casimirs of the Poincaré algebra are the mass operator
P? = P, P" with eigenvalues m? together with the square of the Pauli-Ljubanski vec-
tor W, = %EWWP”WP" with eigenvalues —m2s(s + 1) for massive and W, = AP, for
massless states, where s and A are the spin and the helicity, respectively.

In the super Poincaré algebra, P? is still a Casimir, while W2 has to be replaced by
the superspin operator given by C? = CwCH with

C;w = (Wu - %Qg‘?iﬂQiﬁ)PIJ U %Qg&gﬁQiﬁ)PH : (I1L.5)

Thus C? = P?W? — %(P -W)2, and in the massive case, this operator has eigenvalues
—m?s(s + 1), where s is called the superspin.?

86 Massless representations. First, let us consider massless representations in a frame
with P, = (E,0,0, E) which leads to

ohP, — <8 20E> . (I1L6)

From the relation {QM,Q;} = 205 BP“ one deduces by a similar argument to (II1.3)

that Q;1 = Qzl = (0. Together with the supersymmetry algebra, this also implies that
the central charges Z% have to vanish. The remaining supercharges ;2 and Q; are
proportional to fermionic annihilation and creation operators, respectively. From the
commutation relations of these operators with the generator of rotations J3 = Mjo, one
sees that they indeed lower respectively rise the helicity of a state by % Choosing a
highest weight state |h) annihilated by all the @28, we can built a supermultiplet by
acting with the Q’zs on it. Altogether, one obtains 2N states due to the nilpotency of the

~i
Q?s.

When having additional conformal invariance, one can define the analog of a superhelicity.
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§7 Massless supermultiplets. For A’ = 1, a supermultiplet consists of fields of helicity
(Mo, Ao + %) Since we do not want to exceed A = 1 for physical® reasons, we thus find
the chiral (scalar) multiplet with helicities (0, 3) together with its CPT conjugate (—3,0)
and the vector (gauge) multiplet with helicities (3,1) and (—1,—3).

For N/ = 2, a supermultiplet consists of fields with helicities (Ao, Ao+ %, Ao+ %, Ao+1),
11
DRIDR]
(-1, —%, —%, 0). Note that this multiplet amounts essentially to the sum of a chiral and a
vector multiplet in A/ = 1 language. Furthermore, there is the hypermultiplet, consisting

and we therefore find the vector multiplet (0 1) and its corresponding CPT conjugate

of fields with helicities (—%, 0,0, %), which can but does not necessarily have to be its own
CPT adjoint.

For N = 4, there is a single multiplet (—1,4 x —%,6 x 0,4 x 3,1) with helicities not

larger than one: a gauge potential (helicities +1), four Weyl fermions and their conjugates
with helicities :t% and three complex scalars with helicity 0.
88 Massive representations. For massive representations, we choose the frame P, =
(m,0,0,0). By an appropriate U(N) rotation of the generators, we can bring the matrix
of central charges Z¥ to a block diagonal form (Z%) = diag(z¥), where the z* are anti-
symmetric 2 x 2 matrices. Here, we assumed that N was even. If ' was odd there would
be an additional zero eigenvalue of the matrix (Z%). The supercharges can be rearranged
to fermionic creation and annihilation operators according to

ah = 5 (QF P b ens@)) L W= G (QFTIT —enp(@F)) (L)

withr=1,..., %/, for which the only non-vanishing anticommutators are
{ag: (a3)'} = 2m —a)brs00p . {05, (05)'} = (2m +¢r)drs0as (II1.8)

where ¢, is the upper right entry of 2”. The positivity of the Hilbert space requires
2m > |q,| for all r. For values of ¢, saturating the boundary, the corresponding operators
ar, and b}, have to be put to zero.

Thus, we obtain 2\ — 2k fermionic oscillators amounting to 22V %) states, where k is
the number of ¢, for which 2m = |¢,|. The multiplets for k& > 0 are called short multiplets
or BPS multiplets, in the case k = %/ one calls them ultrashort multiplets.

I11.2 Supermanifolds

For supersymmetric quantum field theories, a representation of the super Poincaré algebra
on fields is needed. Such representations can be defined by using functions which depend
on both commuting and anticommuting coordinates. Note that such a Zs-grading of the
coordinates comes with a Zs-grading of several other objects, as e.g. derivatives, integral
forms, vector fields etc.

There are basically three approaches to Zs-graded coordinates on spaces:

> The first one just introduces a set of GraBmann variables, which serve as formal
parameters in the calculation and take the role of the anticommuting coordinates.
This setup is the one most commonly used in physics. Deeper formalizations can
be found, and we briefly present the sheaf-theoretic approach, in which a super-
manifold is interpreted as an ordinary manifold with a structure sheaf enlarged to
a supercommutative ring, cf. the definition of a locally ringed space in 11.2.2| §26.

30therwise, our supermultiplet will necessarily contain gravitini and gravitons.
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> The second one, pioneered by A. Rogers and B. S. DeWitt, allows the coordinates
to take values in a Grafimann algebra. This approach, though mathematically in
many ways more appealing than the first one, has serious drawbacks, as physics
seems to be described in an unnatural manner.

>> A unifying approach has been proposed by A. Schwarz [248] by defining all objects
of supermathematics in a categorial language. This approach, however, also comes
with some problematic aspects, which we will discuss later.

II1.2.1 Supergeneralities

81 Zo-grading. A set S is said to posses a Zs-grading if one can associate to each element
s € S a number § € {0,1}, its parity. If there is a product structure defined on S, the
product has furthermore to respect the grading, i.e.

$1:8 = 83 = 83=87+8 mod?2. (IH.Q)

In the following, we will sometimes use a tilde over an index to refer to the grading or
parity of the object naturally associated to that index. Objects with parity 0 are called
even, those with parity 1 are called odd.

82 Supervector space. A supervector space is a Zo-graded vector space. In some cases,
one considers a supervector space as a module over a ring with nilpotent elements. Here,
the multiplication with elements of the ring has to respect the grading. A supervector
space of dimension m|n is the span of a basis with m even elements and n odd elements.
83 Sign rule. A heuristic sign rule which can be used as a guideline for operating with
Zo-graded objects is the following: If in a calculation in an ordinary algebra one has to
interchange two terms a and b in a monomial then in the corresponding superalgebra,
one has to insert a factor of (—l)di’.

84 Supercommutator. The supercommutator is the natural generalization of the com-
mutator for Zs-graded rings reflecting the above sign rule. Depending on the grading of
the involved objects, it behaves as a commutator or an anticommutator:

{a,b} = a-b—(-1)%b-q . (I11.10)
From this definition, we immediately conclude that

{a, b} = —(~1)%{b,a} . (ITL.11)

Note that instead of explicitly writing commutators and anticommutators in the super-
symmetry algebra (III.1), we could also have used supercommutators everywhere.

85 Super Jacobi identity. In an associative Zs-graded ring A, the supercommutator
satisfies the following super Jacobi identity:

{a. b, 3} + (=)D e, a}} + (—~1)Z@ D e fa, b)) = 0 (II.12)

for a,b,c € A, as one easily verifies by direct calculation.

86 Supercommutative rings. A Zs-graded ring A is called supercommutative if the
supercommutator {a, b} vanishes for all elements a,b € A.

87 Superalgebra. One can lift a supervector space V to a superalgebra by endowing it
with an associative multiplication respecting the grading (i.e. ab=a+b mod 2) and a
unit 1 with 1 = 0. If we have an additional bracket on V which satisfies the super Jacobi
identity (III.12), we obtain a corresponding super Lie algebra structure.
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88 Super Poisson structure. A super Poisson structure is a super Lie algebra structure
which satisfies the super Jacobi identity and the equations

1,9} = {f.gbh+(=0)Tg{f,h} and {fg,h} = f{g A+ (~1)""{f, h}g. (IIL13)

89 Supermatrices. Linear transformations on a supervector space are described by
supermatrices. Given a supervector space V of dimension m|n, the basis e is a tuple of
m even and n odd elements of V', and we will always assume this order of basis vectors
in the following. Even supermatrices are those, which preserve the parity of the basis
vectors and thus have the block structure

A B
K:(C D) : (I11.14)

with the elements A and D being even and the elements B and C being odd. The blocks
of odd supermatrices have inverse parities. Note that there are furthermore supermatrices
which are not Zs-graded in the above scheme. They are said to have mized parity. Due
to their existence, the supermatrices do not form a supervector space.
§10 Supertrace. The supertrace of a standard supermatrix which has the form (III.14)
is defined by

str(K) = trA—trD . (IT1.15)

This definition ensures that str(KL) = str(LK), and — after a suitable definition —
invariance under transposition of the matrix K. Furthermore, we have str(ﬂm‘n) =
tr (1,,) — tr(1,) =m —n.

811 Superdeterminant. A superdeterminant is easily defined by integrating the clas-

sical variational law

Slndet K = tr (K 16K) (IT1.16)

together with the boundary condition sdet(1,,,) = 1. This definition yields for a matrix
K of the form (III.14)
det(A — DB~1C) det(A)

sdet(K) = det(B) = det(B)det(1,, —- CA-1DB1) (IIL1T)

We will present the derivation of this result in an analogous case in [§15| of section 1I1.3.4.
Our definition preserves in particular the product rule for ordinary determinants, i.e.

we have sdet(K L) = sdet(K)sdet(L). The superdeterminant sdet(-) is also called the

Berezinian.

812 Almost nilpotent algebra. An almost nilpotent algebra is an associative, finite-

dimensional, unital, Zo-graded supercommutative algebra in which the ideal of nilpotent

elements has codimension 1.

I11.2.2 Graflmann variables

§13 Grafmann variables. Define a set of formal variables A := {6} which satisfy the
algebra

{67,607}y = 007 + 670" .= 0. (IT1.18)
The elements of this set are called Grafimann variables. Trivial consequences of the
algebra are their anticommutativity: 6°07 = —670° and their nilquadraticy: (6)?> = 0.
The parity of a Gralimann variables is odd: i = 1.
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§14 Grafmann algebras. The algebra generated by a set of N € N U {oco} Gramann
variables over C or R is called the Graffimann algebra Ay. A Grafimann algebra is a
Zo-graded algebra, and thus every element z € A can be decomposed into an even part
zg € Ag with Zy = 0 and an odd part z; € Ay with Z; = 1 as well as into a body zg € Ap :=
Any N C and a soul zg € Ag := Ax\C. Note that the soul is nilpotent, and an element
z of the GraBmann algebra Ay has the multiplicative inverse z=1 = % Zf\; O(—j—;)i if
and only if the body is non-vanishing. Elements of a Graimann algebra are also called
supernumbers.
Note that a Graimann algebra is an almost nilpotent algebra.

815 Derivatives with respect to Graimann variables. Recall that a derivative is
a linear map which annihilates constants and satisfies a Leibniz rule. For Grafimann
variables, one easily finds that the most appropriate definition of a derivative is

8ii(a+9ib) = b, (I11.19)

where a and b are arbitrary constants in #°. Due to the nilpotency of Gramann variables,

this definition fixes the derivative completely, and it gives rise to the following super

8801- (ab) = <389z a) b+ (—1)% <8?9@ b) . (I11.20)

Note that in our conventions, all the derivatives with respect to Grafimann variables act
from the left.

8§16 Integration over Graflimann variables. The corresponding rule for an integra-

tion [ d#® is fixed by demanding that [ d¢? is a linear functional and that? agi [do'f =

i de a?oi f =0, where f is an arbitrary function of #°. The latter condition is the founda-

tion of integration by parts and Stokes’ formula. Thus we have to define

Leibniz rule:

/dei (a+6'b) = b, (IT1.21)

and integration over a Grafimann variable is equivalent to differentiating with respect to
it. This integration prescription was first introduced by F. A. Berezin, one of the pioneers
of Grafimann calculus, and is therefore called Berezin integration.

When performing a change of coordinates, the Jacobian is replaced by the Berezinian,
i.e. the usual determinant is replaced by the superdeterminant, and we will encounter
several examples for this later on.

§17 Complex conjugation of Graflmann variables. After defining a complex con-
jugation on * : A — A, we call the elements of A complex Graimann variables and those
elements & € span(\) = A for which £* = & real.

We will have to introduce different explicit antilinear involutions defining reality con-
ditions for Graffimann variables in our discussion later on. However, we can already fix
two conventions: First, our reality conditions will always be compatible with

9 0

Furthermore, we adopt the following convention for the conjugation of products of Graf-
mann variables and supernumbers in general:

7(0'0%) = 7(0*)7(0') and 7(2'2?) = T(2*)7(<h) . (IT1.23)

4 .. .
no sum over 4 implied



56 Supergeometry

This choice is almost dictated by the fact that we need the relation (AB) = BfAf
for matrix-valued superfunctions. A slight drawback here is that the product of two
real objects will be imaginary. This is furthermore the most common convention used
for supersymmetry in Minkowski space, and the difference to the convention 7(0'6?) =
7(01)7(0?) is just a factor of i in the GraBmann generators. A more detailed discussion
can be found in [56].

I11.2.3 Superspaces

§18 Superspace from an enlarged structure sheaf. A superspace is a pair (M, Oyy),
where M is a topological space and Oy, is a sheaf of supercommutative rings such that
the stalk Opr, at any point © € M is a local ring. Thus, (M, Oy) is a locally ringed
space with a structure sheaf which is supercommutative.

819 Superspace according to A. Schwarz. We will describe the categorial approach
of A. Schwarz in more detail in section I11.3.1.

§20 The space R™". Given a set of n GraBmann variables {6}, the space R%™ is the set
of points denoted by the formal coordinates #%. The space R™" is the cartesian product
R™xR%", and we say that R™/™ is of dimension m|n. This construction straightforwardly
generalizes to the complex case O™, Besides being the simplest superspace, R™" will
serve as a local model (i.e. a patch) for supermanifolds. In the formulation of Manin, we
can put R”™" = (R™, A,,).

§21 Maps on R™™. A function f : R™" — R ® A,, is an element of .#(R™) ® A,, and
we will denote this set by % (lRm|"). Smooth functions will correspondingly be denoted
by C®(R™"). Choosing coordinates (z*,67), where 1 < i < m and 1 < j < n, we can
write f as

f(2,0) = fo(z)+ [i(2)07 + fruy (2)00" + . 4 fiy g, (2)0" .0 . (111.24)

We will often also use the notation f(z,0) = f;(x)6!, where I is a multiindex. Note that
functions on RO™ are just the supernumbers defined in §14, and if fy is nowhere vanishing
then there is a function f~!(z), which is given by the inverse of the supernumber f(x),
such that f(z)f~!(z) is the constant function with value 1.

The formula for the inverse of a supernumber can be generalized to matrix valued
supernumbers (and therefore to matrix valued superfunctions) ¢ € GL(n,R) ® Ay:

Pt = ot —yglsvpt +Ugvsyg vsus! — vg'vsvg s vsvgt ..,

where ¢ = ¢¥p + g is the usual decomposition into body and soul.

§22 Superspace for N-extended supersymmetry. The superspace for N -extended
supersymmetry in four dimensions is the space R4*V (or CHV as the complex analogue),
i.e. a real four-dimensional space R* with arbitrary signature endowed additionally with
4N GraBmann coordinates. These coordinates are grouped into Weyl spinors #** and 9_3,
where o, = 1,2 and i = 1,...,N. The spinor indices are raised and lowered with the
antisymmetric e-symbol defined by €12 = €5 = S s

For simplicity, let us introduce the following shorthand notation: we can drop un-
dotted contracted spinor indices if the left one is the upper index and dotted contracted

spinor indices if the right one is the upper one, i.e. 0 = %6, and 00 = 0;0%.
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§23 Spinorial notation. It will often be convenient to rewrite the spacetime coordinates
x* in spinor notation, using (local) isomorphisms as e.g. SO(4) ~ SU(2) x SU(2) for a
Euclidean spacetime® by z%% = —iaﬁ‘d‘x“. The sigma matrices are determined by the
signature of the metric under consideration (see section III.1.1, §3). This will simplify
considerably the discussion at many points later on, however, it requires some care when
comparing results from different sources.

As shorthand notations for the derivatives, we will use in the following

0 0 _ 9
Ong = Oni 1= d 0, = — .
o 297

Soad a1 (I11.25)
824 Representation of the supersymmetry algebra. On the superspace R4V
described by the coordinates (x“,Ho‘i,G_g), one can define a representation of the su-

persymmetry algebra by introducing the action of the superderivatives on functions®

f e Z®WN)

Doif = Oaif +080aaf and Dif = —95f —0“0uaf , (I11.26)
as well as the action of the supercharges

Qaif = Ooif =05 0uaf and QLf = —04f +0"0uaf - (IL.27)

The corresponding transformations induced by the supercharges Qn; and Q’a in super-

space read ' o ‘ B .
0x* = 0™¢&r 00* = 0, 00y = &,
. . . . . (I11.28)
0x = £, 00" = £ 003 = 0,
respectively, where (£, 53) are odd parameters.

R4|W

§25 Chiral superspaces and chiral coordinates. The superspace splits into

the two chiral superspaces Rilwv and ]RngN where the subscripts L and R stand for left-
handed (chiral) and right-handed (anti-chiral). The theories under consideration often
simplify significantly when choosing the appropriate coordinate system for the chiral

superspaces. In the left-handed case, we choose
(Yo% = %% 4 90%, 9, 62 . (IT1.29)

The representations of the superderivatives and the supercharges read in these chiral
coordinates as

Daif - 8aif+2§ga£afa D&f - _5?54](‘7
Quif = Oaif QLf = —OLf +20™0L. f

where L, denotes a derivative with respect to y®*. Due to 9L, = 9,4, we can safely

(I11.30)

drop the superscript “L” in the following.
One defines the anti-chiral coordinates accordingly as

(U3 o= 2o — 68 g1, Gy (IL31)

Note that we will also work with superspaces of Euclidean signature and the com-
plexified superspaces, in which 6 and @ are not related via complex conjugation. In these
cases, we will often denote 6 by 7.

5Similar isomorphisms also exist for Minkowski and Kleinian signature.
50ne should stress that the convention presented here is suited for Minkowski space and differs from
one used later when discussing supertwistor spaces for Euclidean superspaces.
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I11.2.4 Supermanifolds

8§26 Supermanifolds. Roughly speaking, a supermanifold is defined to be a topological
space which is locally diffeomorphic to R™™ or €™, In general, a supermanifold contains
a purely bosonic part, the body, which is parameterized in terms of the supermanifold’s
bosonic coordinates. The body of a supermanifold is a real or complex manifold by itself.
The Zo-grading of the superspace used for parameterizing the supermanifold induces a
grading on the ring of functions on the supermanifold. For objects like subspaces, forms
etc. which come with a dimension, a degree etc., we use the notation i|j, where i and j
denote the bosonic and fermionic part, respectively.

Due to the different approaches to supergeometry, we recall the most basic definitions
used in the literature. For a more extensive discussion of supermanifolds, see [56] and
references therein as well as the works [28] 162, [178].

§27 The parity inverting operator II. Given a vector bundle £ — M, the parity
inverting operator Il acts by reversing the parity of the fiber coordinates.

8§28 Examples of simple supermanifolds. Consider the tangent bundle T'M over a
manifold M of dimension n. The dimension of TM is 2n, and a point in TM can be
locally described by n coordinates on the base space (z%) and n coordinates in the fibres
(y*). The parity inverted tangent bundle IIT'M is of dimension n|n and locally described
by the n coordinates (z°) on the base space together with the n Grafimann coordinates
(6%) in the fibres. More explicitly, we have e.g. ITR* = R**, the superspace for N’ = 1
supersymmetry.

Another example which we will often encounter is the space IIO(n) — CP! which
is described by complex variables A+ and Grafimann variables 1 on the two standard
patches Uy of CP! with 6, = AM0_ on Uy NU-. This bundle has first Chern number
—n, as in fermionic integration, the Jacobian is replaced by an inverse of the Jacobian
(the Berezinian).

8§29 Supermanifolds in the sheaf-theoretic approach. We do not want to repeat
the formal discussion of [I89] at this point, but merely make some remarks. It is clear that
a supermanifold will be a superspace as defined above with some additional restrictions.
These restrictions basically state that it is possible to decompose a supermanifold globally
into its body, which is a (in some sense maximal) ordinary real or complex manifold, and
into its soul, which is the “infinitesimal cloud” surrounding the body and complementing
it to the full supermanifold.

Let us consider as an example the chiral superspace R**N and the complex projective
superspace CP3*. Their bodies are the spaces R40 = R* and Ccp3lo = CP3, respectively.

8§30 Supermanifolds according to B. S. DeWitt. This construction of a supermani-
fold will not be used in this thesis and is only given for completeness sake.

First, we define the superdomain R]* x R, to be an open superspace described by
m + n real coordinates u’ € Ag and v/ € Ay, with i = 1,...m, j = 1,...n. Note that
R x R7 is not a supervector space in this approach to supermathematics.

Furthermore, a topology on this space can be obtained from the topology of the
embedded real space R™ via the canonical projection

m:R" xR — R™. (111.32)

That is, a subset Y C R”* x R? is open if its projection m(Y") onto R™ is open. Therefore,
a superdomain is not Hausdorff, but only projectively Hausdorff.
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A supermanifold of dimension m|n is then a topological space which is locally diffeo-
morphic to R x Rj,.

The definition of the body of such a supermanifold is a little more subtle, as one
expects the body to be invariant under coordinate transformations. This implies that
we introduce equivalence classes of points on such supermanifolds, and only then we can
define a body as the real manifold which consists of all these equivalence classes. For
further details, see [72] or [56].

I11.2.5 Calabi-Yau supermanifolds and Yau’s theorem

8§31 Calabi-Yau supermanifolds. A Calabi- Yau supermanifold is a supermanifold
which has vanishing first Chern class. Thus, Calabi-Yau supermanifolds come with a
nowhere vanishing holomorphic measure 2. Note, however, that 2 is not a differential
form in the Grafimann coordinates, since Grafimann differential forms are dual to Graf3-
mann vector fields and thus transform contragrediently to them. Berezin integration,
however is equivalent to differentiation, and thus a volume element has to transform as a
product of Grafimann vector fields, i.e. with the inverse of the Jacobi determinant. Such
forms are called integral forms and for short, we will call  a holomorphic volume form,
similarly to the usual nomenclature for Calabi-Yau manifolds.

8§32 Comments on the definition. This definition has become common usage, even
if not all such spaces admit a Ricci-flat metric. Counterexamples to Yau’s theorem for
Calabi-Yau supermanifolds can be found in [239].

Nevertheless, one should remark that vanishing of the first Chern class — and not
Ricci-flatness — is necessary for a consistent definition of the topological B-model on a
manifold (see section V.3.3). And, from another viewpoint, it is only with the help of
a holomorphic volume form that one can give an action for holomorphic Chern-Simons
theory (see section IV.3.2). Thus, the nomenclature is justified from a physicist’s point
of view.

8§33 Examples. The most important example discussed in recent publications is cer-
tainly the space CP3* and its open subset

Pt = C200(1) e CtolO1) — CP. (I11.33)

The latter space is clearly a Calabi-Yau supermanifold, since its first Chern class is
trivial.” The space P34 is covered by two patches Ui, on which its holomorphic volume
form is given by

O30 = 1azl Ade? A dAg dpFdpEdnFdnE (I11.34)

where At is the coordinate on the base space, while z¢ and nz?t are coordinates of the
bosonic and fermionic line bundles, respectively. Note that the body of a Calabi-Yau
supermanifold is not a Calabi-Yau manifold, in general, as also in the case of the above
example: the body of P3!* is O(1) @ O(1) — CP' which is not a Calabi-Yau manifold.

A further class of examples for superspaces with the Calabi-Yau property is given by
the weighted projective spaces W(DP3|2(1, 1,1,1|p, q) with p+q = 4, which were proposed
as target spaces for the topological B-model in [297] and studied in detail in [231].

To complete the list, we will also encounter the superambitwistor space £5/6, which
is a quadric in the product of two supertwistor spaces, and the mini-supertwistor space

"Recall that TIO(1) contributes —1 to the total first Chern number, see [§28.
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P .= 0(2) @ TTO(1) ® CL. The corresponding mini-superambitwistor space £ is not
a supermanifold, see section VIL.7.3.

§34 Yau’s theorem on supermanifolds. In [239], it was shown that Yau’s theorem
is not valid for all supermanifolds. That is, even if the first Chern class is vanishing on a
supermanifold with Kéhler form J, this does not imply that this supermanifold admits a
super Ricci-flat metric in the same Kéahler class as J. To construct a counterexample, one
can start from a Kéhler manifold with vanishing first Chern class and one fermionic and
an arbitrary number of bosonic dimensions. One finds that such a supermanifold admits
a Ricci-flat metric if and only if its scalar curvature is vanishing [239]. As the weighted
projective spaces WCP™!(1,..., 1|m) provide examples, for which this condition is not
met, we find that the naive form of Yau’s theorem is not valid for supermanifolds.

In a following paper [302], it was conjectured that this was an artifact of super-
manifolds with one fermionic dimensions, but in the paper [240] published only shortly
afterwards, counterexamples to the naive form of Yau’s theorem with two fermionic di-
mensions were presented.

II1.3 Exotic supermanifolds

In this section, we want to give a brief review of the existing extensions or generalizations
of supermanifolds, having additional dimensions described by even nilpotent coordinates.
Furthermore, we will present a discussion of Yau’s theorem on exotic supermanifolds. In
the following, we shall call every (in a well-defined way generalized) manifold which is
locally described by k even, [ even and nilpotent and ¢ odd and nilpotent coordinates
an exotic supermanifold of dimension (k @ [|g). In section VIL5, some of the exotic
supermanifolds defined in the following will serve as target spaces for a topological B-
model.

I11.3.1 Partially formal supermanifolds

81 Supermathematics via functors. The objects of supermathematics, as e.g. super-
manifolds or supergroups, are naturally described as covariant functors from the category
of Gralmann algebras to corresponding categories of ordinary mathematical objects, as
manifolds or groups, [248]. A generalization of this setting is to consider covariant func-
tors with the category of almost nilpotent (AN) algebras as domain [160} 159]. Recall
that an AN algebra = can be decomposed into an even part Zg and an odd part =; as
well as in the canonically embedded ground field (i.e. R or C), Ep, and the nilpotent
part =g. The parts of elements ¢ € = belonging to Zp and =g are called the body and
the soul of &, respectively.

82 Superspaces and superdomains. A superspace is a covariant functor from the
category of AN algebras to the category of sets. Furthermore, a topological superspace is
a functor from the category of AN algebras to the category of topological spaces.
Consider now a tuple (z',..., 2% 4!, ... 4}, ¢1,...,¢9) of k even, I even and nilpotent
and ¢ odd and nilpotent elements of an AN algebra =, i.e. 2 € =g, ' € EgNEg and * €
=Z1. The functor from the category of AN algebras to such tuples is a superspace denoted
by R*®!¢. An open subset UF®HUe of R¥®U¢, which is obtained by restricting the fixed
ground field Zp of the category of AN algebras to an open subset, is called a superdomain
of dimension (k @ l|g). After defining a graded basis (e1,...,ex, f1,..., fi,€1,...,€q)
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consisting of k+1 even and ¢ odd vectors, one can consider the set of linear combinations
{x'e; + 3 f; + (“eq} which forms a supervector space [160, 159)].

Roughly speaking, one defines a partially formal supermanifold® of dimensions (k®(|q)
as a topological superspace smoothly glued together from superdomains U*®!4. Although
we will not need the exact definition in the subsequent discussion, we will nevertheless
give it here for completeness sake.

83 Maps between superspaces. We define a map between two superspaces as a natural
transformation of functors. More explicitly, consider two superspaces M and N. Then a
map F : M — N is a map between superspaces if I’ is compatible with the morphisms
of AN algebras o : = — Z'. We call a smooth map « : lR];@llq — Rg@lllq, between two
superdomains Zg-smooth if for every x € Réﬁa”q the tangent map (kz). : Ty — T, re(2) 1S @
homomorphism of Zg-modules. Furthermore, we call a map « : R¥®!la — R¥ Ve smooth

if for all AN algebras Z the maps kz are Zp-smooth.

§4 Partially formal supermanifolds. Now we can be more precise: A partially formal
supermanifold of dimension (k @ l|q) is a superspace locally equivalent to superdomains
of dimension (k@ 1|q) with smooth transition functions on the overlaps. Thus, a partially
formal supermanifold is also an exotic supermanifold.

However, not every exotic supermanifold is partially formal. We will shortly encounter
examples of such cases: exotic supermanifolds, which are constructed using a particular
AN algebra instead of working with the category of AN algebras.

The definitions used in this section stem from [160), 159], where one also finds examples
of applications.

Unfortunately, it is not clear how to define a general integration over the even nilpotent
part of such spaces; even the existence of such an integral is questionable. We will
comment on this point later on. This renders partially formal supermanifolds useless as
target spaces for a topological string theory, as we need an integration to define an action.
Therefore, we have to turn to other generalizations.

I11.3.2 Thick complex manifolds

85 Formal neighborhoods. Extensions to m-th formal neighborhoods of a submanifold
X in a manifold Y D X and the more general thickening procedure have been proposed
and considered long ago” in the context of twistor theory, in particular for ambitwistor
spaces, e.g. in [290, 90, 170, 92]. We will ignore this motivation and only recollect the
definitions needed for our discussion in chapter [VII.

86 Thickening of complex manifolds. Given a complex manifold X with structure
sheaf Ox, we consider a sheaf of C-algebras O(,,) on X with a homomorphism « :
O(my — Ox, such that locally O, is isomorphic to O[y]/ (y™*+1) where y is a formal
(complex) variable and « is the obvious projection. The resulting ringed space or scheme
Xm) = (X, 0) is called a thick compler manifold. Similarly to the nomenclature of
supermanifolds, we call the complex manifold X the body of X ).

87 Example. As a simple example, let X be a closed submanifold of the complex mani-
fold Y with codimension one. Let Z be the ideal of functions vanishing on X. Then

8This term was introduced in [161].

°In fact, the study of infinitesimal neighborhoods goes back to [107] and [112]. For a recent review,
see [54].
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Om) = Oy /T is called an infinitesimal neighborhood or the m-th formal neighbor-
hood of X. This is a special case of a thick complex manifold. Assuming that X has
complex dimension n, O(,,) is also an exotic supermanifold of dimension (n @ 1]0). More
explicitly, let (z!,...,2") be local coordinates on X and (z?,...,2", y) local coordinates
on Y. Then the ideal 7 is generated by y and O(,,) is locally a formal polynomial in y

m—+1

with coefficients in Oy together with the identification y ~ 0. Furthermore, one has

Returning to the local description as a formal polynomial in y, we note that there

I as it would violate associativity by an argument like 0 = y~ly™*! =

is no object y—
y~tyy™ = y™. However, the inverse of a formal polynomial in y is defined if (and only
if) the zeroth order monomial has an inverse. Suppose that p =a+ > ", fiyt = a+b.
Then we have p~! = é Zgo(—g)i, analogously to the inverse of a supernumber.
§8 Vector bundles. A holomorphic vector bundle on (X, Oy,)) is a locally free sheaf of
O(m)-modules.

The tangent space of a thick complex manifold is the sheaf of derivations D : O(,,) —
O(m)- Let us consider again our above example X,y = (X,0(m))- Locally, an element

of T'X(,,) will take the form D = f a% +> j g’ % together with the differentiation rules

0 0

0 0

i

a—yyzl, 8y$ = 8xiy_0’ 8a;ixj = 4. (I11.35)
All this and the introduction of cotangent spaces for thick complex manifolds is found
in [92].
§9 Integration on thick complex manifolds. In defining a (definite) integral over
the nilpotent formal variable y, which is needed for formulating hCS theory by giving an
action, one faces the same difficulty as in the case of Berezin integration: the integral
should not be taken over a specific range as we integrate over an infinitesimal neighbor-
hood which would give rise to infinitesimal intervals. Furthermore, this neighborhood
is purely formal and so has to be the integration. Recall that a suitable integration [
should satisfy the rule!¥ DI = ID = 0, where D is a derivative with respect to a variable
over which I integrates. The first requirement DI = 0 states that the result of definite
integration does not depend on the variables integrated over. The requirement 1D = 0 for
integration domains with vanishing boundary (or functions vanishing on the boundary)
is the foundation of Stokes’ formula and integration by parts. It is easy to see that the

condition DI = ID = 0 demands that
am
I =c¢c ——, (I11.36)
oy™

where y is the local formal variable from the definition of X(,,) and c is an arbitrary
normalization constant, e.g. ¢ = 1/m! would be most convenient. Thus, we define

1 am
d = ——f. I11.
[t = o (11L.37)
This definition only relies on an already well-defined operation and thus is well-defined
itself 11 Additionally, it also agrees with the intuitive picture that the integral of a con-

10This rule can also be used to fix Berezin integration, cf. section I11.2) [§16!

1Erom this definition, we see the problem arising for partially formal supermanifolds: The integration
process on thick complex manifolds returns the coefficient of the monomial with highest possible power in
y. For partially formal supermanifolds, where one works with the category of AN algebras, such a highest
power does not exist as it is different for each individual AN algebra.
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stant over an infinitesimal neighborhood should vanish. Integration over a thick complex

manifold is an integro-differential operation.

§10 Change of coordinates. Consider now a change of coordinates (z!,... 2", y) —

(#',...,2", §) which leaves invariant the structure of the thick complex manifold. That
is, ' is independent of y, and § is a polynomial only in y with vanishing zeroth order
coefficient and non-vanishing first order coefficient. Because of 95 = % 0y, we have the
following transformation of a volume element under such a coordinate change:

S0

~ o 0% oy\"
1 n _ 1 n
dz*...dz"dy = det <8acj> dz*...dx <6§> dy . (I11.38)

The theorems in [92] concerning obstructions to finding X ;,41) given X(,,) will not be
needed in the following, as we will mainly work with order one thickenings (or fattenings)
and in the remaining cases, the existence directly follows by construction.

I11.3.3 Fattened complex manifolds

§11 Fattening of complex manifolds. Fattened complex manifolds [91] are straight-
forward generalizations of thick complex manifolds. Consider again a complex manifold
X with structure sheaf Ox. The m-th order fattening with codimension k of X is the
ringed space X, 1) = (X, O(n 1)) Where Oy, 1y is locally isomorphic to

Oly', . M/ )L (111.39)

Here, the 3’ are again formal complex variables. We also demand the existence of the
(obvious) homomorphism «a : O, 1) — Ox. It follows immediately that a fattening with
codimension 1 is a thickening. Furthermore, an (m,k)-fattening of an n-dimensional
complex manifold X is an exotic supermanifold of dimension (n @ k|0) and we call X the
body of X(m,k)

As in the case of thick complex manifolds, there are no inverses for the y*, but the
inverse of a formal polynomial p in the y° decomposed into p = a + b, where b is the

nilpotent part of p, exists again if and only if @ # 0 and it is then given by p~! =

%Zﬁo(_%)i- A holomorphic vector bundle on O, 1y is a locally free sheaf of O, -
modules. The tangent space of a thick complex manifold is also generalized in an obvious

manner.

8§12 Integration on fattened complex manifolds. We define the integral analogously
to thick complex manifolds as

1 om 1 om
Lodyfhfim — o . ———f. T11.4
/dy W 1 m! o(y')™ m! 9(yk)™ / (II140)

A change of coordinates (2!, ..., 2", y',...,v*) — (z%,...,2" 7', ..., §") must again pre-

serve the structure of the fat complex manifold: #° is independent of the %’ and the ¢
are nilpotent polynomials in the y* with vanishing monomial of order 0 and at least one
non-vanishing monomial of order 1. Evidently, all the §* have to be linearly independent.
Such a coordinate transformation results in a more complicated transformation law for
the volume element:

~ o~ - 07 oy oy \"™ .

1 n 1 kE 1 n 7 7

dz-...dz"dyg ...dy —det(axj>dx...dx (6@1'”8@’“) dy't...dy"" ,
(I11.41)
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where a sum over the indices (i1,...,7) is implied. In this case, the coefficient for the
transformation of the nilpotent formal variables cannot be simplified. Recall that in the
case of ordinary differential forms, the wedge product provides the antisymmetry needed
to form the determinant of the Jacobi matrix. In the case of Berezin integration, the
anticommutativity of the derivatives with respect to Graimann variables does the same
for the inverse of the Jacobi matrix. Here, we have neither of these and therefore no
determinant appears.

8§13 Thick and fattened supermanifolds. After thickening or fattening a complex
manifold, one can readily add fermionic dimensions. Given a thickening of an n-dimen-
sional complex manifold of order m, the simplest example is possibly IIT'X(,,), an (n®
1jn 4+ 1) dimensional exotic supermanifold. However, we will not study such objects in
the following.

I11.3.4 Exotic Calabi-Yau supermanifolds and Yau’s theorem

8§14 Exotic Calabi-Yau supermanifolds. Following the convention for supermani-
folds (cf. section IIL.2, [§31), we shall call an exotic supermanifold Calabi-Yau if its first
Chern class vanishes and it therefore comes with a holomorphic volume form. For ex-
otic supermanifolds, too, the Calabi-Yau property is not sufficient for the existence of a
Ricci-flat metric, as we will derive in the following.

§15 Exotic trace and exotic determinant. We start from a (k@ 1[|q)-dimensional ex-

otic supermanifold with local coordinate vector (x!,...,z* ', ... o', ¢t ..., ¢)T. Anel-

ement of the tangent space is described by a vector (X*1,..., Xk Y1 ... vl 7zl .. Z9T,

Both the metric and linear coordinate transformations on this space are defined by non-
singular matrices

A B C

K = D E F , (I11.42)

G H J

where the elements A, B, D, E,J are of even and G, H,C, F are of odd parity. As a
definition for the extended supertrace of such matrices, we choose

etr(K) = tr(A)+ tr(E) — tr(J), (II1.43)

which is closely related to the supertrace and which is the appropriate choice to preserve
cyclicity: etr(KM) = etr(MK). Similarly to [72], we define the extended superdetermi-
nant by

SInedet(K) := etr(K '§K) together with edet(1) := 1, (111.44)

which guarantees edet(K M) = edet(K )edet(M). Proceeding analogously to [72], one
decomposes K into the product of a lower triangular matrix, a block diagonal matrix
and an upper diagonal matrix. The triangular matrices can be chosen to have only 1 as
diagonal entries and thus do not contribute to the total determinant. The block diagonal
matrix is of the form
A 0 0
K = 0 E-DA'B 0 ) (I11.45)
0 0 R
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with R=J - GA™'C — (H - GA™'B)(E — DA™'B)~Y(F — DA7'C). The determinant
of a block diagonal matrix is easily calculated and in this case we obtain

det(A) det(E — DA™'B)

edet(K) = edet(K') = det(R)

(I11.46)

Note that for the special case of no even nilpotent dimensions, for which one should
formally set B =D = F = H = 0, one recovers the formule for the supertrace (F = 0)
and the superdeterminant (E = 1 to drop the additional determinant).

§16 Yau’s theorem on exotic supermanifolds. In [239], the authors found that
Kahler supermanifolds with one fermionic dimension admit Ricci-flat supermetrics if and
only if the body of the Kéahler supermanifold admits a metric with vanishing scalar
curvature,’® and thus Yau’s theorem (see section I1.3.1) is only valid under additional
assumptions. Let us investigate the same issue for the case of a (p @ 1|0)-dimensional
exotic supermanifold Y with one even nilpotent coordinate y. We denote the ordinary
p-dimensional complex manifold embedded in Y by X. The extended Kéahler potential
on Y is given by a real-valued function .#" = fO + flyg, such that the metric takes the
form
1= £
— (2:0;,4) = < i tLgvs fa ) . (IT1.47)
1 7Y /
For the extended Ricci-tensor to vanish, the extended Kéhler potential has to satisfy the
Monge-Ampere equation edet(g) := edet(9;0;#) = 1. In fact, we find

edet(g) = det( fmyy) (f' = fng™ fryd)

et | (12, Wy)({ﬁ fmg™ %yy>]

_ p(f)"

M 1 mn 1
et ,?]—C/F+< T )yy]

L T

= det [ £, ¢/F7) det

51;_’_ mkl _6kf1 mnl -
K3 pfl yy Y

where g™ is the inverse of f9,. Using the relation Indet(A) = tr In(A), we obtain

mn £1
edet(g) = det [f%f/ﬁ} (1 + (gmZ %m — fmg 7 ) >yy> . (II1.48)

From demanding extended Ricci-flatness, it follows that

1 . 1,7t 1
f!= —— and <gﬂ - fﬂgﬁ’) =0. (I11.49)
det( %) f
The second equation can be simplified to
i1 Z
g’ ( i il = 9" ((fh),; =0, (I1L.50)

2For related work, see [302, 240, [179].
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and together with the first equation in (IIL.49), it yields

Flo—r ) =g (Indet (f%;)) .. = —¢"Ri = 0. (IIL51)

det ( %j) "

This equation states that an exotic supermanifold Y of dimension (p & 1|0) admits an
extended Ricci-flat metric if and only if the embedded ordinary manifold X has vanishing
scalar curvature. A class of examples for which this additional condition is not satisfied
are the weighted projective spaces W@Pm_l®1|0(1, ...,1 @ m|-), which have vanishing
first Chern class but do not admit a Kéhler metric with vanishing Ricci scalar.

Thus, we obtained exactly the same result as in [239], which is somewhat surprising as
the definition of the extended determinant involved in our calculation strongly differs from
the definition of the superdeterminant. However, this agreement might be an indication
that fattened complex manifolds — together with the definitions made above — fit nicely
in the whole picture of extended Calabi-Yau spaces.

I11.4 Spinors in arbitrary dimensions

The main references for this section are [29, 285] and appendix B of [219].

I11.4.1 Spin groups and Clifford algebras

§1 Spin group. The spin group Spin(p, q) is the double cover (or universal cover) of the
Lorentz group SO(p, q). Explicitly, it is defined by the short exact sequence

1 — Zy — Spin(p,q) — SO(p,q) — 1. (I11.52)

§2 Clifford algebra. Let V be a (p + ¢)-dimensional vector space V' with a pseudo-
Euclidean scalar product g4p invariant under the group O(p, q). Consider furthermore
p + ¢q symbols v4 with a product satisfying

YaYB +7BYA = —29aBl . (I11.53)

The Clifford algebra € (p, q) is then a 2PT7 dimensional vector space spanned by the basis

(1,74, YAYBy -+ -1 -+ Vptq) - (I11.54)

Note that this is a Zg-graded algebra, €(p,q) = €+ (p,q) ® €-(p,q), where €1 (p,q)
and ¢_(p, q) denote the elements consisting of an even and odd number of symbols 4,
respectively.

83 Representation of the Clifford algebra. A faithful representation of the Clifford
algebra for d = 2k + 2 can be found by recombining the generators v4 as follows:

Yo = 3(Fv+7) and Yoxr = (720 £i2at1) for a # 0. (IIL.55)
This yields the fermionic oscillator algebra

ot} = 0, (Yoo Wi} = {Yas -} = 0, (ITL.56)

and by the usual highest weight construction, one obtains a 2¢*!-dimensional representa-
tion. That is, starting from a state |h) with 7,_|h) = 0 for all a, we obtain all the states
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by acting with arbitrary combinations of the 4,4+ on |h). As every ~,+ can appear at
most once, this leads to 2¥*! states, which can be constructed iteratively, see [219]. Given
such a representation for d = 2k + 2, one can construct a representation for d = 2k + 3
by adding the generator v4 = i %vg...74_2. Thus, the faithful representations of the
Clifford algebra on a space with dimension d are 9(2]_dimensional.

§4 Embedding a Spin group in a Clifford algebra. Given a Clifford algebra € (p, ¢),
the generators

Yap = —i[va, V8] (IIL.57)

form a representation of the Lie algebra of Spin(p,q). This is the Dirac representation,
which is a reducible representation of the underlying Lorentz algebra. As examples,
consider in four dimensions the decomposition of the Dirac representation into two Weyl
representations 4piac = 2 + 2’ as well as the similar decomposition in ten dimensions:
32pirac = 16 + 16’.

85 Examples. The following table contains those examples of spin groups which are
most frequently encountered. For further examples and more details, see [47].

Spin(2) = U(1) Spin(3) = SU(2) Spin(4) = SU(2) x SU(2)
Spin(1,1) =2 RX Spin(2,1) = SL(2,R) Spin(3,1) = SL(2,C)

Spin(5) = Sp(2) Spin(6) = SU(4) Spin(2,2) = SL(2,R) x SL(2,R)
Spin(4,1) = Sp(1,1) Spin(5,1) = SL(2,H)

111.4.2 Spinors

§6 Spinors. A spinor on a spacetime with Lorentz group SO(p, q) is an element of the
representation space of the group Spin(p,q). Generically, a (Dirac) spinor is thus of
complex dimension 2[(P+9)/2],
87 Minkowski space. On d-dimensional Minkowski space, the 9l5]_dimensional Dirac
representation splits into two Weyl representations, which are the two sets of eigenstates
of the chirality operator

v o= i Feme et (IIL.58)

where v has eigenvalues +1. This operator can be used to define a projector onto the

two Weyl representation:

Py o= —1 (I11.59)

In dimensions d = 0,1,2,3,4 mod 8, one can also impose a Majorana condition on

a Dirac spinor, which demands that a so-called Majorana spinor ¢ is its own charge
conjugate:

¢ = 1 with ¢° = Cryp" . (IT1.60)

Here, C' is the charge conjugation operator, satisfying
CyuC™' = =) and Cyo(Cy)* = 1. (I11.61)

The latter equation implies (1)) = 1. (Note that in the remaining cases d = 5,6,7
mod 8, one can group the spinors into doublets and impose a symplectic Majorana con-
dition. We will encounter such a condition in the case of Graimann variables on Euclidean
spacetime in [§13.)
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The Majorana condition is essentially equivalent to the Weyl condition in dimensions
d = 0,4 mod 8. In dimensions d = 2 mod 8, one can impose both the Weyl and the
Majorana conditions simultaneously, which yields Majorana- Weyl spinors. The latter
will appear when discussing ten-dimensional super Yang-Mills theory in section IV.2.1.

Two-spinors, in particular the commuting ones needed in twistor theory, will be dis-
cussed in §2 of section [VIL.1.1/ in more detail.

88 Euclidean space. The discussion of Euclidean spinors is quite parallel, and one
basically identifies the properties of representations of Spin(p) with those of Spin(p+1,1).
The Dirac representation decomposes again into two Weyl representations, and one can
impose a Majorana condition for d = 0,1,2,6,7 mod 8. In the cases d = 3,4,5 mod 8,
one has to switch to a pseudoreal representation.

89 Vectors from spinors. The generators of the Clifford algebra can be interpreted as
linear maps on the spinor space. Thus they (and their reduced versions) can be used to
convert vector indices into two spinor indices and vice versa. We already used this fact
in introducing the notation z®% := —ial‘j‘d‘x“. In particular, this example together with
conventions for commuting two-spinors are given in section VIL.1.1) §2. For more details
in general dimensions, see [217].

§10 Reality conditions. A real structure is an antilinear involution 7, which gives rise
to a reality condition by demanding that 7(-) = -. The real structures which we will define
live on superspaces with four- or three-dimensional bodies. In the four-dimensional case,
there are two such involutions for Kleinian signature!® on the body, and each one for
bodies with Euclidean and Minkowski signature. In the three-dimensional case, there is
evidently just a Euclidean and a Minkowski signature possible on the body. We want to
stress in advance that contrary to the Minkowskian signature (3, 1), the variables §% and
ne = 6% are independent for both signatures (4,0) and (2,2).

In the following, we will consider the superspaces RN and R3*V with coordinates
(%%, &, 0%) and (yé‘B ,n, 09%), respectively. The latter coordinates are obtained from
dimensional reduction via the formula y‘m = —ix(dﬁ), see section [IV.2.5) 8§29 for more
details.

811 Kleinian case. For this case, we introduce two real structures 7 and 79, which act
on the bosonic coordinates of our superspace as

Tl(xQQ) = j11> Tl('rQl) = j127 (III 62)
To(x’m) = 7, .
For 71, we can thus extract the real coordinates z# € R??2, w=1,...,4 by
22 = 71 = —(z* +iz3) and 2 = 712 = —(2? —izh) . (I11.63)
and the real coordinates z* € R?>!, a = 1,2,3 by
gl = g2 = (' +iz?) =y, yi2 = g2 = 43 (I11.64)

For the fermionic coordinates, the actions of the two real structures read as

o )= () ()= ()
Al =% )., (™) =" (IT1.65)
( 62 ) ( o' n? o

i.e. signature (2,2)

13
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and
70(9‘”) = #* and To(nf‘) = 77?, (I11.66)
matching the definition for commuting spinors. The resulting Majorana-condition is then
(%) = 6% and T(n¥) = ¥ & 6% = 0" and m2 = ﬁii, (I11.67)

0(0%) = 6% and () = ¢ < 6% = §* and ¥ = 7. (IT1.68)
8§12 Minkowski case. Here, we define a real structure 7p; by the equations
TM(x“B) = —2f% and T(nd) = 0%, (I11.69)

where the indices « = & and 8 = ﬁ denote the same number.
§13 Euclidean case. In the Euclidean case, the real structure acts on the bosonic
coordinates according to

(@) = 3, @) = g2 (I11.70)
and the prescription for a change to real coordinates z* € R? reads as
22 = 1 = —(—z* +1iz3) and 20 = 712 = (2% —iz!) (IT1.71)
in four bosonic dimensions. In the three-dimensional case, we have
yii = —@22 = (' +iz?) =y, yi2 = gii = —z3. (I11.72)
Here, we can only fix a real structure on the fermionic coordinates if the number of

supersymmetries A is even (see e.g. [163, [182]). In these cases, one groups together the

fermionic coordinates in pairs and defines matrices

(e/°) = <(1) _01> , rs = 1,2 and (TY) = (g 2) ;g o= 1,04

The action of 7_1 is then given by

ot 9'2 0 -1 ot o' 0 -1

for N'=2 and by

0 -1 0 O
gt ... g1 0 -1 o1 614 1 0 0 0
T_ = ~ ~
ez g 1 0 §2! 62 00 0 —1
0 0 1 0
for N=4. The last equation can also be written in components as
T 1(0%) = —*PT95 | (TTL.74a)
where there is a summation over 3 and j. The same definition applies to nf":
Ta(f) = T (IT1.74b)

The reality conditions here are symplectic Majorana conditions, which read explicitly
71(0%) = 0 and T_i(nf) = 0. (IT1.75)
We have for instance for N'=4

TS S RS @@ g 2
7_(771 ?722 772 77;1) _ ( 2 ”}i s, > (I11.76)

nt m3 on3 n R T T
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CHAPTER IV

FIELD THEORIES

The purpose of this chapter is to give an overview of the field theories we will encounter
in this thesis. Basic facts together with the necessary well-known results are recalled for
convenience and in order to fix our notation.

IV.1 Supersymmetric field theories

First, let us briefly recall some elementary facts on supersymmetric field theories which
will become useful in the subsequent discussion. In particular, we will discuss the N' =1
superfield formalism and present some features of supersymmetric quantum field theories
as supersymmetric Ward-Takahashi identities and non-renormalization theorems. The
relevant references for this section are [287, 149, 186, 8, 35].

IV.1.1 The N = 1 superspace formalism

When discussing the massless representations of the N/ = 1 supersymmetry algebra in
II1.1.2 56, we encountered two multiplets: the chiral multiplet with fields having he-
licities (0, 3) and the vector multiplet consisting of fields with helicities (3,1). There
is a nice way of representing both multiplets as superfunctions on the superspace R4,
which allows us to easily write down supersymmetric actions and often simplifies further
examinations of supersymmetric theories significantly. Throughout this section, we will
assume a superspace with Minkowski signature.

§1 General superfield. A general superfield on the A" = 1 superspace R** with coor-
dinates (a2, 6, 5&) can be expanded as a power series in the GraBlimann variables with
highest monomial #?6?. However, this representation of the supersymmetry algebra is
reducible and by applying different constraints onto the general superfield, we will obtain
two irreducible representations: the chiral superfield and the vector superfield.

§2 Chiral superfield. Chiral and anti-chiral superfields ® and ® are defined via the
condition

Dg® = 0 and D,® = 0, (IV.1)

respectively. These conditions are most generally solved by restricting the functions ®

and @ to the chiral and anti-chiral subspaces Riu and ]R;lf of the superspace R*!*:

d = By, 0% and O = P(yE*,0%) . (IV.2)

Let us now focus on the chiral superfields, the anti-chiral ones are obtained by complex
conjugation. Their component expansion reads as’

D(y,0) = ¢(y) +V200(y) — 00F (y) , (IV.3)

'Recall our convention for spinor bilinears, e.g. 00 = 00, and 60 = 046°.
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where ¢ is a complex scalar with helicity 0, ¥, is a Weyl spinor with helicity % and F is
an auxiliary field which causes the supersymmetry algebra to close off-shell. The field &
now contains the complete chiral multiplet and the supersymmetry transformations are
easily read off to be

6 = V2eih, o = V200" —V2Fe, and O6F = V20,40%% .  (IV.4)

Note that this superfield contains 4 real bosonic and 4 real fermionic degrees of freedom
off-shell. On-shell, the component F' becomes an auxiliary field and we are left with 2
real bosonic and 2 real fermionic degrees of freedom.

Correspondingly, the complex conjugate field ® is an anti-chiral superfield containing
the anti-chiral multiplet with fields of helicity 0 and —%.
83 Vector superfield. To represent the vector multiplet containing fields of helicity i%
and +1, it is clear that we will need both left- and right-handed Grafimann variables,
and the vector superfield will be a function on the full A" = 1 superspace R**. Naively,
this gives rise to 16 components in the superfield expansion. However, by imposing the
so-called Wess-Zumino gauge, one can reduce the components and obtain the following
field expansion

Vivz = 000" A, (x) +1000X(x) — 1000 (z) + 10000D () | (IV.5)

giving rise to the real Lie algebra valued vector superfield Viyz = — JVZ, where we chose
the generators of the gauge group to be anti-Hermitian. A disadvantage of this gauge
is that it is not invariant under supersymmetry transformations, i.e. any supersymmetry
transformation will cause additional terms in the expansion (IV.5) to appear, which,
however, can subsequently be gauged away.

A gauge transformation is now generated by a Lie algebra valued chiral superfield A
and acts on a vector superfield V' by

eV — eitVe A (IV.6)
There are two corresponding field strengths defined by
W, = —iDD (e ?"Doe?) and Wi = —iDD (e’ Dae ) , (Iv.7)

the first of which is chiral (since D® = 0), the second anti-chiral. Both field strengths
transform covariantly under the gauge transformations (IV.6):

W, — e*Woe ™ and W, — ol T/T/éte*mT ) (IV.8)
Eventually, let us stress that all the above formulae were given for a non-Abelian gauge
group and simplify considerably for Abelian gauge groups.
84 SUSY invariant actions. Actions which are invariant under supersymmetry are
now easily constructed by considering polynomials in superfields and integrating over the
appropriate superspace. When constructing such actions, one has however to guarantee
that the action is Hermitian and that additional symmetries, as e.g. gauge invariance are
manifest. The former is easily achieved by adding complex conjugated terms for chiral
expressions. An example for such a gauge invariant action is

S ~ /d%: tr (/d29 WW+/d26 WW> : (IV.9)

corresponding to A/ = 1 super Yang-Mills theory. Note that both terms in (IV.9) are real
and equal. Furthermore, a coupling to chiral matter is achieved via an additional term
~ [ d*zd*0 ®e?V'® in the action. In the latter case, gauge transformations act on the

chiral superfields according to ® — eA® and & — Pe—iA"
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§5 On-shell massive representations for superspin 0. By combining two complex
massless chiral superfields via the equations

—1D?¢+m® = 0 and —1iD’®+md = 0, (IV.10)

one can find real on-shell representations in terms of N' = 1 superfields also for a massive
multiplet of superspin 0. This fact is essential in constructing the Wess-Zumino model.

IV.1.2 The Wess-Zumino model

One of the most popular supersymmetric field theories is the Wess-Zumino model. It
is well-suited as a toy model to demonstrate features of supersymmetric field theories
arising due to their supersymmetry, as e.g. non-renormalization theorems.

§6 Action. This model was proposed by J. Wess and B. Zumino in [288] and is given
by the action

Swzn = / d*zd'0 oo + / d*zd?0 Z.(®) + / d*zd?0 Z.(®) , (IV.11)

where %, is a holomorphic function of a complex field, the chiral superpotential. The
kinetic term arises from ®@® after Taylor-expanding the chiral superfields around the non-
chiral coordinate z®%. While .%, is classically unrestricted, renormalizability demands
that it is at most a third-order polynomial, and we will adapt the common notation

A
L= o2y S8

. - (IV.12)

We have dropped the monomial of order 1, as it simply amounts to a constant shift in
the superfield .

§7 Equations of motion. The corresponding equations of motion are easily derived to
be

—1D*®+.Z/(®) = 0 and —3iD’®+.Z/(P) = 0. (IV.13)

§8 The Landau-Ginzburg model. A possibility of generalizing the action (IV.11) is
to allow for several chiral superfields. Such a model with n massless chiral superfields @,
and a polynomial interaction is called a Landau-Ginzburg model and its action reads as

S = /d4:c </d49 H( By, Py) +;/d29 Z(D,) + ;/d% ,sfc(éa)) , (IV.14)
where Z.(®,) is again called the (chiral) superpotential. The vacua of the theory are the
critical points of .Z.(®,).

The function # (®,,®,) can be considered as a Kdhler potential and defines the
Kihler metric g;5 := 0;0;% (94, ®,). Note that the component fields in the action (IV.14)
couple via the Kahler metric g;; and higher derivatives of the Kéhler potential. For
vanishing .%,, the Landau-Ginzburg is a nonlinear sigma model (cf. section [V.3.1), which
defines a Kéhler geometry via J£". One can also obtain a supersymmetric nonlinear sigma
model from a Kéahler geometry.

It is known that the Landau-Ginzburg models with a single chiral superfield ® and

3P

polynomial interaction .Z.(®) = ®7*+2 has central charge cp = Pis at its infrared fixed

point and can be shown to be essentially the P-th minimal model.
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IV.1.3 Quantum aspects

The heavy constraints imposed by supersymmetry on a quantum field theory become
manifest at quantum level: the additional symmetry leads to a cancellation of contri-
butions from certain Feynman diagrams and the vacuum energy does not receive any
quantum corrections. Furthermore, there is additional structure found in the correlation
functions, the so-called chiral rings, which we will discuss momentarily. Certain prop-
erties of these rings lead quite directly to non-renormalization theorems, which strongly
constrain the allowed quantum corrections and simplify considerably the study of a su-
persymmetric quantum field theory.

89 Quantization. Consider a quantum field theory with a set of fields ¢ and an action
functional S[¢] which splits into a free and an interaction part S[p] = So[p] + Sint[¢]-
The generating functional is given by

ZlJ] = / DpeSlelt] At o] (IV.15)

from which the n-point correlation functions are defined by
1 " Z[J]
Z[J]6J(x1)...0J ()

Perturbation theory is done in terms of the power expansion of the following reformulation

Gn(xlv s 7$n) =

(IV.16)
J=0

of the generating functional:

Z[J] = Smlsrlzg[] with Zo[J] = / PpeiSolelt[die ol (IV.17)
which will yield a power series in the coupling constants contained in Sing.
810 Low energy effective action. Consider a quantum field theory with fields ¢ and
action S. We choose some cutoff A and decompose the fields into high- and low-frequency

parts:
¢ = oy +o¢r with ¢g:w > A ¢p:w < A. (IV.18)

In the path integral, we then perform the integration of all high-frequency fields ¢z and
arrive at

/@gbL@queiS[d’LﬂSH] - /@¢LeiSA[¢L] ’ (IV.19)

where Sp[¢r] is the so-called? low energy effective action or Wilsonian effective action.
For more details, see e.g. [220].
§11 Chiral rings and correlation functions. The chiral rings of operators in super-
symmetric quantum field theories are cohomology rings of the supercharges ;. and Qfl
Correlation functions which are built out of elements of a single such chiral ring have
peculiar properties.

Recall that the vacuum is annihilated by both the supersymmetry operators QQn; and
Q’a Using this fact, we see that (.- and Qg—exact operators cause a correlation function
built of Q; or Q%-closed operators to vanish, e.g.

{Q, A}O1...0n) = ({Q, A0y ... O,}) £ (A{Q, 01} ... Oy)
+...+£(A0;...{Q,0.}) (IV.20)

The resulting two cohomology rings are called the chiral and anti-chiral ring.

2This effective action is not to be confused with the 1PI effective action related to the one particle
irreducible diagrams and calculated from the standard generating functional via a Legendre transform.
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8§12 Supersymmetric Ward-Takahashi identities. The existence of chiral rings in
our theory leads to supersymmetric Ward-Takahashi identities. Since one can write any
derivative with respect to bosonic coordinates as an anticommutator of the supercharges
due to the supersymmetry algebra, any such derivative of correlation functions built
purely out of chiral or anti-chiral operators will vanish:

B o
501, 00) = 5= (01...0,) = 0. (IV.21)

The correlation functions do not depend on the bosonic coordinates of the operators, and
hence one can move them to a far distance of each other, which causes the correlation

function to factorize>:

(O1(21) ... On(an)) = (O1(25°)) .. (Op(z2)) . (IV.22)

Such a correlation function therefore does not contain any contact terms. This phe-
nomenon is called clustering in the literature.

Another direct consequence of the existence of chiral rings is the holomorphic depen-
dence of the chiral correlation functions on the coupling constants, i.e.

0

75 (01---0n) = 0. (IV.23)

As an illustrative example for this, consider the case of a N' = 1 superpotential “interac-
tion” term added to the Lagrangian,

Lw = / d?0 \® + / d?0 \o , (IV.24)

where ® = ¢(y)++v/20%,(y) —6%F (y) is a chiral superfield and one of the supersymmetry
transformations is given by {Qa, g} ~ €qsF. Then we have

0

ﬁ<01'“on> = /d4yd29<(91...(9n<i>> ~ /d4y<01...OnF>

. (IV.25)
~ /d4y<01...on{(2d,w}> = 0.

§13 Non-renormalization theorems. It is in the non-renormalization theorems* that
supersymmetric field theories reveal their full power as quantum field theories.

> Every term in the effective action of an N' = 1 supersymmetric quantum field theory
can be written as an integral over the full superspace.

> The general structure of the effective action of the Wess-Zumino model is given by
L[®, P = Z/d4w1...d4mn/d46 f(z1,...,xn)Fi(x1,0) ... Fp(xn,0)

where the Fj are local functions of the fields ®,® and their covariant derivatives.

> The superpotential of the Wess-Zumino model is not renormalized at all. For more
details on this point, see section [VI.3.3| [§15.

3This observation has first been made in [209).

4 . . .
For more details and a summary of non-renormalization theorems, see [48].
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> This is also true for N’ = 1 super Yang-Mills theories. The renormalization of the
kinetic term only happens through the gauge coupling and here not beyond one-loop
order.

> All vacuum diagrams sum up to zero and thus, consistently with our analysis of the
supersymmetry algebra, the vacuum energy is indeed zero.

> The action of N' = 2 supersymmetric theories can always be written as
—TIm / d*zd?0td?e* 7 (V) , (IV.26)

where % is a holomorphic function of ¥ called the prepotential. The field ¥ is the
N = 2 chiral superfield composed of a N' = 1 chiral superfield ® and the super field
strength W, according to

T = d(y,0Y) + V2022 W,(y,0) + 62202 G(y, ') . (IV.27)

For N = 2 super Yang-Mills theory, the prepotential is .# ~ tr (¥?).

> The [-function for N’ = 4 super Yang-Mills theory vanishes and hence the coupling
constant does not run.

IV.2 Super Yang-Mills theories

In the following section, we describe the maximally supersymmetric Yang-Mills theories
one obtains from N = 1 in ten dimensions by dimensional reduction. The key references
for our discussion are [41} 120, 119] (super Yang-Mills) and [83, 274] (instantons and
monopoles). Further references are found in the respective sections.

IV.2.1 Maximally supersymmetric Yang-Mills theories

§1 Preliminaries. We start from d-dimensional Minkowski space R*~1 with Minkowski
metric 7, = diag(+1,—1,...,—1). On this space, consider a vector bundle with a
connection, i.e. a one-form A, taking values in the Lie algebra of a chosen gauge group
G. We will always assume that the corresponding generators are anti-Hermitian. The
associated field strength is defined by

Fu = [V, V] = 0,4, —0,A, +[Au, A . (IV.28)

Consider furthermore a spinor A transforming in the double cover Spin(1,d—1) of SO(1, d—
1) and in the adjoint representation of the gauge group G. Its covariant derivative is
defined by VA := 0, + [Ay, A

Gauge transformations, which are parameterized by smooth sections g of the trivial
bundle G x R14~1 will act on the above fields according to

Ay = g A9+ 90u9, Fuw — g 'Fug, X+ g'ig, (IV.29)

and thus the terms
tr (—3F,F") and tr (IAD*V,0) (IV.30)

are gauge invariant quantities. Note that I'* is a generator of the Clifford algebra €' (1, d—

1).
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§2 N = 1 super Yang-Mills theory. Recall that a gauge potential in d dimensions has
d—2 degrees of freedom, while the counting for a Dirac spinor yields 2l5], By additionally
imposing a Majorana or a Weyl condition, we can further halve the degrees of freedom
of the spinor. Thus the action

S = / d%z tr (—1F, F" +iAT*V ) (Iv.31)

can only posses a linear supersymmetry in dimensions four, six and ten. More explicitly,
supersymmetry is possible in d = 10 with both the Majorana and the Weyl condition
imposed on the spinor A, in d = 6 with the Weyl condition imposed on A and in d = 4
with either the Majorana or the Weyl condition® imposed on A. These theories will then
have N’ = 1 supersymmetry.

In the following, we will always be interested in maximally supersymmetric Yang-
Mills theories and thus start from N' = 1 in d = 10 with 16 supercharges. Higher
numbers of supersymmetries will lead to a graviton appearing in the supermultiplet, and
in supergravity [277], one in fact considers theories with 32 supercharges. On the other
hand, as we saw by the above considerations of degrees of freedom, we cannot construct
N = 1 supersymmetric field theories in higher dimensions. Further theories will then be
obtained by dimensional reduction.

§3 V=1 SYM theory in d = 10. This theory is defined by the action® [41]

5= / @' tr (~3 B EMY 4 B0M,A) | (IV.32)
where ) is a 16-dimensional Majorana-Weyl spinor and therefore satisfies
A= 0O\ and A\ = 4TA. (IV.33)

Here, C is the charge conjugation operator and I' = il'y...I'g. The supersymmetry
transformations are given by

6Ay = ial'y A and 06X = SynFMNa . (IV.34)

84 Constraint equations. Instead of deriving the equations of motion of ten-dimen-
sional SYM theory from an action, one can also use so-called constraint equations, which
are the compatibility conditions of a linear system and thus fit naturally in the setting
of integrable systems. These constraint equations are defined on the superspace R1016
with Minkowski signature on the body. They read

{Va,Vp} = T4V, (1V.35)

where V; = 9y + @y is the covariant derivative in ten dimensions and

- 0 M g O
Va =D wp = =+ 14" —F+w V.36
A A+ wa 69A+ AB &UMﬂL A ( )
is the covariant superderivative. Note that both the fields wy; and @4 are superfields.
From these potentials, we construct the spinor superfield and the bosonic curvature

AP = ATMABG, V4] and Fyy = [Var, V). (IV.37)

®Here, actually both are equivalent.

5In this section, we will always denote the fields of the ten-dimensional theory by a hat.
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Using Bianchi identities and identities for the Dirac matrices in ten dimensions, one
obtains the superfield equations

VAP = 0 and VMEyy + iTnvap{A AP} = 0. (IV.38)

One can show that these equations are satisfied if and only if they are satisfied to zeroth
order in their f-expansion [120]. We will present this derivation in more detail for the
case of N/ =4 SYM theory in four dimensions in section IV.2.2.
§5 Dimensional reduction. A dimensional reduction of a theory from R? to R*~¢
is essentially a Kaluza-Klein compactification on the g-torus 79, cf. also section V.2.3l
The fields along the compact directions can be expanded as a discrete Fourier series,
where the radii of the cycles spanning 79 appear as inverse masses of higher Fourier
modes. Upon taking the size of the cycles to zero, the higher Fourier modes become
infinitely massive and thus decouple. In this way, the resulting fields become independent
of the compactified directions. The Lorentz group on R splits during this process into
the remaining Lorentz group on R?% and an internal symmetry group SO(g). When
dimensionally reducing a supersymmetric gauge theory, the latter group will be essentially
the R-symmetry of the theory and the number of supercharges will remain the same, see
also [253] for more details.

Let us now exemplify this discussion with the dimensional reduction of ten-dimen-
sional ' =1 SYM theory to N'=4 SYM theory in four dimensions.
§6 N/ = 4 SYM theory in d = 4. The dimensional reduction from d = 10 to d = 4
is easiest understood by replacing each spacetime index M by (u,ij). This reflects the
underlying splittings of SO(9,1) — SO(3,1) x SO(6) and Spin(9,1) — Spin(3, 1) x Spin(6),
where Spin(6) = SU(4). The new index p belongs to the four-dimensional vector represen-
tation of SO(3, 1), while the indices ij label the representation of Spin(6) by antisymmetric
tensors of SU(4). Accordingly, the gauge potential Ay is split into (A, dij) as

2 AH—S + ifli+6

Ay = Ay and ¢y = 7% with ¢ = Leiklg,, (IV.39)
The gamma matrices decompose as
g 0 pY
" =7l and I'V = % ® pii 0 |7 (IV.40)
i

where 'V is antisymmetric in ij and p” is a 4 x 4 matrix given by

g 1 ..
(pij)y = €ijw and  (p7),, = f”mn&mnkz- (IV.41)
With these matrices, one finds that
0 1
I' =Tp---Tg = 7s®1g and Cl():C@(]l 04) , (IV42)
4

where C' is again the charge conjugation operator. For the spinor A\, we have

Ly} , 1 1-—
A = ( X ) with % = C(¢)T, L=—5 g _ B (1V.43)
Rx; 2 2

The resulting action and further details on the theory are found in section IV.2.2.
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87 Remark on the Euclidean case. Instead of compactifying the ten-dimensional
theory on the torus 7%, one can also compactify this theory on the Minkowski torus
T>!, using an appropriate decomposition of the Clifford algebra [25] and adjusted reality
conditions on the fields. This derivation, however, leads to a non-compact R-symmetry
group and one of the scalars having a negative kinetic term. As it is not possible to
start from an A/ = 1 SYM action in ten Euclidean dimensions containing Majorana-Weyl
spinors, it is better to adjust the N/ = 4 SYM action on four-dimensional Minkowski space
“by hand” for obtaining the corresponding Fuclidean action by using a Wick rotation.
This is consistent with the procedure we will use later on: to consider all fields and
symmetry groups in the complex domain and apply the desired reality conditions only
later on.

88 Further dimensional reductions. There are further dimensional reductions which
are in a similar spirit to the above discussed reduction from ten-dimensional N =1 SYM
theory to N' = 4 SYM theory in four dimensions. Starting from N'= 1 SYM theory in
ten dimensions (six dimensions), one obtains /' =2 SYM theory in six dimensions (four
dimensions). Equally well one can continue the reduction of N’ = 2 SYM theory in six
dimensions to N/ = 4 SYM theory in four dimensions. The reduction of N' = 4 SYM
theory in four dimensions to three dimensions leads to a A/ = 8 SYM theory, where N' = 8
supersymmetry arises from splitting the complex Spin(3,1) = SL(2, C) supercharges in
four dimensions into real Spin(2,1) = SL(2,R) ones in three dimensions. We will discuss
this case in more detail in section IV.2.5.

IV.2.2 N =4 SYM theory in four dimensions

The maximally supersymmetric Yang-Mills theory in four dimensions is the one with ' =
4 supersymmetry and thus with 16 supercharges. This theory received much attention,
as it is a conformal theory even at quantum level and therefore its G-function vanishes.
In fact, both perturbative contributions and instanton corrections are finite, and it is
believed that N/ = 4 SYM theory is finite at quantum level. In the recent development
of string theory, this theory played an important role in the context of the AdS/CFT
correspondence [187] and twistor string theory [297].

89 Action and supersymmetry transformations. The field content of four-dimen-
sional AV = 4 SYM theory obtained by dimensional reduction as presented above consists
of a gauge potential A, four chiral and anti-chiral spinors X%, and X? and three complex
scalars arranged in the antisymmetric matrix ¢;;. These fields are combined in the action

S = / dtz tr {—%FWF‘“’ + 3V, V6T — Loy, drl] [0, 6M]

HXY*VuLx — 3 (X' [LX, ¢i5] — Xa[RX;, 07])}

where we introduced the shorthand notation ¢¥ := %5ijkl¢kl which also implies ¢;; =

(IV.44)

%sijklcﬁkl. The corresponding supersymmetry transformations are parameterized by four
complex spinors o' which satisfy the same Majorana condition as x*. We have
0A, = i(&ﬂuin - )Zi'yMLai) ,
0¢ij = 1 <O_¢jR>~(i — a;Rx; + é‘ijkzO:ékLXl> ;
SLX" = 0 F"La' — "V, Ra; + 16", ¢rj]La
SRX; = 0w F"™ Ra; + "V, ¢ Lo’ + b, o™ Ra; .

(IV.45)
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One should stress that contrary to the Yang-Mills supermultiplets for A < 3, the N’ = 4
supermultiplet is irreducible.

8§10 Underlying symmetry groups. Besides the supersymmetry already discussed in
the upper paragraph, the theory is invariant under the Lorentz group SO(3,1) and the
R-symmetry group Spin(6) = SU(4). Note, however, that the true automorphism group
of the N' = 4 supersymmetry algebra is the group U(4). Due to its adjoint action on the
fields, the sign of the determinant is not seen and therefore only the subgroup SU(4) of
U(4) is realized.

As already mentioned, this theory is furthermore conformally invariant and thus we
have the conformal symmetry group SO(4, 2) = SU(2, 2), which also gives rise to conformal
supersymmetry additionally to Poincaré supersymmetry.

Altogether, the underlying symmetry group is the supergroup SU(2,2|4). As this is
also the symmetry of the space AdSs x S°, N' = 4 SYM theory is one of the major
ingredients of the AdS/CFT correspondence.

§11 N = 3 and N = 4 SYM theories. The automorphism group of the N/ = 3
supersymmetry algebra is U(3). However, the R-symmetry group of N'=3 SYM theory
is only SU(3). With respect to the field content and its corresponding action and equations
of motion, N =3 and N = 4 SYM theory are completely equivalent. When considering
the complexified theories, one has to impose an additional condition in the case N = 4,
which reads [290] ¢;; = %ajkm_ﬁkl and makes the fourth supersymmetry linear.

§12 Spinorial notation. Let us switch now to spinorial notation (see also I11.2.3, §23)),
which will be much more appropriate for our purposes. Furthermore, we will choose a
different normalization for our fields to match the conventions in the publications we will
report on.

In spinorial notation, we essentially substitute indices p by pairs ad, i.e. we use the
spinor representation (%, %) equivalent to the 4 of SO(3,1). The Yang-Mills field strength
thus reads as’

[Vm,vﬁ/@] =: Fad,ﬁﬁ = 5dﬁfaﬁ +€0¢3de , (IV.46)

and the action takes the form
S = /d496' tr {fdﬁfdg + [P fop + VIV aij + 1[e", oM, o)+ (IV.47)
+e M (L (V g5%05) — (V gax)Xia) — e XEIXGs dri) — Edﬂfcia[ijg,ﬁj]} :
In this notation, we can order the field content according to helicity. The fields (fqg, X5,
¢ij,>2ia,fd5’) are of helicities (41, +%,O, —%, —1), respectively.
§13 Equations of motion. The equations of motion of N' =4 SYM theory are easily

obtained by varying (IV.47) with respect to the different fields. For the spinors, we obtain
the equations

e"VaaXs + 07, Xja] = 0, (IV.48a)
Edgvaaiig +[si5,x%] = 0, (IV.48b)
and the bosonic fields are governed by the equations
OV il iy + € Vaifay = Vit 7]+ X, Xis} (IV.48c¢)
PV 06V iy — S0, (0w, 0i5)] = Seigme™ Ik X} + ¥ (X Xj5) - (IV.484)

"The following equations include the decomposition of the field strength into self-dual and anti-self-dual
parts, see the next section.
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§14 Remark on superspace formulation. There is a formulation of N' = 4 SYM
theory in the AV = 1 superfield formalism. The field content is reconstructed from three
chiral superfields plus a vector superfield and the corresponding action reads [101} [164]

S=tr /d% (/ d*0 e ValeV ol 41 </ a2 twew, + c.c.> +

) (IV..49)
+ ig (/d29 ey ®'[@7, K] + /d29 5”K(I)H‘I’LTI7(I)}<])> ;

where I, J, K run from 1 to 3. A few remarks are in order here: Only a SU(3) x U(1)
subgroup of the R-symmetry group SU(4) is manifest. This is the R-symmetry group
of N'= 3 SYM theory, and this theory is essentially equivalent to N' = 4 SYM theory
as mentioned above. Furthermore, one should stress that this is an N/ = 1 formalism
only, and far from a manifestly off-shell supersymmetric formulation of the theory. In
fact, such a formulation would require an infinite number of auxiliary fields. For further
details, see [164].

§15 Constraint equations for N/ =4 SYM theory. Similarly to the ten-dimensional
SYM theory, one can derive the equations of motion of N' = 4 SYM theory in four
dimensions from a set of constraint equations on R*16. They read as

{Vai, Vit = —2eap50ij , {WQ,W;} = —2,50" ,

p ; (IV.50)
{Vm-,VB,} = —25ivaﬁ- ,

where we introduced the covariant derivatives
vai = Dai —+ {[wozia ]} ) vj) = Dg - {{@év } ’ vad = Oaa T+ {Aad7 } : (IV51)

We can now define the superfields whose components will be formed by the field content
of N'=4 SYM theory. As such, we have the bosonic curvature

[vaén Vﬁg] =: Fao’zﬂ,@ - €dﬁ'faﬁ + Eaﬁfdﬁ (IV52)
and the two superspinor fields
[Vais Vgl =t €apX;s and WQ,VM] =: ed[-,xfg . (IV.53)

Using the graded Bianchi identities (cf. (IIL.12)) for all possible combinations of covariant
derivatives introduced above, we obtain the equations of motion of N' = 4 SYM theory
(IV.48) with all the fields being superfields.

§16 Superfield expansions. It can be shown that the equations (IV.48) with all fields
being superfields are satisfied if and only if they are satisfied to zeroth order in the
superfield expansion. To prove this, we need to calculate explicitly the shape of this
expansion, which can always be done following a standard procedure: We first impose a
transverse gauge condition

0%wa; — 090% = 0, (IV.54)

which allows us to introduce the fermionic Euler operator

D = 60V+0V = 0D+0D . (IV.55)
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Together with the constraint equations (IV.50), we then easily obtain
(14 D)wai = 205 Ags — 260" dij | (IV.56a)
1+ D)@l = 20 Ani — 2,550 1 (IV.56D)

and with the graded Bianchi-identities we can calculate

DAne = —6a59i5)2id + edﬁ'éfxg , (IV.56¢)
Doij = it Xo — 05 Xja + 05 Xia » (IV.56d)
Dxly, = —20" fug + Lease™ 0% (B, i) — MOV qeda (IV.56¢)
DXia = 207°Vaadij + 200 fap + %sdﬂ-sj’flme‘f[@m,m] . (IV.56f)

From the above equations, one can recursively reconstruct the exact field expansion of
the superfields whose zeroth order components form the N’ = 4 supermultiplet. In the
following, we will only need a detailed expansion in # which, up to quadratic order in the
fs, is given by

Aus = Aug +€aﬁ)g(z‘d9w _ 6a5Vad¢ij9i69j7 + o (IV.57a)
Gij = bij — €ijuiXa0 — €ini (8, f o + 1250 Ppgs Pmn))0FO™ 4 - (IV.57b)

{%5§€dﬁ(€7aVﬁa>€m + 5»y,8Vo¢dX]gB) -

]

i&“aﬁéjpmn(gjkpq[émn, Xfly} + Emnkq [(bjp; X?y])} Qﬂjek'y + -, (IV57C)
Xie = Xia + 2Vaahi; 07 + (&'jklvaaXlg + apldij, Xra| IO 4+ - (IV.57d)

Therefore, the equations (IV.48) with all the fields being superfields are indeed equivalent
to the N' =4 SYM equations.

I1V.2.3 Supersymmetric self-dual Yang-Mills theories

In the following, we will always restrict ourselves to four dimensional spacetimes with
Euclidean (¢ = —1) or Kleinian (¢ = +1) signature. Furthermore, we will label the
Grafimann variables on ]R4RJ2N by 77?‘, and since the Weyl spinors x and y are no longer
related via complex conjugation we redenote y by x.

§17 Self-dual Yang-Mills theory. Self-dual Yang-Mills (SDYM) fields on R*® and
R??2 are solutions to the self-duality equations

Fu = 3eupeF? or F = «F (IV.58)

which are equivalently written in spinor notation as

1
R Y S N A —
fap = =55 (BacAgy — Og5Aac + [Aas Aggl) = 0. (IV.59)

Solutions to these equations form a subset of the solution space of Yang-Mills theory.
If such a solution is of finite energy, it is called an instanton. Recall that an arbitrary
Yang-Mills field strength decomposes into a self-dual f,g and an anti-self-dual part f, et

Foapy = caplap T capfag - (IV.60)
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where the former is of helicity +1 and has equal electric and magnetic components and
the latter is of helicity —1 and has magnetic and electric components of opposite signs.
Furthermore, it is known that the only local symmetries of the self-dual Yang-Mills equa-
tions (for a semisimple gauge group G) are the conformal group® and the gauge symmetry
[226].

8§18 Supersymmetric extensions of the SDYM equations. As the self-dual Yang-
Mills equations form a subsector of the full Yang-Mills theory, a possible supersymmetric
extension of the self-duality equations can be obtained by taking the full set of SYM
field equations and imposing certain constraints on them. These constraints have to
include (IV.58) and keep the resulting set of equations invariant under supersymmetry
transformations. This works for SYM theories with N' < 3, and the field content of the
full M-extended SYM theory splits into a self-dual supermultiplet and an anti-self-dual

supermultiplet:
h=1h=1 h =0 h=—-3 h=-1
N 0 faﬂ fd'
N =1 faﬁ Aa i Tas
. . V.61
N = 2| fap A P12 g Advi fas ( )
N =3 fap o Xo 1] i) Xai A fas
N = 4| fup X, ol = Leikgu, Xavi Y

where each column consists of fields with a certain helicity and each row contains a
supermultiplet for a certain value of N'. The indices i, 7, . . . always run from 1 to N'. From
the table (IV.61), we see that for N'=4, the situation is more complicated, as the SYM
multiplet (fag, X, ¢, X, fa[;')v where the fields have the helicities (+1, —i—%, 0, —%, —1),
is irreducible. By introducing an additional field G &f with helicity -1, which takes in
some sense the place of f, s, one can circumvent this problem (see e.g. [260, [71]). The
set of physical fields for N'=4 SYM theory consists of the self-dual and the anti-self-
dual field strengths of a gauge potential A,g, four spinors !, together with four spinors
Xai ~ 57jjkl)~(£kl of opposite chirality and six real (or three complex) scalars ¢ = Pl
For N'=4 super SDYM theory, the multiplet is joined by an additional spin-one field
Gaﬁ' ~ sijleggl with helicity —1 and the multiplet is — after neglecting the vanishing
anti-self-dual field strength f, 5~ identified with the one of N'=4 SYM theory.

8§19 Equations of motion. Using the above mentioned auxiliary field Gaﬁ"’ we arrive
at the following equations of motion:

fd' =0,
Vaani =0 )
00" = —5{x*.x%} , (IV.62)

EVaa G = el 14 — e 109,50

where we introduced the shorthand notations [ := %VO@V‘W and € = £1 distinguishes
between Kleinian and Fuclidean signature on the spacetime under consideration.

8The conformal group on R”? is given by SO(p + 1,q + 1).
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§20 Action for ' = 4 SDYM theory. The action reproducing the above equations
of motion was first given in [260] and reads with our scaling of fields as

S = /d490 tr (Gdﬁfaﬂ + £eiX YV 0e X + Seiind DM +€ijk1¢ijxakxla> :
(IV.63)
where G af = %sijleggl. Note that although the field content appearing in this action
is given by the multiplet (fag,xo‘i,gbij,f(di,fdﬂ-,GdB), de vanishes due to the SDYM
equations of motion and the supermultiplet of non-trivial fields is (fas, X**, 9", X&i> G4 5).
These degrees of freedom match exactly those of the full N=4 SYM theory and often it
is stated that they are the same. Following this line, one can even consider the full N'=4
SYM theory and N'=4 SDYM theory as the same theories on linearized level, which are
only distinguished by different interactions.
§21 Constraint equations. Similarly to the case of the full N' = 4 SYM theory, one
can obtain the equations of motion (IV.62) also from a set of constraint equations. These
constraint equations live on the chiral superspace ]RﬂZN with coordinates (2%, nf‘) and
read explicitly as

[Vads Vgl + Va3Vl = 0, [Va, Vsl + V5, Vaa] = 0,

. ) ) ) (IV.64)
{VZ,VJB} + {VZ-,Vfi} =0,
where we have introduced covariant derivatives
0 , 0 :
ad & A o ad d L= —— L IV.65
v 500 + A and V} o + A, ( )

Note that the gauge potentials A, and A% are functions on the chiral superspace ]RgZN.

Equations (IV.64) suggest the introduction of the following self-dual super gauge field
strengths:

[Vao'nvﬁﬁ'] = %Qfaﬁ(xa??) ; [Vfwvﬁﬁ] = Eaﬁfé(xvn) )
ViV1} = eufam).
and by demanding that ¥ is antisymmetric and fap is symmetric, these equations are

equivalent to (IV.64). The lowest components of f,3, fi and f¥ will be the SDYM field
strength, the spinor field !, and the scalars ¢*, respectively. By using Bianchi identities

(IV..66)

for the self-dual super gauge field strengths, one can show that these definitions yield
superfield equations which agree in zeroth order with the component equations of motion
(IV.62) [71].

To show the actual equivalence of the superfield equations with the equations (IV.62),
one proceeds quite similarly to the full SYM case, cf. §16. We impose the transverse gauge
condition n®A% = 0 and introduce an Euler operator

D = nPVy = nfol (IV.67)
which yields the following relations:
Dfap = %U?V(ao’zx/ig)
Dxl, = 27 Vaa¢”
D/t = pigidk (IV.68)
ikl gkl pili k]

jklm il[i ~klm ik ~lm]i
DGjﬁlil = _772(5 <%[¢ U?X,;f) ]] - %WDkaX,Y)] ])
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as well as 4 .
(1+D)A; = 2e,5m]07
¢ ari (IV.69)
DAws = —€dgniﬁX£ )
from which the field expansion can be reconstructed explicitly. For our purposes, it will
always be sufficient to know that

o o -
Aoa = Aaa = 45m X+ - — 13840 110 Var G
3 3 3 ijkl

‘ B ik | 2 Yoijk |1 B, 5,4 (IV.70)
(A 7 oy
A, = gdﬁ-nj(;ﬁ —1—350.[/8-77,1716)(& +15aﬂ'77j77k771 <G75 —1—5&5...) ,

as this already determines the field content completely.

§22 From SYM theory to super SDYM theory. Up to N' = 3, solutions to the
supersymmetric SDYM equations form a subset of the corresponding full SYM equations.
By demanding an additional condition, one can restrict the constraint equations of the
latter to the ones of the former [256, 280]. For N/ = 1, the condition to impose is
[Via, Vsl = 0, while for N = 2 and N = 3, one has to demand that {Via,V;z} =
£08¢ij = 0. For N' = 4, one can use the same condition as for N' = 3, but one has to
drop the usual reality condition ¢;; = %€ijkl¢3kl, which renders the fourth supersymmetry
nonlinear. Alternatively, one can follow the discussion in [297], where N' =4 SYM and
N =4 SDYM theories are considered as different weak coupling limits of an underlying
field theory including an auxiliary field.

IV.2.4 Instantons

§23 Meaning of instantons. The dominant contribution to the partition function
Z = / Dpe=SeleOuy] (IV.71)

of a quantum field theory defined by a (Euclidean) action Sg stems from the minima
of the action functional Sg[p,d,¢]. In non-Abelian gauge theories, one calls the local
minima, which exist besides the global one, instantons. Instantons therefore cannot be
studied perturbatively, but they are non-perturbative effects.

Although they did not give rise to an explanation of quark confinement, instantons

found various other applications in QCD and supersymmetric gauge theories. In mathe-
matics, they are related to certain topological invariants on four-manifolds.
§24 Instantons in Yang-Mills theory. Consider now such a non-Abelian gauge theory
on Euclidean spacetime R*, which describes the dynamics of a gauge potential A, a Lie
algebra valued connection one-form on a bundle E, and its field strength F' = dA+ AN A.
The corresponding Yang-Mills energy is given by the functional —% fR4 tr (F' A *F).

We will restrict our considerations to those gauge configurations with finite energy, i.e.
the gauge potential has to approach pure gauge at infinity. This essentially amounts to
considering the theory on S instead of R*. We can then define the topological invariant
—ﬁ fR4 tr (F' A F), which is the instanton number and counts instantons contained in
the considered configuration. Note that this invariant corresponds to a nontrivial second
Chern character of the curvature F. Recall that one can write this second Chern character
in terms of first and second Chern classes, see section I1.2.1) §21.

We can decompose the energy functional into

0 < %/ tr(xF4+e YF)AN(F 46« F)) = / tr («xFANF +2cos@F NF) (IV.72)
R* R4
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for all real §. Therefore we have

;/ tr(«FAF) < 3 / tr(F/\F)‘ (IV.73)
R4 R4

The configurations satisfying this bound are called BPS, cf. 834, and they form minima
of the energy functional. For such configurations, either the self-dual or the anti-self-dual

Yang-Mills equation holds:
F=+4+xF. (IV.74)

The name instantons stems from the fact that these configurations are localized at space-
time points.

In our conventions, an instanton is a self-dual gauge field configuration with positive
topological charge k. Anti-instantons have negative such charge and satisfy the anti-self-
duality equations.

8§25 Abelian instantons. From the above definition of the instanton number, it is clear
that in the Abelian case, where /' = dA, no instanton solutions can exist:

1 1
_2(2702/134 tr(FAF) = _2(277)2/134 trd(A A F)
1

= —2(277)2/33‘51"(14/\]?) =0,

where S3 is the sphere at spatial infinity, on which the curvature F vanishes. Note,

(IV.75)

however, that the situation is different on noncommutative spacetime, where Abelian
instantons do exist.

826 Moduli space of instantons. On a generic four-dimensional Riemann manifold
M, the moduli space of instantons is the space of self-dual gauge configurations modulo
gauge transformations. It is noncompact and for £ U(NN) instantons of dimension

2

ANk — (x+0), (IV.76)

where x and o are the Euler characteristics and the signature of M, respectively.

8§27 Construction of instantons. There is a number of methods for constructing in-
stantons, which are almost all inspired by twistor geometry. We will discuss them in
detail in section VIL.8. There, one finds in particular a discussion of the well-known
ADHM construction of instantons.

§28 Supersymmetric instantons. Note furthermore that in N/ = 1 supersymmetric
gauge theories, instanton configurations break half of the supersymmetries, as they appear
on the right-hand side of the supersymmetry transformations, cf. (IV.45). From (IV.45)
we also see that this holds for supersymmetric instanton configurations up to N/ = 3.

IV.2.5 Related field theories

In this section, we want to briefly discuss two related field theories which will become
important in the later discussion: A/ =8 SYM theory in three dimensions and the super
Bogomolny model. These theories are obtained by reduction of N'=4 SYM theory and
N-extended SDYM theory from four to three dimensions.
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§29 Dimensional reduction R* — R?. Recall that the rotation group SO(4) of
(R%,6,,) is locally isomorphic to SU(2)z, x SU(2)g = Spin(4). The rotation group SO(3)
of (R3,64p) with a,b = 1,2,3 is locally SU(2) = Spin(3), which can be interpreted as the
diagonal group diag(SU(2)1, x SU(2)r) upon dimensional reduction to three dimensions.
Therefore, the distinction between undotted, i.e. SU(2)r, and dotted, i.e. SU(2)g, indices
disappears.

Explicitly, the dimensional reduction R* — R? is now performed by introducing the
new coordinates”

yd‘B = —i:c(dﬁ) and x[dg] = —5‘mm2
R L R R S N s _ _is (IV.77)
with y& = —y*° = (-iz" —2°) = y and y~° = y° = —x
together with the derivatives
0 1 0
add = 9 oy and 812 = 5@ . (IV78)

More abstractly, this splitting corresponds to the decomposition 4 = 3 & 1 of the irre-
ducible real vector representation 4 of the group SU(2); x SU(2)g into two irreducible
real representations 3 and 1 of the group SU(2).

The four-dimensional gauge potential A,s is split into a three-dimensional gauge
potential A(dﬁ) and a Higgs field ®

By = Asp— 2845% (IV.79)
which motivates the introduction of the following differential operator and covariant
derivative:

Vdﬁ = 8dB+BdB and DdB = V(dg) = 3@5+Aa6- (IV.80)

8§30 Yang-Mills-Higgs theory. Yang-Mills-Higgs theory is defined in d dimensions by
the action

S = /ddac tr (—1F,,F" + V,0VF — 2(gg* — 1)) , (IV.81)

where F' is as usually the field strength of a gauge potential and ¢ is a complex scalar.
The potential term can in principle be chosen arbitrarily, but renormalizability restricts
it severely. The equations of motion of this theory read

V. F' = —[VY¢,¢] and VHIV,¢ = ~vo(¢do" —1) . (IV.82)

In our considerations, we will only be interested in a three-dimensional version of this
theory with vanishing potential term v = 0, which can be obtained from four-dimensional
Yang-Mills theory via a dimensional reduction.

§31 N =8 SYM theory in three dimensions. This theory is obtained by dimension-
ally reducing N' =1 SYM theory in ten dimensions to three dimensions, or, equivalently,
by dimensionally reducing four-dimensional A" = 4 SYM theory to three dimensions. As
a result, the 16 real supercharges are re-arranged in the latter case from four spinors
transforming as a 2¢ of Spin(3,1) = SL(2,C) into eight spinors transforming as a 2 of
Spin(2,1) = SL(2,R).

9The fact that we dimensionally reduce by the coordinate 2 is related to our sigma matrix convention.
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The automorphism group of the supersymmetry algebra is Spin(8), and the little
group of the remaining Lorentz group SO(2,1) is trivial. As massless particle content,
we therefore expect bosons transforming in the 8, and fermions transforming in the 8.
of Spin(8). Onme of the bosons will, however, appear as a dual gauge potential on R?
after dimensional reduction, and therefore only a Spin(7) R-symmetry group is manifest
in the action and the equations of motion. Altogether, we have a gauge potential A, with
a=1,...,3, seven real scalars ¢’ with i = 1,...,7 and eight spinors Xgl with j =1,...,8.

Moreover, recall that in four dimensions, N' = 3 and N' = 4 super Yang-Mills theories
are equivalent on the level of field content and corresponding equations of motion. The

10'is found in the manifest R-symmetry groups which are SU(3) x U(1)

only difference
and SU(4), respectively. This equivalence obviously carries over to the three-dimensional
situation: N' = 6 and N/ = 8 super Yang-Mills theories are equivalent regarding their
field content and the equations of motion.

§32 The super Bogomolny model. We start from the N-extended supersymmetric
SDYM equations on R?, i.e. the first A/ equations of (IV.62) in which the R-symmetry
indices 4, j, ... are restricted to 1,...,N. After performing the dimensional reduction as

presented in §29 one arrives at the field content
A@B7Xio'u (P7¢ij’>2idaGdB (IV83)
with helicities (1, %, 0,0, —%, —1), where we used the shorthand notations

~ ~ gkl ijkl
Xiae = %ijlxjoy and Gdﬁ = %gijlegﬁ' . (IV.84)

The supersymmetric extension of the Bogomolny equations now read

fag = _%Daf}@’
Eﬂvﬁ'l)dﬁ)(,i-y = —%[@Xfﬂ )

AT = 410,67, 0] + e {xE X} (IV.85)
EB;VDO.[B)ZM = —%[)N(z‘d;q)} + 21[@]-,)(]0:6] )
EB;YDaBGﬁS = —5[G a4 @]+ HXG Xis} — 31015, Dysd] + jeasldis, (2,671 .

Here, we have used the fact that we have a decomposition of the field strength in three

dimensions according to
Fepss = [Dapr Digl =1 epsfan +easfps (IV.86)

with faﬁ' = fﬁ'a' We have also introduced the abbreviation A := %56‘BeﬁéDd&Dﬂ- 5
For N = 8, one can write down the following action functional leading to the equations
(IV.85):
_ 3 s (¢ . L ip. . OBV Do
Ssp = /d x tr {G (fdﬁ—i-ngﬁCI)) + 16" x5 DspXin+
. A (IV.87)
+ %(ZSZJAQ#J - %EMXE [)2@57 (D] - gaﬂ/(pij{in? X.;} + %[qs’bja q)] [¢ZJ7 @]} :

In this expression, we have again used the shorthand notation ¢;; := %ijld)kl.

%Tn the complexified case, one has an additional condition which takes the shape ¢;; = %sijquﬁkl, cf.
[290].
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§33 Constraint equations. Similarly to the SYM and the (super-)SDYM equations,
one can give a set of constraint equations on R3I2V , which are equivalent to the super
Bogomolny equations on R3. For this, we introduce the first-order differential operators
Vg = (9( g+ B, ;5 and Di = % + AL =: 9, + A%, where Bdﬁ' = Aa 28046(1) Then
the appropriate Constralnt equations read as

[Vd:y, VB(;] = 8,»52 [Dé[, vﬁ‘)’] = ié‘d:yz/%

where X5 = X5, apd i = —¥J% Note that the first equation in (IV.88) immediately
shows that f; 5 = —5.D;,® and thus the contraction of the first equation of (IV.88) with
£70 gives X af = f &b~ %D aB(I) =2f, i The graded Bianchi identities for the differential
operators vaﬁ' and DY, yield in a straightforward manner further field equations, which

ad and {Dg,Dé} =i £,557 , (IV.88)

allow us to identify the superfields Ei and Y9 with the spinors X@ and the scalars gbij
respectlvely Moreover, Y;q is given by Yig 1= 51]le] &* and G, 1s defined by G

Dza ~2/3) Collecting the above information, one obtains the superﬁeld equatlons for
Aaﬁv X4, @, ¢, Xia and Ga,{? which take the same form as (IV.85) but with all the
fields now being superfields. Thus, the projection of the superfields onto the zeroth order
components of their n-expansions gives (IV.85).

Similarly to all the previous constraint equations, one can turn to transverse gauge and
introduce the Euler operator D := 17°‘DZ to recover the component fields in the superfield
expansion of the superconnection A. The explicit result is obtained straightforwardly to
be

o o, . PR [¢]
k °
Bag = Bap — iep, XA + 35,1300 Vand% — gl s, m 1 m P98 Y Xy —
4'€ﬁ’Yl 77711 77]22?7;;77]:831]233]4vd’3’2 Gﬁa‘m +- (IV.89a)
Afx - 'an??]l(ﬁm _ '604’7177]117];{22 wuzkxk n
T ﬁgéwl njl 77]2 7773 UUQ%G ogs T (IV.89b)

The equations (IV.88) are satisfied for these expansions if the supersymmetric Bogomolny
equations (IV.85) hold for the physical fields appearing in the above expansions and vice
versa.

8§34 BPS monopoles. The Bogomolny equations appear also as the defining equation
for Bogomolny-Prasad-Sommerfield (BPS) monopole configurations [37, 233], see also
[122]. We start from the Yang-Mills-Higgs Lagrangian'!' given in §30, and note that its
energy functional for static configurations (A, ¢) is given by

E = i/d?’x tr (FupFup + 2D Do) . (IV.90)
To guarantee finite energy, we have to demand that
lim tr(FgpFewp) = 0 and  lim tr(De¢pDe¢) = 0 (IV.91)
|r|—o0 |r|—o0

sufficiently rapidly. The energy functional has a lower bound, which can be calculated to
be

E = _i/de tr (Fab:Fgabc c(z))( ab:FEabdDd(b) /de tr( EabelbeD c¢)
(IV.92)

= _}l/d?’x tr(FabqZEabc c(z))( ab:FEabdDd¢):|:47TQ > 47T|Q’

"For convenience, we will switch again to vector indices a, b, . .. ranging from 1 to 3 in the following.
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Here, we could choose the absolute value as one of the bounds always becomes trivial. We
found the magnetic charge @@ which can also be understood as the magnetic flux through
a sphere around the origin with infinite radius:

1 1
Q = —87T/d3x tr (egpeFapDed) = —— dsg tr (%Eachbcd)) : (IV.93)

4 S2
The configurations (Ag, ¢), which satisfy the bound (IV.92) are called BPS monopoles
and necessarily fulfill the (first order) Bogomolny equations

Fu = eapeDet . (IV.94)

Inversely, those finite energy configurations (A,, ¢) which satisfy the Bogomolny equations
(IV.94) are BPS monopoles.

8§35 Monopole solutions. A twistor-inspired solution generating technique, the Nahm
construction, is presented in section VIL.&.

IV.3 Chern-Simons theory and its relatives

In this section, we briefly review basic and relevant facts on Chern-Simons theory. A
broader discussion can be found in [99] and [89]. Subsequently, we present some related
models, which we will encounter later on. In particular, we will present a holomorphic
Chern-Simons theory [293], which will play a vital role in chapter [VII.

IV.3.1 Basics

81 Motivation. Chern-Simons theory is a completely new type of gauge theories, which
was accidently discovered by Shiing-Shen Chern and James Harris Simons when study-
ing Pontryagin densities of 3-manifolds [62]. It is crucial in 3-manifold topology and
knot theory and its partition function defines the Witten-Reshetikhin-Turaev invariant,
a topological invariant of 3-manifolds. Furthermore, perturbation theory gives rise to an
infinite number of other topological invariants.

Chern-Simons theories are deeply connected to anyons, particles living in two dimen-
sion which have magnetic flux tied to their electric charge and — considering a large
wavelength limit — to a description of the Landau problem of charged particles moving
in a plane under the influence of a magnetic field perpendicular to the plane.

§2 Abelian Chern-Simons and Maxwell theory. The difference between Chern-
Simons theory and ordinary Maxwell theory is easiest seen comparing the Lagrangians
and the equations of motion:

Ly = —YF™FE,, —A,0", O F™ = JV (IV.95a)
ECS == %E#VpAuayAp - Auju 9 geuprI/p = Jlu 9 (IV95b)

Gauge invariance is not obvious, as the Lagrangian is not exclusively defined in terms of
the invariant field strength F},,. Nevertheless, one easily checks that gauge transforming

Lcs leads to a total derivative, which vanishes for manifolds without boundary.
1
K
trivial for vanishing source. To get nontrivial solution, there are several possibilities:

§3 Solutions. The solutions to the Chern-Simons field equations F},, = -¢&,,,J* are
One can consider couplings to matter fields and to a Maxwell term (the latter provides a
new mass generation formalism for gauge fields besides the Higgs mechanism), nontrivial
topology and boundaries of the configuration space or generalize the action to non-Abelian
gauge fields and incorporating gravity.
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84 Non-Abelian Chern-Simons theory. Consider a vector bundle E over a three-
dimensional real manifold M with a connection one-form A. Non-Abelian Chern-Simons
theory is then defined by the action

Los = ke™Ptr (A00A, + 2A,A,A,) (IV.96)
Under a transformation A, the Lagrangian changes according to
0Lcs = kePtr(8ALF,,) (IV.97)

with the standard non-Abelian field strength F),, = 9,4, —0,A,+[A,, A)]. The equations
of motion take the same form as in the Abelian case

ketPE,, = JH. (IV.98)
Under the non-Abelian gauge transformation, the Lagrangian transforms into
Elcs = Lcg — (tot. derivative) — w(g) (IV.99)

where w(g) describes a winding number
/ w(g) = 87°kN, NeZ. (IV.100)
M

This gives rise to a quantization condition for k if we demand that the partition function
e'5¢s is invariant under gauge transformations
§5 Topological invariance. Note that the energy-momentum tensor of Chern-Simons

theory vanishes:
2  0Scs

pr— p— O 5
Vdetg dg,u

which is due to the fact that Lcg is independent of the metric. Therefore, Chern-Simons

T

(IV.101)

theory is a topological field theory.
§6 Quantization. Canonical quantization of the system is straightforward as the com-
ponents of the gauge fields are canonically conjugate to each other:

i

[4i(2), 4;(9)] = —eio(Z~7) (IV.102)

where 7,5 =1, 2.

IV.3.2 Holomorphic Chern-Simons theory

Holomorphic Chern-Simons theory is besides super Yang-Mills theory the most important
field theory we will consider. Its omnipresence is simply due to the fact that the open
topological B-model on a Calabi-Yau threefold containing n space-filling D5-branes is
equivalent to holomorphic Chern-Simons theory on the same Calabi-Yau manifold with
gauge group GL(n,C), as we will see in section [V.3.4.

87 Setup. We start from a complex d-dimensional manifold M over which we consider
a holomorphic principal G-bundle P, where G is a semisimple Lie (matrix) group with
Lie algebra g. Consider furthermore a connection one-form (i.e. a Lie algebra valued
one-form) A on P, which is carried over to the associated holomorphic vector bundle
E — M of P. We define the corresponding field strength by F' = dA+ AA A, and denote
by A%! and F%?2 the (0,1)-part and the (0,2)-part of A and F, respectively. Note that
FO,Z — 5A0,1 +A0,1 /\AO,l_
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§8 Equations of motion. Analogously to Chern-Simons theory without sources, the
equations of motion of holomorphic Chern-Simons theory simply read

FO2 — §AL 4 AOT A AL = 0, (IV.103)

and thus 94 = 0 + A%! defines a holomorphic structure on E, see [§6] in section 11.2.1.
One can state that the Dolbeault description of holomorphic vector bundles is in fact a
description via holomorphic Chern-Simons theory.

§9 Action. If M is a Calabi-Yau threefold and thus comes with a holomorphic (3,0)-
form Q39, one can write down an action of holomorphic Chern-Simons theory which
reproduces the equation (IV.103):

Shes = 4 / DONA tr (AP AOAY + 2ZANANA) . (IV.104)
M

This action has been introduced in [293].

§10 Remarks. In his paper [293], Witten remarks that hCS theory is superficially non-
renormalizable by power counting but that its symmetries suggest that it should be finite
at quantum level. This conclusion is in agreement with holomorphic Chern-Simons theory
being equivalent to a string theory.

IV.3.3 Related field theories

§11 Topological BF-theory. This theory [36, 131] is an extension of Chern-Simons
theory to manifolds with arbitrary dimension. Consider a semisimple Lie matrix group G
with Lie algebra g. Furthermore, let M be a real manifold of dimension d, P a principal
G-bundle over M and A a connection one-form on P. The associated curvature is — as
usual — given by F'=dA 4+ A A A. Then the action of topological BF-theory is given by

Spr = / tr (B A F) , (IV.105)
M

where B is a (d — 2)-form in the adjoint representation of the gauge group G. That is, a
gauge transformation g € I'(P) act on the fields A and B according to

A glAg+¢g'dg and B — ¢ 'Bg. (IV.106)
The equations of motion of (IV.105) read as
F =0 and dB+AAB—(-1)YBAA =0, (IV.107)

and thus BF-theory describes flat connections and dg-closed (d — 2)-forms on an d-
dimensional real manifold.

§12 Holomorphic BF-theory. Holomorphic BF-theory [227, [142) [143] is an extension
of topological BF-theory to the complex situation. As such, it can also be considered
as an extension of holomorphic Chern-Simons theory to complex manifolds of complex
dimensions different from three. Let us consider the same setup as above, but now with
M a complex manifold of (complex) dimension d. Then the corresponding action reads

Supr = / tr (B A F9?) | (IV.108)
M

where B is here a (d,d — 2)-form on M in the adjoint representation of the gauge group
G and F%?2 is the (0,2)-part of the curvature F. If M is a Calabi-Yau manifold, there is
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a natural holomorphic volume form Q% on M, and one can alternatively introduce the
action

Sypr = / QIO A tr (B A F%?) | (IV.109)
M

where B is now a (0,d — 2)-form on M. The equations of motion in the latter case read
as

DAY 4 A% A AOY — 0 and OB+ A AB - (-1)¢BAAY = 0.  (IV.110)

This theory is sometimes called holomorphic #BF-theory, where § = Q%0,
We will encounter an example for such a holomorphic BF-theory when discussing the
topological B-model on the mini-supertwistor space in section [VIL.6.

IV.4 Conformal field theories

A conformal field theory is a (quantum) field theory, which is invariant under (local)
conformal, i.e. angle-preserving, coordinate transformations. Such field theories naturally
arise in string theory, quantum field theory, statistical mechanics and condensed matter
physics. Usually, conformal field theories are considered in two dimensions, but e.g. also
N = 4 super Yang-Mills theory in four dimensions is conformal, even at quantum level.
Among the many available introductions to conformal field theory, very useful ones are
e.g. [102,1247,[74]. A very concise introduction can moreover be found in the first chapter
of [221].

IV.4.1 CFT basics

81 The conformal group. Infinitesimal conformal transformations z*# — x* + & have
to preserve the square of the line element up to a local factor (x), and from

ds? — ds® + (Ouey + Opey)datda” (IV.111)

we therefore conclude that (0,e, +0,€,) ~ 1. On the two-dimensional plane with com-
plex coordinates z = z! 4 iz?, these equations are simply the Cauchy-Riemann equations

8161 = 6282 and 8162 = —8261 . (IV.112)

Two-dimensional, local conformal transformations are thus given by holomorphic func-
tions and these transformations are generated by

b, = —2""9, and £, = —2""0;, (IV.113)

which are the generators of the Witt-algebrat?

Umsln] = (M=) lmin , Umsln] = (M —=1)lpin , [y ln] = 0. (IV.114)

On the compactification CP! of the complex plane €, the global conformal transforma-
tions are the so-called Mébius transformations, which are maps z +— gjig with ad—bc = 1.
Note that these maps form a group = SL(2,C)/Zy = SO(3,1) and map circles on the

sphere onto circles. They are generated by £_1,fy,¢1 and their complex conjugates.

12the algebra of Killing vector fields on the Riemann sphere.
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§2 Exemplary theory. To briefly discuss relevant properties of conformal field theories,
we will use an exemplary theory, which is introduced in this paragraph. Consider the
two-dimensional field theory given by the action

S=ri /d% 0X0X , (IV.115)

where X = X(z,%) is a function’® on € and 0 and 0 denote derivatives with respect
to z and z. Furthermore, the normalization of the measure d?z is chosen such that
[d%26%(2,2) = 1. The equation of motion following from this action simply reads
00X (z,2) = 0 and the solutions to these equations are harmonic functions X (z, ).

83 Operator equation. On the quantum level, the above mentioned equation of motion

is only true up to contact terms, as one easily derives

_ 4 efs z/ 2/
0= /@XéX(z,z) *z2) (IV.116)
= (*(z -2, 2-2)) + £0.0:(X (2,2)X (¢, 7)) .

Such an equation is called an operator equation. By introducing normal ordering

5 J
(2,2) 0X (2, 2)

:O0(X): = exp <%/d22d2z/ In|z _Z/’25X ) oX), (IV.117)

we can cast the operator equation (IV.116)) into the classical form

0.0:: X(2,2)X(?,Z): = 0, (IV.118)
where
cX(2,0)X(Z,7): = X(2,2)X(¢,Z) +1n|z — 2> . (IV.119)
Taylor expanding the above equation, we obtain an example of an operator product ex-
Pansion:
X(2,2)X(0,0) = —In|z*+: X2(0,0) : +2: X0X(0,0) : +Z: X0X(0,0) : +... .

84 Energy-momentum tensor. The energy-momentum tensor naturally appears as
Noether current for conformal transformations. Consider an infinitesimal such transfor-
mation 2’ = z + eg(z), which leads to a field transformation §X = —g(2)0X — §(2)0X.
The Noether currents are j(z) = ig(z)T(z) and 7(2) = i§(2)T(Z), where we have in our
exemplary theory

T(z) = —4:0X0X: and T(2) = —%:0X0X: . (IV.120)
From the condition that in the divergence 95 — 07 of j, each term has to vanish sep-
arately'®, and the fact that the energy-momentum tensor is the Noether current for
rigid translations, one derives that the only nontrivial components of the tensor 1" are
T.. = T(2), Tez = T(Z). (Back in real coordinates z = Re(z), y = Im(z), this is equivalent
to the energy-momentum tensor having vanishing trace, and one can also take this prop-
erty as a definition for a conformal field theory.) One can derive furthermore that in any

3The notation X (z,%) here merely implies that X is a priori a general, not necessarily holomorphic
function. Sometimes, however, it is also helpful to consider a complexified situation, in which z and z are
independent, complex variables.

g and g are “linearly independent”
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given conformal field theory, the operator product expansion of the energy-momentum
tensor T'(z) is given by

c/2 2T (w OwT (w
2 oTw) | uT(w)

T(2)T(w) = +o, (IV.121)

(z —w) (z —w) z—w

where c is called the central charge of the theory.

§5 Radial quantization. Let us take a short glimpse at quantum aspects of conformal
field theories. For this, we compactify the complex plane along the z-axis to an infinitely
long cylinder and map it via z — e to the annular region C*. Time now runs radially and
equal time lines are circles having the origin as their center. The equal time commutators
of operators can here be easily calculated via certain contour integrals. Take e.g. charges
QilC] = ¢4 %ji and three circles Cp, Cy, C3 with constant times t; > t9 > ¢3. Then the
expression

Q1[C1]Q2[Ca] — 1[C5]Q2[Co] (IV.122)
which vanishes classically, will turn into the commutator
dzy N
(@1, Q2][Cs] = TReSz—ijlCz)jQ(zQ) (IV.123)
Co 1

when considered as an expectation value, i.e. when inserted into the path integral. The
residue arises by deforming C; — C3 to a contour around zy, which is possible as there
are no further poles present. The operator order yielding the commutator is due to the
fact that any product of operators inserted into the path integral will be automatically
time-ordered, which corresponds to a radial ordering in our situation.

§6 Virasoro algebra. Upon radial quantization, the mode expansion of the energy-
momentum tensor T(z) = Y, L,z " 2 and T(z) = 3, L,z "2 together with the in-
verse relations

L, = ]{ d—z-zmHT(z) and L, = —jq{ d—z,zm‘HT(E) (IV.124)
C 27 C 2mi
then lead immediately to the Virasoro algebra
(L L] = (1 —m)Lnpm + TCQn(nQ — D)bmino - (IV.125)

This algebra is the central extension of the Witt algebra (IV.114).

§7 Canonical quantization. To canonically quantize our exemplary model (IV.115),
we can use the fact that any harmonic field!® X can be (locally) expanded as the sum
of a holomorphic and an antiholomorphic function. That is, we expand 90X as a Laurent
series in z with coefficients oy, and 0X in Z with coefficients d&,,. Integration then yields

oo ~
X = x—i%pln]z|2+i\/g 3 ;<%+?§> , (IV.126)
"m0
where we singled out the zeroth order in both series and identified the log-terms aris-
ing from 0X and 0X with translations and thus momentum. The radial quantization

procedure then yields the relations
[y ] = [Gmy @] = MOpyn and [z,p] = 1. (IV.127)

We will examine the spectrum of this theory for 26 fields X* in section [V.1.2.

15 e. 00X =0
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§8 Primary fields. A tensoror primary field ¢(w) in a conformal field theory transforms
under general conformal transformations as

(7)) = (0.2)) 7 (8:2) o d(2, %) , (IV.128)

where hy and hy are the conformal weights of the field ¢(w). Furthermore, hy + hg
determine its scaling dimension, i.e. its behavior under scaling, and hy — l_L¢ is the field’s
spin. With the energy-momentum tensor 7'(z), such a field ¢ has the following operator
product expansion:

ho | Due(w)

(z—w)?  z-—w

T(z)p(w) =

(IV.129)

For the modes appearing in the expansion ¢(z) = bnz" """ we thus have the algebra

[an ﬁbm} = (n(hd) - 1) - m)¢m+n . (IV'130)

§9 Current algebras. Currents in a conformal field theory are (1,0)-tensor j*(z) with
the operator product expansion

kab fab
.a .b . c
JF0) ~ S+

7€(0) . (IV.131)
The Laurent expansion j*(z) = > >~ an% then leads to the current algebra or Kac-
Moody algebra

s dn) = MK S0 + 1 el i - (IV.132)

§10 Further theories. The exemplary theory (IV.115) is certainly one of the most
important conformal field theories. Further examples are given by the bc- and the (-
systems

Spe = /sz bOc and Sgy = /d2z BOY (IV.133)

which serve e.g. as Faddeev-Popov ghosts for the Polyakov string and the superstring,
see also section [V.2.1. In the former theory, the fields b and ¢ are anticommuting fields
and tensors of weight (A,0) and (1 — A, 0). This theory is purely holomorphic and in the
operator product expansion of the energy-momentum tensor, an additional contribution
to the central charge of ¢ = —3(2\ — 1)2 4+ 1 and ¢ = 0 appears for each copy of the
bc-system. The (v-system has analogous properties, but the fields § and v are here
commuting and the central charge contribution has an opposite sign. Recall the relation
between (y-systems and local Calabi-Yau manifolds of type O(a) ® O(—2 — a) — CP!
discussed in section 11.3.2, §11. The case of a bc-system with equal weights hy = h. = %
will be important when discussing the superstring. Here, one usually relabels b — 1 and

¢

IV.4.2 The N = 2 superconformal algebra

§11 Constituents. The N' = 2 superconformal algebra (SCA) is generated by the
energy-momentum tensor T(z), two supercurrents G*(z) and G~ (z), which are primary
fields of the Virasoro algebra with weight 3 and a U(1) current J(z), which is a primary
field of weight 1. The supercurrents G*(z) have U(1) charges +1. This mostly fixes the
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operator product expansion of the involved generators to be

T w) = (2 c_/i;)4 T (iT_(:Z;z + 8;{(5) 4+
T()G*(w) = (z?’_/iyai(m + awfj:’) +oee
T = o+ T e
GT(2)G™(w) = 2¢/3 n 2J(w) N 2T (w) 4 D J (W) . (IV.134)
(z —iw)s (z —w)? T w ’
J(2) I (w) = (ZC/:);)2+ 7

where the dots stand for regular terms. Additionally to the mode expansion of the energy-
momentum tensor given in §6, we have the mode expansions for the two supercurrents
and the U(1) current

+ntd)-3 -
Z Gninilz (En£3)=3  and  J(z Z Joz"h ) (IV.135)
n=—oo n=—oo
11
32)
the supercurrents, and by substituting z — e

GE(e2my) = —eF2mOH)GE(y) | (IV.136)

where 7 € [— The latter parameter is responsible for the boundary conditions of

2, we obtain

and therefore in superstring theory, n = —% will correspond to the Neveu-Schwarz (NS)
sector, while n = 0 is related with the Ramond (R) sector, cf. section V.2.2.

8§12 The algebra. The operator product expansion essentially fixes the algebra in terms
of the modes introduced for the generators. First, we have the Virasoro algebra

[Ly, Lin] = (n—m)Lpym + ﬁn(n — 1)6m4n,0 - (IV.137)

Second, there is the algebra for the U(1) current and its commutation relation with the
Virasoro generators
[Jmajn] = %m6m+n,0 )

[anjm] = —m Jm+n .
Eventually, there are the relations involving the two supercurrents G
[LTH Gmia] = (% - (m * CL)) Gi+nia ’
[Jn, GEial = £Gh ia s (IV.139)
{Gn—i-a?G } = 2 Lmin + (n—m+2a) Jn—&-m% ((n+a)2 - %) Om+n,0 5

(IV.138)

where we used the shorthand notation a = n + %

§13 The N = (2,2) SCA. This algebra is obtained by adding a second, right-moving
N =2 SCA algebra with generators T/(z), G*(z) and J(Z).

§14 Representations of the N = (2,2) SCA. There are three well-established rep-
resentations of the A/ = 2 SCA. Most prominently, one can define a supersymmetric
nonlinear sigma model in two dimensions, which possesses N/ = 2 superconformal sym-
metry. In section [V.3.1, we will discuss such models in more detail. Furthermore, there
are the Landau-Ginzburg theories discussed in [§8, section IV.1.2 and the so-called mini-
mal models. For more details, see [111], 246].
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CHAPTER V

STRING THEORY

String theory is certainly the most promising and aesthetically satisfying candidate for a
unification of the concepts of quantum field theory and general relativity. Although there
is still no realistic string theory describing accurately all the measured features of the
(known) elementary particles, “existence proofs” for standard-model-like theories arising
from string theories have been completed, see e.g. [185]. Omne of the most important
current problems is the selection of the correct background in which string theory should
be discussed; the achievement of moduli stabilization (see [73] and references therein)
show that there is progress in this area. Among the clearly less appealing approaches is
the “landscape”-concept discussed in [266].

The relevant literature to this chapter is [109, 108, 218, 219, 2211, 250}, 267] (general and
N =1 string theory), [191} 192, 171] (N = 2 string theory), [223, 257, 144] (D-branes),
[292, 111, 128, 130] (topological string theory and mirror symmetry).

V.1 String theory basics

In this section, we will briefly recall the elementary facts on the bosonic string. This
theory can be regarded as a toy model to study features which will also appear in the
later discussion of the superstring.

V.1.1 The classical string

81 Historical remarks. Strings were originally introduced in the late 1960s to describe
confinement in a quantum field theory of the strong interaction, but during the next years,
QCD proved to be the much more appropriate theory. Soon thereafter it was realized
that the spectrum of an oscillating string contains a spin-2 particle which behaves as a
graviton and therefore string theory should be used for unification instead of a model
of hadrons. After the first “superstring revolution” in 1984/1985, string theory had
become an established branch of theoretical physics and the five consistent superstring
theories had been discovered. In the second superstring revolution around 1995, dualities
relating these five string theories were found, giving a first taste of non-perturbative string
theory. Furthermore, one of the most important objects of study in string theory today,
the concept of the so-called D-branes, had been introduced.

§2 Bosonic string actions. Consider a two-dimensional (pseudo-)Riemannian manifold
Y. described locally by coordinates ¢® and o' and a metric Yas of Minkowski signature
(—=1,41). This space is called the worldsheet of the string and is the extended analogue
of the worldline of a particle. Given a further Riemannian manifold M and a map
X : ¥ — M smoothly embedding the worldsheet ¥ of the string into the target space M,
we can write down a string action (the Polyakov action)

T
§=-3 / %0 AP0, X" 05X, (V.1)
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where T is the tension of the string. This meaning becomes even clearer, when we recast
this action into the form of the Nambu-Goto action

S = -T / d%0 /= det 0, X195 X, | (V.2)

which is equal to —7' times the area of the worldsheet of the string. Note that more

frequently, one encounters the constants [y = 27%,

Regge slope o/ = ﬁ =12
0

In general, we have o

which is the string length and the

run in an arbitrary interval of “time” and o' run between 0
and 7 if the “spatial part” of the worldsheet is noncompact and between 0 and 27 else.

§3 Equations of motion. The equations of motion obtained by varying (V.1) with
respect to the worldsheet metric read as

8aX“8ﬁXM = %va577587X“35Xu ) (V3)

which implies that the induces metric hqg 1= 0, X*03X,, is proportional to the worldsheet
metric.

84 Closed and Neumann boundary conditions. To determine the variation with
respect to X, we have to impose boundary conditions on the worldsheet. The simplest
case is the one of periodic boundary conditions, in which the spatial part of the worldsheet
becomes compact:

XH*(z,2m) = XH*(x,0), OHX"(x,2m) = OH*XY(x,0),

(V.4)
'7&,8('%277) = ’Yozﬁ(xao) .

This describes a closed string, where all boundary terms clearly vanish. The same is true
if we demand that

n%JaX* = 0 on 0%, (V.5)

where n® is normal to 9%, as the boundary term in the variation of the action with
respect to X is evidently proportional to 9, X*. Taking a flat, rectangular worldsheet,
(V.5) reduces to 01 X* = 0. These conditions are called Neumann boundary conditions
and describe an open string whose endpoints can move freely in the target space. Both
the closed and the Neumann boundary conditions yield

00u X" = 0 (V.6)

as further equations of motion.

85 Dirichlet boundary conditions. One can also impose so-called Dirichlet boundary
conditions, which state that the endpoints of a string are fixed in the spatial direction:

X" = 0. (V.7)

However, these boundary conditions by themselves have some unpleasant features: Not
only do they break Poincaré symmetry, but they also have momentum flowing off the
endpoints of the open strings. The true picture is that open strings with Dirichlet-
boundary conditions end on subspaces of the target space, so called D-branes, which we
will study in section [V.4. For this reason, we will restrict ourselves here to open strings
with Neumann boundary conditions.
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§6 Symmetries. The Polyakov action has a remarkable set of symmetries:

> Poincaré symmetry in the target space

> Diffeomorphism invariance on the worldsheet

> Weyl-invariance on the worldsheet
Weyl-invariance means that the action is invariant under a local rescaling of the world-
sheet metric and thus the worldsheet action is conformally invariant.

87 The energy-momentum tensor. The variation of the action with respect to the
worldsheet metric yields the energy-momentum tensor

T = —4r\/—dety

Since the worldsheet metric is a dynamical field, the energy-momentum tensor vanishes

S . V.8
e (V.8)

classically. Furthermore, the trace of this tensor has to vanish already due to Weyl-
invariance:

6
5704 6]

|
o

T6% ~ Yap (V.9)

V.1.2 Quantization

88 Canonical quantization. To quantize classical string theory given by the Polyakov
action (V.1), we first fix the gauge for the worldsheet metric. In conformally flat gauge,
we have (y*9) = e?(@)diag(—1,+1) and the action (V.1I) reduces to D copies of our
exemplary theory (IV.115) from section IV.4.1, for which we already discussed the quan-
tization procedure. Note, however, that the creation and annihilation operators receive
an additional index for the D dimensions of spacetime and their algebra is modified to

[agwam = [d%,d;] = m5m+nn€]\l}), (VlO)

where néL 1\1;1) is the Minkowski metric on the target space manifold M. We thus have a
quantum mechanical system consisting of the tensor product of 2D harmonic oscillators
and a free particle. We therefore derive the states in our theory from vacua |k, 0), which

are eigenstates of the momentum operators p# = «of = af. These vacuum states are

furthermore annihilated by the operators ab,, a4, with m < 0. The remaining operators
with m > 0 are the corresponding creation operators. Due to the negative norm of the
oscillator states in the time direction on the worldsheet, canonical quantization by itself

is insufficient and one needs to impose the further constraints
(Lo—a)ly) = (Lo—a)|) = 0 and Lyp|) = Lpjv) = 0 for n > 0. (V.11)

This is a consequence of the above applied naive gauge fixing procedure and to be seen
analogously to the Gupta-Bleuler quantization prescription in quantum electrodynamics.
Note that in the case of closed strings, one has an additional independent copy of the
above Fock-space.
89 BRST quantization. A more modern approach to quantizing the bosonic string is
the BRST approach, from which the above Virasoro constrains follow quite naturally:
The physical states belong here to the cohomology of the BRST operator. We will not
discuss this procedure but refer to the review material on string theory, in particular to
[218].
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§10 Virasoro generators and creation/annihilation operators. To expand the
Virasoro generators in terms of the creation and annihilation operators used above, we
insert the Laurent expansion (IV.126) for X* into the energy-momentum tensor (IV.120)
and read of the coefficients of the total Laurent expansion. We find

00 ) 00
ap
% Z Oé aun + g0 = 4 + Z(O/inaun) +¢o, (V12)
n=1 n=1
where €¢ is a normal ordering constant, and
o0

Ly = 3 Y ioh oum: (V.13)

n=—oo
where : - : denotes creation-annihilation normal ordering. For the quantum operator
Ly, the vacuum energy is formally g = 952¢(—1), where ((~1) = ¥, n = —1; after

regularization.

811 Conformal anomaly. The conformal anomaly or Weyl anomaly is the quantum
anomaly of local worldsheet symmetries. One can show that the anomaly related to Weyl
invariance is proportional to the central charge of the underlying conformal field theory.
Since the appropriate ghost system for gauging the worldsheet symmetries is a be-system
with A = 2, the central charge is proportional to D — 26, where D is the number of bosons
(X*#). Thus, the critical dimension of bosonic string theory, i.e. the dimension for which
the total central charge vanishes, is D = 26. From this, it also follows that a = 1.

§12 Open string spectrum. The constraint Ly = a in (V.11) is essentially the mass-
shell condition

1 1 1

The ground state |k,0), for which N = 0 has thus mass —k* = m? = —% < 0 and is
in fact tachyonic. Therefore, bosonic string theory is actually not a consistent quantum
theory and should be regarded as a pedagogical toy model'.

The first excited level is given by N = 1 and consists of oscillator states of the
form o |k;0) = ¢ a_1|k;0), where (, is some polarization vector. As mass, we obtain

m? = L(1—a) and from

Lulk;¢) = V2d/(k - ¢)|k;0) (V.15)

together with the physical state condition Li|k;¢) = 0, it follows that k- = 0. As
mentioned in §11, @ = 1 and therefore the first excited level is massless. (Other values of
a would have led to further tachyons and ghost states of negative norm.) Furthermore,
due to the polarization condition, we have d — 2 = 24 independent polarization states.
These states therefore naturally correspond to a massless spin 1 vector particle.

Higher excited states become significantly massive and are usually discarded with the
remark that they practically decouple.

! Tachyon condensation might be a remedy to this problem, but we will not go into details here.
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8§13 Closed string spectrum. In the case of closed strings, the physical state conditions
(V.11) need to hold for both copies L,, and L, of the Virasoro generators, corresponding
to the right- and left-moving sectors. Adding and subtracting the two conditions for Lg
and L yields equations for the action of the Hamiltonian H and the momentum P on a
physical state, which amount to invariance under translations in space and time. These
considerations lead to the two conditions
2 4 Y
m° = J(N_l) and N = N, (V.16)

where the first equation is the new mass-shell condition and the second is the so-called
level-matching condition.

The ground state |k;0,0) is evidently again a spin 0 tachyon and therefore unstable.

The first excited level is of the form

|k ¢) = Cuvlay|k;0) ® 624 [k; 0) (V.17)

and describes massless states satisfying the polarization condition £#(,,, = 0. The polar-
ization tensor (,, can be further decomposed into a symmetric, an antisymmetric and a
trace part according to

C,U,V = Guw + Bp,l/ + nyyq) . (V18)

The symmetric part here corresponds to a spin 2 graviton field, the antisymmetric part
is called the Neveu-Schwarz B-field and the scalar field ® is the spin 0 dilaton.

8§14 Chan-Paton factors. We saw above that open strings contain excitations related to
Abelian gauge bosons. To lift them to non-Abelian states, one attaches non-dynamical
degrees of freedom to the endpoints of the open string, which are called Chan-Paton
factors. Here, one end will carry the fundamental representation and the other end the
antifundamental representation of the gauge group. Assigning Chan-Paton factors to both
ends leads correspondingly to an adjoint representation. Note that in the discussion of
scattering amplitudes, one has to appropriately take traces over the underlying matrices.

V.2 Superstring theories

There are various superstring theories which have proven to be interesting to study.
Most conveniently, one can classify these theories with the number of supersymmetries
(p,q) which square to translations along the left- and right-handed light cone in the
141 dimensions of the worldsheet. The bosonic string considered above and living in 26
dimensions has supersymmetry N' = (0,0). The type ITA and type IIB theories, which
are of special interest in this thesis, have supersymmetry N' = (1,1). The type I theories
are obtained from the type II ones by orbifolding with respect to worldsheet parity and
the heterotic string theories have supersymmetry A" = (0,1). Interestingly, it has been
possible to link all of the above supersymmetric string theories to a master theory called
M-theory [294], on which we do not want to comment further.

Besides the above theories with one supersymmetry, there are the NV = 2 string
theories with supersymmetry N' = (2, 2) or heterotic supersymmetry A" = (2,1). We will
discuss the former case at the end of this section. The latter has target space R?? for the
right-handed sector and R?? x T® for the left-handed sector. Also this theory has been
conjectured to be related to M-theory [192].
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V.2.1 N =1 superstring theories

§1 Preliminary remarks. The motivation for turning to superstring theories essentially
consists of two points: First of all, the bosonic spectrum contains a tachyon as we saw
above and therefore bosonic string theory is inconsistent as a quantum theory. Second,
to describe reality, we will eventually need some fermions in the spectrum and therefore
bosonic string theory cannot be the ultimate answer. One might add a third reason for
turning to superstrings: The critical dimension of bosonic string theory, 26, is much less
aesthetical than the critical dimensions of N' = 1 superstring theory, 10, which includes
the beautiful mathematics of Calabi-Yau manifolds into the target space compactification
process.

Note that there are several approaches to describe the superstring, see also section
V.4.5, §16. Here, we will follow essentially the Ramond-Neveu-Schwarz (RNS) formula-
tion, which uses two-dimensional worldsheet supersymmetry and the additional Gliozzi-
Scherck-Olive (GSO) projection to ensure also target space supersymmetry. Furthermore,
the GSO projection guarantees a tachyon-free spectrum and modular invariance.

82 Superstring action. A straightforward generalization of the bosonic string action
is given by

S=L / @z (Z0XMOX, + 910, +00D) | (V.19)
where the two fermionic fields ¥* and 1/;“ are holomorphic and antiholomorphic fields,

respectively. Recall that we already discussed the conformal field theories for the 1* and
the @E“ in section IV.4.1.

83 Boundary conditions. From the equations of motion, we get two possible boundary
conditions leading to two sectors:

Ramond (R) PYH(0,7) = (0, 7) Yi(m, ) =YK (m, 7) |
Neveu-Schwarz (NS) ¢#(0,7) = —1[)”(0,7') YH(m, 1) =Y (T, T) .

It is useful to unify these boundary condition in the equations
Y (z42m) = @™Yr(z) and YH(Z+2m) = e TYH(3) (V.20)

over the complex plane, with v, 7 € {0, %}

84 Superconformal symmetry. Recall that in the bosonic case, the Virasoro genera-
tors appeared as Laurent coefficients in the expansion of the energy-momentum tensor,
which in turn is the Noether current for conformal transformations. For superconformal
transformations, we have the additional supercurrents

Tp(z) = i\/zw(z)axu(z) and Tp(3) = i\/Zd;“(z)éXﬂ(Z). (V.21)

Their Laurent expansions are given by

Gy = Gy
Tp(z) = e and Tr(z) = > eyl (V.22)
reZ+v reZ+v

where v and U label again the applied boundary conditions. The Laurent coefficients
complete the Virasoro algebra to its N = (1,0) and N = (0, 1) supersymmetric extension.
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The former reads

C
[L’rru Ln] = (m - n)Lm-l-n + E(ng n)5m+n,0 )
C
{Gra Gs} = 2L7‘+s + E(4r2 - 1)57"-1—5,0 ) (V23>
m — 2r
[LmyGJ = 2 Gm+r-

This algebra is also called the Ramond algebra for r,s integer and the Neveu-Schwarz
algebra for r, s half-integer.

§5 Critical dimension. Since in each of the holomorphic (right-moving) and antiholo-
morphic (left-moving) sectors, each boson contributes 1 and each fermion contributes %
to the central charge, the total central charge is ¢ = %D. This central charge has to
compensate the contribution from the superconformal ghosts, which is —26 + 11, and
thus the critical dimension of N = 1 superstring theory is 10.

§6 Preliminary open superstring spectrum. The mode expansions of the right- and
left-moving fermionic fields read

Z T.+1/2 and 1?“ Z ZT+1/2 ) (V24)

reZ+v reZ+v

and after canonical quantization, one arrives at the algebra

{pr, 0} = {9805} = 06450 - (V.25)

The normal ordering constant a appearing in (V.11) is found to be a = 0 in the Ramond
sector and a = % in the Neveu-Schwarz sector. The physical state conditions (V.11)) are
extended by the demand

Gy|phys) = 0 for r > 0, (V.26)

and the level number N is modified to

N = Za_n an+ Y Tty (V.27)

r>0

Equipped with these results, we see that the NS ground state is again tachyonic, and

2 _

has mass m The first excited levels consist of the massless states )" 1 |k; 0)Ns,

20/
and can again be related to spacetime gauge potentials.

The R sector contains (massless) zero modes v} satisfying the ten-dimensional Dirac
algebra {¢f, ¢} = 7" and all states in the R sector are spacetime fermions. Note that
already in the ground state, we cannot expect spacetime supersymmetry between the R

and NS sectors due to the strong difference in the number of states.

§7 Preliminary closed string spectrum. There are evidently four different pairings
of the fermion boundary conditions for closed strings giving rise to the four sectors of the
closed superstring. Spacetime bosons are contained in the NS-NS and the R-R sectors,
while spacetime fermions are in the NS-R and the R-NS sectors.

While the NS-NS ground state contains again a tachyon, the remaining states in the
first levels form all expected states of supergravity.
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§8 GSO projection. To obtain (local) supersymmetry in the target space of the theory,
we have to apply the so-called Gliozzi-Scherck-Olive (GSO) projection, which eliminates
certain states from the nalve superstring spectrum.

Explicitly, the GSO projection acts on the NS sector by keeping states with an odd
number of 1 excitations, while removing all other states. This clearly eliminates the
tachyonic NS-vacuum, and the ground states become massless. More formally, one can
apply the projection operator Pgso = %(1 — (=1)F), where F is the fermion number
operator.

In the R sector, we apply the same projection operator, but replace (—1) by

(- — £I(=D", (V.28)

where T is the ten-dimensional chirality operator I' = I'?. .. T, This projection reduces
the zero modes in the R ground state to the appropriate number to match the new
massless NS ground states. This is an indication for the fact that the GSO projection
indeed restores spacetime supersymmetry.

Note that the massless ground states of the theory are characterized by their repre-
sentation of the little group SO(8) of the Lorentz group SO(1,9). The NS sector is just
8,, while there the two possibilities for the R sector, depending on the choice of GSO
projection: 8, and 8.

89 Green-Schwarz action. For completeness sake, let us give the covariant Green-
Schwarz action of the type IIB superstring in Nambu-Goto form, which will be needed in
the definition of the IKKT model in section [VIII.1.2. The action reads as

Sas = —T / A% (w/—%Z—i—is“b@aX“(élFu@bGl + 6T ,0,6%)

(V.29)
+ 5“b§1F“8a910_2F#8b92> ,
where 9! and #? are Majorana-Weyl spinors in ten-dimensions and
S = c®IMIY with TIF = 9,X* —i0'T 9,0" +i6°T+9,0% . (V.30)

V.2.2 Type ITA and type IIB string theories

Recall that we had two different possibilities of defining the fermion number operator in
equation (V.28). For open strings, both choices are in principle equivalent but for closed
strings, the relative sign between left- and right-moving sectors are important.

810 Type ITA. In this case, we choose the opposite GSO projections for the left- and the
right-moving sectors. The resulting theory is therefore non-chiral, and the field content
can be classified under the little group SO(8) as (8, ® 8;) ® (8, © 8,)

8§11 Type IIB. Here, we choose the same GSO projection on both sectors, which will
lead to a chiral theory with field content (8, @ 85) ® (8, @ 8;).

§12 The R-R sectors. Constructing vertex operators for the R-R sector states leads
to antisymmetric tensors G of even rank n for type IIA and odd rank n for type IIB,
satisfying Maxwell equations. Thus, we get the following potentials C' with G = dC:

type I1TA C(l) C(g) 0(5) 0(7)
type I1B C(O) C(Q) 0(4) C(6) C(g)
Each potential of rank k has a Hodge dual of rank 8 — k via
«dCpy = dCs_p) (V.31)

since the target space has dimension 10.
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§13 Compactification. To obtain a phenomenologically relevant theory, one evidently
has to reduce the number of large dimensions from ten to four. Since the geometry of
spacetime is determined dynamically, one can imagine that there are certain solutions
to the string theory under consideration, which correspond to a compactification of the
theory on a six-dimensional manifold. Particularly nice such manifolds besides the six-
dimensional torus are Calabi-Yau manifolds and compactifying a ten-dimensional string
theory on such a space often yields standard model like physics, with many parameters
as masses, coupling constants, numbers of quark and lepton families determined by the
explicit geometry of the chosen Calabi-Yau threefold.

V.2.3 T-duality for type II superstrings

In this section, let us briefly describe the symmetry called T-duality in string theory.
This symmetry has no analogue in field theory and is therefore truly stringy.

§14 T-duality for closed strings. Assume we quantize one of the nine spatial dimen-
sions on a circle as XY ~ X9 427 R, where R is the radius of the circle. It follows that the
momentum along this direction is quantized pg = g with n € Z. Recall the expansion of
the string embedding function

- o/ N o/ .
XHM(r,0) = CL‘BL—I-I'S—F\/E(QS—I—QS)T—F“5(045—065)0'4-... , (V.32)

where the dots denote oscillator terms. Moreover, the center of mass spacetime momen-

tum reads as

1 -

With the quantization condition, we thus obtain ag +d8 = %’H / %/ The compactification

also constrains the coordinate in the X direction according to
X7, 04+2m) = X%r,0) + 271wR (V.34)

where the integer w is the winding number and describes, how often the closed string is
wound around the compactified direction. Together with the expansion (V.32)), we derive

[2
a) —ay = wR = (V.35)

Putting (V.33) and (V.35) together, we obtain furthermore that

the relation

R R

and the mass formula for the spectrum gets modified to

2 4 2 4 -
m® = —pup" = ()’ + (N —1)==(a))°+ (N -1)
o o @ @ (V.37)
n? w?R2 2 ~

We see that there are essentially two towers of states in the game: the tower of Kaluza-
Klein momentum states and the tower of winding states. Noncompact states are obtained
for n = w = 0. In the limit of large radius R — oo, the winding states become very
massive and thus disappear, while the momentum states form a continuum. In the
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opposite limit R — 0, the momentum states decouple and the winding states become
continuous.
Note that all the formulae are symmetric under the interchange

a/

n < w and R < 7 (V.38)
and this symmetry is called T-duality. In terms of zero-modes, this symmetry corresponds
to

) < o) and &) <« —a . (V.39)

Note that T-duality therefore corresponds to a parity transformation of the right-movers.
815 T-duality for open strings. As open strings cannot wrap around the compact
dimensions, they are dimensionally reduced by T-duality in the limit R — 0. Although the
interior of the open strings still vibrate in all ten dimensions, the endpoints are restricted
to a nine-dimensional subspace. This is also seen by adding the mode expansion of the
open string with reversed parity of the right-movers, which causes the momentum in the
T-dualized direction to vanish. The nine-dimensional subspace is naturally explained in
the language of D-branes, see section V.4l

816 T-duality for type II superstrings. We saw that T-duality corresponds to a
parity change of the right-movers. By target space supersymmetry, it must therefore also
change the parity of the right-moving fermion fields. This inverts the choice of sign in
the GSO projection and eventually turns the GSO projection for type IIA theory into
the GSO projection of type IIB theory. T-dualizing any odd number of target space
dimensions thus maps the two different type Il superstring theories into each other, while
T-dualizing an even number of dimensions does not modify the superstring theory’s type.

V.2.4 String field theory

§17 Motivation. String field theory (SFT) is an attempt to describe string theory in
a background independent manner. All the excitations of the string are encoded in an
infinite number of fields, which in turn are recombined in a single string field A. After
quantizing this field, we have — roughly speaking — an operator A for every string in the
target space. There are different SF'Ts, which describe the dynamics of the string field.
In the following, we will only be interested in the Chern-Simons-like version formulated
by Witten [291].

Although SFT found several successful applications, there are also conceptual draw-

backs. First of all, the close strings are still missing or at least hidden in Witten’s suc-
cessful formulation. Second, and most importantly, it contradicts the principle derived
from M-theory that branes and strings should be equally fundamental.
8§18 Cubic SFT. Take a Z-graded algebra 2l with an associative product x and a deriva-
tive Q with Q% = 0 and @4 = A+1 for any A € . Assume furthermore a map [:A—C
which gives non-vanishing results only for elements of grading 3 and respects the grading,
Le. [AxB= (—1)48 | B A. The (formal) action of cubic SFT is then

5:;/(A*QA+§A*A*A) . (V.40)

This action is invariant under the gauge transformations 04 = Qe —e+x A+ Axe. It
can furthermore be easily extended to allow for Chan-Paton factors by replacing 2l by
2A®gl(n,C) and [ by [®tr.
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8§19 Physical interpretation. The physical interpretation of the above construction is
the following: A is a string field encoding all possible excitations of an open string. The
operator * glues the halves of two open strings together, forming a third one and the
operator | folds an open string and glues its two halves together [291].

V.2.5 The N = 2 string

820 Introduction. Besides the bosonic string theory having a 26-dimensional target
space (and some consistency problems due to a tachyon in the spectrum) and the super
string theory with N' = 1 worldsheet supersymmetry having a 10-dimensional target
space, the N/ = 2 string living naturally in 4 dimensions received much attention as a
toy model. In our consideration, this string will essentially serve as a model for some
D-brane configurations arising in the context of twistor geometry. For more details see
[191], 190, 171}, 105] and references therein.

§21 Action. The action of the N/ = 2 string is given by a two-dimensional N' = 2
supergravity model with chiral matter coupled to it. The N’ = 2 supergravity multiplet

here consists of a zweibein e, a complex gravitino (xa,x%) and a U(1) gauge potential

(o'}

As. The chiral matter is captured by the components of a NV = 2 chiral superfield
X%~ z' 40, where i = 1,...,d and d is the target space dimension. The corresponding
action reads as

+ (OuZ' + lﬁixa)xgva'yﬁwi + c.c.) )

8§22 Critical dimension. As usual, the critical dimension is calculated by adding all the

(V.41)

contributions of the necessary ghosts systems. Here, we have again one bc-ghost system
for worldsheet reparameterizations, a complex (3v-system for the supersymmetry and a
b'-system with weights (1,0) for the U(1)-symmetry. Together with the matter fields,
we have ¢ = —2+ D in total, where D is the complex dimension. Thus, the N' = 2 string
has critical dimension 4.

§23 Spectrum and symmetries. In the following we will always assume the metric
on the target space R* of the N/ = 2 string to be either Euclidean® or Kleinian, i.e.
N = diag(+1, 41, —1, —1). The underlying worldsheet theory [40] is N" = 2 supergravity
coupled to two N = 2 massless chiral multiplets, the latter forming the ordinary sigma
model describing a string. The corresponding action is N' = 2 supersymmetric and Weyl
invariant on the worldsheet. Furthermore,there is a global U(1, 1) target space symmetry.
§24 Amplitudes. Upon quantization, one finds a single massless open string state |k)
in the spectrum, which can be endowed with Chan-Paton factors. On the interaction
side, the structure of amplitudes is rather simple. All n-point functions with n > 3
vanish identically for both open and closed strings. The lower amplitudes give rise to the
effective field theory.

§25 Effective field theory. It has been shown in [212] that the N/ = 2 open string is
equivalent to self-dual Yang-Mills theory in 242 dimensions. It was also proven there that
the N' = 2 closed string is equivalent to self-dual supergravity. In [260], it was argued
that the appropriate field theory is rather a fully supersymmetrized version, and thus the
N = 2 critical string should correspond to N' = 4 supersymmetric self-dual Yang-Mills
theory. Note that the D-branes of N/ = 2 string theory will be discussed in [V.4.5, [§15.

2Considering a Euclidean target space, however, yields no propagating degrees of freedom.
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V.3 Topological string theories

Topological string theories are obtained from the physical description of strings moving
on Calabi-Yau manifolds after twisting the field content which turns the usual super-
symmetric sigma model into a topological field theory. They describe subsectors of the
physical string, which are under control and suited for extensive study. We will be mostly
interested in the so-called topological B-model, as it nicely reduces to holomorphic Chern-
Simons theory.

Besides the topological field theories which we will obtain in the following by twisting
the field content of a nonlinear sigma model, there are further field theories giving rise
to a topological string representation of the N = (2,2) superconformal algebra: the
Landau-Ginzburg model and the so-called minimal models.

V.3.1 The nonlinear sigma model and its twists

81 Sigma models. A theory which contains a scalar field ¢ mapping some spacetime
to some (usually Riemannian) manifold X is called a sigma model. The sigma model is
called linear if the target manifold X is a linear space, otherwise it is called nonlinear.
§2 Nonlinear sigma model. The most convenient starting point of discussing topo-
logical strings is the standard nonlinear sigma model in two dimensions which describes
maps ¢ from a Riemann surface ¥ to a target manifold X with Riemannian metric (gz.7)
and Riemann tensor (Ryyxr). This model is defined by the action

S — 2 /Z 22 (Lg17(6)0:010:0" + Lg1,(8)0! Doy +

Sargvi Devl + IRyl Kl |

(V.42)

where D, is the pullback of the Levi-Civita connection F]JK on TX and the ¢! are
coordinates on X. If we denote the canonical and anticanonical line bundles® over ¥ by
K and K, the fermions are sections of the following bundles:

Pl e T(KY?2 2 ®*(TX)) and oL e N(KY? @ &*(TX)) . (V.43)
The supersymmetry transformations leaving (V.42) invariant are given by

6¢" = ie_yl +iegyl
vl = —e_0.0" —ie KTyl (V.44)
ol = —e 00" —ie_ETL M
§3 N = 2 supersymmetry. If X is Kihler, we gain additional N' = 2 supersymmetry:
The indices I, J, K, ... split into holomorphic and antiholomorphic parts: 4,7, ... and we
have the following field content:
qbi e TLOX ’ ¢7:|- e K1/2 ® (D*(TLOX) , wz_ e KI/Q ®(I)*(T1,0X) ’

] ) S (V.45)
¢ eTHX | ¢l e KV o (T"X), ¢ e KY/?@o*(T"!X)

together with the action

S = 2t/2d2z (%QIJ(fb)az(lslaéflsJ+i¢ZDzT/}£9ﬁ+i"¢iDz¢igﬁ"‘Rﬁjjwiwiwiiﬁz) -

3i.e. bundles of one-forms of type (1,0) and (0, 1), respectively
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The supersymmetry transformations under which this action is invariant are given by

56" = iyt +iagyl 6" = ia_y' +ia Y’
0P, = —a_0.¢' —iag g T, 00, 0YL = —a 0.¢' —ia gl TE T (V.46)
Yl = —ay0:¢' —ia LT M, YL = —ay0:¢" —ia Tl g

where the infinitesimal fermionic parameters a, a4 and a—, @_ are holomorphic sections
of K¥2 and KY/2, respectively.

84 Twist of the nonlinear sigma model. The nonlinear sigma model defined in the
previous paragraph can now be twisted in two possible ways resulting in the topological
A- and B-model. On each pair of spinors (wi, ¥ ), we can apply the following twists:

untwisted 7 € K2 @ o*(TW0X) ¢ € K'/?® (T X)
+ twist i € O*(T1OX) Yl € K@ ®* (T X)
— twist ¢ € K @ ®*(T10X) YL € O (TO1X)

Analogous twists can be applied on the pairs (¢ , 1" ) with K replaced by K.
Equally well, one can consider this as a modification of the underlying energy-momen-
tum tensor by

T(z) — Tiop(z) = T(2) £30J(2) , (V.47)
T(2) — Tiop(2) = T(2) £10J(2) . (V.48)

Combining the twists on the (¢4,1_) sectors, we arrive again at two possible total
twists: the A-twist (—,+) and the B-twist (—, —). Here, only the relative sign of the twists
in the two sectors matters, as other combinations are obtained by complex conjugation.
Half-twisted models have not aroused much attention.

V.3.2 The topological A-model

We will not consider the topological A-model in detail but just give a rough outline for
completeness sake only.

85 Field content. Due to the properties of the Grafimann coordinates interpreted as
sections of different bundles over X, we follow [292] and rename the fields according to

X' =k, X = vl Wl =l ¢l =yl (V.49)
The action thus reads in the new coordinates as

S = 2t / Az (L9150.0"0:¢7 + 1L Dox'gsi + WiD.X g5 — Rijpbix?x’)
>
(V.50)

86 Supersymmetry transformations. The supersymmetry transformations of the
nonlinear sigma model become topological transformation laws after performing the A-
twist. They are easily derived by setting ay = a— = 0 and by introducing a BRST
operator ) arising from the topological transformation laws as 6(-) = —ia{@, -}, one can
rewrite the action as

S:it/EdQ,z {Q,V}th/Z{)*(J) (V.51)
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with
V = gz‘j(wiazWJraszlw%)/Z@*(J) = /ZdQZ (0.0'0:¢7gi; — 0:¢"0.47gi3) . (V.52)

The latter expression is the pull-back of the Kéhler form J = —igijdzidzj and its integral
depends only on the cohomology class of J and the homotopy class of ®. In general, one
considers normalizations such that this integral equals 27n, where n is an integer called
the instanton number or the degree.

Note that the reformulation done in (V.51) actually shows that the topological A-
model is indeed a topological field theory.
87 Observables. Given an n-form W, one can map it to a corresponding local operator
Ow by replacing dz* and dz’ in the basis of one-forms by x* and \*, respectively. Fur-
thermore, it is {Q, Ow} = —Oqw, where d is the de-Rham differential. Thus, there is a
consistent map from the BRST-cohomology of local operators to the de Rham cohomol-
ogy, and (when restricting to local operators) we can represent observables by elements
of the de Rham cohomology. There is an additional “physical state condition”, which
reduces the de Rham cohomology to its degree (1,1)-subset. This subset corresponds to
deformations of the Kéhler form and the topological A-model therefore describes defor-

mations of the Kéhler moduli of its target space.

V.3.3 The topological B-model

The topological B-model and its open string equivalent, holomorphic Chern-Simons the-
ory will concern us mostly in the later discussion, so let us be more explicit at this point.
§8 Reformulation and supersymmetry. We follow again [292] and define the follow-
ing new coordinates:

o= LAY, 0= ga(@—), Pl =i, b=t (V.53)

where p? and pt are now one-forms with values in ®*(7T5°X) and ®*(T%! X), respectively.
After this redefinition, the action becomes

S = t/ d?z (guazcblﬁgcb‘]—i-ini(szé—i—Dgpi)gﬁ—l-
b

' (V.54)
+i0,(Dspl = Dapt) + Rigsptoln'0ug"7)
The supersymmetry transformations are reduced by a4+ = 0 and a4+ = a to
St =0, 66 = ian', o' = 66; = 0, 6p' = —ade’. (V.55)

One can define a BRST operator from —ia{Q, -} = 6(-) satisfying @? = 0 modulo equa-
tions of motion. With its help, one can write

S:it/{Q,V}+tW (V.56)
with
V = g7 (pL0:07 + pL0.¢7) and W = /E (~0:Dp" = S Rizp’ A 049" . (V.57)

Since one can show that the B-model is independent of the complex structure on X as
well as the Kéhler metric on X, this model is a topological field theory. Furthermore, the



V.8 Topological string theories 113

theory is mostly independent of t € R™, as the first term in the action (V.56) changes by a
term {@, -} and the second term can be readjusted by a redefinition of # — 6/t. Thus the
only dependence of correlation functions on ¢ stems from #-dependence of the observables.
As this dependence can be clearly factored out, one can perform all calculations in the
large t-limit, and this renders the B-model much simpler than the A-model: In this weak
coupling limit, one can simply expand around the bosonic minima of the action, which
are constant maps ® : ¥ — X, and thus the path integral becomes an ordinary integral
over X.
89 Anomalies. One can show that if X is not a Calabi-Yau manifold, the topological
B-model is anomalous. This condition is stricter than for the A-model, and interestingly
reduces our target spaces to the mathematically most appealing ones.
8§10 Ghost number. The B-model has a Z-grading from a quantum number called the
ghost number. Putting Q = 1 and ¢ = 0, we obtain from the BRST algebra (V.55)
that 7 = 1 and § = —1. One can show that for a Calabi-Yau manifold X of complex
dimension d, a correlation function vanishes for genus g, unless its total ghost number
equals 2d(1 — g).
8§11 Observables. In the A-model, we could take the de Rham cohomology as a model
for our local operators. In the case of the topological B-model, the situation is slightly
more difficult. We have to consider forms in the Dolbeault cohomology which take values
in the exterior algebra of the tangent bundle of X. Consider an element V of AIT'0X ®
Q%P given by

0
A

_ T j1j =11 =7,
Vi =Vy.3 adz /\.../\dzpazj1 .../\azjq .

(V.58)

We can again map V to a local operator Oy by replacing the one-forms dz* by n* and
the vector fields 52~ by ;. One then finds that
J

{Q,0v} = -0z, (V.59)

and thus, we can consider the sheaf cohomology ®, ,H 0P(X,AIT"0X) as the space of
local operators in the topological B-model. The BRST operator ) is naturally mapped
to the Dolbeault operator 0. As in the topological A-model, the Dolbeault cohomology
is reduced to a subset by a physical state condition: the group of Beltrami differentials,
introduced in II.4.1} |§4. Thus, it describes deformations of the complex structure moduli
of X.

8§12 Correlation functions. Given a set of points z, on X, the correlation function

<H Ova (xa)> ) (V.60)

vanishes, unless the wedge product of all V, is an element of H%4(X, AYT10X), where d
is the dimension of the Calabi-Yau manifold: Any such element can be transformed into
a top form by multiplying with the square of the holomorphic volume form Q. This
top-form is then integrated over, since, as stated above, the path integral reduces to an
integral over the Calabi-Yau manifold X in the case of the topological B-model.

813 Comparison of the topological models. The topological A-model suffers some
drawbacks compared to the topological B-model: The moduli space of consistent maps
from the worldsheet to the target space does not reduce as nicely as in the case of the
topological B-model and thus the calculation of the path integral is considerably more
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difficult. This fact is also related to the additional instanton corrections the partition
function of the topological A-model receives.

However, the A-model is not as strictly restricted to having a Calabi-Yau manifold as
its target space as the topological B-model. Furthermore, physical quantities are more
easily interpreted in the framework of the A-twist. Therefore, one often starts from the A-
model and uses mirror symmetry, the T-duality on the level of topological sigma models,
to switch to the B-model and perform the calculations there. A mirror transformation of
the results leads then back to the A-model.

V.3.4 Equivalence to holomorphic Chern-Simons theory

In this section, we will briefly describe the arguments for the equivalence of the open
topological B-model with a Calabi-Yau threefold as target space and holomorphic Chern-
Simons theory on the Calabi-Yau threefold as presented in [293].

814 Argumentation via coupling. We start from a worldsheet ¥ which has a disjoint
union of circles C; as its boundary 0%. For our strings to end within the Calabi-Yau
manifold M, we assume the target space to be filled with a stack of n D5-branes, that is,
we have a rank n vector bundle E over M with a gauge potential A, see section [V.4.1]
82. Let us examine the consistency condition for coupling the open topological B-model
to the gauge potential. This coupling is accomplished by adding the following term to
the Feynman path integral:

/@‘I)Z- exp(—S[®;]) - II; tr P exp 7{) ¢*(A) , (V.61)

where ¢ : ¥ — M and A = ¢*(A) — in'Fy;p’ is the adjusted gauge potential. Preservation
of the BRST symmetry then demands that F%2 := 9A%! + AL A A% = 0, where A%!
is the (0,1)-part of the gauge potential A, see also the discussion in the section V.4.
Thus, we can only couple the topological B-model consistently to a gauge potential if
its (0,2)-part of the curvature vanishes. Via topological arguments, one can furthermore
show that the only degrees of freedom contained in the open topological B-model is the
gauge potential, and we can reduce this model to the action of holomorphic Chern-Simons
theory with the equations of motion F%? = 0.

815 Argumentation via SFT. Considering the open string field theory presented in
section [V.2.4, one can also show that the open topological B-model reduces to the holo-
morphic Chern-Simons action [293].

8§16 Summary. Altogether, we can state that the open topological B-model describes
the dynamics of holomorphic structures 94 = 9+ A%! on its target space. Note that it is
possible to extend the equivalence between the open topological B-model and holomorphic
Chern-Simons theory to the case of target spaces which are Calabi-Yau supermanifolds
[297].

V.3.5 Mirror symmetry

817 Mirror symmetry and T-duality. One of the most important symmetries in
string theory is T-duality, which inverts the radius of a compactified dimension and thus
exchanges winding and momentum modes in the corresponding direction, see section
V.2.3. This symmetry links e.g. type IIA and type IIB superstring theories. On the
level of the embedded topological string theories, this symmetry might translate into the
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conjectured mirror symmetry. The target space Calabi-Yau manifolds would then come
in mirror pairs, and mirror symmetry would exchange Kéahler and complex structure
deformations. The complete statement of the mirror conjecture is that A-type topological
string theory with a Calabi-Yau manifold M as a target space is fully equivalent to B-
type topological string theory with a Calabi-Yau manifold W as a target space, where M
and W are mirror pairs, i.e. they have Hodge numbers with h}\}[l = h%,v’l and h?\}jl = hll/{,l
in the three-dimensional case. Such mirror pairs of Calabi-Yau manifolds are usually
constructed via orbifolding varieties in complex and weighted projective spaces or using
toric geometry, see e.g. [111] for examples.

§18 Mirror CFTs. We mentioned above that the topological A- and B-models are
independent on the complex structure and Kéahler moduli, respectively, and that this
independence is due to the Q-exactness of the moduli in the respective theories. In
this sense, the two models are complementary, and it is indeed possible to consider not
only the mirror symmetry of Calabi-Yau manifolds, but mirror symmetry of the whole
field theories. A number of examples for such mirror pairs of conformal field theory
has indeed been found. Mirror symmetry has furthermore been extended from the set
of CFTs defined via a nonlinear sigma model action having a Calabi-Yau manifold as
a target space to more general models. Among those are nonlinear sigma models with
non-compact or local Calabi-Yau manifolds as target space, Landau-Ginzburg models
and minimal models. This extension has in fact been necessary since a direct calculation
of a mirror theory of a nonlinear sigma model can, e.g., yield a Landau-Ginzburg theory.

8§19 Consequences of mirror symmetry. Mirror symmetry might be of vast impor-
tance in string theory. First of all, one expects it to give rise to a number of new string
dualities, similarly to the new dualities found with the help of T-duality. Second, it is
already a major calculatory tool within topological string theory. As we saw above, the
B-model often allows for a mathematically more tractable description, while the A-model
is often more closely related to physically interesting quantities. One could thus imagine
to work essentially in the A-model and switch via mirror symmetry to the B-model, when-
ever a calculation is to be performed. Eventually, the results can then be retranslated to
the A-model.

Mirror symmetry even found applications in mathematics, when it was used for finding
all the numbers ng of rational degree d curves lying in the quintic embedded in CP* [55].
This result obtained by physicists was preceded by more than a century of efforts by
mathematicians. Mirror symmetry related here the complicated problem of enumerative
geometry to a much simpler problem in complex geometry.

V.4 D-Branes

Certainly one of the turning points in the development of string theory was the discovery
that besides the fundamental string, there are further objects, the so-called D-branes,
which unavoidably arise in string theories, and that these D-branes are sources in the
Ramond-Ramond sector with a nearly arbitrary worldvolume dimension [222]. Roughly
speaking, a D-brane is a hypersurface on which open strings with Dirichlet boundary con-
dition can end, and which absorb the momentum flowing off the endpoints of the string.
Note that in our conventions, a Dp-brane will denote a D-brane with a worldvolume of
dimensions (1,p) and (a,b) with a +b = p in N/ = 1 and N' = 2 critical superstring
theories, respectively.



116 String Theory

V.4.1 Branes in type II superstring theory

§1 The NS-five brane. As we saw before, the NS-NS-sector contains an antisymmetric
tensor of rank two which has a Hodge dual B(g) by *dB(2) = dBs). This potential couples
naturally to the world volume of a five-dimensional object, the NS-five brane:

S = Onss Beg). (V.62)
Mg
The NS5-brane exists in both type IIA and type IIB superstring theories.
§2 D-branes in the R-R sector. Generally speaking, there are two different points
of views for these D-branes. First, one can understand a Dp-brane as a p-dimensional
hyperplane on which open strings end. Second, a Dp-brane is a brane-like soliton of type
ITA or type IIB supergravity in ten dimensions.

Recall from section [V.2 that there are higher-form potentials in the R-R sector of
type II string theory. It is only natural to introduce sources to which these potentials
can couple electrically. This gives rise to hypersurfaces, the Dp-branes, with a (p + 1)-
dimensional worldvolume Mp, which couple to the potentials C(;) via [222]

i [ Co (V.63)
Mpp

where pi,, is the corresponding charge. Since the higher-form potentials are of even and
odd rank in type IIA and type IIB string theory, respectively, this construction yields
D0, 2,4 and 6-branes in type ITA and D(—1), 1,3, 5 and 7-branes in type IIB string theory.
A stack of n such Dp-branes naturally comes with a rank n vector bundle E over their
p + 1-dimensional worldvolume together with a connection one-form A. This field arises
from the Chan-Paton factors attached as usually to the ends of an open string.
In the following, we will mostly discuss D-branes within type IIB superstring theory.

83 D-brane dynamics. The action for a D9-brane is the Born-Infeld action

1

(4m2a/

where T = ﬁ is the string tension and F},, the field strength of the gauge potential

A living on the D-brane’s worldvolume. The actions for lower-dimensional D-branes are
obtained by dimensional reduction, which converts the gauge potential components A*
in the reduced dimensions to Higgs-fields X?. Expanding the determinant and taking
the field theory limit o/ — 0 in which all massive string modes decouple, yields the
ten-dimensional Yang-Mills equations (or a dimensional reduction thereof).

The theory describing the dynamics in the worldvolume is therefore N' = 1 super
Yang-Mills theory reduced from ten dimensions to the worldvolume of the D-brane. The
resulting Higgs fields describe the motion of the D-brane in the directions of the target
space normal to the worldvolume of the D-brane.

Note that on curved spaces, one often has to consider twisted supersymmetry as
linear realizations may not be compatible with the geometry [33]. One therefore uses (a

supersymmetric extension of) the Hermitian Yang-Mills equations®

FO2 = F20 = 0 and k*'AF = ~k¢, (V.65)

“Depending on their explicit shape, these equations are also called generalized Hitchin equations,
Donaldson-Uhlenbeck-Yau equations and Hermite-Einstein equations.
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which are also reduced appropriately from ten to p + 1 dimensions, see e.g. [138]. Here,
k is the Kahler form of the target space and -y is the slope of F, i.e. a constant encoding
information about the first Chern class of the vector bundle E. These equations imply
the (dimensionally reduced, supersymmetric) Yang-Mills equations.

V.4.2 Branes within branes

84 Instanton configurations. From comparing the amplitude of a closed string being
exchanged between two parallel D-branes to the equivalent one-loop open string vacuum
amplitude, one derives for the coupling p, in (V.63) that pu, = (27)7Pd/ () Pur-
thermore, the anomalous coupling of gauge brane fields with bulk fields have to satisfy
certain conditions which restrict them to be given by

up/ Zi*C(i) A tre®™ B Ay [ A(4n2a/R) (V.66)
Moy, 5

where ¢ is the embedding of Mp,, into spacetime and A is the A-roof genus® (Dirac genus),
which is equivalent to the Todd class if M is a Calabi-Yau manifold. By expanding the
exponent and the Dirac genus in (V.66), one picks up a term

(2ma’)?
Hp )

/ ChsAtrFAF, (V.67)

and thus one learns that instanton configurations on E give rise to D(p—4)-branes, where
each instanton carries exactly one unit of D(p —4)-brane charge. Similarly, the first term
from the expansion of the Dirac genus gives rise to D(p—4)-branes when Mp,, is wrapped
on a surface with non-vanishing first Pontryagin class, e.g. on a K3 surface.

A bound state of a stack of Dp-branes with a D(p-4)-brane can therefore be described

in two possible ways. On the one hand, we can look at this state from the perspective
of the higher-dimensional Dp-brane. Here, we find that the D(p-4) brane is described by
a gauge field strength F' on the bundle £ over the worldvolume of the Dp-brane with a
nontrivial second Chern character chg(F). The instanton number (the number of D(p-4)
branes) is given by the corresponding second Chern class. In particular, the bound state
of a stack of BPS D3-branes with a D(-1)-brane is given by a self-dual field strength
F = xF on E with —# [ FANF =1. On the other hand, one can adapt the point of
view of the D(p-4)-brane inside the Dp-brane and consider the dimensional reduction of
the N' = 1 super Yang-Mills equations from ten dimensions to the worldvolume of the
D(p-4)-branes. To complete the picture, one has to add strings with one end on the Dp-
brane and the other one on the D(p-4)-branes. Furthermore, one has to take into account
that the presence of the Dp-brane will halve the number of supersymmetries once more,
usually to a chiral subsector. In the case of the above example of D3- and D(-1)-branes,
this will give rise to the ADHM equations discussed in section [VIL.8.
§5 Monopole configurations. Similarly, one obtains monopole configurations [51], but
here the D-brane configuration, consisting of a bound state of Dp-D(p-2)-branes, is slightly
more involved. One can again discuss this configuration from both the perspectives of
the D3- and the D1-branes. From the perspective of the D1-branes, the bound state is
described by the Nahm equations presented in section VIL.8.4.

°If the normal bundle N of Mp, in spacetime has non-vanishing curvature Ry, we additionally have

to divide by y/A(4w2a/ Ry).
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V.4.3 Physical B-branes

86 Boundary conditions. As stated above, a D-brane in type II string theory is a
Ramond-Ramond charged BPS state. When compactifying this theory on Calabi-Yau
manifolds, one has to consider boundary conditions corresponding to BPS states in the
appropriate N' = 2 superconformal field theory (SCFT), and there are precisely two
possibilities: the so-called A-type boundary condition and the B-type boundary condition
[211]. Therefore, D-branes on Calabi-Yau manifolds come in two kinds: A-branes and
B-branes. We will only be concerned with the latter ones.

Recall that the NV = (2,2) superconformal algebra is generated by a holomorphic
set of currents T(z), G¥(z),J(z) and an antiholomorphic one T'(z), G (%), J¥(2). The
B-type boundary condition is then given by

GH(z) = GF(z) and J(2) = J(2), (V.68)

see e.g. [76].

§7 Dynamics of a stack of D-branes. Consider now a stack of n Dp-branes® which
are B-branes in a d-dimensional Calabi-Yau manifold M with Kéhler form k. As the
open strings living on a brane come with Chan-Paton degrees of freedom, our Dp-branes
come with a vector bundle E of rank n and a gauge theory determining the connection
A on E. Let us denote the field strength corresponding to A by F'. The dynamics of A
is then governed by the generalized Hitchin equations [123] (cf. equations (V.65))

F%2 =20 — o, (V.69a)
EIAF = yk? (V.69b)
0aX; = 0 and [X;,X;] =0, (V.69c)

where « is again a constant determined by the magnetic flux of the gauge bundle. The
fields X; represent the normal motions of the B-brane in M.

88 The six-dimensional case. Consider now the case p+1 = d = 6. Then we are
left with equations (V.69a) and (V.69b), which can also be obtained from the instanton
equations of a twisted maximally supersymmetric Yang-Mills theory, reduced from ten to
six dimensions [33] 138, 204]. It is not clear whether there is any difference to the holo-
morphic Chern-Simons theory obtained by Witten in [293] as argued in [204]: equations
(V.69a) are obviously the correct equations of motion and (V.69b) combines with U(NNV)
gauge symmetry to a GL(N, C) gauge symmetry.

Lower-dimensional branes, as e.g. D2- and DO-branes correspond to gauge configu-
rations with nontrivial second and third Chern classes, respectively, and thus they are
instantons of this maximally supersymmetric Yang-Mills theory [204].

89 Remark concerning topological A-branes. For quite some time, only special La-
grangian submanifolds were thought to give rise to a topological A-brane. For a Calabi-
Yau threefold compactification, this would imply that those branes always have a world-
volume of real dimension three. However, Kapustin and Orlov have shown [149] that it
is necessary to extend this set to coisotropic Lagrangian submanifolds, which allow for

further odd-dimensional topological A-branes.

SHere, a Dp-brane has p + 1 real dimensions in the Calabi-Yau manifold.
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V.4.4 Topological B-branes

810 Holomorphic submanifolds. Recall that the complex structure I of the Calabi-
Yau manifold does not interchange normal and tangent directions of a boundary con-
sistently defined in the topological B-model. Therefore, a D-brane should wrap a holo-
morphically embedded submanifold C of the ambient Calabi-Yau manifold M and this
restriction will preserve the topological symmetry of our model [22, 211]. Thus, there are
topological B-branes with worldvolumes of dimension 0, 2,4 and 6.

8§11 Chan-Paton degrees. Furthermore, the open topological strings ending on a stack
of B-branes will also carry Chan-Paton degrees of freedom, which in turn will lead to a
complex vector bundle E over C. However, one is forced to impose a boundary condition
[293, 129]: the vanishing of the variation of the action from the boundary term. This
directly implies that the curvature F' of E is a 2-form of type (1,1) and in particular F°2
vanishes. Therefore, the underlying gauge potential A%! defines a holomorphic structure
and E becomes a holomorphic vector bundle. The gauge theory describing the D-brane
dynamics is holomorphic Chern-Simons theory, as shown in [293]. Note that the equations
of motion

F%% = 0. (V.70)

differ from the one of their BPS-cousins only by the second equation in (V.65). This
equation is a (BPS) stability condition on the vector bundle E.

8§12 Lower-dimensional B-branes. B-branes, which do not fill the complete Calabi-
Yau manifold M are described by dimensional reductions of hCS theory [275] 203] and
we have again additional (Higgs) fields X;, which are holomorphic sections of the normal
bundle of the worldvolume C in M with values in GL(n, C) satisfying [X;, X;] = 0. They
describe fluctuations of the B-branes in the normal directions. Explicitly, the equations
governing the fields present due to the B-branes read as

FO%? = F*0 =0, 0aX; =0, [X;,X;] =0. (V.71)

These equations are a subset of the generalized Hitchin equations (V.69a)-(V.69c). The
missing equation (V.69b) completes (V.69a) to the Hermitian Yang-Mills equations. Ac-
cording to a theorem by Donaldson, Uhlenbeck and Yau (see e.g. [11] and references
therein), the existence of a Hermitian Yang-Mills connection is equivalent to E being
pu-stable, which in turn is equivalent to the BPS condition at large radius.

For the latter remark, recall that the actually appropriate description of B-branes is

the derived category of coherent sheaves, see e.g. [11] and references therein. A topological
B-brane is simultaneously a physical B-brane if it satisfies some stability condition which
is equivalent to the B-type BPS condition. Thus, we saw above that the physical B-branes
are a subsector of the topological B-branes.
8§13 Topological and physical D-branes. As one can nicely embed the topological
open string into the physical open string (and therefore physical D-branes into topological
ones), we expect that lower-dimensional topological branes, which are bound states in
a topological D5-brane should appear as gauge configurations in six-dimensional twisted
super Yang-Mills theory with nontrivial Chern classes. In particular, a D2-brane should
correspond to an instanton and thus to a nontrivial second Chern class [203]. The term
in the partition function capturing this kind of instantons is exp(— [}, k A cha), where k
is the Kéhler form of the ambient Calabi-Yau manifold” M.

"Note at this point that while the A-model and the B-model depend on the Kéhler structure moduli and
the complex structure moduli, respectively, the role is interchanged for D-branes: Lagrangian submanifolds
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Note that we will completely ignore closed strings interacting with the B-branes. Their
vertex operators would give rise to deformations of the complex structure described by
a Beltrami differential, cf. section T1.4.1), |§4. The theory governing these deformations is
the Kodaira-Spencer theory of gravity [32].

V.4.5 Further aspects of D-branes

8§14 Non-BPS branes. There are essentially two reasons for extending the analysis of D-
branes to non-BPS [258] ones: First, stable non-BPS branes are part of the spectrum and
lead to non-trivial but calculable results in different limits of the string coupling. Second,
they give rise to worldvolume gauge theories with broken supersymmetry and might
therefore play an important role in string compactifications yielding phenomenologically
relevant models.

As an example [258], let us consider a D2p-D2p-pair of BPS branes in type ITA
superstring theory. This configuration is invariant under orbifolding with respect to
(—1)¥r | where Fy, is the spacetime fermion number of the left-movers. The bulk, however,
will be described by type IIB superstring theory after this orbifolding. This operation
projects out modes in the open string spectrum which would correspond to separating
the two D-branes. Thus, we arrive at a single object, a non-BPS D2p-brane in type
IIB superstring theory. However, the tachyonic mode, which is present from the very
beginning for a D-brane-anti-D-brane pair, is not projected out.

Although the non-BPS D-brane considered above was unstable due to the existence
of a tachyonic mode, there are certain orbifold /orientifold compactifications in which the
tachyonic modes are projected out and therefore the non-BPS D-brane becomes stable.

§15 D-branes in A/ = 2 string theory. Considering D-branes in critical N' = 2 string
theory is not as natural as in ten-dimensional superstring theories since the NS sector
is connected to the R sector via the N/ = 2 spectral flow, and it is therefore sufficient
to consider the purely NS part of the N’ = 2 string. Nevertheless, one can confine the
endpoints of the open strings in this theory to certain subspaces and impose Dirichlet
boundary conditions to obtain objects which we will call D-branes in N/ = 2 string theory.
Although the meaning of these objects has not yet been completely established, there seem
to be a number of safe statements we can recollect. First of all, the effective field theory
of these D-branes is four-dimensional (supersymmetric) SDYM theory reduced to the
appropriate worldvolume [192), 105]. The four-dimensional SDYM equations are nothing
but the Hermitian Yang-Mills equations:

F?0 — F%2 — 0 and kKAF = 0, (V.72)

where k is again the Ké&hler form of the background. The Higgs-fields arising in the
reduction process describe again fluctuations of the D-branes in their normal directions.

As is familiar from the topological models yielding hCS theory, we can introduce A-
and B-type boundary conditions for the D-branes in AN/ = 2 critical string theory. For
the target space R?>2, the A-type boundary conditions are compatible with D-branes of
worldvolume dimension (0,0), (0,2), (2,0) and (2,2) only [146, [105].

couple naturally to the holomorphic 3-form of a Calabi-Yau, while holomorphic submanifolds naturally
couple to the Kahler form [204], as seen in this example.
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§16 Super D-branes. There are three approaches of embedding worldvolumes into tar-
get spaces when Graflmann directions are involved. First, one has the Ramond-Neveu-
Schwarz (RNS) formulation [207, 236], which maps a super worldvolume to a bosonic
target space. This approach only works for a spinning particle and a spinning string;
no spinning branes have been constructed so far. However, this formulation allows for
a covariant quantization. Second, there is the Green-Schwarz (GS) formulation [110], in
which a bosonic worldvolume is mapped to a target space which is a supermanifold. In
this approach, the well-known x-symmetry appears as a local worldvolume fermionic sym-
metry. Third, there is the doubly-supersymmetric formulation (see [265] and references
therein), which unifies in some sense both the RNS and GS approaches. In this formula-
tion, an additional superembedding condition is imposed, which reduces the worldvolume
supersymmetry to the x-symmetry of the GS approach.

In the following, we will often work implicitly with the doubly supersymmetric ap-

proach.

817 Geometric engineering. It is easily possible to engineer certain D-brane config-
urations, which, when put in certain Calabi-Yau compactifications, give rise to a vast
variety of field theories in four dimensions [152, 197]. Most prominently, one realizes
N = 2 supersymmetric gauge theories from compactifications of type II string theories.
In particular, objects arising in field theory, as e.g. the Seiberg-Witten torus, are easily
interpreted within such a compactification scheme.

Let us consider a popular example, which was developed in [46] and studied e.g. in
[147] and [78]. We start from the algebraic variety

ry = 22—t (V.73)

in C%. For n = 1, this is just the resolved conifold O(—1) ® O(—1) — CP* with a rigid
CP! at its tip, see section I11.3.3. For n > 1, the geometry also contains a CP! with
normal bundle O(0) & O(—2) but the deformation of the sphere inside this bundle is
obstructed at n-th order, which can be described by a superpotential W (¢), which is a
polynomial of n + 1th order, where t> ~ ¢. We have therefore the coordinates

Ay = —, 2 = 2L At = A2+ W) (V.74)

on the two patches Uy covering the deformation of O(0) & O(—2) together with the
identification

i =2t =+t 2 =1z, 22 =1y and z = (2Ap2} —W/(z1)). (V.75)

This geometry has rigid CP's at the critical points of the superpotential W(zi)

Without the deformation by W (2L ), wrapping n D5-branes around the CP! of O(0)&®
O(-2) yields an N' = 2 U(n) gauge theory on the remaining four dimensions of the D5-
branes, which are taken to extend in ordinary spacetime. The deformation by W (z1)
breaks N' = 2 supersymmetry down to N/ = 1 with vacua at the critical points of the
superpotential. One can now distribute the D5-branes among the ¢ critical points of
W(zi), each corresponding to a rigid CP!, and thus break the gauge group according to
U(n) — U(ny) x ... x U(n;), with ny + ... +n; = n.
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V.4.6 Twistor string theory

A good source for further information and deeper review material about the developments
in twistor string theory is [181] and [234]. The paper in which twistor string theory was
considered for the first time is [297].

8§18 Motivation. Even after half a century of intense research, we still do not completely
understand quantum chromodynamics. The most prominent point is probably the phe-
nomenon called confinement, i.e. the fact that quarks are permanently confined inside
a bound state as the coupling constant becomes large at low energies. To answer this
and more questions, string-gauge theory dualities are important. The most prominent
example is certainly the AdS/CFT correspondence [187].

Witten’s motivation for the construction of twistor string theory was originally to
find an alternative description of the string theory side in the AdS/CFT correspondence,
which is suited for describing the small gauge coupling limit. The existence of a radically
different such description is in fact plausible, as many theories change drastically their
shape when considered in a certain regime or after dualities have been applied. One aspect
should, however, remain conserved: the symmetry group PSU(2,2|4) or PSU(4|4) of the
target space AdSs x S°. The most natural space with this symmetry group is probably
the supertwistor space® CP3*. Since this space is in fact a Calabi-Yau supermanifold,
one can study the topological B-model having this space as a target space.

§19 Twistor string theory. Consider the supertwistor space CP3* with a stack of
n almost space-filling D5-branes. Here, “almost space-filling” means that the fermionic
coordinates extend in the holomorphic directions only, while all the antiholomorphic
directions are completely ignored. Twistor string theory is now simply the topological
B-model with CP3* as its target space and the above given D-brane configuration. This
model can be shown to be equivalent to holomorphic Chern-Simons theory on Cpil4
describing holomorphic structures on a rank n complex vector bundle. The power of
twistor string theory in describing gauge theories arises from the twistor correspondence
and the Penrose-Ward transform, see chapter VIIL

8§20 Further twistor string theories. Further topological string theories with a su-
pertwistor space as target space have been considered. First, following the proposal in
[297], the superambitwistor space has been considered in [203] and [2] as a target space
for the topological B-model. In particular, a mirror conjecture was established between
the superambitwistor space and the supertwistor space previously discussed by Witten.
In [63], the discussion was extended to the mini-supertwistor space, which will probably
be the mirror of the mini-superambitwistor space introduced in [243]. All of these spaces
and their role in twistor geometry will be extensively discussed in chapter [VIL.

8We will consider twistor spaces in more detail in chapter VII.



CHAPTER VI

NON-(ANTI)COMMUTATIVE FIELD THEORIES

In this chapter, we will be concerned with noncommutative deformations of spacetime
and non-anticommutative deformations of superspace. Both noncommutativity! and non-
anticommutativity naturally arise in type II string theories put in a constant NS-NS
B-field background [67] and a constant R-R graviphoton background [69], respectively.
Therefore these deformations seem to be unavoidable when studying string theory in
nontrivial backgrounds. Moreover, they can provide us with interesting toy models which
are well-suited for studying features of string theories (as e.g. non-locality) which do not
appear within ordinary field theories.

VI.1 Comments on noncommutative field theories

Over the last decade, there has been an immense effort by string theorists to improve our
understanding of string dynamics in nontrivial backgrounds. Most prominently, Seiberg
and Witten [255] discovered that superstring theory in a constant Kalb-Ramond 2-form
background can be formulated in terms of field theories on noncommutative spacetimes
upon taking the so-called Seiberg-Witten zero slope limit. Subsequently, these non-
commutative variants of ordinary field theories were intensely studied, revealing many
interesting new aspects, such as UV/IR mixing [198], the vastness of nontrivial classi-
cal solutions to the field equations? and the nonsingular nature of the noncommutative
instanton moduli spaces, see e.g. [206]. It turned out that as low energy effective field
theories, noncommutative field theories exhibit many manifestations of stringy features
descending from the underlying string theory. Therefore, these theories have proven to
be an ideal toy model for studying string theoretic questions which otherwise remain
intractable, as e.g. tachyon condensation [257, 68, 1, 165, 148] and further dynamical
aspects of strings [116] (for recent work, see e.g. [289, 230]). Noncommutativity has also
been used as a means to turn a field theory into a matrix model [176]. The results of this
publication are presented in section VIIL.3.

VI.1.1 Noncommutative deformations

81 Deformation of the coordinate algebra. In ordinary quantum mechanics, the
coordinate algebra on the phase space R? x R3 is deformed to the Heisenberg algebra

[#,p;] = ihd}, [#,4] = [pi,p;] = 0. (VL1)

!Note that it has become common usage to call a space noncommutative, while gauge groups with the
analogous property are called non-Abelian.
2See also the discussion in sections VIL.8 and [VIII.3.2.
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As these relations have not been verified to very low distances (i.e. very high energies), a
natural (relativistic) generalization would look like

(29, 3Y] = 10" (V1.2)

where 0" is a constant of dimension [L]2. Clearly, by such a deformation, the Poincaré
group is broken down to the stabilizer subgroup of the deformation tensor 8. The defor-
mation of the space R* with coordinates satisfying the algebra (VI.2) will be denoted by
Rg and called noncommutative spacetime.

The first discussion of noncommutative spaces in a solid mathematical framework has
been presented by Alain Connes [66]. Since then, noncommutative geometry has been
used in various areas of theoretical physics as e.g. in the description of the quantum Hall
effect in condensed matter physics and in particular in string theory.

For a review containing a rather formal introduction to noncommutative geometry,
see [279]. Further useful review papers are [87] and [268].

82 Noncommutativity from string theory. In 1997, noncommutative geometry was
shown to arise in certain limits of M-theory and string theory on tori [67, 86]; several
further appearances have been discovered thereafter. Let us here briefly recall the analysis
of [255].

Consider open strings in flat space and in the background of a constant Neveu-Schwarz
B-field on a D-brane with the action

S= /EQMNaaXMaaXN —1 /82 BunXMarx™ (VL3)

where 3 denotes the string worldsheet and Or is a derivative tangential to the boundary
0. We assume the latter subspace to be mapped to the worldvolume of the D-brane.
For our purposes, it is enough to restrict ourselves to the case where ¥ is the disc and
map it conformally to the upper half plane H = {z € C|Im(z) > 0}. The resulting
equations of motion read

gun (0 — 05) XN + 2w/ Buyw (9. + 0:)XN| _. = 0, (V1.4)

from which we can calculate a propagator (XM (2) XV (2/)). At the boundary 0¥ =R C C
of X, where the open string vertex operators live we are interested in, this propagator

reads
(XMOXN()) = —/GMV log(r — 1)% + %GMNsign(T -7
UN . 1 [MN] (VL5)
ith = 2 _
with 6 T <g+ 2770/B> ,

where 7 € R parameterizes the boundary. Recall now that one can calculate commutators
of operators from looking at the short distance limit of operator products. From (VL.5),
we get

XM(r), xN(r)] = T (XM XN () - XM xN(h)) = MV . (VL6)

Thus, the target space in our string configuration indeed proves to carry a noncommuta-
tive coordinate algebra. Note, however, that to be accurate, one has to carefully consider
a zero slope limit o/ — 0 to decouple more complicated string effects.
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§3 Two-oscillator Fock space. In the following, let us restrict ourselves to four dimen-
sions and consider a self-dual (k = 1) or an anti-self-dual (x = —1) deformation tensor
¥, which has components

012 = —0?' = k0¥ = -k =0 > 0. (VL7)

After introducing the annihilation operators?

a1 = 2t —iex? and ay = —rex® +iex? (VL)
we find the appropriate representation space of the algebra (VI.2) to be the two-oscillator
Fock space H = span{|ni,na)|n1,na € N} with

In1,ms) = W (al)"™ (a5)™ 10.0) . (VL9)

One can therefore picture functions on R} as (the tensor product of two) infinite-dimen-
sional matrices representing operators on H.

84 Derivatives and integrals. The derivatives on noncommutative spacetimes are
given by inner derivations of the Heisenberg algebra (VI.2). We can define

Oy — 0, = —ib,[3", ], (VL.10)

where 0, is the inverse of 6*¥. This definition yields 5“9%” = 0d,,, analogously to the
undeformed case. Furthermore, due to the commutator in the action, the Leibniz rule
holds as usual.

Integration is correspondingly defined by taking the trace over the Fock space H
representing the noncommutative space

/ dtz — (2m0)*try . (VL.11)

The analogue to the fact that the integral over a total derivative vanishes is here the
vanishing of the trace of a commutator. Equally well as the former does not hold for
arbitrary functions, the latter does not hold for arbitrary operators [87].

85 Moyal-Weyl correspondence. The Moyal-Weyl correspondence maps the operator
formalism of noncommutative geometry to the star-product formalism, i.e.

(f(@),) = (f(z),%) - (VL12)
This map can be performed by a double Fourier transform using the formulae
f(@) = /da ¢p(a) and H(a) = /dx e f(z) . (VI.13)
Consistency then requires the star product to be defined according to
(f9)(x) = f()exp (0,09,) g(x) | (VL14)
and the noncommutative deformation of spacetime is then written as [z * V] = i9#".

Note furthermore that the star product is associative: (fxg)*xh = fx(gxh) and behaves
as one would expect under complex conjugation: (f xg)* = g* x f*. Under the integral,
we have the identities

/d4 (f *xg)(x /d4 (g% f)(z /d4 (f - 9)(x) . (VIL.15)

3The constant ¢ = 41 here distinguishes between a metric of Kleinian signature (2,2) for ¢ = +1 and

a metric of Euclidean signature (4,0) for ¢ = —1 on R*.
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VI.1.2 Features of noncommutative field theories

86 Noncommutative gauge theories. As found above, a derivative is mapped to a
commutator on noncommutative spaces. We can extend the arising commutator by a
gauge potential Aua which is a Lie algebra valued function on the noncommutative space.
We thus arrive at

V, — [X,,] with X, = —i0,3" @lg+ A, , (VI.16)

where 1g is the unit of the gauge group G corresponding to the Lie algebra under con-
sideration. The field strength is then given by

EFu = X, X)) +i0, ©1g , (VL17)

where the last term compensates the noncommutativity of the bare derivatives. The
Yang-Mills action becomes

N N 2
S=try® trg ([XH,X,,] i ® 11g> : (VL18)

which is the action of a matrix model with infinite-dimensional matrices.
87 Gauge transformations. The action of gauge transformations g is found by trivially
translating their action from the commutative case, i.e.

Ay = 5 AL+ 50 (VL.19)

Let us now switch to the star product formalism and consider the noncommutative ana-
logue to infinitesimal Abelian gauge transformations dA, = 9, A, which reads

0A, = AN+ Ax Ay —Aux . (VI.20)

We thus see that even in the case of an Abelian gauge group, the group of gauge trans-
formations is a non-Abelian one.

It is important to stress that in noncommutative Yang-Mills theory, not all gauge
groups are admissible. This is due to the fact that the corresponding Lie algebras may no
longer close under star multiplication. As an example, consider the gauge group SU(2):

The commutator [zHio3 * 2¥io3] =

—i0" 15 is not an element of su(2).

88 Seiberg-Witten map. The last observations seem intuitively to forbid the following
statement: There is a map, called Seiberg-Witten map [255], which links gauge equi-
valent configurations in a commutative gauge theory to gauge equivalent configurations
in its noncommutative deformation, thus rendering both theories equivalent via field re-
definitions. The idea is to regularize the low-energy effective theory of open strings in
a B-field background in two different ways, once using Pauli-Villars and once with the
point-splitting procedure. In the former case, we obtain the ordinary Born-Infeld ac-
tion yielding commutative Yang-Mills theory as the effective theory. In the latter case,
however, we obtain a noncommutative variant of the Born-Infeld action, which gives rise
to a noncommutative gauge theory. Since the effective action should be independent
of the regularization process, both theories should be equivalent and connected via a
Seiberg-Witten map.

Consistency conditions imposed by the existence of a Seiberg-Witten map like

A(A+6,A) = A(A) +3,A(A) , (VL.21)
where X and A describe infinitesimal commutative and noncommutative gauge transfor-
mations, respectively, prove to be a helpful calculatory tool. We will make use of a similar
condition in a non-anticommutative deformed situation in section [VI.2.2 [§7.
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§9 UV/IR mixing. One of the hopes for noncommutative field theories was that the
divergencies which are ubiquitous in ordinary quantum field theory would be tamed by the
noncommutativity of spacetime, since the latter implies non-locality, which does the job
in string theory. The situation, however, is even worse: besides some infinities inherited
from the commutative theory, certain ultraviolet singularities get mapped to peculiar
infrared singularities, even in massive scalar theories. This phenomenon is known under
the name or UV/IR mizing and was first studied in [198] and [278].

8§10 Noncommutative instantons. Instantons in noncommutative gauge theories have
some peculiar properties. First of all, it is possible to have non-trivial instantons even for
gauge group U(1) as discussed in [205]. This is due to the above presented fact that even
for an Abelian gauge group, the group of gauge transformations is non-Abelian. In [205],
it has moreover been shown that a suitable deformation can resolve the singularities in
the instanton moduli space.

V1.2 Non-anticommutative field theories

Expanding essentially on the analysis of [213], Seiberg [254] showed® that there is a
deformation of Euclidean N/ = 1 superspace in four dimensions which leads to a consistent
supersymmetric field theory with half of the supersymmetries broken. The idea was to
deform the algebra of the anticommuting coordinates 6 to the Clifford algebra

{64,6%) = c*P (VL.22)

which arises from considering string theory in a background with a constant graviphoton
field strength. This discovery triggered many publications, in particular, non-anticom-
mutativity for extended supersymmetry was considered, as well [141} 197, 245] 70].

An alternative approach, which was followed in [96], manifestly preserves supersym-
metry but breaks chirality. This has many disadvantages, as without chiral superfields, it
is e.g. impossible to define super Yang-Mills theory in the standard superspace formalism.

In section VI.3, we will present an approach in which supersymmetry and chirality
are manifestly and simultaneously preserved, albeit in a twisted form.

VI1.2.1 Non-anticommutative deformations of superspaces

81 Associativity of the star product. In the Minkowski case, one can show that the
deformations preserving the associativity of the star product all satisfy

(64,68} = {04,65) = {6465} = 0. (V1.23)

These deformations are clearly too trivial, but one can circumvent this problem by turning
to Euclidean spacetime. Here, the most general deformation compatible with associativity
of the star product reads

(64,68Y £ 0 and {64,608} = {64,605} = 0, (VL.24)

which is possible, as § and @ are no longer related by complex conjugation. For this reason,
we will always consider superspaces which have an Euclidean metric on their bodies in the
following. To justify our use of the (Minkowski) superfield formalism, we can assume to
temporarily work with complexified spacetime and field content and impose appropriate
reality conditions after all calculations have been performed.

“For earlier work in this area, see [249, 96, 156} 69].
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82 The deformed superspace R;‘w. The canonical deformation of R4V to IR;%LMN

amounts to putting
{6°,0%} = hCPI (VI.25)
where the hats indicate again the deformed Graimann coordinates in the operator rep-
resentation.
As in the case of the noncommutative deformation, one can equivalently deform the
algebra of superfunctions S on R4*V to an algebra S,, in which the product is given by
the Moyal-type star product

<— . —
fxg = fexp (-ng‘Cmﬂ]ng) g, (VI1.26)

— —
where @Q.; and ()g; are supercharges acting from the right and the left, respectively.

Recall that in our convention for superderivatives, we have
0°Qp = 05105 . (V1.27)

Contrary to the case of noncommutative deformations, an 4 was inserted into the def-
inition of the deformation (VI.25) to indicate the different orders. Since the star product
(VI.26)) is a finite sum due to the nilpotency of the Grafimann variables, power expansions
in the deformation parameter are even more important than in the noncommutative case.

All commutators involving this star multiplication will be denoted by a x, e.g. the
graded commutator will read as

{fsg} = frg—(-1)9gxf. (VI.28)
The new coordinate algebra obtained from this deformation reads as

(2% * 28] = —hC“ivjﬁéf‘é@ , [2°% 0% = —hCeHI6
070 ! (VI1.29)
(0% 0%} = hOiB

and all other supercommutators vanish, but after changing to the chiral coordinates
(y** = 2% 4+ 0267, 0,67) (VL.30)
the coordinate algebra simplifies to

Py = 0, [PYr0T) = 0, 075 0%] = RO (VI31)

This deformation has been shown to arise in string theory from open superstrings of type
IIB in the background of a constant graviphoton field strength [213, 254] 69].

§3 Deformed supersymmetry algebra. The corresponding deformed algebra of su-
perderivatives and supercharges reads as”

{Dai 3 Dgj} = 0, {DZCTDZ:%}:O’
Dy * D] — _92§'9 . = —21510"[‘ .0y,
Jé] J B tap "
(QuitQa} = 0, V132)

{QitQy) = 4hC™ 00055 = —4hC™ oy ;050,0,

{Qai 1 QL) = 20]0,5 = 2i6]0" 0, .

SFor further reference, we present the algebra both in spinor and vector notation.
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By inspection of this deformed algebra, it becomes clear that the number of supersym-
metries is reduced to N /2, since those generated by Qfx are broken. On the other hand,
it still allows for the definition of chiral and anti-chiral superfields as the algebra of the
superderivatives D,; and Dg is undeformed. Because of this, graded Bianchi identities
are also retained, e.g.

(Va5 V0 5 Vbl + (1)L, [Vt Vo3 + (— )TV, 5 [V, 5 Vi) = 0.

84 Consequence for field theories. Field theories on non-anticommutative super-
spaces are usually defined by replacing all ordinary products in the action written in
the N/ = 1 superfield formalism by star products. First of all, such theories will ev-
idently have non-Hermitian Lagrangians since — roughly speaking — chiral parts of the
action will get deformed, while anti-chiral parts remain unchanged. This, however, allows
for renormalizable theories which have terms in their Lagrangian with mass dimension
larger than 4 [42]. Of particular interest to our work is the question of renormalizability
of non-anticommutative field theories and here specifically of the N' = % Wess-Zumino
model, as discussed in [273] 43| 44, 114, 42, 241, 184, 26]. For more recent work on the
renormalizability of non-anticommutative super Yang-Mills theory, see e.g. [115].

VI.2.2 Non-anticommutative N'=4 SYM theory

§5 Idea. In the cases NV =1 and N = 2, one has appropriate superspace formalisms at
hand, which allow for a direct deformation of supersymmetric field theories by deforming
their actions in these formalisms. In the cases® A' = 3 and N = 4, however, there is no
such formalism. Instead, one can use the constraint equations (IV.50) on R*'6, which are
equivalent to the N' =4 SYM equations as discussed in section IV.2.2. By considering

116

these constraint equations on the deformed space IR% , one finds the equations of motion

of the corresponding deformed theory.

§6 Deformed constraint equations. We start from the constraint equations of N' = 4
SYM theory introduced in TV.2.2 on R*'6 and follow the discussion of the undeformed

|1

case. On the deformed space IR?,L 6, they read as

{Vai TV} = —2eapdij, {VEIVL} = —2e4567

- N (VI1.33)
{Vait Vi } = =200V,

where we will use a tilde” to label fields living on the deformed superspace IRZ;LMG. The

covariant derivatives are obtained from super gauge potentials
Vai = Dai +{@ai T}, Vi = Da—{047 1, Vas = Oaa+{Aaa 1}, (VL34)

and we define additionally the superspinor fields

[@mj’(@ﬁﬁ] = Eaﬁ):(iﬁ' and [?Zaf@ﬂﬁ] = e’:‘dﬁ'f(zg . (VI.35)

5These cases are essentially equivalent, see section TV.2.2.

" Appearing over an exponent, the tilde still denotes the corresponding parity.
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Proceeding further along the lines of the undeformed case, we finally arrive at the N = 4
SYM equations with all commutators replaced by star-commutators:

VaaX? + 16 g ¥ xj6] = 0,
Vaaki + (051 %] = 0,

50‘“5@7@]?51 +e%asfon = 16 Vasdis o) + {1 T Xis}
VaaVOhij — 1eMm b % (b * 0i5]) = Leijm{xE + X°) + {Xia * X5}

(V1.36)

Recall that all the fields appearing in the above equations are in fact superfields on the

|16, and we still have to extract the zeroth order components and their

deformed space ]R;li
deformed equations of motion.

87 The Seiberg-Witten map. While the derivation of the superfield expansion in the
undeformed case was quite simple by imposing transverse gauge and using the recur-
sion operator D, we face some difficulties in the deformed case. Using again this Euler
operator would lead to a highly nonlinear system of algebraic equations and the complete
knowledge of the superfield expansion, i.e. about 2'¢ terms for every field, is needed to
calculate corrections even to first order in A.

Therefore we suggest an alternative approach based on a generalization of the Seiberg-
Witten map, cf. section [VI.1.2) 88| which will yield the expansion of the superfields order
by order in A. For this, let us choose @,; as the fundamental field of our theory, i.e. all
the other fields &%, Ang, (;3,-]-, X%, and Y;a are fixed for a certain @,; by the constraint
equations (VI.33) and the definitions (VI.35).

First recall that infinitesimal gauge transformations of the undeformed and the de-

formed gauge potential are given by
O\Wai = Daid + [wais A] and  630ai = Dailk + [@ai TA] (VL.37)

respectively, where A and A are even superfields parameterizing the transformation. Anal-
ogously to the noncommutative formula (VI.21)), the starting point is then the equation

Dai(w + w, 0 + @) = Dai(w, @) 4+ 05 Dai(w, @) . (VL.38)

88 Explicit solution. To obtain the explicit form of the Seiberg-Witten map, we can
use the consistency condition that two successive gauge transformations should, e.g. for
a superfield v in the fundamental representation, satisfy

63,050 = —[A5E]xd = G550 - (VL.39)

By the Seiberg-Witten map, gauge equivalent solutions get mapped to deformed gauge
equivalent solutions, and thus we can restrict ourselves to gauge transformations of the
type dxth = —Ay (w,@) x 1. Then one can simplify the above consistency condition to

5)\]\(7 - 5UAA + [A)\ :( ]\o] = A[A,o‘] . (VI40)

As for all the fields in our deformed theory, we assume that also A is a polynomial®
in A and considering the first order of & in (VI.40), we arrive at

Ay = 0 AN + AL+ [A], 0] — 50 (04X, 0] = Al - (V1.41)

81n principle, it could also be any power series.
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Although it is not straightforward, it is possible to guess the solution to this equation,
which is given by

Ay = A= BCOBI[9,,, Q5] + O(R2)

5 (= y y (V1.42)
Qai 1= wa; +0; (Dﬁ.wm- + meﬂ- + {wﬁ-,wai}> .

To verify this solution, note that infinitesimal gauge transformations act on {,; as
I\ Qai = OaiX + [Qai, A], and therefore we have Ay=)\— %C’M’ﬁj [0ai\, Q5] + O(h?).

89 Field expansion. Let us now consider the first order in & of the second equation in
(VI.38), which reads

5>\‘D1 = DazAl [ Wais )\] + [Woaia ]\1] + %Cﬁj,k’y{aﬁjwaia ak'y)‘} : (VI43)

at

With our above result for /N\}\, one finds after some algebraic manipulations that
Gai = YCPMQg5, Oeywai + Riy,ait (V1.44)
with
Raipj = Oaiwgj + DgjQai + {ws), Qai} - (VI1.45)
Now that we have the definition of our fundamental field, we can work through the

constraint equations (VI.33)) and the definitions (VI.35) to obtain the first order in A of
the other fields. From the first constraint equation, we immediately obtain

o = QEQBV(mwﬁj) + 2P CMON 05w ai, Onewsi ) (VL.46)

where the parentheses denote, as usual, symmetrization with appropriate weight. From
this solution, we can use the second constraint equation to solve for the first order term
in cf)él. Together with the assumption that ?fi@%l = ?]B-izél, we find the equation

?’aiﬂ ! = %EdBEijkng;I + lcmé’n5{8m6@é7 anaa)]: }
b p (VL.47)
_ DZ =71 —] 1 ’
- awlg - {waw ,3 } .

Recall that in the undeformed case, we used transverse gauge to break super gauge
invariance to ordinary gauge symmetry. Here, we can impose a similar condition to
simplify the situation:

00 — 05 = 0@ + 058, = 0, (V1.48)

which is separately valid to all orders in h. From this, we obtain the further relation
oLt = DL (6o1) — éjﬁDéfjgl, which turns equation (VI.47) into

Dy, 0@ Dgégl] = Kajﬁ (VI1.49)

where we have abbreviated

chﬁ = éedﬁ-eﬁ%,ﬁﬁicm&m{amawg,am@éﬂ{@g,Dg(eal)}. (VL50)

The expression for @! is found by iterating the equation (VI.49), which becomes a little
technical. We obtain

Dok = Do o, K] a5, VL51
A¥B I1,AB
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where ¢| |” denotes the GauBl bracket, |I| the length of the multiindex I and
{[aja K]}I_,A_B = {[w/_la {[(DB7 {[@/_Xla T {[@Am*?’ KAlﬂ*lA\f\]} o ]}]}]} : (VI52)

The sum in (VL51) is finite as the order of # increases during the iteration. The first
order contribution is thus given by

L= D0t -7 (—D)LF 0/ 0. K} ap - (VI.53)
1| <8

€n

From here on, it is easy to write down the first order deformation of the remaining fields
via the third constraint equation and the definitions (VI.35):

ALy = H(Vaily — Vih; + 5C™ " {Onswais ne})
>:<zlﬂ = _lgaﬁ(v 'Al s — V ﬁajéz + lCm(SmE{&nd‘*’ai; ansAgﬁ}) (VI.54)
X = aﬁ(v;A;ﬂvW*;} LO™ON Oysih, OnA g )

8§10 Deformed field equations. So far, we computed the first order deformations in A
of the superfields and by restricting to their zeroth order components, we obtained the
deformations of the N' = 4 SYM multiplet. It remains, however, to calculate the zeroth
order components of the superfield equations (VI.36). For this, we need to know the
explicit zeroth order form of products 87 «#7 with I, J being multiindices. By induction,
one can easily prove that

A 5. w04 = gA | pAn 1 Z contractions

AR o S A e R R L A

1<j

(VL.55)

which resembles a fermionic Wick theorem and where a contraction is defined as
pigA = hoddr (VL56)

Note that signs appearing from the grading have to be taken into account. For n = 2,
(VL55) is obvious, and for n > 2 one can show that

n —
(6A1 o eAn) x 9t — gAL .. gAngAnt Z P ... pAi ... gAntt , (VL57)
i=1
which proves (VI.55) by induction. Since we are interested only in the zeroth order terms
in (VL.55), let us define the projection operator m,, which extracts these terms. Then we
have

To(0T x07) = 7w ((041 - 04) % (651 ... 9Bm))

-1 %(n—l)hn
= 5nm()2n' €irin€h1-jn
n:

{i.5}

CAi-Bir ... 0 AinBin (VL58)

which is rather obvious, and we have 7, (6! x 07) = 7,(67 « 6') as a corollary.
To compute all the commutators appearing in the equations of motion (VI.36), let us
expand every superfield as

f = f—i— Zf[el + terms containing 6 . (VL.59)
1
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Given two superfunctions f and ¢, we obtain for the three possible cases of gradings
(0,0), (1,1),(0,1) for the pair (f,g) the following results:

m(f13) = + > (- V11, 3.0] mo(67 %67
[1|=[J]

wl{f 1)) = L3+ 3 {Fnis) w0 «07) (VL.60)
[1]=]J]|

w(F1a) = it S (s — (D)) w0 567
[1|=[J]

Now we have all the necessary ingredients to derive the field equations of N' =4 SYM
theory on ]R;ﬂw. The equations of motion for the eight Weyl spinors read

o

e* Vaax + 3k [¢klv>:(jd] = = > (AaarXy — (1) Aaa) T
[1|=J]
— 3N (WarXjars — (D Xapdun) T
[1|=]J]
Sdﬁﬁadiiﬁ' + [dij, x4 = — e Z (Aaauiiﬁ'u - (_1)]>:<iB\JAad|I)TIJ
11=171

- > (ﬁgijuiiu - (_1)156]04‘](51']'”),1—‘[] 7
[1]=]J]|

where we introduced 777 := 7,(0! x 67) for brevity. For the bosonic fields, the equations

of motion read as

.o o o o ° o

@vdﬁ[g- +&“ B oe'yfﬁ'y - Zgljkl[ 77¢zga¢kl] {)NCEW):CW} =
- Z { 'ya|lafﬁ |J] +e B[Aa"ﬂlafﬁ’YU]} T’

H]=]J]
+ 3 {3 Va3 i)r, ) + (e K} | T
[]=]J]
aﬁ aﬁv 6 (; j igklmn[&mnv[&kl 7&1]” = %gijklgaﬁ{f(fyvilﬁ} +€aﬂ{>:<2a7>:<jﬁ}
- Z I { aﬁgdﬁ[‘iadUa (@55&5@]){]] - %5klmn[¢~5mn\l 7[551617 QBZ]]J]} TIJ
[1=]J]

+ Z { €ijhie” {Xa|I7X ﬁ|J}+€ {ch\f’ JﬂlJ}}
H1=|J]

§11 Deformed N = 4 multiplet. It now remains to calculate the bodies of the de-
formed superfields. This is a rather lengthy but straightforward calculation which yields
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the following results:

Gij = ¢ij+ EC™ 5 {Pmi, djn} + O(R?) |
Aoa[? = At %Cm(s,rﬁ Eas{Pmn, Ap} + o(h?)
izﬂ = Xz,@ + % Crmé,ns [11555({¢mna )Zzg} - 2{¢in7 Xmg})

— 5(emnij{ A5 X21)] + O(R?) | (VL.61)

)zzﬂ = Xiﬁ + % Cmé,ns [{Qbmna gsséx% - %555X2}
- 6;1{¢ln7 %Eséx,lg + %Esﬁxg - %‘C:éﬁle-:}
— £3:e"{ A5 1200, X5 — 300X }] + O(R%) .

To obtain the final equations of motion for the N/ = 4 SYM multiplet, one has to sub-
stitute these expressions into the deformed field equations. All the remaining superfield
components can be replaced with the corresponding undeformed components, as we are
only interested in terms of first order in i and T'!7 is at least of this order. This will
eventually give rise to equations of the type

e 0a Xl + e Wi, via] = O(R) (VL.62)

but actually performing this task leads to both unenlightening and complicated looking
expressions, so we refrain from writing them down. To proceed in a realistic manner, one
can constrain the deformation parameters to obtain manageable equations of motion.
For instance, in order to compare the deformed equations of motion with Seiberg’s
deformed N = 1 equations” [254], one would have to restrict the deformation matrix
C*B7 properly and to put some of the fields, e.g., gEij, to zero.
8§12 Remarks on the Seiberg-Witten map. Generalizing the string theory side of
the derivation of Seiberg-Witten maps seems to be nontrivial. The graviphoton used to
deform the fermionic coordinates belongs to the R-R sector, while the gauge field strength
causing the deformation in the bosonic case sits in the NS-NS sector. This implies that
the field strengths appear on different footing in the vertex operators of the appropriate
string theory (type Il with A" = 2, d = 4). A first step might be to consider a “pure gauge”
configuration in which the gluino and gluon field strengths vanish. The corresponding
vertex operator in Berkovits’ hybrid formalism on the boundary of the worldsheet of an
open string contains the terms

V = 23,/d7’ (éawa —|—X“Au - iagdéagdAu) , (VI.63)

with the formal (classical) gauge transformations dywo = Do and 5y A, = J,A. From
here, one may proceed exactly as in [251] using the deformation of [254]: regularization
of the action by Pauli-Villars'” and point-splitting procedures lead to an undeformed and
a deformed gauge invariance, respectively. Although on flat Euclidean space, pure gauge
is trivial, the two different gauge transformations obtained are not.

More general, a Seiberg-Witten map is a translation rule between two physically
equivalent field theories. The fact that our choice of deformation generically breaks half

%or similarly in the case of the deformed N = 2 equations in A = 1 superspace language [6]

0Pauli-Villars was applied to supergravity, e.g., in [100].
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of the supersymmetry is not in contradiction with the existence of a Seiberg-Witten
map, but may be seen analogously to the purely bosonic case: in both the commutative
and noncommutative theories, particle Lorentz invariance is broken which is due to the
background field (B-field).

V1.3 Drinfeld-twisted supersymmetry

Another development which attracted much attention recently began with the realization
that noncommutative field theories, although manifestly breaking Poincaré symmetry, can
be recast into a form which is invariant under a twist-deformed action of the Poincaré
algebra [210, 57, 59]. In this framework, the commutation relation [z#,z"] = iIO* is
understood as a result of the non-cocommutativity of the coproduct of a twisted Hopf
Poincaré algebra acting on the coordinates. This result can be used to show that the
representation content of Moyal-Weyl-deformed theories is identical to that of their un-
deformed Lorentz invariant counterparts. Furthermore, theorems in quantum field the-
ory which require Lorentz invariance for their proof can now be carried over to the
Moyal-Weyl-deformed case using twisted Lorentz invariance. For related works, see also
[18, 158, 81, [196, 106, 10, 53, 183, 9, 58].

The following section is based on the paper [136] and presents an extension of the
analysis of [57, 59] to supersymmetric field theories on non-anticommutative superspaces.
We will use Drinfeld-twisted supersymmetry to translate properties of these field theories
into the non-anticommutative situation, where half of the supersymmetries are broken.

Note that Drinfeld-twisted supersymmetry was already considered in the earlier pub-
lication [157] and there is some overlap with our discussion in the case N' = 1. The
analysis of extended supersymmetries presented in this reference differs from the one we
will propose here. Furthermore, our discussion will include several new applications of
the re-gained twisted supersymmetry. In the paper [303], which appeared simultaneously
with [136], Drinfeld-twisted N' = (1, 1) supersymmetry has been discussed. More recent
work in this area is, e.g., [300, 19} 301 304, 235].

VI.3.1 Preliminary remarks

81 Hopf algebra. A Hopf algebra is an algebra H over a field K together with a product
m, a unit 1, a coproduct A : H — H ® H satisfying (A ® id)A = (id ® A)A, a counit
e : H — K satisfying (¢ ® id)A = id and (id ® €)A = id and an antipode S : H — H
satisfying m(S ® id)A = €1 and m(id ® S)A = ¢1. The maps A, ¢ and S are unital
maps, that is A(1) =1® 1, e(1) =1 and S(1) = 1.

§2 Hopf superalgebra. Recall from section II1.2.1 that a superalgebra is a supervector
space endowed with 7) an associative multiplication respecting the grading and i) the
graded commutator {a,b} = ab — (—1)®ba. We fix the following rule for the interplay
between the multiplication and the tensor product ® in a superalgebra:

(a1 ®az)(by @ bs) = (—1)%21 (a1by @ aghs) . (VL64)

A superalgebra is called a Hopf superalgebra if it is endowed with a graded coproduct!
A and a counit €, both of which are graded algebra morphisms, i.e.

Afab) = Y (~1) ¥ ag by ® agbe and  e(ab) = e(a)e(b) | (VL65)

1n Sweedler’s notation with A(a) = > aa) ® az), this amounts to @ = (1) + G2y mod 2.
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and an antipode S which is a graded algebra anti-morphism, i.e.

S(ab) = (=1)%®S5(b)S(a) . (VL66)

As usual, one furthermore demands that A, € and S are unital maps, that A is coasso-
ciative and that ¢ and S are counital. For more details, see [45] and references therein.

83 An extended graded Baker-Campbell-Hausdorff formula First, note that
eA®Be=A®B i5 indeed equal to 1 ® 1 for any two elements A, B of a superalgebra. This

is clear for A=0or B=0. For A= B =1 it is most instructively gleaned from
(1®1+A®B-31A’®B*+..)(1®1-A®B-A’®B*~..)) = 101.

Now, for elements Ay, By, D of a graded algebra, where the parities of the elements
A; and By are all equal A = A; = B and {Ar, A;} = {Br,Bs} = 0, we have the
relation

eC”A1®BJ (D ® ]l) e_CKLAK®BL (VI.67)
o0 (_1)nAD+7n("2_1)A
=) — chv oA .. {AL,, D} ® By, ... By, .
n=0 ’

Proof: To verify this relation, one can simply adapt the well-known iterative proof via a
differential equation. First note that

ACT BBy (OKL AL @ Br) = (OKL Ak @ Bp)eC" Ar®Bs (VL68)

Then define the function

F(\) = B (D @ 1)e A AKEEL | (VL69)
which has the derivative
i _ MN ACTT A @By —ACELA®B;
d/\F()\) = (C AM®BN)6 (D®1)e (VL.70)

. e,\chA,e@BJ(D ® 1)6—,\CKLAK®BL(CMNAM ® By) .

Thus, we have the identity -=F(\) = [(CMN Ay ® By), F(A)], which, when applied
recursively together with the Taylor formula, leads to

F(Q1) = Z%[cflJlAh@BJl [...[c" AL, @By, D®1]..]] . (VL.71)
n=0

Also recursively, one easily checks that

[Ch A @ By, [... [ A, @ By, ,D®1]...]] (VL72)
= (=1)AP (el o gAL .. AL, D} ® By, ... By,

where £ is given by k = (n — 1)A + (n — 2)A 4 ... + A. Furthermore, we have
5 n(n—1)

(_1)5 _ (_1)n i1t (_1)”2+Z?:1i — (_I)T’ (VI.73)

which, together with the results above, proves formula (VI.67). This extended graded
Baker-Campbell-Hausdorff formula also generalizes straightforwardly to the case when
D ® 1 is replaced by 1 ® D.
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VI1.3.2 Drinfeld twist of the Euclidean super Poincaré algebra

84 Euclidean super Poincaré algebra. The starting point of our discussion is the or-
dinary Euclidean super Poincaré algebral? g on R4V without central extensions, which
generates the isometries on the space R4V More explicitly, we have the generators of
translations P, the generators of four-dimensional rotations M), and the 4N supersym-

metry generators (),; and QZ Recall from section III.1.1/ that they satisfy the algebra

[va MMV] = i(5upPV - 5Vppu) )
[Muw Mpo] = _i(%vao — Ouoc Myp — 0yp Mo + 5voMup) )
(P> Qai] = 0, [P Q5] = 0, (VL.74)
My, Qia] = 1(0)a’Qig . [Myu, Q] = i(5,)%;Q7
{Qui. @) = 20j0" P {Qui,Qs} = {Q4.Q%) = 0.
Recall furthermore that the Casimir operators of the Poincaré algebra used for labelling
representations are P? and W2, where the latter is the square of the Pauli-Ljubanski

operator
W, = —ieupe M P . (VL.75)

This operator is, however, not a Casimir of the super Poincaré algebra; instead, there is
a supersymmetric variant: the (superspin) operator C? defined as the square of

Cp = WP, —W,P,, (VL76)

where Wu =W, - i _gﬁgo‘Qm.

§5 Universal enveloping algebra. A universal enveloping algebra U(a) of a Lie algebra
a is an associative unital algebra together with a Lie algebra homomorphism h : a — U(a),
satisfying the following universality property: For any further associative algebra A with
homomorphism ¢ : a — A, there exists a unique homomorphism ¢ : U(a) — A of
associative algebras, such that ¢ = 1 o h. Every Lie algebra has an universal enveloping
algebra, which is unique up to algebra isomorphisms.

§6 The universal enveloping algebra of g. The universal enveloping algebra U(g) of
the Euclidean super Poincaré algebra g is a cosupercommutative Hopf superalgebra with
counit and coproduct defined by (1) = 1 and ¢(z) = 0 otherwise, A(1) = 1 ® 1 and
A(z) =1®z+ 2 ® 1 otherwise.

§7 Drinfeld twist. Given a Hopf algebra H with coproduct A, a counital 2-cocycle F
is a counital element of H ® H, which has an inverse and satisfies

Fio(A®id)F = Fos(id @ A)F (VL77)

where we used the common shorthand notation F1os = F® 1, Fog = 1QF etc. As done in
[57], such a counital 2-cocycle F € H ® H can be used to define a twisted Hopf algebral?
H7 with a new coproduct given by

AT(Y) == FAY)F . (VI.78)

The element F is called a Drinfeld twist; such a construction was first considered in [88].

26r inhomogeneous super Euclidean algebra

13This twisting amounts to constructing a quasitriangular Hopf algebra, as discussed, e.g., in [61].
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§8 The Drinfeld twist of /(g). For our purposes, i.e. to recover the canonical algebra
of non-anticommutative coordinates (VI.25), we choose the Abelian twist F € U(g) QU (g)
defined by

B
F = exp (—QCM’B]QM'(XJQ@) ) (VL.79)

As one easily checks, F is indeed a counital 2-cocycle: First, it is invertible and its inverse
is given by F~! = exp (gcai’ﬂani ® Qp;)- (Because the Qq; are nilpotent, F and F !
are not formal series but rather finite sums.) Second, F is counital since it satisfies the

conditions

(e®id)F =1 and (d®e)F = 1, (VIL.80)

as can be verified without difficulty. Also, the remaining cocycle condition (VI.77) turns
out to be fulfilled since

h .
flg(A X ld)f = fm exp (—2Cal’ﬁ] (Qai RI+I® Qm’) & Qﬁj) s

. (VL81)
Fa3(id @ A)F = Fazexp <—QC’M’BJQM ®(Qp1I+1® Qﬁj))
yields, due to the (anti)commutativity of the Qqs,
FraFi3Fas = FasFiaFis (V1.82)

which is obviously true.
89 Twisted multiplication and coproduct. Note that after introducing this Drinfeld
twist, the multiplication in ¢(g) and the action of g on the coordinates remain the same.
In particular, the representations of the twisted and the untwisted algebras are identical.
It is only the action of U(g) on the tensor product of the representation space, given by
the coproduct, which changes.

Let us be more explicit on this point: the coproduct of the generator P, does not get
deformed, as P, commutes with ()g;:

AT (P,) = A(P,) . (V1.83)

For the other generators of the Euclidean super Poincaré algebra, the situation is slightly
more complicated. Due to the rule (a1 ® az)(by @ by) = (—1)32%(a1b; @ agby), where a
denotes the Grafimann parity of a, we have the relations'# (cf. equation (VI.67))

FDe1)F*t =
S AN
ZT <_2> CIlJl"'CIan{[QIU{["'{[QImD]}]}]}®QJ1'-'QJn )
n=0 ’

FleD)F! = (VI.84)
S AN
Do <_2> Ch T Qu, . Qr, @ {Quy L+ QDI
n=0 ’

where {-, -} denotes the graded commutator. From this, we immediately obtain

A}—(Qai) = A(Qaz) . (V185)

14Here, I and Jj, are multi-indices, e.g. I, = ipk.
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Furthermore, we can also derive the expressions for A% (M) and AT (Qﬁ), which read

in .
Af(Mﬁw) = A(M/W) + %Cm’ﬁ] [(UuV)aﬂ/in ® Qﬁj +Qai ® (O'IW)BWQJ"Y] , (V1.86)

AF(QE) = AQY) + hCoifi [55?0%})“ R Qpj + Qai ® 5;-“0"5&&} : (VI.87)
The twisted coproduct of the Pauli-Ljubanski operator W, becomes
ih at,j v o v o
A}—(WH) = A(W,u,) — ZC ’]ﬁg;u/pa (Qia ® (U p)ﬁ’ijWP + (O’ p)a’YQwP & QJﬁ> ’
(VI.88)

while for its supersymmetric variant C),,, we have

— 50 [Qus © Qo ACo)|
o

= ACw) = 50 ([Quis O] © Qjp + Qo @ [ @y, Cu]) - (VI

= A(CW) )

A}—(éﬂﬂ) = A(élw)

since [Qia, @w] = 0 by construction.
810 Representation on the algebra of superfunctions. Given a representation of
the Hopf algebra U(g) in an associative algebra consistent with the coproduct A, one
needs to adjust the multiplication law after introducing a Drinfeld twist. If ! is the
inverse of the element F € U(g) @ U(g) generating the twist, the new product compatible
with A7 reads

axb = m7(a®b) == moF Ha®b), (VL.90)

where m denotes the ordinary product m(a ® b) = ab.

Let us now turn to the representation of the Hopf superalgebra U/(g) on the algebra
S := C®(R*) ® Agn of superfunctions on RY4*V. On S, we have the standard represen-
tation of the super Poincaré algebra in chiral coordinates (y#, 0%, 6%):

Puf = ia,uf7 M;wf = i(y,uau_yl/au)fa

_ 0 oY) _ _i Qi
Qazf - Wf, Qdf = ( aéflf—i-Qle aac.ﬁ#)f,

(VI.91)

where f is an element of S. After the twist, the multiplication m becomes the twist-
adapted multiplication m? (VI.90), which reproduces the coordinate algebra of R;IW’

e.g. we have ' ' ' ' ' '
{6215 057} == m% (0 © 077) + m” (07 © 6™

— 9Pl 1 Ecaiﬂj +9Pigai Ecﬁjm’ (VI.92)
2 2
= hC*WPi
Thus, we have constructed a representation of the Euclidean super Poincaré algebra on
IR%MN by employing Sy, thereby making twisted supersymmetry manifest.
V1.3.3 Applications

We saw in the above construction of the twisted Euclidean super Poincaré algebra that our
description is equivalent to the standard treatment of Moyal-Weyl-deformed superspace.
We can therefore use it to define field theories via their Lagrangians, substituting all
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products by star products, which then will be invariant under twisted super Poincaré
transformations. This can be directly carried over to quantum field theories, replacing
the products between operators by star products. Therefore, twisted super Poincaré
invariance, in particular twisted supersymmetry, will always be manifest.

As a consistency check, we want to show that the tensor CF7 := {9 957}, is
invariant under twisted super Poincaré transformations before tackling more advanced
issues. Furthermore, we want to relate the representation content of the deformed theory
with that of the undeformed one by scrutinizing the Casimir operators of this superal-
gebra. Eventually, we will turn to supersymmetric Ward-Takahashi identities and their
consequences for renormalizability.

§11 Invariance of C*7, The action of the twisted supersymmetry charge on C*#J is
given by

RQEC = Qf, ({05 0771)
= m% o (AF (Qry) (0% @ 0% 4 67° oia))
= m’ o (A(Qm)(9‘” © 0% + 677 @ 9’“)) (VL.93)
= mo F (605 @ 077 + 6105 ® 0" — 0" @ 5105 — 0°° ® 6},6%)
= (0405 @ 67 + 6100 ® 0" — 0" ® 6108 — 07° ® 5,02)
= 0.
Similarly, we have
RQETC = mT o (AT(QE) (6 @ 07 + 6% @ 7))
= m” o (AQY) (6 © 0% + 6% @ 6™)) (V1.94)
0,

and
hPL o — % o (A(P#)(Ho‘i ® 0% 4+ 6% @ 06”’)) ~ 0. (VL95)

For the action of the twisted rotations and boosts, we get
RMZ,CoMBI = m7 o (Af (M) (0% @ 0% 1 0% eai))
= mo F ' FA(M,)F 10 @ 0% + 6% © 6 (V1.96)
= m(1® My + My, ®1) ((9‘“’ ® 0% + 0% © 1) — hC¥HPIT @ IL)
=0,

where we made use of M, = i(y,0, — y,0,). Thus, CF is invariant under the twisted
Euclidean super Poincaré transformations, which is a crucial check of the validity of our
construction.
812 Representation content. An important feature of noncommutative field theo-
ries was demonstrated recently [57, 59]: they share the same representation content as
their commutative counterparts. Of course, one would expect this to also hold for non-
anticommutative deformations, in particular since the superfields defined, e.g., in [254]
on a deformed superspace have the same set of components as the undeformed ones.

To decide whether the representation content in our case is the same as in the commu-
tative theory necessitates checking whether the twisted action of the Casimir operators
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P? = P,xP" and C? = 6“1,*5“” on elements of U (g) ®U(g) is altered with respect to the
untwisted case. But since we have already shown in (VI.83) and (VI.89) that the actions
of the operators P, and C~’W remain unaffected by the twist, it follows immediately that
the operators P? and C? are still Casimir operators in the twisted case. Together with
the fact that the representation space considered as a module is not changed, this proves
that the representation content is indeed the same.

§13 Chiral rings and correlation functions. As discussed in section IV.1.3] the chiral
rings of operators in supersymmetric quantum field theories are cohomology rings of the
supercharges @Q;, and Qg and correlation functions which are built out of elements of a
single such chiral ring have peculiar properties.

In [254], the anti-chiral ring was defined and discussed for non-anticommutative field
theories. The chiral ring, however, lost its meaning: the supersymmetries generated by
Qfx are broken, cf. (VI.32), and therefore the vacuum is expected to be no longer invariant
under this generator. Thus, the Q-cohomology is not relevant for correlation functions of
chiral operators.

In our approach to non-anticommutative field theory, twisted supersymmetry is man-
ifest and therefore the chiral ring can be treated similarly to the untwisted case as we
want to discuss in the following.

Let us assume that the Hilbert space H of our quantum field theory carries a represen-
tation of the Euclidean super Poincaré algebra g, and that there is a unique, g invariant
vacuum state |0). Although the operators Qa; and QY are not related via Hermitian
conjugation when considering supersymmetry on Euclidean spacetime, it is still natural
to assume that the vacuum is annihilated by both supercharges. The reasoning for this
is basically the same as the one employed in [254] to justify the use of Minkowski su-
perfields on Euclidean spacetime: one can obtain a complexified supersymmetry algebra
on Euclidean space from a complexified supersymmetry algebra on Minkowski space.?
Furthermore, it has been shown that in the non-anticommutative situation, just as in the
ordinary undeformed case, the vacuum energy of the Wess-Zumino model is not renor-
malized [43].

We can now define the ring of chiral and anti-chiral operators by the relations
{Q*0} =0 and {Q*O} = 0, (VL.97)

respectively. In a correlation function built from chiral operators, Q-exact terms, i.e.
terms of the form {@ * A}, do not contribute as is easily seen from

{QF Ay +O15..x0p) = {QFAxO1x ... % Opl) £ (Ax{QF O} %...xOy)
+... £ (AxO01%...x{Q % O,])
DAxO1% ... xOp) £ (AxO1 % ... x Oy x Q)

(
0, (VI.98)

where we used that @ annihilates both (0| and |0), completely analogously to the case of
untwisted supersymmetry. Therefore, the relevant operators in the chiral ring consist of
the Q-closed modulo the Q-exact operators. The same argument holds for the anti-chiral

'50One can then perform all superspace calculations and impose suitable reality conditions on the com-
ponent fields in the end.
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ring after replacing Q with @, namely

HQ* A} xO1%...%x0,) ={Q* A% O1%...xOu}) £ (Ax{Q ¥ O1} x... % Oy)
+... (A% O01%...x{Q* O,
(QA%*O1%...%O0p) £ (A% O1%...x 0y % Q)

0. (VL.99)

8§14 Twisted supersymmetric Ward-Takahashi identities. The above considered
properties of correlation functions are particularly useful since they imply a twisted su-
persymmetric Ward-Takahashi identity: any derivative with respect to the bosonic co-
ordinates of an anti-chiral operator annihilates a purely chiral or anti-chiral correlation
function, cf. section TV.1.3, [§12. Recall that this is due to the fact that 0 ~ {Q,Q}
and therefore any derivative gives rise to a @-exact term, which causes an anti-chiral
correlation function to vanish. Analogously, the bosonic derivatives of chiral correlation
functions vanish. Thus, the correlation functions are independent of the bosonic coordi-
nates, and we can move the operators to a far distance of each other, also in the twisted
supersymmetric case:

(O1(21) % ... % On(an)) = (O1(z5°)) % ... % (DO (z0)) . (VI.100)

and we discover again that these correlation functions clusterize.
Another direct consequence of (VI.98) is the holomorphic dependence of the chiral
correlation functions on the coupling constants, i.e.

;}\((91*...*(%> =0. (VL.101)

This follows in a completely analogous way to the ordinary supersymmetric case, and for
an example, see again IV.1.3) [§12.

8§15 Comments on non-renormalization theorems. A standard perturbative non-
renormalization theorem for N' = 1 supersymmetric field theory states that every term
in the effective action can be written as an integral over d?d?6. It has been shown in
[43] that this theorem also holds in the non-anticommutative case. The same is then
obviously true in our case of twisted and therefore unbroken supersymmetry, and the
proof carries through exactly as in the ordinary case.

Furthermore, in a supersymmetric nonlinear sigma model, the superpotential is not
renormalized. A nice argument for this fact was given in [252]. Instead of utilizing Feyn-
man diagrams and supergraph techniques, one makes certain naturalness assumptions
about the effective superpotential. These assumptions turn out to be strong enough to
enforce a non-perturbative non-renormalization theorem.

In the following, let us demonstrate this argument in a simple case, following closely
[8]. Take a nonlinear sigma model with superpotential

W = im®@*+ Ixe? (VI.102)

where ® = ¢+ /261 + 00F is an ordinary chiral superfield. The assumptions we impose
on the effective action are the following:

> Supersymmetry is also a symmetry of the effective superpotential.

> The effective superpotential is holomorphic in the coupling constants.
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> Physics is smooth and regular under the possible weak-coupling limits.

> The effective superpotential preserves the U(1) x U(1)r symmetry of the original
superpotential with charge assignments ® : (1,1), m : (=2,0), A : (=3,—1) and
d?6: (0, -2).

It follows that the effective superpotential must be of the form
War = mow (22 = > N m! e (VL.103)
eff m : 7 ) .
(2

where W is an arbitrary holomorphic function of its argument. Regularity of physics in
the two weak-coupling limits A — 0 and m — 0 then implies that Weg = W.

To obtain an analogous non-renormalization theorem in the non-anticommutative
setting, we make similar assumptions about the effective superpotential as above. We
start from

We = gm@x @+ A0+ D+, (VI.104)

and assume the following:

> Twisted supersymmetry is a symmetry of the effective superpotential. Note that
this assumption is new compared to the discussion in [43]. Furthermore, argu-
ments substantiating that the effective action can always be written in terms of
star products have been given in [44].

> The effective superpotential is holomorphic in the coupling constants. (This as-
sumption is equally natural as in the supersymmetric case, since it essentially relies
on the existence of chiral and anti-chiral rings, which we proved above for our
setting.)

> Physics is smooth and regular under the possible weak-coupling limits.

> The effective superpotential preserves the U(1) x U(1)r symmetry of the original
superpotential with charge assignments ® : (1,1), m : (=2,0), A : (=3, —1), d20 :
(0, —2) and, additionally, C*%7 : (0,2), |C| ~ CPIC,, 5; : (0,4).

At first glance, it seems that one can now construct more U(1) x U(1)gz-symmetric terms
in the effective superpotential due to the new coupling constant C'; however, this is not
true. Taking the C' — 0 limit, one immediately realizes that C' can never appear in the
denominator of any term. Furthermore, it is not possible to construct a term containing
C in the nominator, which does not violate the regularity condition in at least one of the
other weak-coupling limits. Altogether, we arrive at an expression similar to (VI.103)

Weit s = > aiXm! ' or 2 (VI.105)
%

and find that Weg ,» = Wi.

To compare this result with the literature, first note that, in a number of papers, it has
been shown that quantum field theories in four dimensions with N' = % supersymmetry
are renormalizable to all orders in perturbation theory [273]-[26]. This even remains true
for generic N = % gauge theories with arbitrary coefficients, which do not arise as a
*-deformation of A/ = 1 theories. However, the authors of [43, [114], considering the
non-anticommutative Wess-Zumino model we discussed above, add certain terms to the
action by hand, which seem to be necessary for the model to be renormalizable. This
would clearly contradict our result Weg ., = W,. We conjecture that this contradiction
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is merely a seeming one and that it is resolved by a resummation of all the terms in the
perturbative expansion. A similar situation was encountered in [44], where it was found
that one could not write certain terms of the effective superpotential using star products,
as long as they were considered separately. This obstruction, however, vanished after a
resummation of the complete perturbative expansion and the star product was found to
be sufficient to write down the complete effective superpotential.

Clearly, the above result is stricter than the result obtained in [43], where less con-
straint terms in the effective superpotential were assumed. However, we should stress
that it is still unclear to what extend the above assumptions on Weg . are really natural.
This question certainly deserves further and deeper study, which we prefer to leave to
future work.



CHAPTER VII

TWISTOR GEOMETRY

The main reason we will be interested in twistor geometry is its use in describing the solu-
tions to certain Yang-Mills equations by holomorphic vector bundles on a corresponding
twistor space, which allows us to make contact with holomorphic Chern-Simons theory.
We will completely ignore the gravity aspect of twistor theory.

In this chapter, we will first deal with the twistor correspondence and its underlying
geometrical structure. Then we will discuss in detail the Penrose-Ward transform, which
maps solutions to certain gauge field equations to certain holomorphic vector bundles
over appropriate twistor spaces.

The relevant literature to this chapter consists of [217, 284 195, 299, [118, 98, 228].

VII.1 Twistor basics

The twistor formalism was initially introduced by Penrose to give an appropriate frame-
work for describing both general relativity and quantum theory. For this, one introduces
so-called twistors, which — like the wave-function — are intrinsically complex objects but
allow for enough algebraic structure to encode spacetime geometry.

VII.1.1 Motivation

81 Idea. As mentioned above, the basic motivation of twistor theory was to find a com-
mon framework for describing both general relativity and quantum mechanics. However,
twistors found a broad area of application beyond this, e.g. in differential geometry.

In capturing both relativity and quantum mechanics, twistor theory demands some
modifications of both. For example, it allows for the introduction of nonlinear elements
into quantum mechanics, which are in agreement with some current interpretations of
the measurement process: The collapse of the wave-function contradicts the principle of
unitary time evolution, and it has been proposed that this failure of unitarity is due to
some overtaking nonlinear gravitational effects.

The main two ingredients of twistor theory are non-locality in spacetime and ana-
lyticity (holomorphy) in an auxiliary complex space, the twistor space. This auxiliary
space can be thought of as the space of light rays at each point in spacetime. Given an
observer in a four-dimensional spacetime at a point p, his celestial sphere, i.e. the image
of planets, suns and galaxies he sees around him, is the backward light cone at p given
by the 2-sphere

t = -1 and 2°+¢*+2% = 1. (VIL.1)

From this, we learn that the twistor space of R* is R* x S2. On the other hand, this
space will be interpreted as the complex vector bundle O(1) @ O(1) over the Riemann
sphere CP!. The prescription for switching between the twistor space and spacetime is
called the twistor or Klein correspondence.
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Non-locality of the fields in a physical theory is achieved by encoding the field infor-
mation at a point in spacetime into holomorphic functions on twistor space. By choosing

)

an appropriate description, one can cause the field equations to vanish on twistor space
i.e. holomorphy of a function on twistor space automatically guarantees that the corre-
sponding field satisfies its field equations
§2 Two-spinors. Recall our convention for switching between vector and spinor indices
;.0 i3 i1 2
: : —iz® — iz it —x
% = —ic%%t = -3 , VIIL.2
’ 2 ( —iz! + 22 —iz¥ +ix > ( )
where we used here the o-matrices appropriate for signature (—+++). The inverse trans-
formation is given by z# = 3 tr (o), (z*)).
The norm of such a vector is easily obtained from ||z|[* = n at2” = det(
(VIL3)

5Taar™. From this formula, we learn that
1
Nuv = §5a65dﬁ' ’

where Eag is the antisymmetric tensor in two dimensions. We choose again the convention
can be decomposed into four (commuting)

= —1 which implies that ¢. Bam = 57 see also section [11.2.3) §22.
(VIL.4)

ejy=—€? =
Recall now that any vector z# ~ z¢
T = XN 4 KOR
If the vector x* is real then A and & are related to A and s by complex conjugation. If
9y

two-spinors according to
the real vector x* is a null and future-pointing vector, its norm vanishes, and one can
(VIL5)

with &Y = &K@,
C)-spinor. Spinor indices are raised
(VIL.6)

hence drop one of the summands in (VII.4)
ad _ I‘{aﬁd

C)-spinor, while &% is an SL(
— P,
ek

where k% is an SL(
and lowered with the e-tensor, i.e
Ko = eagmﬁ and RY =
As the spinors k® and % are commuting, i.e. they are not Grafimann-valued, we have
Kok® = RE%gq = 0. (VILT)
83 Light rays. A light ray in Mmkowskl space is parameter-
ized by the equations %% = x5 + tp®®. For a general light
ray, one can reparameterize this description such that acg‘j‘ is a
null vector. For light rays which intersect the light cone of the L
origin more than once, i.e. light rays which lie in a null hyper-
plane through the origin, one chooses :138‘5Y to be orthogonal to Y
p®® with respect to the Minkowski metric. After decomposing
the vectors into spinors, we have
9 = W@ AN and 2% = CONY 4 (ONY £ AN (VILS)
in the general and special cases, respectively. We can reduce both cases to the single
equation
WY = i)\, (VIL9)
by assuming ¢ = —1( %)\g) ! in the general case and w® 1)\‘”({6 ;) in the special case
@ on a light ray, equation (VIL9), the incidence relations hold

For all points x®
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§4 Twistors. A twistor Z' is now defined as a pair of two-spinors (w®, \g) which trans-
form under a translation of the origin 0 — 7% as

(W* Aa) — (W —ir" g, Aa) - (VIL10)

The spinors w® and A4 are usually called the primary and secondary spinor parts of the
twistor Z°.

The twistor space T is thus a four-dimensional complex vector space, and we can
introduce an anti-linear involution 7 : T — TV by defining

Zi - (waa/\d) = (S‘Otaa}d) = Zz . (VIIll)

Furthermore, we can define a Hermitian inner product h(Z,U) for two twistors Z! =
(W Ag) and U? = (09, ugy) via

WZ,U) = Z'U; = wia + XaG® , (VIL12)

which is not positive definite but of signature (++——). This leads to the definition of
null-twistors, for which Z'Z; = 0. Since this constraint is a real equation, the null-twistors
form a real seven-dimensional subspace T in T. Furthermore, Ty splits T into two
halves: T* with twistors of positive and negative norm.

As a relative phase between w® and A® does not affect the underlying light ray, we
can assume that w®)\, is purely imaginary. Then the twistor underlying the light ray
becomes a null twistor, since Z°Z; = 2Re(w*\,).

There is a nice way of depicting twistors based on the so-called Robinson congruence.
An example is printed on the back of this thesis. For more details, see appendix [E.

§5 Light rays and twistors. We call a twistor incident to a spacetime point 2% if its
spinor parts satisfy the incidence relations (VIIL.9).

After we restrict 2% to be real, there is clearly a null twistor Z* incident to all points
£ on a particular light ray, which is unique up to complex rescaling. On the other
hand, every null twistor with non-vanishing secondary spinor (\-) part corresponds to a
light ray. The remaining twistors correspond to light rays through infinity and can be
interpreted by switching to the conformal compactification of Minkowski space. This is
easily seen by considering the incidence relations (VIL.9), where — roughly speaking — a
vanishing secondary spinor part implies infinite values for £ if the primary spinor part
is finite.

Since the overall scale of the twistor is redundant, we rather switch to the projective
twistor space PT = CP3. Furthermore, non-vanishing of the secondary spinor part
implies that we take out a sphere and arrive at the space P3 = CP3\CP'. The restriction
of P? to null-twistors will be denoted by 73]%,. We can now state that there is a one-to-
one correspondence between light rays in (complexified) Minkowski space M (M€) and
elements of P3; (P3).

86 “Evaporation” of equations of motion. Let us make a simple observation which
will prove helpful when discussing solutions to field equations in later sections. Consider
a massless particle with vanishing helicity. Its motion is completely described by a four
momentum p® and an initial starting point z®®. To each such motion, there is a unique
twistor Z’. Thus, while one needs to solve equations to determine the motion of a
particle in its phase space, this is not so in twistor space: Here, the equations of motion
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have! “evaporated” into the structure of the twistor space. We will encounter a similar
phenomenon later, when discussing the Penrose and the Penrose-Ward transforms, which
encode solutions to certain field equations in holomorphic functions and holomorphic
vector bundles on the twistor space.

§7 Quantization. The canonical commutation relations on Minkowski spacetime (the
Heisenberg algebra) read

[u, ] = [#",2"] = 0 and [2",p,] = ihd), (VIL.13)
and induce canonical commutation relations for twistors:
(2, 29) = [Zi,2;] = 0 and [2),Z;] = hé.. (VIL14)
Alternatively, one can also follow the ordinary canonical quantization prescription
[f.4] = ir{f,q} +O(1?) (VIL15)

for the twistor variables and neglecting terms beyond linear order in A, which yields the
same result.

A representation of this algebra is easily found on the algebra of functions on twistor
space by identifying Zi=Z"and Z; = —h%. This description is not quite equivalent to
the Bargmann representation, as there one introduces complex coordinates on the phase
space, while here, the underlying space is genuinely complex.

The helicity 2s = Z'Z; is augmented to an operator, which reads in symmetrized form

§ = Y27+ 2,77 = —g (Zi a(;' + 2) : (VIL16)
and it becomes clear that an eigenstate of the helicity operator with eigenvalue sh must
be a homogeneous twistor function f(Z¢) of degree —2s — 2. One might wonder, why
this description is asymmetric in the helicity, i.e. why e.g. eigenstates of helicity +2 are
described by homogeneous twistor functions of degree —6 and 42, respectively. This is
due to the inherent chirality of the twistor space. By switching to the dual twistor space
PTVY, one arrives at a description in terms of homogeneous twistor functions of degree
25+ 2.

VII.1.2 Klein (twistor-) correspondence

Interestingly, there is some work by Felix Klein [155, [154] dating back to as early as 1870,
in which he discusses correspondences between points and subspaces of both PT and the
compactification of M¢. In the following section, this Klein correspondence or twistor
correspondence will be developed.

§8 The correspondence r € M¢ «» CP! c PT. The (projective) twistors satisfying
the incidence relations (VIL9) for a given fixed point 7®% € M¢ are of the form Z! =
(ir®®\4, Ag) up to a scale. Thus, the freedom we have is a projective two-spinor Mg (i.e.
in particular, at most one component of A4 can vanish) and the components of this spinor
are the homogeneous coordinates of the space CP'. This is consistent with our previous
observations, as twistors incident to a certain point r € M€ describe all light rays through
r, and this space is the celestial sphere S? = CP! at this point. Thus, the point r in M
corresponds to a projective line CP! in PT.

!This terminology is due to [98].
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§9 The correspondence p € PT < a-plane in M¢. Given a twistor Z% in PT, the
points & which are incident with Z¢ form a two-dimensional subspace of M¢, a so-called
a-plane. These planes are completely null, which means that two arbitrary points on such
a plane are always separated by a null distance. More explicitly, an a-plane corresponding
to a twistor Z¢ = (w®, \y) is given by

Y = 8% 4 Ny (VIL17)

where z§¢ is an arbitrary solution to the incidence relations (VIL9) for the fixed twistor
Z*. The two-spinor u® then parameterizes the a-plane.

§10 Dual twistors. The incidence relations for a dual twistor W; = (o4, n%) read as
0% = iz, . (VIL18)

Such a twistor again corresponds to a two-dimensional totally null subspace of M€, the
so called (-planes. The parameterization is exactly the same as the one given in (VIL.17).
Note, however, that the role of Ay and p® have been exchanged, i.e. in this case, A%
parameterizes the (-plane.

8§11 Totally null hyperplanes. Two a- or two (-planes either coincide or intersect in
a single point. An a- and a (-plane are either disjoint or intersect in a line, which is
null. The latter observation will be used in the definition of ambitwistor spaces in section
VIIL.3.3. Furthermore, the correspondence between points in IPT and planes in M€ breaks
down in the real case.

VII.1.3 Penrose transform

The Penrose transform gives contour integral formulae for mapping certain functions on
the twistor space to solutions of the massless field equations for particles with arbitrary
helicity. For our considerations, we can restrict ourselves to the subspace of CP3, for
which Aj # 0 and switch for simplicity to the inhomogeneous coordinates A4 := (1, M.

§12 Elementary states. A useful class of functions on twistor space are the so-called
elementary states. Let us again denote a twistor by (Z¢) = (w®, Ag). Then an elementary
state is given by

(CiZ") (D Z")*

f(2) = (A; ZD)ot (B, ZE)oHT

(VIL.19)

where A;, B;, C;, D; are linearly independent and a,b,c,d € N. The Penrose transform
will relate such an elementary state to a field with helicity

h=31(a+b—c—d), (VIL.20)
satisfying its massless equations of motion.

813 Negative helicity. Consider the contour integral

¢d1---d2h (.’L‘) = 2%1—1 dAd )‘o'c)\dq s )‘thf(Z) ) (VII21)

C
where C = S! is a contour in CP!, which is the equator |\;/As] = 1 or a suitable
deformation thereof, if f should become singulary on C. The contour integral can only
yield a finite result if the integrand is of homogeneity zero and thus f has to be a section
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of O(—2h — 2). For these f, ¢ is a possibly non-trivial solution to the massless field
equations
Uiy, = 0 (VIL22)

for a field of helicity —h. This can be easily seen by substituting the incidence relations
(VIL9) into the primary spinor part of the twistor Z = (iz%*\4, \g) and taking the
derivative into the integral.

814 Zero helicity. For the case of zero helicity, we can generalize the above formalism.
We employ the same contour integral as in (VIL.21), restricted to h = 0:

27

d(z) = 5= ¢ d\* Ao f(2) (VIL.23)
C
where ¢ is now a solution to the scalar field equation
O¢ = 10°aad = 0, (VIL.24)

the massless Klein-Gordon equation. Again, this fact is readily seen by pulling the deriva-
tives into the integral and for non-vanishing ¢, f is a section of O(—2).

815 Positive helicity. For positive helicities, we have to adapt our contour integral in
the following way:

Pay...az, (T) = ;ﬁfédx‘ YR f(2), (VIL.25)

Y Ower T Yw2n

which will give rise to the massless equations of motion for helicity h
Eaalaadqbal..‘agh =0 (V1126)

and for nontrivial ¢, f must be a section of O(2h — 2). This result requires slightly more
effort to be verified, but the calculation is nevertheless straightforward.

8§16 Further remarks. Altogether, we saw how to construct solutions to massless field
equations for fields with helicity A using functions on twistor space, which transform
as sections of O(2h — 2). One can prove that the (Abelian) Cech cohomology group
HY(O(1)®0(1), O(2h—2)) is isomorphic to the sheaf of solutions to the massless equations
of motion for particles with helicity h. Note that our convention for h differs to another
very common one used e.g. in [284] by a sign.

Furthermore, this construction is reminiscent of the “evaporation of equations of mo-
tion” for particles in the twistor approach and we will come across a generalization of
this construction to Lie algebra valued fields in section VIL.S8.

VII.2 Integrability

The final goal of this chapter is to construct the Penrose-Ward transform for various field
theories, which relates classical solutions to some equations of motion to geometric data
on a twistor space. This transform is on the one hand founded on the equivalence of the
Cech and Dolbeault descriptions of (topologically trivial) holomorphic vector bundles,
on the other hand, its explicit construction needs the notion of linear systems and the
corresponding compatibility conditions. Therefore, let us briefly comment on the property
called (classical) integrability, which is the framework for these entities.
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VII.2.1 The notion of integrability

81 Basic Idea. Although there seems to be no general definition of integrability, quite
generally speaking one can state that an integrable set of equations is an exactly solvable
set of equations. Further strong hints that a set of equations may be integrable are the
existence of many conserved quantities and a description in terms of algebraic geometry.
Until today, there is no comprehensive algorithm to test integrability.

§2 Example. To illustrate the above remarks, let us briefly discuss an example given
e.g. in [127]: The center-of-mass motion of a rigid body. Let w be the angular velocity
and I; the principal moments of inertia. The equations of motion then take the form?

Izwl = 5ijk(Ij — Ik)ijk . (VH.27)
One can rescale these equations to the simpler form
?ll = usus , 112 = Uusui and iL3 = Uiug . (VIIQS)

Let us now trace the above mentioned properties of integrable systems of equations.
First, we have the conserved quantities

A=wui—ui and B = uf—ul, (VIIL.29)

since A = B = 0 by virtue of the equations of motion. Second, we find an elliptic curve by
putting y = 41 and & = u; and substituting the conserved quantities in the first equation
of motion 41 = usus:

y? = (2?2 — A)(2® - B) . (VIL.30)

Thus, algebraic geometry is indeed present in our example. Eventually, one can give
explicit solutions, since the above algebraic equation can be recast into the standard
form

2 = 423 — gox — g3, (VIL.31)

which is solved by the Weierstrass p-function with = p(u) and y = ¢’ (u). The solution
is then given by dt = dp/g’.

§3 Ward conjecture. This conjecture by Richard Ward [283] states that all the in-
tegrable equations in 141 and 2+1 dimensions can be obtained from (anti-)self-dual
Yang-Mills theory in four dimensions by dimensional reduction. On commutative spaces,
this conjecture can be regarded as confirmed [195].

VII.2.2 Integrability of linear systems

84 A simple example. In our subsequent discussion, we will have to deal with a linear
system of equations, which states that some GL(n,C)-valued function 1 is covariantly
constant in several directions, e.g.

Vip = 0 and Vo = 0. (VIL.32)

Since this system is overdetermined, there can only exist a solution if a certain condition
obtained by cross-differentiating is fulfilled:

ViVoy — VoV =: Fiovp = 0. (VH.33)

2These equations are the equations for a spinning top and they are related to the Nahm equations cf.
section VIL.8.4.
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Now a sufficient and necessary condition for this to hold is F15 = 0 as % is invertible. This
condition is called the compatibility condition of the linear system (VIL.32). However,
this system is too trivial to be interesting. The solutions of Fj5 = 0 are pure gauge and
thus essentially trivial.

85 Self-Dual Yang-Mills theory. The obvious step to make the compatibility condi-
tions non-trivial is to introduce a so-called spectral parameter A € C and consider the
linear system

(Vl—)\V;),)w = 0 and (V2+/\V4)1/1 =0. (VH.34)

This linear system has a non-trivial solution if and only if
[V1i—AV3,Va+AVy] = 0, (VIL.35)
or, written in terms of components of a Taylor expansion in the spectral parameter if
Fio = Fily—F3 = F3y = 0. (VIL.36)

The latter equations are, in a suitable basis, the self-dual Yang-Mills equations, cf. section
IV.2.3, and (VIL.34) is exactly the linear system we will encounter later on in the twistor
formulation. Note that the system (VII.36)) is underdetermined (three equations for four
components) due to gauge invariance.

§6 Further examples. All the constraint equations we encountered so far, i.e. the N’ =
1,...,4 supersymmetrically extended self-dual Yang-Mills equations (IV.64) and also the
full N = 3,4 super Yang-Mills theory (IV.50) can be obtained from linear systems. After
introducing the simplifying spinorial notation A* = (A, 1) and u® = (u, —1)T, they
read as

A‘j‘(ﬁad —I—Aad)Tﬁ =0 s

. , VIL.37
3G (‘9.+Ag>¢ . ( )
ong

for the supersymmetric self-dual Yang-Mills equations and

:U'a)‘d<8ad + Aad)w =0,
XD+ ALy = 0, (VIL38)
u*(Dai + Ani) = 0.

in the case of the N' = 3,4 super Yang-Mills equations. Here, i runs from 1 to /. Note
that in the latter case, really all the conditions obtained from cross-differentiating are
fulfilled if the constraint equations (IV.50) hold.

VII.3 Twistor spaces and the Penrose-Ward transform

After this brief review of the basic ideas in twistor geometry and integrable systems let us
now be more explicit in the spaces and and the conventions we will use. We will introduce
several twistor correspondences between certain superspaces and modified and extended
twistor spaces upon which we will construct Penrose-Ward transforms, relating solutions
to geometric data encoded in holomorphic bundles.
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VI1I1.3.1 The twistor space

§1 Definition. We start from the complex projective space CP? (the twistor space)
with homogeneous coordinates (w®, A\4) subject to the equivalence relation (w®,\s) ~
(tw®,tAg) for all t € C*, o = 1,2 and & = 1,2. As we saw above, this is the space of
light rays in complexified, compactified Minkowski space. To neglect the light cone at
infinity, we demand that A4 parameterizes a CP!, i.e. A\g # (0,0)T. Recall that the set
which we exclude by this condition is the Riemann sphere CP! and the resulting space
CP3*\CP! will be denoted by P3. This space can be covered by two patches Uy (A\j # 0)
and U_ (A\; # 0) with coordinates®

a s
zi:%’ z+:)\—j::/\+ on Uy ,
X O , A (VIL.39)
2= z_:)\—::)\, on U_ ,
2 2
related by
1
2 = 232% and 22 = =3 (VIL.40)

on the overlap U, NU_. Due to (VIL40), the space P? coincides with the total space of
the rank two holomorphic vector bundle

P = 0O1)®O@1) — CP', (VIL.41)

where the base manifold CP! is covered by the two patches Uy :=UL N CP!'.
82 Moduli space of sections. Holomorphic sections of the complex vector bundle
(VIL.41) are rational curves CPL—7P3 defined by the equations

20 = 2T A2 for Ay €U, and 2 = Az 42 for A\ eU_ (VIL42)

and parameterized by moduli z = (z°%) € €. After introducing the spinorial notation

(AF) = (i) and (A7) = (ﬁ-) , (VIL43)

we can rewrite (VIL.42) as the incidence relations
24 = x%9)\E . (VIL.44)

Note the familiarity of these equations with the incidence relations (VIL.9). The meaning
of (VIL.44) becomes most evident, when writing down a double fibration:

]:5
™ ™ (VIL.45)
2

where F? := C* x CP*, m; is the trivial projection (2%, \y) = ¢ and 7y is given
by (VII.44). We thus obtain a twistor correspondence between points and subspaces of
either spaces C* and P3:

. . . ) 1 - 3 : : 4
x
{prOJectlve lines CP, in P } — {pomts xzin C } ,

VIIL.46
{ points p in P*} «— {null (a-)planes C2 in C*} . ( )

3 A more extensive discussion of the relation between these inhomogeneous coordinates and the homo-
geneous coordinates is found in appendix |C.
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While the first correspondence is rather evident, the second one deserves a brief remark.
o

Suppose 29¢ is a solution to the incidence relations (VIL.44) for a fixed point p € P3.

Then the set of all solutions is given by
{229} with 2% = 2°% 4 NG | (VIL47)

where p® is an arbitrary commuting two-spinor and we use our standard convention of
A} = e99)\E with e12 = —e21 = 1. One can choose to work on any patch containing p.
The sets defined in (VIL.47) are then called null or a-planes.

The correspondence space F° is a complex five-dimensional manifold, which is covered
by the two patches Uy = 75 ' (Us).
§3 Vector fields. On the complex manifold P3, there is the natural basis (9/9z%,0/0z3)
of antiholomorphic vector fields, which are related via

2 0
0z3

o
— P 1.4
22 s (VIL.48)

o 4 0 )
ﬁ z_ @ and ﬁ

= —(&%)

on the intersection Uy NU_. The leaves to the fibration my in (VIL.45) are spanned by
the vector fields

VE = X0 , (VIL.49)

«

which obviously annihilate the coordinates (VIL.44) on P3. The tangent spaces to the
leaves of the fibration w9y are evidently of dimension 2.

§4 Real structure. Recall that a real structure on a complex manifold M is defined as
an antiholomorphic involution 7 : M — M. On the twistor space P>, we can introduce
three anti-linear transformations of commuting two-spinors:

0 € ! ew?
e = (D) (2) - (%) e o

(W) = (@), (VIL.50b)
where ¢ = 1. In particular, this definition implies (&q) = 7T(wa) and (A%) := 7(A%),

i.e. indices are raised and lowered before 7 is applied. For later reference, let us give
explicitly all the possible variants of the two-spinor )\gf given in (VIIL.43):

(/\i) = (AJ{> ) (S\I) = <5i+> ’ (S\i) = (;j) ,
E (VIL51)

Furthermore, the transformations (VIL.50a)-(VIL.50b) define three real structures on
P3 which in the coordinates (VIL.39) are given by the formulae

22 =1 22 21
1,2 .3 Z+ €24 € 1,2 .3 Ez_ z_ ¢
Te(2y,29,27) = <_3, = =3 | Te(22,22,22) = (= 5,3 ) >, (VIL52a)
z2 z3 7 z5 1707z

(2, 23, 24) = (24,23, 2%) . (VIL52b)
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85 The dual twistor space. For the dual twistor space, one starts again from the
complex projective space CP3, this time parameterized by the two-spinors (0%, o). By
demanding that s # (0,0)”, we again get a rank two holomorphic vector bundle over
the Riemann sphere:

P: = O(1)e0(1) — CPL. (VIL53)

One should stress that the word “dual” refers to the transformation property of the
spinors and not to the dual line bundles O(—1) of the holomorphic line bundles O(1)
contained in the twistor space. This is why we denote these spaces with a * instead of a
V. The dual twistor space P2 is covered again by two patches U} on which we have the
inhomogeneous coordinates

. ‘ . 1
(uf,pe) with uf = pru® and pp = — . (VIL.54)

Sections of the bundle (VIL.53) are therefore parameterized according to

uf = 2%E with  (uf) = < ,U1+> and  (py) = (Iul_ ) , (VIL55)

and one has again a double fibration analogously to (VIL45). The null planes in C*
corresponding to points in the dual twistor space via the above incidence relations (VII.55)
are now called B-planes.

Note that in most of the literature on twistor spaces, our dual twistor space is called
twistor space and vice versa. This is related to focusing on anti-self-dual Yang-Mills
theory instead of the self-dual one, as we do.

86 Real twistor space. It is obvious that the involution 7_; has no fixed points but
does leave invariant projective lines joining p and 7_1(p) for any p € P3. On the other
hand, the involutions 71 and 79 have fixed points which form a three-dimensional real
manifold

7% = RP*\RP! (VIL56)
fibred over S = RP' ¢ CP!. The space 73 C P? is called real twistor space. For
the real structure 71, this space is described by the coordinates (2L, X zL, eX) with
0 < x < 2, and for the real structure 79, the coordinates (2L, 2%, A1) are real. These
two descriptions are equivalent. In the following we shall concentrate mostly on the real
structures 741 since they give rise to unified formulee.
87 Metric on the moduli space of real curves. The real structures introduced above
naturally induce real structures on the moduli space of curves, C*:

TE(SL‘H) = 72 TE(CL‘IQ) = ez?l with e = 41,

ad) j;ad )

(VIL57)

To(a}

Demanding that 7(z%Y) = 2% restricts the moduli space C* to C? = R*, and we can
extract four real coordinates via

722 = gt . —(ez? +i23) and 22l = 712 - —e(x? —ixl) . (VIL.58)

Furthermore, the real moduli space comes naturally with the metric given by

ds®* = det(dz®¥) = g, datdz” (VIL59)



156 Twistor Geometry

with g = (g,) = diag(+1, +1,+1,+1) for the involution 7_1 on P3 and g = diag(—1, —1,
+1,+1) for 71 (and 7). Thus, the moduli space of real rational curves of degree one in P3
is the Euclidean space? R*Y or the Kleinian space R?*2. It is not possible to introduce a
Minkowski metric on the moduli space of real sections of the twistor space P3. However,
this will change when we consider the ambitwistor space in section VIL.3.3.

88 Diffeomorphisms in the real case. It is important to note that the diagram

R* x CP?
TF'z/ \7:1 (VIL60)
P2 R4
describes quite different situations in the Euclidean (¢ = —1) and the Kleinian (¢ = +1)
case. For ¢ = —1, the map m is a diffeomorphism,
P3, = RY x CP', (VIL61)

and the double fibration (VII.60) is simplified to the non-holomorphic fibration

P2, — R* (VIL62)
where 3 stands for complex and 4 for real dimensions. More explicitly, this diffeomorphism
reads

i z_1~_ + ziéf_ _ 2321 432 12 Z-2F — Ziz_%_ _ 2372 — 1
14232 14238 o 1+232 1+232% 7 (VIL63)
)\j: = Zj: s

and the patches Uy are diffeomorphic to the patches U Correspondingly, we can choose
either coordinates (2¢, 23 := A1) or (z%% A1) on P3, and consider this space as a complex
3-dimensional or real 6-dimensional manifold. Note, however, that the spaces P3 ; and
R*0 x CP! are not biholomorphic.

In the case of Kleinian signature (++——), we have a local isomorphisms
SO(2,2) ~ Spin(2,2) ~ SL(2,R) x SL(2,R) ~ SU(1,1) x SU(1,1) (VIL.64)

and under the action of the group SU(1, 1), the Riemann sphere CP! of projective spinors
decomposes into the disjoint union CP! = H_% USTUH? = H?US! of three orbits. Here,
H? = H? U H? is the two-sheeted hyperboloid and H3 = {\y € Uyg|[\y] < 1} &
SU(1,1)/U(1) are open discs. This induces a decomposition of the correspondence space
into

R'x CP' = R'x HZUR'x STUR' x H2 = R'x HUR*x ' (VIL65)
as well as a decomposition of the twistor space
P = PPUPUPE = PPUP,, (VIL66)

where P3 := P3| g3 are restrictions of the holomorphic vector bundle (VIL.41) to bundles

over H. The space Py := P3| is the real 5-dimensional common boundary of the

“In our notation, R”? = (RP"?, g) is the space RP? with the metric g = diag(—1,...,—1,+1,...,41).

q p
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spaces P3. There is a real-analytic bijection between R* x H? = €2 x H? and P%, which
reads explicitly as

) 1 .332 =31 =2 . =2 =31 32 1
JREN 2y —2yZY 22z + zZ2 1B Ay T ZyEy 0 ARZ -z
- 3.3 3.3 - 33 3.3
1—z+z+ 1— 2222 1—z+z+ 1—2z2z° (\711,67)

To indicate which spaces we are working with, we will sometimes use the notation P2
and imply P3; := P? and P-3H := P3 C P3. The situation arising for the real structure
Tp can — in principle — be dealt with analogously.

§9 Vector fields on P3. On P2, there is the following relationship between vector fields
of type (0,1) in the coordinates (z%,23) and vector fields (VIL.49) in the coordinates
(x* Ax):

0 .0 _ 0 . _
- = )\a _ = — V _— = )\Oc _ = — V
82:1t Y+ AL 26 Y+Vo 82:%: VAL Orld EVEVL

9 9 . 9 9 . (VIL.68)
- _Z alyy v _ 9 2y
FE ) WA FE) W

where we introduced the factors
1 1 1 1
vy = = and y- = — = = . (VIL.69)

S AT

(67

1-— 5)\4_;\4_ j\i)\z

§10 The real twistor space 7°. The set of fixed points under the involution 7° of the
spaces contained in the double fibration (VIL.45) form real subsets 72 ¢ P3, R*»? ¢ C*
and R%? x S' € FP. Recall that the space 73 is diffeomorphic to the space RP3\RP!
(cf. (VIL56)) fibred over S' = RP! ¢ C©P!. Thus, we obtain the real double fibration

R2? x

. - (VIL70)
73/ \Rz,z

Here, 71 is again the trivial projection and 9 is given by equations (VII.44) with [Ay| = 1.
The tangent spaces to the two-dimensional leaves of the fibration mp in (VIL.70) are
spanned by the vector fields

o1 9 : — _
o= Mg s with vy = —Ap0; (VILT1)

v
where | Ay | = 1. Equivalently, one could also use the vector fields

7_ e O _ .
v, = )\_ax‘m = A_0f with A\ = b = A+ (VIL.72)

The vector fields (VIL.71) and (VII.72) are the restrictions of the vector fields V¥ from
(VIL.49) to |Ax| = 1.
§11 Forms. The forms E$ with a = 1,2, 3 dual to the above vector fields are given by

the formulae
E$ = —yidfdz®d ) B3 = dy. (VIL.73)

% Although 71 was defined on P3, it induces an involution on F° which we will denote by the same
symbol in the following.
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§12 Flag manifolds. There is a nice interpretation of the double fibrations (VII.45) and
its dual version in terms of flag manifolds (see §5 of section IL.1.1). For this, however,
we have to focus back on the full complexified compactified twistor space CP>. Upon
fixing the full space the flags will live in to be C*, we can establish the following double

fibration:
Fio4

w'g/ \7:1 (VIL74)
Fi4 Fy 4

Let (L1, La) be an element of Fig 4, i.e. dimg Ly = 1, dimg Ly = 2 and Ly C L. Thus
Fia4 fibres over Fy 4 with CP! as a typical fibre, which parameterizes the freedom to
choose a complex one-dimensional subspace in a complex two-dimensional vector space.
The projections are defined as ma(L1, Lo) = Ly and m1(L1, La) = L. The full connection
to (VIL.45) becomes obvious, when we note that Fy 4 = CP?® = P3 U CP' and that
F>4 = G24(C) is the complexified and compactified version of R*. The advantage of
the formulation in terms of flag manifolds is related to the fact that the projections are
immediately clear: one has to shorten the flags to suit the structure of the flags of the
base space.
The compactified version of the “dual” fibration is

wf/ \711 (VIL75)

F34 Fs 4
where F3 4 is the space of hyperplanes in C*. This space is naturally dual to the space of

lines, as every hyperplane is fixed by a vector orthogonal to the elements of the hyperplane.
Therefore, we have F54 = FJ, = CP? > P3.

VII.3.2 The Penrose-Ward transform

The Penrose-Ward transform gives a relation between solutions to the self-dual Yang-
Mills equations on C* and a topologically trivial, holomorphic vector bundle E over the
twistor space P3, which becomes holomorphically trivial upon restriction to holomorphic
submanifolds CP! ¢ P3. We will first discuss the complex case, and end this section
with a remark on the simplifications in the real setting.

§13 The holomorphic bundle over P3. We start our considerations from a rank n
holomorphic vector bundle E over the twistor space P3. We assume that F is topologically
trivial, i.e. one can split its transition function f_ according to fi_ = w;lw_, where 11
are smooth functions on the patches U+. For the Penrose-Ward transform to work, we
have to demand additionally that £ becomes holomorphically trivial, when we restrict it
to an arbitrary section of the vector bundle P? — CP!. We will comment in more detail
on this condition in [§17.

§14 Pull-back to the correspondence space. The pull-back bundle 75 E over the
correspondence space C* x CP! has a transition function 7% f, _, which due to its origin
as a pull-back satisfies the equations

VE(mfio) = 0. (VIL76)

Furthermore, due to the holomorphic triviality of £ on any (DPJI;—>733, we can split the
transition function according to

w5 fo (N5 L) = ¢ (@ Ay (e A0 (VIL77)
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where 1)1 are holomorphic, matrix-group-valued functions in the coordinates (%% A1)
of the correspondence space. This is easily seen by pulling back the restrictions of F
to the CP. for each 2%* separately. This guarantees a splitting holomorphic in Ay
parameterizing the CPL. Since the embedding of the CPL in the twistor space P? is
holomorphically described by the moduli z®%, the splitting is furthermore holomorphic
in the latter coordinates.

8§15 Construction of a gauge potential. On the correspondence space, we obtain
from (VIL.76) together with (VIL.77) the equation

Py Vbt = ¢ Vg™t (VIL78)

over L~{+ NU-_. One can expand Vi, w;l and ¥_, 1/1:1 as power series in Ay and A_ = )\I_l,
respectively. Upon substituting the expansions into equations (VIL.78), one sees that both
sides in (VIL78) must be linear in A;; this is a generalized Liouville theorem. One can
introduce Lie algebra valued fields A, whose dependence on AL is made explicit in the
formulae

AL = X Ase = A0y 00l = Ao Oaa ! (VIL79)

The matrix-valued functions A,s(z) can be identified with the components of a gauge
potential A,sdz®® 4+ Agpr on the correspondence space C* x CP! with Agprt = 0: the
component Ay, vanishes as

Az, = mahwj =0. (VIL80)

§16 Linear system and the SDYM equations. The equations (VIL.78) can be recast
into a linear system

(Vi + Ay = 0, (VILSL)
with similar equations for ¢_. We encountered this linear system already in section
VII1.2.2, 55, and we briefly recall that the compatibility conditions of this linear system
are

Vi + ALV + AS] = AN [0ae+ Aaa 05+ Agg) = MNF,

s = 0. (VIL82)

To be satisfied for all ()\i), this equation has to vanish to all orders in A, separately,
from which we obtain the self-dual Yang-Mills (SDYM) equations

F1i,2i =0, F12,22 =0, F11,22+F12,2i =0 (VIL.83)

for a gauge potential (Ans). Recall that in the spinorial notation F g5 = Eap de +
€ag fap the SDYM equations F' = I are rewritten as

fag =0, (VIL.84)

i.e. the part of F &80 symmetric in the indices o'zﬁ vanishes.

8§17 Holomorphic triviality. Let us comment on the condition of holomorphic triviality
of E upon reduction on subspaces (DPJIC in slightly more detail. For this, recall that every
rank n holomorphic vector bundle over CP! is (holomorphically) equivalent to a direct
sum of line bundles

O(i1) @...00(iy) , (VIL.85)
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i.e., it is uniquely determined by a set of integers (ii,...,%,). Furthermore, the sum
of the i is a topological invariant and each of the i; is a holomorphic invariant up to
permutation.

Now consider a rank n holomorphic vector bundle E over the twistor space P3. The set
of equivalence classes of such vector bundles £ which become holomorphically equivalent
to the bundle (VII.85) when restricted to any projective line CPL in 73 will be denoted
by M(i1,...,in). The moduli space of holomorphic vector bundles on P3 contains then
all of the above moduli spaces:

M D My, i) (VIL.86)

7:17---7in

Furthermore, M contains also those holomorphic vector bundles whose restrictions to
different CPL<P3 are not holomorphically equivalent.
The focus of interest in the literature, including this thesis, is in general the moduli
subspace
M(0,...,0) (VIL.87)

which is clearly a true subset of (VIL.86) and bijective to the moduli space of solutions to
the SDYM equations in four dimensions. Although a generalization of Ward’s construc-
tion to the cases M (i1, ...,1iy) for arbitrary (i1, ...,4,) were studied in the literature e.g.
by Leiterer in [177], a thorough geometric interpretation was only given for some special
cases of (i1,...,iy). It seems that the situation has not been yet completely clarified.
From (VIL.86) together with the Leiterer examples, it is, however, quite evident that the
moduli space M(0,...,0) is not a dense subset of the moduli space M. Furthermore,
the statement is irrelevant in the most important recent application of the Penrose-
Ward-transform in twistor string theory, cf. section V.4.6: a perturbative expansion in
the vicinity of the vacuum solution, which corresponds to a trivial transition function
f+— = 1,. There, the necessary property of holomorphic triviality after restriction to
any CPL—P3 follows immediately from Kodaira’s theorem.

8§18 Holomorphic Chern-Simons equations. One can also obtain a linear system
directly on the twistor space by using the splitting of the transition function f;_ of
into smooth functions via

foo = 97 (VIL3)

Such a splitting exists, as £ was assumed to be topologically trivial. Note furthermore
that fi_ is the transition function of a holomorphic vector bundle and therefore satisfies

)
074

fio =0 with a = 1,...,3. (VIL89)

Similarly to the case of the components A, introduced before, we find here a gauge
potential

AV = p ot = JapTt (VIL.90)

on U, NU_, which can be extended to a gauge potential on the full twistor space P? =
Uy UU_. Note that here, we choose not to work with components, but directly with the
resulting Lie algebra valued (0, 1)-form A%!. Again, one can cast equations (VIL.89) into
a linear system

@+ A" )y = 0, (VILO1)
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which has the holomorphic Chern-Simons equations
DAY 4 AL A A0 — (VIL.92)

as its compatibility conditions. This aspect of the Penrose-Ward transform will become
particularly important when dealing with the supertwistor space P34 in section VIL.4.1.
There, we will be able to give an action for holomorphic Chern-Simons theory due to the
existence of a holomorphic volume form on P3/4.

One has to stress at this point that a solution to the hCS equations (VIL.92) cor-

responds to an arbitrary holomorphic vector bundle over the twistor space P2, which
does not necessarily satisfy the additional condition of holomorphic triviality on all the
@Pi<—>733. In the following, we will always imply the restriction to the appropriate sub-
set of solutions to (VIL.92) when speaking about general solutions to the hCS equations
(VIL.92) on P3. As mentioned in the previous paragraph, this restriction is irrelevant for
perturbative studies. Furthermore, it corresponds to those gauge potentials, for which
the component fl;\ . can be gauged away, as we discuss in the following paragraph.
8§19 Gauge equivalent linear system. Recall that the trivializations defined by for-
mula (VIL77) correspond to holomorphic triviality of the bundle E| Pl for any CPL—P3.
Similarly, we may consider restrictions of E to fibres (Di of the fibration P — CP!. All
these restrictions are holomorphically trivial due to the contractibility of (D?\ for any
A € CP'. Therefore there exist regular matrix-valued functions ¢+ (2%, A+, A+) depend-
ing holomorphically on 2§ (and non-holomorphically on Ay ) such that

fro = 07 = (), (VIL93)
and @ := ¢+(1Z+)_1 =)_ (1,7)_)_1 defines a gauge transformation
O qor Ay = o0) 5 (2ar—o, A (VIL94)
oz T oA =0 A -

to a special trivialization in which only fl;\ N # 0 and %_&0,1 = 0.

8§20 The Euclidean case. Let us now consider the Penrose-Ward transform in the
Euclidean case. The important point here is that the spaces 7331 and R* x CP' become
diffeomorphic, and thus the double fibration (VIIL.45) reduces to a single fibration

P3R4 (VIL95)

Therefore, we have the identification (VIL.68) between the vector fields V. and %.
This implies furthermore that the linear system (VIL.81) and (VIL.91) become (gauge)
equivalent. We have for the two splittings

fro = Mo = o with gy = oM, (VIL96)

where ¢ is a globally defined, regular matrix-valued function on P3. Decomposing the
gauge potential A% into the components Aciv = Vai_uéio’l, we have

AL = 9V = VT = T eV e + o Ve
= o ALo+ o7V, (VIL97)
Ay, = i85 07 = 020 9T = 0705 o,

from which we indeed realize that ¢ plays the role of a gauge transformation.
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§21 Vector bundles in the Kleinian case. Consider a real-analytic function f7 _ :
T3 — GL(n,C) on the twistor space 73 which can be understood as an isomorphism
fT_: ET — ET between two trivial complex vector bundles ET — 73. We assume that
f1_ satisfies the reality condition

(T 2T = f_(2as) (VIL98)

Such a function f7_ can be extend holomorphically into a neighborhood U of T 3 in P3,
such that the extension fy_ of f7_ satisfies the reality condition

(Fr- (REEAD)T = FoGEA (VIL99)

generalizing equation (VIL.98). The function f;_ is holomorphic on U = Uy NU_ and
can be identified with a transition function of a holomorphic vector bundle E over P3 =
Uy UU_ which glues together two trivial bundles Fy = Uy x C" and E_ = U_ x C".
Obviously, the two trivial vector bundles ET — 73 are restrictions of the trivial bundles
Ei — Uy to T3.

The assumption that E becomes holomorphically trivial upon reduction to a subset
CPL c P3? implied a splitting of the transition function fi _,

fro = i, (VIL.100)

into regular matrix-valued functions ¥ and 1_ defined on U, = Pf’r UU and U_ = P2 UU
and holomorphic in Ay € H_2F and A\_ € H?, respectively. Note that the condition (VIL.99)
is satisfied if

P Ny) = Wl (@A) . (VIL101)

Restricting (VIL.100) to Si—CP., we obtain
fio = @l with (p3)~" = (D), (VIL.102)

where the 7 are restrictions to R* x S! of the matrix-valued functions ¥+ given by
(VIL.100) and (VIL.101). Thus the initial twistor data consist of a real-analytic function®
fT_ on T3 satisfying (VILIS) together with a splitting (VIL102), from which we con-
struct a holomorphic vector bundle E over P? with a transition function f,_ which is
a holomorphic extension of f7_ to U D 73. In other words, the space of real twistor
data is the moduli space of holomorphic vector bundles E — P? with transition functions
satisfying the reality conditions (VIL.99).

§22 The linear system on 7. In the purely real setting, one considers a real-analytic
GL(n, ©)-valued function f7_ on 73 satisfying the Hermiticity condition (VIL98) in the
context of the real double fibration (VIL.70). Since the pull-back of f7_ to R* x S! has
to be constant along the fibres of m, we obtain the constraint equations o7 f7_ = 0
or equivalently v, fT_ = 0 with the vector fields v defined in (VIL71). Using the
splitting (VIL.102) of f7_ on fibres S of the projection 71 in (VIL70) and substituting
fi_= (wi)*lwi into the above constraint equations, we obtain the linear systems

(O + ADYT =0, or (v, +A)YT = 0. (VIL.103)

50ne could also consider the extension fi_ and the splitting (VIL.102) even if fi_ is not analytic, but
in this case the solutions to the super SDYM equations can be singular. Such solutions are not related
to holomorphic bundles.
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Here, A+ = (AZ) are relative connections on the bundles E7. From (VIL.103), one
can find 97 for any given A and vice versa, i.e. find AX for given 4L by the formulse

AL = ol = ¢Tof(wT)Th,

_ 1 o a1 (VIL.104)
'Aa = erva (er) = Y_Vqy (1/]7) .
The compatibility conditions of the linear systems (VIL.103) read
Ua Af — U AL + 1AL AG] = 0. (VIL.105)

Geometrically, these equations imply flatness of the curvature of the relative connections
A+ on the bundles E7 defined along the real two-dimensional fibres of the projection
in (VIL70).

Recall that 97 and 97 extend holomorphically in Ay and A_ to H_% and H?2, re-
spectively, and therefore we obtain from (VIL.104) that AX = A\ A,a, where Ay does
not depend on A\y. Then the compatibility conditions (VIL.105) of the linear systems
(VIL.103) reduce to the equations (VIL.82). It was demonstrated above that for e = +1,
these equations are equivalent to the field equations of SDYM theory on R?*?. Thus,
there are bijections between the moduli spaces of solutions to equations (VII.105), the
field equations of SDYM theory on R?? and the moduli space of 7i-real holomorphic
vector bundles E over P3.

§23 Extension to P3. Consider now the extension of the linear systems (VIL.103) to
open domains Uy =PI U U D T3,

(VE+ ALY = 0 and 05,9+ = 0, (VIL106)

where here, the V= are vector fields of type (0,1) on Ui := U\(R* x S') as given
in (VIL49) and (VIL.68). These vector fields annihilate f;_ and from this fact and
the splitting (VIL.100), one can also derive equations (VIL.106). Recall that due to the
existence of a diffeomorphism between the spaces R* x H? and P? which is described in
68, the double fibration (VIL.60) simplifies to the nonholomorphic fibration

P3, — RY. (VIL.107)

Moreover, since the restrictions of the bundle E — P3; to the two-dimensional leaves of
the fibration (VIL.107) are trivial, there exist regular matrix-valued functions Y1 on Ui
such that

fro = it (VIL.108)

on U* = U\(R* x S'). Additionally, we can impose the reality condition
. 1 . .
e <xa°‘, A) = P (%% A) (VIL109)
+

on zﬂi. Although U* consists of two disconnected pieces, the functions Qﬁi are not inde-
pendent on each piece because of the condition (VII.109), which also guarantees (VII.99)
on U°. The functions ¢4 and their inverses are ill-defined on R* x ' 22 P3 since the re-
striction of 7y to R* x S is a noninvertible projection onto 72, see §8. Equating (VIL.99)
and (VIIL.108)), one sees that the singularities of 1[& on R* x S! split off, i.e.

~

e = ¢ s, (VIL.110)
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1

in a matrix-valued function ¢~ which disappears from

fro = 97 = @Wite) (e o) = vty . (VIL111)

Therefore fi_ is a nonsingular holomorphic matrix-valued function on all of 4.

From (VILI08)-(VIL111) it follows that on P?, we have a well-defined gauge transfor-
mation generated by ¢ and one can introduce gauge potentials fl?;l and A%" which are de-
fined on U and U, respectively, but not on R* x S1. By construction, AL = (/10’1, /1(11)
satisfies the hCS equations (VIL.92) on P3 = P3 UP?, which are equivalent to the SDYM
equations on R%*2. Conversely, having a solution A% of the hCS field equations on
the space P3, one can find regular matrix-valued functions 1$+ on UF and 1/3, on U?
which satisfy the reality condition (VII.109). These functions define a further function
fi_ = Qﬁ;ld, : U* — GL(n,C) which can be completed to a holomorphic function
fr— U — GL(n, C) due to (VIL.111). The latter one can be identified with a transition
function of a holomorphic vector bundle E over the full twistor space P3. The restriction
of fi_ to T3 is a real-analytic function f]_ which is not constrained by any differential
equation. Thus, in the case ¢ = +1 (and also for the real structure 7p), one can either
consider two trivial complex vector bundles E7 defined over the space 72 together with
an isomorphism f7_: ET — E7 or a single complex vector bundle E over the space P3.
However, the appropriate hCS theory which has the same moduli space as the moduli
space of these bundles is defined on P3. Moreover, real Chern-Simons theory on 72 has
no moduli, since its solutions correspond to flat bundles over 73 with constant transition
functions” defined on the intersections of appropriate patches covering 7°3.

To sum up, there is a bijection between the moduli spaces of solutions to equations

(VIL.105) and to the hCS field equations on the space P3 since both moduli spaces are
bijective to the moduli space of holomorphic vector bundles over P3. In fact, whether
one uses the real supertwistor space 73, or works with its complexification P3, is partly
a matter of taste. However, the complex approach is more geometrical and more natural
from the point of view of an action principle and the topological B-model. For example,
equations (VIL.105) cannot be transformed by a gauge transformation to a set of differ-
ential equations on 73 as it was possible on P? in the complex case. This is due to the
fact that the transition function f;_, which was used as a link between the two sets of
equations in the complex case does not satisfy any differential equation after restriction to
T3. From this we see that we cannot expect any action principle on 73 to yield equations
equivalent to (VIL.105) as we had in the complex case. For these reasons, we will mostly
choose to use the complex approach in the following.
8§24 Reality of the gauge potential. After imposing a reality condition on the spaces
P3 and C*, we have to do so for the vector bundle and the objects it comes with, as well.
Note that A,qdz®® will take values in the algebra of anti-Hermitian n x n matrices if 1+
satisfies the following condition®:

.I.
Y Ay) = (w_ (:p f)) . (VIL112)
The anti-Hermitian gauge potential components can be calculated from (VIL.79) to be

Ay = U0ty Ly = Al Ay = viopuitl, = Al (VIL113)

"Note that these transition functions are in no way related to the transition functions f_ of the
bundles E over P? or to the functions f]_ defined on the whole of 7.

8Here, t means Hermitian conjugation.
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§25 Explicit Penrose-Ward transform. One can make the Penrose-Ward transform
more explicit. From the formula (VIL.79), one obtains directly
dhp AF

A = — and A, =

AL dr AS
ol g1 2mi A2

— VII.114
St 27 )\+ ’ ( )

where the contour S = {\; € CP': |A\;| = r < 1} encircles A\ = 0. Using (VIL79),
one can easily show the equivalence of (VIL.114) to (VIL.113). The formulee (VII.114)
define the Penrose-Ward transform

PW: (AL, A5, =0) — (Aua) , (VIL.115)
which together with a preceding gauge transformation
(AL, Az,) v5 (AL, Ay,=0) (VIL116)

maps solutions (A, A;\+) of the field equations of hCS theory on P3 to solutions (Aag)
of the SDYM equations on R*. Conversely, any solution (A,q) of the SDYM equations
corresponds to a solution (flg,fl;%) of the field equations of hCS theory on P? which
directly defines the inverse Penrose-Ward transform PW~!. Note that gauge transfor-
mations” of (flg,fl;hr) on P? and (Asq) on R* do not change the transition function
f+_ of the holomorphic bundle E — P3. Therefore, we have altogether a one-to-one
correspondence between equivalence classes of topologically trivial holomorphic vector
bundles over P? which become holomorphically trivial upon reduction to any CPL c P3
and gauge equivalence classes of solutions to the field equations of hCS theory on P3 and
the SDYM equations on R*.

§26 Anti-self-dual gauge fields. The discussion of anti-self-dual gauge fields follows
precisely the lines of the discussion of the self-dual case. The first difference noteworthy is
that now the tangent spaces to the leaves of the fibration 79 in the dual case are spanned
by the vector fields Y_/di = p4 0qa The definition of the gauge potential (Ang) is then (cf.
(VIL.79))

AL = pf Aae = pG ¥4 Gaa ¥y = pG Y- BaavZ' (VIL117)
which gives rise to the linear system
(ViE+ Ay = 0. (VIL118)
The corresponding compatibility conditions are easily found to be
Vi + A3V + A5) = 1§ 1l 0aa+Aac 055+ Ags] =t u§plFy 55 = 0, (VIL119)

and these equations are equivalent to the anti-self-dual Yang-Mills equations f,5 = 0.

§27 Example. To close this section, let us consider an explicit example for a Penrose-
Ward transform, which will yield an SU(2) instanton. We start from a rank two holo-
morphic vector bundle over the real twistor space P2, given by the transition function

I R
f+— = <_A+ 8 ) (VIL.120)

9Let us stress that there are two gauge transformations for gauge potentials on two different spaces
present in the discussion.
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(a special case of the Atiyah-Ward ansatz [14]) together with the splitting

oy, (et AT Y 11 o4 AT
fr— = YTy = ( Y +1 )\/$\/$< A I ) . (VIL121)

Here, we decomposed the function p in its Laurent series

p= > A =p_+otps (VIL.122)

n=—oo

and ps+ and ¢ denote the components holomorphic on Us and CP?!, respectively. The
gauge potential A§ = 1/J+Vai¢;1 is then easily calculated and the four-dimensional com-
ponents A, are reconstructed via the formule (VII.114). Eventually, this calculation
yields the result

Ay = Ri0,0%(020,072 — ¢ 38,02) + J1a(¢20,07 2 + ¢ 20,02) . (VIL123)

VI11.3.3 The ambitwistor space

8§28 Motivation. The idea leading naturally to a twistor space of Yang-Mills theory is
to “glue together” both the self-dual and the anti-self-dual subsectors to the full theory.
To achieve this, we will need two copies of the twistor space, one understood as dual
to the other one, and glue them together to the ambitwistor space. Roughly speaking,
this gluing amounts to restricting to the diagonal in the two moduli spaces. From this,
we can already anticipate a strange property of this space: The intersection of the a-
and (-planes corresponding to points in the two twistor spaces will be null lines, but
integrability along null lines is trivial. Therefore, we will have to consider infinitesimal
neighborhoods of our new twistor space inside the product of the two original twistor
spaces, and this is the origin of the name ambitwistor space. Eventually, this feature
will find a natural interpretation in terms of Graimann variables, when we will turn
to the superambitwistor space in section VIL.7.1. This aspect verifies incidentally the
interpretation of Graffimann directions of a supermanifold as an infinitesimal “cloud of
space” around its body.

§29 The quadric £°. Consider the product of a twistor space P3 with homogeneous
coordinates (w®, \s) and inhomogeneous coordinates (2¢, 23 = Ax) on the two patches
Uz as introduced in section VIL.3.1l and an analogous dual copy P2 with homogeneous
coordinates (0%, j1o) and inhomogeneous coordinates (ui,ui = u+) on the two patches
Ui. The space P3 x P2 is now naturally described by the homogeneous coordinates
(W, Aa; 0%, 1) Furthermore, it is covered by the four patches

U(l) = Z/{+ XUi, U(g) = Z/{_XUi, U(3) = U+ XUj, U(4) = U_XUj, (VH.124)

on which we have the evident inhomogeneous coordinates (z(cfl), z?a);uf“a), u‘?a)). We can
consider P? x P3 as a rank 4 vector bundle over the space CP! x CPL. The global
sections of this bundle are parameterized by elements of C* x € in the following way:

2y = xad‘/\éa) ; u?a) = 200 (VIL.125)
The quadric £° is now the algebraic variety in P3 x P2 defined by the equation

«

Whe — 0% = 0. (VIL.126)
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Instead of (VIL.126), we could have also demanded that

R = 2 —ud A =0, (VIL.127)
on every U(y). These conditions — or equally well (VIL.126) — are indeed the appropriate
“gluing conditions” for obtaining a twistor space useful in the description of Yang-Mills
theory, as we will see. In the following, we will denote the restrictions of the patches U(,)
to £ by Z/_{(a) = U(a) N Lo,

§30 Double fibration. Because of the quadric condition (VIL.127), the moduli 2% and
2% are not independent on £, but one rather has the relation

g = o (VIL.128)

which indeed amounts to taking the diagonal in the moduli space C* x C2. This will also
become explicit in the discussion in §37. With this identification, we can establish the
following double fibration using equations (VII.125):

jE‘G
D \71'1 (VIL.129)
55/ ct

where F0 = ©* x CP! x CP. and 7 is the trivial projection. Here, we have the
correspondences

{subspaces ((DP1 X @Pi)x in £5} — {points T in (134} ,

VII.130
{points pin £5} — {null lines in @4} . ( )

The above-mentioned null lines are intersections of a-planes and the dual §-planes, as
is evident from recalling the situation for both the twistor and the dual twistor space.

Given a solution (2%%) to the incidence relations (VII.125) for a fixed point p in £?, the
set of points on such a null line takes the form

{(2°)} with 2% = #°% 4t AL

where ¢ is a complex parameter on the null line. The coordinates /\f“a) and ,uf“a) can be
chosen from arbitrary patches on which they are both well-defined.

§31 Vector fields The space F° is covered by four patches Z;{(a) =Ty 1(1/_{(@)) and the
tangent spaces to the one-dimensional leaves of the fibration 79 : F% — £5 in (VIL.129)
are spanned by the holomorphic vector field

W = 2 AE Daa - (VIL131)

8§32 Flag manifolds. As for the previously discussed twistor spaces, there is a descrip-
tion of the double fibration (VII.129) in the compactified case in terms of flag manifolds.
The ambient space of the flags is again C*, and the double fibration reads

Fi234
s ;2/ \7:1
F13,4 F274 (V11132)
where Fy4 = G24(C) is again the complexified and compactified version of R3!. The

flag manifold Fi3 4 is topologically the zero locus of a quadric in CP? x CP3. For further
details and the super generalization, see e.g. [284] [134].
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§33 Real structure 71. The Kleinian signature (2,2) is related to anti-linear transfor-
mations™) 7 of spinors defined before. Recall that

1 , i -2 ). =2
n (“2 Ai 7 /‘1>:<‘fl 2 7 2) : (VIL133)
w® Ay 07 2 w i 0 1

and obviously 72 = 1. Correspondingly for (A, u+) € CP! x CPL, we have

> >~
= =

1
Tl(A_A,_) = I = )\_, T1<,U,+) = a = ﬂ_ (V11134)

with stable points
I\ peCP xCPL: X\ =1,p0 = 1} = S' xS c P! x CP! (VIL.135)

and parameterizing a torus S' x S!. For the coordinates (%), we have again

xli xl? 522 jQi
. ) . — . ) VII.136
1 ( 220 22 F12 i ( )

and the real subspace R* of C* invariant under the involution 7 is defined by the equa-

tions

22 2i ~12

72 = gl —(2* +iz®) and 2% = 7% = —(2? —iz!) (VIIL.137)

with a metric ds? = det(dz®®) of signature (2,2).

§34 A 7-real twistor diagram. Imposing conditions (VIL.137), we obtain the real
space R%? as a fixed point set of the involution 7 : C* — C*. Analogously, for the
twistor space CP? and its open subset P3, we obtain real subspaces RP? and 73 (cf.
§6)). Accordingly, a real form of the space F0 is F¢ := R*2 x S! x S}, and we have a real
quadric £5 C T3 x T,? as the subset of fixed points of the involution*!' 7y : £> — £5. This
quadric is defined by equations (VIL.125)-(VIL.127) with the %% satisfying (VIL.137) and
Ay =et =271y =ee = 571 0 < xq, xo < 27, Altogether, we obtain a real form

f6
T »2/ \7‘71
L5 R22 (VIIL.138)
of the double fibration (VIL.129), where all the dimensions labelling the spaces are now
real dimensions.

§35 The Minkowskian involution 7);. Let us consider the manifold P3 x P2 with
homogeneous coordinates (w®, A\g; 0%, 1o ). The antiholomorphic involution

v PEx P — pixpd (VIL.139)

gives rise to Minkowski signature on the moduli space of sections. It is defined as the
map (see e.g. [189])

(WY Aa; 0% fe) = (—0%, Tia; —0%, Ag) (VIIL.140)

10We will not consider the map 7o here.

11 Again, we use the same symbol 71 for maps defined on different spaces.
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interchanging a-planes and (-planes. One sees from (VIL.140) that the real slice in the
space P3 x P2 is defined by the equation!?

oY = —0%, fy = Mg - (VIL.141)
Finally, for coordinates (%) € C*, we have
mu(a®?) = —zP% (VIL.142)

and the Minkowskian real slice R*! C €* is parameterized by coordinates

11 12 11 12
X X x X

o = g0 g3 , 212 = _igl — g2 ,
. . (VII.144)
22t = —igt 4 22 , 22?2 = —iz% 4 i3 ,
with (20,21, 2%, 23) € R®! and as in (VIL59), we define
ds? = det(dz®%) = g = diag(—1,4+1,+1,+1) . (VIIL.145)
One can also introduce coordinates
Y = gt (VII1.146)

yielding a metric with signature (1,3). Recall that the involution 7, interchanges a-
planes and (-planes and therefore exchanges opposite helicity states. It might be iden-
tified with a Zs-symmetry discussed recently in the context of mirror symmetry [2] and
parity invariance [296].
§36 A T)/-real twistor diagram. Recall that (A\s) and (1) are homogeneous coor-
dinates on two Riemann spheres and the involution 7)p; maps these spheres one onto
another. Moreover, fixed points of the map 757 : CP! x CP! — CP! x CP. form the
Riemann sphere

CP' = diag(CP' x CP'), (VIL147)

where @1(: (DP}k) denotes the Riemann sphere C P! with the opposite complex struc-
ture. Therefore, a real slice in the space F¢ = C* x CP! x CP} introduced in (VIL.129)
and characterized as the fixed point set of the involution 7, is the space

FS = R* x CP! (VIL.148)

™

of real dimension 6.

The fixed point set of the involution (VIL.139) is the diagonal in the space P3 x P3,
which can be identified with the complex twistor space P3 of real dimension 6. This
involution also picks out a real quadric £° defined by equations (VIL.127) and the reality
conditions (VIL.141)-(VIL.144). Thus, we obtain a real version of the double fibration

(VIL129),
]:6
Wf/ \7:1
LS ]RS,l

The dimensions of all spaces in this diagram are again real.

(VII.149)

12Here, a and & denote the same number.



170 Twistor Geometry

837 Yang-Mills equations from self-duality equations. Consider a vector bundle
E over the space C* x C* with coordinates r® and s**. On FE, we assume a gauge
potential A = Agddro‘d + A; ﬁ-dsﬁﬁ . Furthermore, we introduce the coordinates

xad — %(Tad_i_sad) and kad _ %(rad_sad) (VH.150)

on the base of E. We claim that the Yang-Mills equations V*4F

o7

aBp = 0 are then

equivalent to
(Vi Vil = #[Via. Vil + O(k)

s s _ s s 2

[Via Vigl = — %[V, Vil + O(K) (VIL151)
T s _ 2

[ advvﬁﬁ'] - O(k ) )

1B, s .1
where we define *Faaﬁﬁ' il ST
To understand this statement, note that equations (VIL.151) are equivalent to

Lehs Fﬂ’j&; separately on each C*.
[Vaar Vgl = [V’S;a,VZBHO(kQ), VL 159

Fo VI = %[V, VE ]+ Ok (VIL.152)
[vaav BBl aar ¥ 33 ’

which is easily seen by performing the coordinate change from (r,s) to (z,k). These
equations are solved by the expansion [290), 139]

AF = _1pm0 B8 Lpaigm0( pr0 )68
o 2 aapst 8K Voy (F )R (VIL.153)
x  _ o4x0 w0 188 1140 a0 88 :
Asa = Aaa =#F oqgh™ = KTV (F )BT
if and only if Vfc‘%F =0 — 0 is satisfied. Here, a superscript 0 always denotes an ob-

aQ

ject evaluated at k¢ ﬂzﬁ 0. Thus we saw that a solution to the Yang-Mills equations
corresponds to a solution to equations (VIL151) on C* x C%.

838 Third order neighborhoods. As discussed before, the self-dual and anti-self-dual
field strengths solving the first and second equation of (VII.151) can be mapped to certain
holomorphic vector bundles over P2 and P2, respectively. On the other hand, the poten-
tials given in (VIL.153) are now defined on a second order infinitesimal neighborhood!*
of the diagonal in ©* x C* for which O(k?) = 0. In the twistor description, this potential
corresponds to a transition function fi_ ~ w;lz/}_, where the Cech 0-cochain {1} is a
solution to the equations

: 0
(g + A ) ¥ = O,
(VIL154)

o a s _ 4
s (s + 424 ) v = O

o)
Oroa
contain derivatives with respect to k, the above equations can indeed be rendered

and

Roughly speaking, since the gauge potentials are defined to order k? and since
0
Osc
exact to order k2. The exact definition of the transition function is given by

- —1
Froioi= D Ui, 5, (VIL155)
7=0

130ne could also insert an i into this definition but on €*, this is not natural.

Yot a thickening
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where the additional indices label the order in k. On the twistor space side, a third order
neighborhood in %k corresponds to a third order thickening in

K(a) = z(ofl),ugf) —uf‘a)/\ff) . (VIIL.156)

Altogether, we see that a solution to the Yang-Mills equations corresponds to a topo-
logically trivial holomorphic vector bundle over a third order thickening of £3 in P3 x P32,
which becomes holomorphically trivial, when restricted to any CP! x CPL—.5.

VI1I1.4 Supertwistor spaces

So far we encountered two twistor spaces: the twistor space P2, which is an open subset
of CP? and the ambitwistor space, which is a third order thickening of the quadric £°
in P3 x P3. In this section, we discuss the extension of the former by GraBmann-odd
directions [95]. Further extensions and the extension of the ambitwistor space will be
discussed in subsequent sections.

VII.4.1 The superextension of the twistor space

§1 Complex projective superspaces. A super extension of the twistor space CP? is
the supermanifold CP*W with homogeneous coordinates (w®, A4, 7;) subject to the iden-
tification (w®, Aa, i) ~ (tw®,t Aa, tn;) for any nonzero complex scalar ¢. Here, (w®, \s)
are again homogeneous coordinates on CP? and 7; with i = 1,...,N are Grafmann
variables. Interestingly, this supertwistor space is a Calabi-Yau supermanifold in the case
N = 4 and one may consider the topological B-model introduced in section V.3.3 with
this space as target space [297].

§2 Supertwistor spaces. Let us now neglect the super light cone at infinity similarly
to the discussion in section VIL.3.1. That is, we consider analogously to the space P3 =
CPA\CP' = O(1) ® O(1) its super extension P covered by two patches, P3NV =
CPM\CPW =14, Ul_, with even coordinates (VIL39) and odd coordinates

nf o= L on Uy and 77 = % on U (VIL157)
A A3

related by
nto= 2y (VIL158)

on Uy NU-. We see from (VILI57) and (VILI58) that the fermionic coordinates are
sections of IIO(1). The supermanifold PV is fibred over CP°,

PNV . opllo, (VIL.159)
with superspaces (D?\W as fibres over A € CP'°. We also have a second fibration
P3N ¢cpW (VIL.160)

with (Di‘o as fibres.
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§3 Global sections and their moduli. The global holomorphic sections of the bun-
dle (VIL159) are rational curves CPL <P parameterized by moduli (zp,n) =

TR
(x5, n%) € Cx 42N according to

2= 2L ot = Ay for (M) = (LADT, A el
2 = PNy, m o= iy for (A;) = (Ao, DT, A_eU-.

(VIL161)

Here, the space (Dj‘%‘zN is indeed the anti-chiral superspace. Equations (VII.161) define
again a supertwistor correspondence via the double fibration

5|12\

Fr

NG (VIL162)

42N
i Ch
where FOI2N o~ (DEBN x CP! and the projections are defined as
m(@f L) = () and  ma(aft, i AY) = (@FAL As,nfAY) - (VIL163)
The supertwistor correspondence now reads explicitly
{projective lines (DPiJ7 in 733W} — {points (x,7n) in ®4|2N} ,
{ points p in PPV} { null (ag-)superplanes €2V in (D4|2N} .

Given a solution (%%, /%) to the incidence relations (VIL161) for a fixed point p € P3WV,
the set of all solutions is given by

{(xadunid)} with 294 — iad‘i‘ua i and nf“ = ﬁ?—|—5i)\i, (VIL.164)

where p® is an arbitrary commuting two-spinor and ¢; is an arbitrary vector with Graf-
mann-odd entries. The sets defined in (VII.164) are then called null or ar-superplanes,
and they are of superdimension 2|\

84 Global sections of a different kind. In the previous paragraph, we discussed
sections of the bundle (VII.159), which is naturally related to the discussion of the bosonic
twistor space before. One can, however, also discuss sections of the bundle (VII.160),

3N

which will give rise to a relation to the dual supertwistor space Py~ and its moduli
space.
The global holomorphic sections of the bundle (VIL.160) are spaces CP, W P3NV

defined by the equations

28 = 299\ —20%pF  with (A, nF) e Uy ncp'wW (VIIL.165)

42N

and parameterized by the moduli (zr,0) = (2§%,60*) € C;~" . Note that the moduli

space is the chiral superspace (D4L|2N, contrary to the anti-chiral superspace (DélQN, which
arose as the moduli space of global sections of the bundle (VII.159). Equations (VIIL.165)
define another supertwistor correspondence,

5|3\

~ﬁ.L
NG (VIL166)

42N
7)3|N (DL

where F; x CPW. The twistor correspondence here reads

53N (DA;JQN
{superspheres (DPIWU in P3W} — {points (xr,0) in @4‘2/\/}

{ points p in PN} {null (az-)superplanes (DP‘QN in (DipN} .
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§5 Relation between the moduli spaces. From (VIL.161) and (VIL.165) we can de-
duce that
e = 299 — 9% and 2§Y = 2% 4 0%pd (VIL.167)

where (z%¢) € C*° are “symmetric” (non-chiral) bosonic coordinates. Substituting the
first equation of (VIL.167) into (VII.161), we obtain the equations

24 = 2N —9iptaE pF = pfaE (VIIL.168)

«

defining degree one curves @Piﬁﬁ—ﬂ?gw which are evidently parameterized by moduli
(z°%, 0% nd) € CHUWN . Therefore we obtain a third double fibration
f’5|4j\/

NG (VIL169)
DIN AN
with coordinates
(z°%, AE 0 pf) on PNV = W P!, (VIL.170a)
(%%, 0%, %) on C1V (VIL170b)
22, A, nf oon PV (VIL170c)

o )

The definition of the projection 7 is obvious and 79 is defined by (VIL.161) and (VII.167).
The double fibration (VII.169) generalizes both (VIL.162) and (VII.166) and defines
the following twistor correspondence:

{projective line (DP;’(,JI in 773|N} — {points (z,0,7n) in (D4|4N} ,

{points P in 773|N} — {null (a-)superplanes (DIQ)BN in (D4|4N} .

86 Vector fields. Note that one can project from F 54N onto P3V in two steps: first
from F514*V onto ]-'QQN, which is given in coordinates by
D S B C P ) (VIL171)

with the 2¢* from (VIL.167), and then from .7-"}5%|2N onto P3| which is given in coordinates
by
(@5, AL nf) — @A, AL niAy) - (VIL172)

The tangent spaces to the (0|2A\)-dimensional leaves of the fibration (VIL.171) are span-
ned by the vector fields

o 40

Doi = 90 + Do

= Oni + 18 0ai (VIL173)

on CHN < F34N | The coordinates x%‘j‘, )\di and 17?‘ belong to the kernel of these vector

fields, which are also tangent to the fibres of the projection CUW (Di}pN
chiral superspace. The tangent spaces to the (2|N)-dimensional leaves of the projection
(VIL.172) are spanned by the vector fields!®

onto the anti-

VE = Aok (VI1.174a)

Vi = M0, with 9% = —— (VIL.174b)

0 0

R _ —
where 0., = Pood = Tuea

15For the definition of \§, see section [VIL51l
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NV

87 Dual supertwistor space. The dual supertwistor space 733 is obtained from the

complex projective space (DPEW with homogeneous coordinates (0%, fiq, #°) by demanding
that i # (0,0)7. Thus, the space wa = @Piw\@PiW is covered by the two patches

V. with the inhomogeneous coordinates

N A S SN AR (VIL175)
* p1 * H1 * H1 ’
. o . , ot .
wt =2 ,oud =l = Uoand 98 =2 on V_ , (VIL.176)
2 2 2
ul = pyu® , py=p"t, 0L =py6. on VyNV_. (VIL17TT)

Sections of the bundle P} v, cpil® (degree one holomorphic curves @PiL70<—>P$ |N)

are defined by the equations

. . . . 1 _
wl = §OuE, 0L = 6o with (uf) = <M+> L () = (“1 ) , (VIL178)

i‘m/. Note that similarly to the supertwistor
case, one can consider furthermore sections of the bundle PJ? WV, @Piw.

and parameterized by moduli (%%, %) € C

Equations (VIL.178) give again rise to a double fibration

f$|2N

Uy T
3N 42V VIIL.179
and the tangent spaces of the (2JN)-dimensional leaves of the projection s : " 2N
Py W from (VIL.179) are spanned by the vector fields V.F = A¥9%, and Vii = p” 8081'&'
88 Real structure. Three real structures 741, 79 can be imposed similarly to the bosonic

case. We will focus on the two real structures 7. and define additionally to (VIL.52a)

4 —4 —+ —+ —+
7; Fny kI Fhy E7
) = (%) kgt = (SRR s

For ¢ = +1, one can truncate the involution 7. to the cases N' < 4, which is in the
Euclidean case only possible for N/ = 2, see also the discussion in II1.4.2, §13. The cor-
responding reality conditions for the fermionic coordinates on the correspondence and
moduli spaces are also found in section [[11.4.2. As before, we will denote the real super-

twistor spaces by S 4,

89 Identification of vector fields. On 733 |4, there is the following relationship bet-
ween vector fields of type (0,1) in the coordinates (2%, 23,7) and vector fields in the

coordinates (%, Ay, n):

0 0

— = —y \¢ - = ViF = N = ey, Vi

01— o =R 02~ ks T

0 0 i D 0 0 o c

— = — aly+ Ly = = A 2V

823_ a)\+ +67+‘rR o +E’Y+77’L + 825 8)\7 +7 JTR « +7 777, —
(VIL181)

In the Kleinian case, one obtains additionally for the fermionic vector fields

9
o

)

= Vi, (VIL182)
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while in the Euclidean case, we have

9 . I . ,1
T = TMin g = Ve, o o= Ao o= oV,

ony ons oy on§ (VIL183)
0 e 9 a9 a9 s '
877? = 7z ﬁ:ang = 0EVe s 8772& = 7+ :I:ang = —yxVi .

§10 Forms. It will also be useful to introduce (0,1)-forms E¢ and Ezi which are dual
to V£ and VZ, respectively, i.e.
VIELEL = &b and ViLES = 0} (VIL.184)

Here, 1 denotes the interior product of vector fields with differential forms. Explicitly,
the dual (0, 1)-forms are given by the formulae

EY = —yijxa-idxo‘o", E} = d\y and Ef = —yi;\didnf‘. (VIL.185)

In the case N' = 4, one can furthermore introduce the (nowhere vanishing) holomor-
phic volume form €2, which is locally given as

Qr = Qly, = £dAp Adzl Ad22dnf ... dnf = £dhp Adzl Aded QL (VIL186)

on P31 independently of the real structure. The existence of this volume element implies
that the Berezinian line bundle is trivial and consequently P34 is a Calabi-Yau super-
manifold [297], see also section III.2.5, §33. Note, however, that € is not a differential
form because its fermionic part transforms as a product of Grafimann-odd vector fields,
i.e. with the inverse of the Jacobian. Such forms are called integral forms.

8§11 Comment on the notation. Instead of the shorthand notation PV we will
sometimes write (P3, Ojnn) in the following, which makes the extension of the structure
sheaf of P3 explicit. The sheaf O|n is locally the tensor product of the structure sheaf
of P and a GraBmann algebra of N generators.

VII1.4.2 The Penrose-Ward transform for P3WV

Similarly to the bosonic case, one can built a Penrose-Ward transform between certain
holomorphic vector bundles over the supertwistor space P3WV and solutions to the super-
symmetric self-dual Yang-Mills equations'® on C* [256, 280, 281}, 282, 269].

8§12 Holomorphic bundles over P3N, In analogy to the purely bosonic discussion, let
us consider a topologically trivial holomorphic vector bundle £ over the supertwistor space
P3N which becomes holomorphically trivial, when restricted to any subset (DP}A77 C
P3NV Note that the vector bundle £ has ordinary, bosonic fibres and thus is not a
supervector bundle. Since the underlying base manifold is a supermanifold, the sections
of € are, however, vector-valued superfunctions. As usual, the bundle & — P3W is defined

by a holomorphic transition function f;_ which can be split according to

fro =i, (VIL187)

where 1)+ are smooth GL(n, ©)-valued functions on the patches Uz covering P3WV.

YFor a deformation of the supertwistor geometry yielding chiral mass terms, see [64].
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§13 Holomorphic Chern-Simons equations. The splitting (VIL.187) together with
the holomorphy of the transition function

0 0

@ﬁri = @jﬁri = %ﬂr =0 (VIIL.188)
leads to the equations
Yot = P_apTt. (VI1.189)
Completely analogously to the purely bosonic case, we introduce a gauge potential A by
A = deapit (VIL190)
which fits into the linear system
@+ A"y = 0. (VIL191)

The compatibility conditions of this linear system are again the holomorphic Chern-

Simons equations of motion

DA+ ANA =0, (VI1.192)

and thus A% gives rise to a holomorphic structure on P3N,
In the following, we will always assume that we are working in a gauge for which

o - 9
: =0 —_ A" =0, VIL.193

fora=1,2,3.

§14 Action for hCS theory. In the case N' = 4, the supertwistor space P3W is a
Calabi-Yau supermanifold, and thus comes with the holomorphic volume form €2 defined
in (VIL.186). One can therefore introduce an action functional

Shes = /@w QA trg (AOJ ABAOY 4 2 400 A AL A AOJ) , (VIL194)

where 22V is the subspace of P2 W for which! it = 0 [297]. Note that the condition

(VIL.193), which we introduced in the previous paragraph, is necessary for (VII.194) to
be meaningful.

8§15 Pull-back of £ to the correspondence space. The pull-back of £ along s is
the bundle 73€ with transition function 73 satisfying the equations

Vai(msfio) = Vi(msfi-) = 0. (VIL195)
These equations, together with the splitting
T3 f— = Yty (VIL.196)

of the transition function into group-valued holomorphic functions ¢+ on my L), allow
for the introduction of matrix-valued components of a new gauge potential,

AL = VLA = o Vet = v Vet = XAaa(zr,m) , (VIL197a)
Az, = 05,0A = Y05 07 = o5 Tt =0, (VIL.197b)
A = VisA = Vigyt = ¢ 9yt = N\ Ai(zg.m) . (VIL197c)

" This restriction to a chiral subspace was proposed in [297] and is related to self-duality. It is not a

3N

contradiction to nl-i # 0, but merely a restriction of all functions on PN to be holomorphic in the nii.
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8§16 Linear system and super SDYM equations. The gauge potential defined above
fits into the linear system

(ViF+ Ay = 0, (VIL.198a)
O5,01 = 0, (VIL.198b)
(Vi+ Ay = 0 (VIL.198c)

of differential equations, whose compatibility conditions read

[vad) vﬁﬁ] + [vaﬁ" Vﬁa] =0 ) [vio'm vﬂﬁ] + [vlﬂ7 vﬁd] =0 y

S S (VIL.199)
{vzo'u vjﬁ} + {vl'7v]d} = 0.
Here, we have introduced covariant derivatives
Vaa = 08 + Aps and V4 = 9% + AL . (VII1.200)

The equations (VII.199) are the constraint equations for AV-extended super SDYM theory.
817 Comments on the real case. Although there is a diffeomorphism between the
correspondence space ]-'2‘2N and 3 W (up to the subtleties arising in the Kleinian case
e = +1), the linear systems (VIL.198) and (VII.191) do not coincide here. Instead, we

have

(Va+ + Al_)er =0, (Va+ + A:)@Z)Jr =0,
O,y =0, (05, + A5 py = 0, (VIL.201)

(Vi + A = 0, Vide =0,
where the left-hand side is again (VIL.198)) and the right-hand side is (VIL.191), written
in components /lg = Vj_nflo’l and fl@ = Vj_nflo’l = 0. Thus, we can schematically

write for the gauge transformations between the trivializations ¥4 and zﬂi
(A7 #0,A5, #0, AL =0) 5 (A7 #0,45, = 0,AL # 0). (VI1.202)

The main difference between the two gauges is that one can write down an action for the
one with A%! in the case ' = 4, while this is never possible for the other gauge potential.
818 Super hCS theory. In the following, we will discuss holomorphic Chern-Simons
theory using the components ftj; = VjJAOJ introduced above. The action (VII.194) is

rewritten as

Shos = /] oy DNAANAZ AdZAETAE? Qe (A VpAe + §AALA) - (VIL203)

Recall that we assumed in (VIL.194) that A% = 0. The corresponding equations of motion
read then e.g. on Z;{+ as

VEAL - VEAL + AL Af) = 0, (VII.204a)
o5, AL = VP Ay + A5 AL = 0 (VIL204b)

and very similarly on ¢/_. Here, /l;‘ and A;\ . are functions of (:z%o", Ay Ag, 771‘+ ). These
equations are equivalent to the equations of self-dual N-extended SYM theory on R*.
As already mentioned, the most interesting case is N'=4 since the supertwistor space
P3l4 is a Calabi-Yau supermanifold and one can derive equations (VII.192) or (VIL.204a),
(VIL.204b) from the manifestly Lorentz invariant action (VIL.194) [297, 264]. For this
reason, we mostly concentrate on the equivalence with self-dual SYM for the case N'=4.
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8§19 Field expansion for super hCS theory. Recall that A, and A;\ are sections of
the bundles O(1)®C? and O(—2) over CP! since the vector fields V,, and d5 . take values
in O(1) and the holomorphic cotangent bundle of CP! is O(—2). Together with the fact
that the n;s take values in the bundle IIO(1), this fixes the dependence of A% and Aj N

on \¢ and 5\1 In the case N'=4, this dependence can be brought to the form

AL = X Asa(zr) + 0 Xa(@r) + 94 g ninf AL 6 (vr)+ (VIL2052)
2 {a ,8 ~i7k . AB' e kL
+95 st ;r i AF AL X ij ﬁ( rR)+a Lt 77J nin; )\i)\Jr)\lG;jdm(mR),
Ax+ = ot nfqﬁ (zr) + 7% 3 e AY IR (eR)+ (VIIL.205b)
kil
+% wmt i, /\a/\ﬁG” (zr)

and there are similar expressions for A, Asx . Here, (Aaa, X4, ¢, Xai) is the ordinary
field content of N'=4 super Yang-Mills theory and the field G, 1s the auxiliary field arising
in the N'=4 self-dual case, as discussed in section IV.2.3. It follows from (VII.204b)-
(VIL.205Db) that!®

iy 147 ~ijk 1 ijk ijkl o 1 ijkl
d)ad - _vaa¢1] ) Xaa/@ - V(X(OCX/B) a‘nd Gaaﬂ’y - _EVG(QGQV) (VII 206)
i.e. these fields do not contain additional degrees of freedom. The expansion (VII.205a),
(VIL.205b) together with the field equations (VII.204a)), (VII.204b) reproduces exactly
the super SDYM equations (IV.62).

§20 The cases N < 4. Since the 771-+ s are Graflmann variables and thus nilpotent, the
expansion (VIL.205) for N/ < 4 will only have terms up to order A in the n;"s. This
exactly reduces the expansion to the appropriate field content for AN -extended super
SDYM theory:

N =0 Ay

N =1 Au, X, with i =1

N =2 Aws, Xo» o with i,j = 1,2 (VIL207)
N =3 Ao Xo 69 XM with i = 1,2,3

N =4 Aca X o7 XY G with i = 14

One should note that the antisymmetrization [| leads to a different number of fields
depending on the range of 7. For example, in the case N'=2, there is only one real scalar
¢'?, while for N'=4 there exist six real scalars. Inserting such a truncated expansion
for N'<4 into the field equations (VII.204a) and (VIL.204D), we obtain the first N'+1
equations of (IV.62), which is the appropriate set of equations for N'<4 super SDYM
theory.

One should stress, however, that this expansion can only be written down in the real
case due to the identification of the vector fields on P3V with those along the projection
mo. This is in contrast to the superfield expansion of the gauge potentials participating in
the constraint equations for A-extended supersymmetric SDYM theory, which also holds
in the complex case.

'8Here, (-) denotes again symmetrization, i.e. (dﬁ) = dB + ﬁd.
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§21 The Penrose-Ward transform for dual supertwistors. The discussion of the
Penrose-Ward transform over the dual supertwistor space 773 W is completely analogous
to the above discussion, so we refrain from going in any detail. To make the transition
to dual twistor space, one simply has to replace everywhere all A and 1 by u and 6,
respectively, as well as dualize the spinor indices a — &, & — « etc. and change the

upper R-symmetry indices to lower ones and vice versa.

§22 Cech cohomology over supermanifolds. Note that in performing the Penrose-
Ward transform, we have heavily relied on both the Cech and the Dolbeault description
of holomorphic vector bundles. Recall that if the patches U, of the covering il are Stein
manifolds, one can show that the first Cech cohomology sets are independent of the cov-
ering 4 and depend only on the manifold M, e.g. H'(4,&) = H'(M,S). Since the

PIN g obviously unaffected by the extension to an infinites-

covering of the body of
imal neighborhood,’” we can assume that H' is also independent of the covering for

supermanifolds.

§23 Summary. We have described a one-to-one correspondence between gauge equiv-
alence classes of solutions to the A-extended SDYM equations on (R*,g) with g =
diag(—e, —e,+1,+1) and equivalence classes of holomorphic vector bundles £ over the
supertwistor space PV such that the bundles £ are holomorphically trivial on each pro-
jective line CPL R 11 P3N In other words, there is a bijection between the moduli spaces
of hCS theory on P3¥V and the one of self-dual N-extended SDYM theory on (R*, ). Tt
is assumed that appropriate reality conditions are imposed. The Penrose-Ward transform
and its inverse are defined by the formulae (VIL.205). In fact, these formulee relate solu-
tions of the equations of motion of hCS theory on P3W to those of self-dual N-extended
SYM theory on (R*,g). One can also write integral formulee of type (VIL.114) but we

refrain from doing this.

VII1.5 Penrose-Ward transform using exotic supermanifolds

VII.5.1 Motivation for considering exotic supermanifolds

The Calabi-Yau property, i.e. vanishing of the first Chern class or equivalently the ex-
istence of a globally well-defined holomorphic volume form, is essential for defining the
B-model on a certain space. Consider the space P34 as introduced in the last section.
Since the volume element € which is locally given by Q4 := +dz} Adz2 /\d)\idnfc e dnff
is globally defined and holomorphic, P34 is a Calabi-Yau supermanifold. Other spaces
which have a twistorial O(1)@O(1) body and are still Calabi-Yau supermanifolds are, e.g.,
the weighted projective spaces? WCP32(1,1,1,1|p,q) with (p,q) equal to (1,3), (2,2)
and (4,0) as considered in [231]. The topological B-model on these manifolds was shown
to be equivalent to N/ =4 SDYM theory with a truncated field content. Additionally in
the cases (2,2) and (4,0), the parities of some fields are changed.

An obvious idea to obtain even more Calabi-Yau supermanifolds directly from P3/4
is to combine several fermionic variables into a single one,?! e.g. to consider coordinates

19 An infinitesimal neighborhood cannot be covered partially.
20Tn fact, one rather considers their open subspaces WCP3|2(1, 1,1,1|p, q)\W(DPlp(l, 1|p, q).
21 A similar situation has been considered in [I74], where all the fermionic variables where combined

into a single even nilpotent one.
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(¢1 == n1, C2 := man3na). In an analogous situation for bosonic variables, one could al-
ways at least locally find additional coordinates complementing the reduced set to a set
describing the full space. Fixing the complementing coordinates to certain values then
means that one considers a subvariety of the full space. However, as there is no inverse
of Graimann variables, the situation here is different. Instead of taking a subspace, we
rather restrict the algebra of functions (and similarly the set of differential operators) by
demanding a certain dependence on the Grafimann variables. One can indeed find com-
plementing sets of functions to restore the full algebra of functions on P3*. Underlining
the argument that we do not consider a subspace of P31 is the observation that we still
have to integrate over the full space P3I4: Jd¢id¢e = [dmr...dns. This picture has a
slight similarity to the definition of the body of a supermanifold as given in [72} 56].
Possible inequivalent groupings of the Grafmann coordinates of P34 are the previously
given example (Cl = ?71,C2 = 772’!73774) as well as (Cl = 771,C2 = 772,C3 = 773774), (Cl =
mne, G2 = nsna), and (¢1 = mnensns). They correspond to exotic supermanifolds of
dimension (3 @ 0]2), (3 ® 1|2), (3 @ 2/0), and (3 @ 1|0), respectively. Considering hCS
theory on them, one finds that the first one is equivalent to the case T/T/(leg‘z(l7 1,1,1]1,3)
which was already discussed in [231]. The case (3 @ 2|0) will be similar to the case
W(DP3|2(1, 1,1,1]2,2), but with a field content of partially different parity. The case
(3 @ 1|2) is a mixture easily derived from combining the full case P3* with the case
(3@ 2|0). We restrict ourselves in the following to the cases (3 & 2|0) and (3 & 1/0).

Instead of considering independent twistor correspondences between fattened complex
manifolds and the moduli space of relative deformations of the embedded CP*, we will
focus on reductions of the correspondence between P34 and C48. This formulation allows
for a more direct identification of the remaining subsectors of N' = 4 self-dual Yang-Mills
theory and can in a sense be understood as a fermionic dimensional reduction.

VII.5.2 The twistor space P30

§1 Definition of P3®20, The starting point of our discussion is the supertwistor space
Pt = (P3, (9[4]). Consider the differential operators

; 0
55 and D? = ningt — for i = 1,2, (VIIL.208)

DY = nim 5
Ni+2

9
on;°
which are maps Oy — Ojy). The space P3 together with the structure sheaf

Ouz = () kD] = () kerD?, (VIL209)
i =12 ij=1,2

which is a reduction of Oy, is the fattened complex manifold P3820 " covered by two
patches Z/7+ and U_ and described by local coordinates (2%, At, eli = nfn;, 62i =
n?jfr]ff). The two even nilpotent coordinates eii are each sections of the line bundle O(2)

with the identification ()2 ~ 0.

§2 Derivatives on P30, As pointed out before, the coordinates e;t do not allow for a
complementing set of coordinates, and therefore it is not possible to use Leibniz calculus
in the transition from the n-coordinates on (P3, Oyy)) to the e-coordinates on (P3, On,2))-
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Instead, from the observation that

+ 0 _ 0 + 0 _ _ 0
ot T ontlo,, Mo T onklo,,
’ ' (VIIL.210)
- g 0 - g 0
49+ T o F ) 39+ = 7 o + )
dey o3 On.2) dey ony On12)
one directly obtains the following identities on (73, On,2)):
0 = 0.9 and 0 = 0.9 (VIL.211)

der Oy Ont Oey Oy Oony

Equations (VII.210) are easily derived by considering an arbitrary section f of O(j 9y:
f = a’+aler+ales +aPeres = o +almmy + aPngna + aPpnnzng,  (VIL212)

where we suppressed the + labels for convenience. Acting, e.g., by 8%1 on f, we see
that this equals an action of 172%. It is then also obvious that we can make the formal
identification (VIL.211) on (P3, O(1,2))- Still, a few more comments on (VIL.211) are in
order. These differential operators clearly map Oy ) — O(y ) and fulfill

0 + i

Note, however, that they do not quite satisfy the Leibniz rule, e.g.:

1= 82&? = a(:f (niny) # <a§f n?) L <a§f n2i> = 0. (VIL214)
This does not affect the fattened complex manifold P3®20 at all, but it imposes an
obvious constraint on the formal manipulation of expressions involving the e-coordinates
rewritten in terms of the n-coordinates.

For the cotangent space, we have the identification def = d772id771i and de2i = d774id773i

and similarly to above, one has to take care in formal manipulations, as integration is
equivalent to differentiation.
§3 Moduli space of sections. As discussed in section VII.4, §3, holomorphic sections
of the bundle P34 — CP! are described by moduli which are elements of the space C*8 =
(c*, Ojg). After the above reduction, holomorphic sections of the bundle P30 _, ¢p!
are defined by the equations

2 = 2\ and & = e?ﬁ)\i—t)\g. (VIIL.215)

While the Grafimann algebra of the coordinates n,f of P3l* immediately imposed a Graf-
mann algebra on the moduli 77,‘5} e €8, the situation here is more subtle. We have??

egdﬁ) = ngdng) and from this, we already note that (6%2)2 # 0 but only (6%2)3 = 0. Thus,
59 i2

the moduli space is a fattening of order 1 in e%i and €22, but a fattening of order 2 in e}

which analogously holds for eg’g . Furthermore, we have the additional identities

%2612 — _lelle?Q

i 5€; and ezﬁe?? = elﬁe-ii =0. (VIL.216)

e %

22The brackets (-) and [-] denote symmetrization and antisymmetrization, respectively, of the enclosed
indices with appropriate weight.
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Additional conditions which appear when working with fattened complex manifolds are
not unusual and similar problems were encountered, e.g., in the discussion of fattened
ambitwistor spaces in [90].

More formally, one can introduce the differential operators

D¢ = (n{of —n3d3), D* = (1503 —nidy) , (VIL217)
D' = (90} - 030}), D> = (9{05 - 0505) (VIL.218)

which map Oy — Opg), and consider the overlap of kernels

Ouge = [ (ker(D)Nker(D¥)) . (VIL.219)
i=1,2
The space C* together with the structure sheaf O(1;2,6), which is a reduction of O, is
exactly the moduli space described above, i.e. a fattened complex manifold C1610 on
which the coordinates ef‘ﬁ satisfy the additional constrains (VII.216).
84 The double fibration. Altogether, we have the following reduction of the full double
fibration (VIL.162) for N = 4:

7?/ \\irl . 7?/ \7:1 (VI1.220)
(P?,0) (T4 Op) (P%,012) (€Y O0up)

where O p1 is the structure sheaf of the Riemann sphere CP'. The tangent spaces along
the leaves of the projection mo are spanned by the vector fields

Voft = iaad 5 Vai = dj:aozd )
_ .9 . .0 (VIL221)
VE = Mo, Vio= A——

in the left and right double fibration in (VII.220), where & = 1,...,4. Note that similarly
o (VIIL.210), we have the identities

& 0 0 & 0 0
P 0@ T oy ’ T B ’
1 ™ O(1:2,6) 1 b O12.6) (VH 222)
. 0 0 .0 o
ok " o R R ’
dey 131015, Oe AT
and it follows, e.g., that
(1 o Yl =9 . vl
Vi}o(m,ﬁ) = 12 Vaxr and Vﬂ:\omﬁ) = —nVax - (VI1.223)

§5 Holomorphic Chern-Simons theory on P3®2°, The topological B-model on
P20 — (P3, O(1,2)) is equivalent to hCS theory on P3920 gince a reduction of the
structure sheaf does not affect the arguments used for this equivalence in [293, 297]
Consider a trivial rank n complex vector bundlé?? € over P3®2l0 with a connection A.
The action for hCS theory on this space reads

5= QU0 g1 (AP N A 4 200 p A0 7 0T (VIL224)

P3®2(0

23Note that the components of sections of ordinary vector bundles over a supermanifold are superfunc-
tions. The same holds for the components of connections and transition functions.
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where 273920 is the subspace of P32l for which & = 0, A% is the (0,1)-part of A
and 23920 is the holomorphic volume form, e.g. 2572 = dz! A dz2 A dAydefdef. The
equations of motion read DAL + A%1 A A%1 = (0 and solutions define a holomorphic
structure 0 4 on €. Given such a solution ,21071, one can locally write /l071|22i = &i&/};l
with regular matrix-valued functions T/AJ:E smooth on the patches U+ and from the gluing
condition 1@+51/A1;1 — ¢)_0y~" on the overlap U, NU_, one obtains 5(@;11[1_) = 0. Thus,
[y = 1[1;11&_ defines a transition function for a holomorphic vector bundle £, which is
(smoothly) equivalent to £.

§6 The linear system on the correspondence space. Consider now the pull-back
of the bundle & along o in (VIL.220) to the space C* x CP?, i.e. the holomorphic vector
bundle 75€ with transition function 75 f, _ satisfying Vi (n5f._) = VF (m5f1_) = 0. Let
us suppose that the vector bundle W;g becomes holomorphically trivial®* when restricted
to sections @P}:,e%P?"‘l. This implies that there is a splitting 75 f;_ = @;11[1_, where
T/Aii are group-valued functions which are holomorphic in the moduli (¢, 7],2‘) and M.

From the condition V* (75 f+_) = VI (75 f1_) = 0 we obtain, e.g. on U,

DV dT = DoV = Mdas = AL
Dy VEGTY = § VEPTE = A Ak = Ak
s by = o 0Tt = Az, =0,
V1 0zactht = Y_0zeatp=! = 0.

(VII.225)

Considering the reduced structure sheaves, we can rewrite the second line of (VIL.225),
eg. for k=1 as

W Vi = b Vi T = gadal (VIL.226)

which yields 7726 Aé 5= Al. From this equation (and similar ones for other values of k)

and the well-known superfield expansion of A% (see e.g. [71]), one can now construct the
superfield expansion of Afi 5 by dropping all the terms, which are not in the kernel of the
differential operators D¢ and D’%. This will give rise to a bosonic subsector of N' = 4
SDYM theory.

§7 Compatibility conditions. To be more explicit, we can also use (VIL.226) and
introduce the covariant derivative Vo4 := Oaa + [Aaa, -] and the first order differential
operator Vio,[ 5= (92 5 + [A; 5 -], which allow us to rewrite the compatibility conditions of
the linear system behind (VII.225), (VII.226)) for the reduced structure sheaf as

[Vozdu vﬂg] + [vagv vﬁa] =0 ) 777;1 ([vfx'yv vg@] + [V;Lg,y? v,@a]) =0 ’

G . . , . (VIL.227)
% J 7 J —

n%nn ([va'yvvﬁ&] + [vﬂ’y’va(s]) =0 )

where m = 2¢ — 1,2¢ and n = 25 — 1,2j. Note that V’C',l 5 is no true covariant derivative,

as 8; 5 and .Afi 5 do not have the same symmetry properties in the indices. Nevertheless,

the differential operators V,4 and V;B satisfy the Bianchi identities on (C*, On2,6))-

24This assumption is crucial for the Penrose-Ward transform and reduces the space of possible A% to
an open subspace around A%! = 0.
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88 Constraint equations. By eliminating all A-dependence, we have implicitly per-
formed the push-forward of A along 71 onto (C4, O(1;2,6))- Let us define further tensor
superfields, which could roughly be seen as extensions of the supercurvature fields and
which capture the solutions to the above equations:

[Vaa: Vgl =1 €45Fas % Vgl = e43F b
” vi. vl . me o (VI1.228)
[ ayo 55] — 60'4' 'Y‘; ’

where Fop = F(op5) and F% = f((;j )) ]-"[[”]] Note, however, that we introduced too
many of these components. Considering the third equation in (VII.227), one notes that
for ¢ = j, the terms symmetric in 7,5 vanish trivially. This means that the components

F% are in fact superfluous and we can ignore them in the following discussion. The

(19)

second and third equations in (VII.228) can be contracted with ¥ and 555, respectively,
which yields

i P
_QvﬁﬁAhi} = féﬁ and 2VfﬂA[iQ} = Fog (VIL.229)
Furthermore, using Bianchi identities, one obtains immediately the following equations:
VFi, = 0 and Voo Ty, = v ﬂfgw. (VI1.230)

Due to self-duality, the first equation is in fact equivalent to V¢° V Afm] 0, as is easily

seen by performing all the spinor index sums. From the second equation, one obtains the
field equation V,, 5.7:(12) —2[AE112],VMA[12]]
89 The superﬁeld expansmn To analyze the actual field content of this theory, we

after contracting with s

choose transverse gauge as in section 1V.2.3| 521} i.e. we demand
neAk = 0. (VIL.231)

Recall that this choice reduces the group of gauge transformations to ordinary, group-
valued functions on the body of C*8. By using the identities 75 Al = Aé etc., one sees
that the above transverse gauge is equivalent to the transverse gauge for the reduced
structure sheaf:

e?ﬁAidﬁ- = n%ang)/liﬁ‘ + néanf)/liﬁ- =0. (VIL.232)
In the expansion in the es, the lowest components of Fg, A’[ﬁ] and ]—'(( )) are the self-

dual field strength f,s, two complex scalars ¢' and the auxiliary field G A respectively.
The two scalars ¢’ can be seen as remainders of the six scalars contained in the N =
4 SDYM multiplet, which will become even clearer in the real case. The remaining

components A’ . vanish to zeroth order in the es due to the choice of transverse gauge.

C%)
The field 7!, does not contain any new physical degrees of freedom, as seen from the
first equation in (VIL.229), but it is a composite field. The same holds for ,7-"[[.12.]] as easily

seen by contracting the second equation in (VIL.229) by 7% .7-"[[12}] = —2[A1 A[zlz]]

8§10 Equations of motion. The superfield equations of motion (VH.230) are in fact
equivalent to the equations

fap = 0, 00" =0, VaaG5+20",V 50%] = (VIL.233)

To lowest order in the es, the equations obviously match. Higher orders in the es can be

verified by defining the Euler operator (cf. section IV.2.3, §21) D := e?ﬁ Véd 5= ef‘ﬁ 8@ 5)

and applying D on the superfields and equations of motion which then turn out to be
satisfied if the equations (VIL.233)) are fulfilled.
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VIIL.5.3 The twistor space P3®110

§11 Definition of P3®!9, The discussion for P3®10 follows the same lines as for P30
and is even simpler. Consider again the supertwistor space P31 = (P3, Oyy))- This time,
let us introduce the following differential operators:

~ 0
DY = pf— for ki = 1,....4, (VIL.234)
on;
which are maps Oy — O|y. The space P3 together with the extended structure sheaf?>
Oy = [ ker DY = [)kerD¥ (VIL.235)
k£l k£l

which is a reduction of Oy, is an order one thickening of P3, which we denote by P3&110,
This manifold can be covered by two patches /. and U/_ on which we define the coordi-
nates (2%, Ax, et := nfcnzingcnff). The even nilpotent coordinate e* is a section of the
line bundle O(4) with the identification (e*)2 ~ 0.

§12 Derivatives on P3®10, Similarly to the case P3®2l0 we have the following identi-

ties:
0 0 0 0
WM GE = 5E L MBS = — ,
o "2 1oa (VIL.236)
L — g = = 2
£ = ) P £
9 on O e M log .,
which lead to the formal identifications
0 o o0 0 0
= and det = dnfdn?dnfdnli = Q1 (VIL.237)

det  Onf ony ony oy

but again with a restriction of the Leibniz rule in formal manipulations of expressions
written in the n-coordinates as discussed in §2.
§13 Moduli space and double fibration. The holomorphic sections of the bundle
P38, ¢ P! are defined by the equations
i INES + W378) yEyEyEyE
28 = 2%0F and et = P\ ASATAT (VII.238)

From the obvious identification e(¢479) = ngdng ngni) we see that a product e(@379) o (j125)

will vanish, unless the number of indices equal to 1 is the same as the number of indices
equal to 2. In this case, we have additionally the identity

D (=1)rerte = 0, (VI1.239)

where p is a permutation of 11112222, p; and py are the first and second four indices of
p, respectively, and n, is the number of exchanges of a 1 and a 2 between p; and po, e.g.
Niiisizss = 1.

The more formal treatment is much simpler. We introduce the differential operators
DHe = (nf‘@é - 17,2‘82) without summation over & and [ ,

u . (VIL.240)

?*The same reduction can be obtained by imposing integral constraints [174].
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which map O — Ojg). Then the space C* with the extended structure sheaf O(1;2,5)
obtained by reducing Ofg to the overlap of kernels

Onap) = ﬂ (ker DFe N ker ﬁkls) (VII1.241)
k#l

is the moduli space described above. Thus, we have the following reduction of the full
double fibration (VIL.162) for N' = 4:

77'2/ \:rl — WE/ \7:1 (VI1.242)
(P3’ 0[4]) ((D47 O[S]) (P3’ 0(1,1)) (647 0(1;2,5))

where O p1 is again the structure sheaf of the Riemann sphere CP'. The tangent spaces
along the leaves of the projection 7y are spanned by the vector fields

Vai = iaoco'z ) Voit = iaocd y

. 9 i . (VIL243)
k _ Y& + « L

Vi = g Visg = 2291

in the left and right double fibration in (VIL.242), where £k = 1,...,4. The further
identities

5 45 0 0 5 4 5 0 0
CU L el i Wy = - o,
e (129 (VIL.244)
i o5 = o ) nf@ngng# S
ety 050 DelaP10) i 0.0 5
are easily derived and from them it follows that e.g.
Viloyns = ngniniVi, and VElonas = iV (VIL.245)

§14 hCS theory on P3®10 and linear system. The topological B-model on P3®10
is equivalent to hCS theory on P3®10 and introducing a trivial rank n complex vector
bundle € over P3¥110 with a connection fl, the action reads

S = Q3OO A g (/lo’l A DAY 4 2 40T A 40T A onl) , (VIL246)
P361|0

with 223®100 being the chiral subspace for which é& = 0 and A%! the (0,1)-part of A.
The holomorphic volume form Q319 can be defined, e.g. on Z/{+, as 93@”0 = dz}r /\dzi A
d\,de™. Following exactly the same steps as in the case P3E200 e again obtain the
equations

@Z)—kvjwll = ¢—Va+¢:1 = AiAao} = A; )

P Vi = ¢ VEpTh =AY Al = Ab
P05 0T = B3, 0Tt = A5, =0,

V10zaathyt = Y_Ogeatp=! = 0.

and by considering the reduced structure sheaves, we can rewrite the second line this

(VI1.247)

time as

_ B + -1 _. B 4 §ya
772773774w+ Wt = emimg v Vi T = mIng AL A 5
p36 B8 o (VIL.248)
= 772773774AJr
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for £ = 1 which yields ng 7737772“4@3'15 = Al. Similar formulae are obtained for the other
values of k, with which one can determine the superfield expansion of A 6 again from
the superfield expansion of .Ag by dropping the terms which are not in the kernel of the
differential operators D¥'¢ and DFI* for k # 1.

§15 Compatibility conditions. Analogously to the case P3#210) one can rewrite the
linear system behind (VII.247), (VII.248) for the reduced structure sheaf. For this, we de-
fine the covariant derivative V.4 := Oaa + [Aaa, -] and the first order differential operator
Vg = Oaps + [Aspss |- Then we have

«,

[Vm,vw] + [VGB,Vﬁd] =0,
MMy (Vivpes Vaal + [Vavps, Vap]) = 0, (VI1.249)
neninininbng ([Vagﬁg,vm/p&] + Vs le’/;’)c’r]) =0,

where (rst) and (kmn) are each a triple of pairwise different integers between 1 and
4. Again, in these equations the push-forward 71,4 is already implied and solutions to
(VIL.249) are captured by the following extensions of the supercurvature fields:

[Vad,vm] = gdﬁfaﬁ’
(Viigs, Vaal =t €apFavps -
Vapssr Viwps] =t canFpss0p5 -
where Fop = ]-.“(aﬁﬁ Faipe = Fa(wpo) and ]-“m spe = T(658)0p) is symmetric under
exchange of ($79) < (vpc). Consider now the third equation of (VIL.249)). Note that the
triples (rst) and (kmn) will have two numbers in common, while exactly one is different.
Without loss of generality, let » # k, s = m and t = n. Then one easily sees that the terms
symmetric in (3,  vanish trivially. This means that the field components F Fbipe which
are symmetric in 3,  are again unconstrained additional fields, which do not represent
any of the fields in the N'=4 SDYM multiplet and we put them to zero, analogously to
Fi . in the case P3®2(0,
(49)

§16 Derivation of the superfield expansion. The second equation in (VII.250) can
be contracted with ¢#” which yields QVO@AHQ} po = Fadps and further contracting this
equation with €% we have Va‘j‘.A[iQ] as = 0. After contracting the third equation with
€™ one obtains

~2Vapssdiizge = T

i (VIL.250)

The transversal gauge condition ng‘Ag = 0 is on O(y,2 5) equivalent to the condition

o (6579) Asjs = 0, (VIL251)

as expected analogously to the case P382l0. To lowest order in e(é‘ﬁ.%), Fap can be iden-
tified with the self-dual field strength f,s and A[ié]a 3 with the auxiliary field G ; i The

remaining components of F 3 i.e. those antisymmetric in [dB], are composite fields

5866
and do not contain any additional degrees of freedom which is easily seen by considering
equation (VIL.250).
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§17 Equations of motion. Applying the Euler operator in transverse gauge D :=
e(dﬁﬁ‘;)v( ae) = e(dﬁ”‘s)ﬁ(df}w), one can show that the lowest order field equations are
equivalent to the full superfield equations of motion. Thus, (VII.249) is equivalent to

fop = 0 and VG5 = 0. (VIL252)

Altogether, we found the compatibility condition for a linear system encoding purely
bosonic SDYM theory including the auxiliary field G &b

VII.5.4 Fattened real manifolds

The field content of hCS theory on P3®2l0 and P30 hecomes even more transparent after
imposing a reality condition on these spaces. One can directly derive appropriate real
structures from the one on P31, having in mind the picture of combining the Grafmann
coordinates of P3* to the even nilpotent coordinates of P3®210 and P3®10, The real
structure on P34 is discussed in detail in sections VIL.3.1 and VIL.4.1.

818 Real structures. Recall the action of the two antilinear involutions 7. with ¢ = +1
on the coordinates (21,23, 23):

22 21 22 21

zZi ezZy € €zZ zZ- €

1,2 .3y _ [*+ &+ 1.2 .3y _ 2z

Te(23,29,27) = (23, =3 ,23) and 7T.(22,22,22) = (_3 ,23,23> .
AR A

On P3#20 we have additionally

12 ey & 12 el e
TE(€+,€+) = <(23+)2,<23+)2> and 7'5(6_,6_) = < 3 3 ) s (V11253)

and on P30 it is
r(ey) = (‘% and T(e_) = . (VIL254)
z)
3

Recall that in the formulation of the twistor correspondence, the coordinates z3 are

usually kept complex for convenience sake. We do the same while on all other coordinates,
we impose the condition 7.(-) = -. On the body of the moduli space, this will lead to a
Euclidean metric (+,+, +,+) for e = —1 and a Kleinian metric (+, 4+, —, —) for e = +1.
§19 Real superfield expansion. Recall that together with the identification (VIIL.68)

= v+ V,0 and = ey V[T, (VIL.255)

-1 >2
0z 0zy

we can rewrite the hCS equations of motion, e.g. on LL, as
VEAS - VEAL £ AL AL = 0,

+ o . (VIL.256)
O Aa — Vi Ax, + [A;\+,Aa] = 0,

where the components of the gauge potential are defined via the contractions AL :=
VE, AL, As, = 05,0 A% and we assumed a gauge for which A;t = aéiJAO’l =0,
see also (VIL.204). On the space P3®20 together with the field expansion

A = X Aot e} N b+l e A2 G

wigy o+ (VIL257a)

As, = e ¢ —2eytefef MM G,y (VIL257b)
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the system of equations (VII.256) is equivalent to (VIL.227). Note that similarly to the
expansion (VIL.205), the expansion (VIL257) is determined by the geometry of P3®2(0,

Furthermore, one can identify qﬁgd = _%féa and Gaam = %VS(B}—?&)' On P390 we
can use

AL = M Awa + 91 e PANINL G (VIL258a)

Ay, = et MM Gy, (VIL.258b)

to have (VIL256) equivalent with (VIL249) and G5, = §F 4

For compactness of the discussion, we refrain from explicitly writing down all the
reality conditions imposed on the component fields and refer to section VIL.3.2 for further
details.
820 Actions. One can reconstruct two action functionals, from which the equations of

motion for the two cases arise. With our field normalizations, they read
Spaszio = / Az tr (Gdﬁ' Lo — ¢<1D¢2>) , (VIL.259)
Spaaijo = /d4gg tr <Gdﬁfd,5’) . (VIIL.260)

The action Spseijo has first been proposed in [60].

VI1I.6 Penrose-Ward transform for mini-supertwistor spaces

It is well-known that the Bogomolny monopole equations are obtained from the four-
dimensional self-dual Yang-Mills equations by the dimensional reduction R* — R? and
that there is a twistor space, the so-called mini-twistor space [126] P? := O(2) — CP!,
upon which a Penrose-Ward transform for the dimensionally reduced situation can be
constructed. In this section, we will discuss the corresponding superextension, the mini-
supertwistor space [63} 229], which will lead to a Penrose-Ward transform between certain
holomorphic vector bundles and the supersymmetric Bogomolny monopole equations.

VII.6.1 The mini-supertwistor spaces

In the following, we will constrain the discussion for convenience to the real case e = —1
with Euclidean signature. The Kleinian signature will require some adjustments, similarly
to the ones in the case of Kleinian twistor spaces discussed in section VIL.3.1.

81 Definition by dimensional reduction. We start from the supertwistor space Pi‘{v
with coordinates as defined in section VIL.4.1. Let ¢ be the Abelian group generated by
the action of the vector field % = 6%2. This group is the real part of the holomorphic
action of the complex group ¥ = C. In other words, we have

o 0% 9 93 0

7% = 0x2  9a? 0z% Ozl 0z% (VI1.261)
= _i+z3i + _i+g3i —. y’+§’ .
022 " Ttozl 9z2  Ttozl ) U T UH
in the coordinates (z%,7;") on U, , where
0 0
o N, o _— __“Y 3_7
T =T |qu = o2 + 25 521 (VIIL.262)
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is the holomorphic part of the vector field Z on U,. Similarly, we obtain

%= T4 T with T o= T, = -0 O

it (VIL.263)

on U_ and 7, =7 on U, NU_. Holomorphic functions f on Pi'f thus satisfy

Rf (407 = T L) (VIL.264)
and therefore .7’-invariant holomorphic functions on Pi‘f can be considered as “free”
holomorphic functions on a reduced space leiv = PE'{V/%; obtained as the quotient

convenience, we will omit the subscript —1 on twistor spaces in the remainder of this

space of Pif by the action of the complex Abelian group ¥ generated by .7’. For
section.

§2 Reduction diagram. Let us summarize the effect of this dimensional reductions on
all the spaces involved in the double fibration by the following diagram:

7)3|N ~ ]R4|2N X §2— ]R4|2N

l

R3PV % 52 (VI1.265)
7)2|N R3|2N
Here, | symbolizes projections generated by the action of the groups ¢ or ¢ and vy is

the canonical projection. The projection v will be described in the next paragraphs.
83 Local coordinates. The fibre coordinates on PN are

wy = —i(zy +2221), wl =zl and 7n on u, ,
X DR ! ; 3 . (VIL266)
wl = —i(zZ +2222), wl =22 and 7n; on U_,

since wl is constant along the %g-orbits in P3V and thus descend to the patches YV, o=
Uy NPV covering the mini-supertwistor space. On the overlap V; NV_, we have

1 1 1
1 1 2 -
- (w? )2“’— Wy = and 7 = el (VIL.267)

and thus the mini-supertwistor space coincides with the total space of a holomorphic
vector bundle with typical fibre of dimension 1|N:

0@ eno1)echN = p (VII.268)

over the Riemann sphere CP!. In the case N = 4, this space is a Calabi-Yau supermani-
fold [63] with a holomorphic volume form

Qlp, = +dwi Adwidpy - -dny . (VIL.269)

As already mentioned, the body of the mini-supertwistor space P2V is the mini-
twistor space [126]

P2 =~ 0@2) = TYOCP!, (VIL.270)

where T1O9CP! denotes the holomorphic tangent bundle of the Riemann sphere CP!.

Moreover, the space P24 can be considered as an open subset of the weighted projective
space WCP?4(2,1,1]1,1,1,1).
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84 Real structure. Clearly, a real structure 7_1 on P2V is induced from the one on
P3V. On the local coordinates, 71 acts according to
—1
12 wy 1 [yt
T (wi,wi,n) = | ———,——,+T=T/7; | , VIL.271
1( + + 771 ) < (wi)z fwi wi 7 77_7 > ( )

where the matrix T = (T;7) has already been defined in section TII.4.2, §13|

§5 Incidence relations. From (VIL.271), one sees that similarly to the case PN 1y
has no fixed points in PN but leaves invariant projective lines (DPglw‘—ﬂﬂW defined by
the equations

wh = y—2x2' = N2y, nf = gl 4+ A with A, = v € Uy,

o (VIL272)
wh = Ny—22_zt -7, n, = )\,77,14-77@-2 with A_ = w? e U_
for fixed (x,n) € R3*V. Here, y = —(2® + iz?), § = —(2® — iz?) and 2! are coordinates
on R3. .
We can use the coordinates y®’ which were introduced in (IV.77) with
J =2 =y and gl = g2 = g (VIL273)
to rewrite (VIL.272) concisely as
wh = ydﬁkiki , wi o= A and npf = Al (VIL.274)

In fact, the equations (VII.274) are the appropriate incidence relations for the further
discussion. They naturally imply the double fibration

IC5|2N
”E/ \/1 (VIL.275)
7)2\.’\[ R3|2N

where KPPV o~ R3IZNV « 82 1 s again the canonical projection onto R312V and the
projection vy is defined by the formula

V2($a7)‘:|:v77id) = V2(9d57)‘d¢i777?) = (w:lt’w?bnii) ) (VH'276)
where a = 1,2,3. We thus have again the one-to-one correspondences

{ 7_1-invariant projective lines (DPQIW in P2V} «— {points (z,n) in R}V |
{ points p in P2} «— {oriented (1]0)-dimensional lines £, in R3S} .

86 Cauchy-Riemann structure on oIV, Although the correspondence space oIV
cannot be interpreted as a complex manifold due to its dimensionality, one can consider
it as a Cauchy-Riemann (CR) manifold, see 11.2.4, [§41. There are now several possible
CR structures on the body R? x S2 of K®?V: One of them, which we denote by %,
is generated by the vector fields {Jy, 05 jE} and corresponds to the identification K :=
(R? x 8%, %) =2 R x € x CP!. Another one, denoted by 2, is spanned by the basis
sections {6@1i Oz } of the bundle T¢(R? x S?). Note that Z is indeed a CR structure
as 2N % = {0} and the distribution & is integrable: [8151: Oz ] = 0. Therefore, the pair
(R? x 82, 9) =: K? is also a CR manifold. It is obvious that there is a diffeomorphism
between the manifolds K% and K3, but this is not a CR diffeomorphism since it does not
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respect the chosen CR structures. Note that a CR five-manifold generalizing the above
manifold K® can be constructed as a sphere bundle over an arbitrary three-manifold with
conformal metric [169]. Following [169], we shall call K? the CR twistor space.

Since the definition of CR structures naturally carries over to the case of supermani-
folds (see e.g. [134]), we can straightforwardly define the CR supermanifold

2 2 0 0 0
KON = (RN x 2, 9) with 2 = span , , . VIL277
( ) w PO ol ou? onF ( )
A second interpretation of the space K?I?V as a CR supermanifold is IC8|2N = (1R3|2N X
S?, 9y) with the distribution %y = span{a%, %, %}. In both cases, the CR structures
+ 97

are of rank 2|\. '
87 Coordinates on B2V, Up to now, we have used the coordinates (ydﬁ, )\ajF, 5\3,7]?)
on the two patches V., covering the superspace R32V x §2. More convenient for the

distribution (VIL.277) are, however, the coordinates (VII.272) together with

wi = 1+>\1+5\ [5\4_3/ =+ (1 — A+X+)$3 =+ A_A,_g] on 94_ y
X L _ . < 5 (VIL278)
wl = Ay + A A =Dz’ +A_y] on V_.
and we can write more concisely
wh = y’j‘B)\di)\?;, wi = Ay, wl = —iViydBAg:X;F and 7 = i\, (VIL279)

Note that all the coordinates are complex except for w?}, the latter being real.
§8 Projection onto P2V, The coordinates (VIL279) obviously imply that the mini-
P2AN 4 512V

supertwistor space s a complex subsupermanifold of the CR supermanifold

as they yield a projection
vy @ KON p2N (VIL.280)

The typical fibres of this projection are real one-dimensional spaces £ = IR parameterized
by the coordinates w3 and the pull-back of the real structure 7_; on PN to KOV
reverses the orientation of each line ¢, since 7_1(w}) = —w3.

The geometry of the fibration (VII.280) becomes clearer when noting that the body

IC5|2N

IC of the supermanifold can be seen as the sphere bundle

S(TR?) = {(z,u) € TR?|dpuu’® = 1} = R3 x §2 (VIL.281)

whose fibres at points * € R? are spheres of unit vectors in T,R® [126]. Since this
bundle is trivial, its projection onto R3 in (VIL.275)) is obviously v (x,u) = x. Moreover,
the complex two-dimensional mini-twistor space P? can be described as the space of all
oriented lines in R3. That is, any such line ¢ is defined by a unit vector u? in the direction
of £ and a shortest vector v® from the origin in R? to ¢, and one can easily show [126]
that

P? = {(v,u) € TR?|dppu’® = 0, dpua® = 1} = TWOCP! = 0(2). (VIL282)

The fibres of the projection vy : K5 — P? are the orbits of the action of the group
4' ~ R on R? x S? given by the formula (v%,u’) — (v + tu®, u?) for t € R and

P? = R3x S?/9" . (VI1.283)

Now K9 is a (real) hypersurface in the twistor space P3, and P? is a complex two-
dimensional submanifold of X°. Thus, we have

P2 c K° ¢ PP and P c KON c pIWV, (VII.284)
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§9 Vector fields on K52V, The vector fields on K3*V in the complex bosonic coordi-
nates (VIL.279) are related to those in the coordinates (y, 7, 23, A+, A+) via the formulse

0 g < 0 0
I = 73<_/\ /\2 ) =: 742rW1+>

dwl gy “Tord Ttoy
0 + oy 332 + ivi
M = Wi+ 293 (2% + \pg) Wi — 37 — 2042® — Ny)Wyh —v4m Vi, (VIL285a)
0 0 0 1 0 4
@ = 274 <)\+8y + )\+8_ (1 - )\+)\+)5)x3> = W5,
as well as
0 g < 0 0
— M A= ) = AWy
wl ( dy 013 ag) =W
8 _ - -9 _ _ _ 4 .
5oz = Wa #2207 =AW +92 (N5 — 220’ — )Wy + Ve
0 - 0 g 1, < 0
— = 27| Ao+ A=+ (A A=) | = Wy
ow? " < Oy + o] + 2( )8x3> Ws

(VIL.285b)

where0 Wit = 3}\ . With these identifications, we can also use the vector fields Wik,

WQi and VI to generate the CR structure 2. Tn the simplifying spinorial notation we
have furthermore

Wi = oy, , Wi = 27113“:%@0(@5),

(@)
9 VII.286a
Vi = —MT'—— ( |
(9T]j
as well as
WE = N Oup s W = 05, Wy = Wy = 271A3:Aia<a6>7
iy L0 (VIIL.286b)
ong'

§10 Forms on K%V, The formulee for the forms dual to the vector fields (VIL.2864)
and (VII.286b) read

oL = 42 )\i)\idyo‘ﬁ 02 = diy, O3 = —yAEAEQyH
- * CT 6 (VIL287a)
Ef = w AT dns
and
0L = — 2 EAEdy® | 8% = dip, 6% = e},
* =reTh s * * (VIL287b)
Ef = —yApdif

where T;/ has been given in section 1I1.4.2, [§13. The exterior derivative on KON accord-
ingly given by

B ) 9 ) %) 5

d|f,i—dw1i8w +dwia +dwan +dwia +dwi8 +.

= 0 lwE + e Wil +oLwit +0iwst + et + EiiVi + EXVE, (VIL288)

26Note that the vector field Wit is real.
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where the dots stand for derivatives with respect to n;t and ﬁ;t. Note again that ©3 and
ng are both real.?”

VII.6.2 Partially holomorphic Chern-Simons theory

8§11 Outline. In the following, we will discuss a generalization of Chern-Simons theory
on the correspondence space JCoI2N , which we call partially holomorphic Chern-Simons
theory or phCS theory for short. Roughly speaking, this theory is a mixture of Chern-
Simons and holomorphic Chern-Simons theory on the CR supertwistor space KCP12NV which
has one real and two complex bosonic dimensions. Eventually, we will find a one-to-one
correspondence between the moduli space of solutions to the equations of motion of
phCS theory on K?12N and the moduli space of solutions to A-extended supersymmetric
Bogomolny equations on R?, quite similar to the correspondence between hCS theory
on the supertwistor space P3*V and N-extended supersymmetric SDYM theory in four
dimensions.

§12 The integrable distribution 7 on JCOI2N Combining the vector fields V_Vli, W;,
Vi from the CR structure 2 with the vector field W?)i yields an integrable distribution,
which we denote by 7. The distribution 7 is integrable since we have [W;,W;E] =
+2+2 Wi and all other commutators vanish. Also, ¥ := 7N7 is a real one-dimensional
and hence integrable. Note that ¥ is spanned by the vector fields Wf over the patches
V. C K52V Furthermore, the mini-supertwistor space P2?V is a subsupermanifold of
K52V transversal to the leaves of ¥ = 7 N7 and T|pav = 2. Thus, we have an
integrable distribution 7 = 9? @ ¥ on the CR supertwistor space K32V and we will
denote by 7y its bosonic part generated by the vector fields V_Vli, W;ﬁ and ng

8§13 Field equations of phCS theory. Let £ be a trivial rank n complex vector bun-
dle over K312V and A7 a T-connection on €. We define the field equations of partial
holomorphic Chern-Simons theory to be

drAr + Ar A A7 = 0, (VIL289)

In the nonholonomic basis {W:, Vi} of the distribution 7 over Vo C K?*V | these equa-
tions read as

WiEAS - WEAT + AL, AS] = 0, (VIL.290a)
Wi Af — Wi A + [AT, Af) 7272 A7 = 0, (VIL.290b)
WEAT - WEAT + AL, AS) = 0, (VIL.290c)

where the components A% are defined via the contractions AF := WE_A7. Analogously
to the case of super holomorphic Chern-Simons theory on P3| we assume that

ViiAr =0 and Vi(AD) = 0. (VI1.291)

8§14 Action functional. When restricting to the case N' = 4, we can write down an
action functional for phCS theory. As it was noted in [63], the AN/ = 4 mini-supertwistor
space is a Calabi-Yau supermanifold and thus, there is a holomorphic volume form 2 on

?"To homogenize the notation later on, we shall also use V_Vgi and 0, =+ instead of W;: and 0 =+,
3 3
respectively.
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P24 Moreover, the pull-back 2 of this form to K58 is globally defined and we obtain
locally on the patches Vi C K518

Qp, = dwi Adwidn---dny . (VIL.292)
Together with the assumptions in (VIL.291), we can write down the CS-type action func-
tional
Sphcs = /ﬁls QA tr (/tT ANdr At + 2A7 N AT A AT) , (VI1.293)
where 5
drlp, = duf— 7 + A — e (VI1.294)

is the T-differential on K°® and .#7I8 is the chiral subspace of K°® for which 7' = 0.
The action functional (VIL.293) reproduces the phCS equations of motion (VIL.289).
8§15 Supersymmetric Bogomolny equations. The equations of motion of the phCS
theory defined above are equivalent to the supersymmetric Bogomolny equations (IV.85).
To show this, we will give the explicit field expansion similar to (VIL.205) necessary to
cast the equations (VIL.290) into the form (IV.85). As before in (VII.205), we will only
consider the case N' = 4, from which all other cases A/ < 4 can be derived by truncation
of the field expansion. First, note that due to (VII.286b), we have

W= AW, W = AW, and T = gy (D) (VIL295)

and therefore AT, AT and 7;1/% take values in the bundles O(2), O(—2) and O(1) ®
O(1), respectively. Together with the definitions (VIL.291) of AF and (VIL286) of W as
well as the fact that the nl-i are nilpotent and O(1)-valued, this determines the dependence
of A(f on nii, A+ and Ay to be

AF = XBE and A = 29 0BF (VIL296)

with the abbreviations

£ ,_ B y ok 1 + :tA/B z'j. :t)\ﬂ)\’y ~Uk’
By = NiBgs+in; x4 + 517+m; 1 .)\Z%B VR Xagy + (VIL.297a)
ij
aBiyé
. ik
A = ¢ (Q,fyim nr¢7 + hyinEninE ARy

Kkl
+ VAN 77;[771.3 miAiAiGZﬁ- ) :

+ b A AN G

(VIL.297b)

Note that in this expansion, all fields B, X%, - - . depend only on the coordinates (y‘m ) €
R3. Substituting (VIL.297) into (VIL 290a) and (VIL.290b), we obtain the equations

(/I ey o i ~ijk _ 1 ~ij k ~l]k
ijkl _ 1 . gkl . ijkl
Gths = 3 (ae G + [Baw’%)])
(VIL.298)

showing that qﬁgﬁ, )Zg o and Gk [3 . are composite fields, which do not describe independent
degrees of freedom. Furthermore, the field Baﬁ' can be decomposed into its symmetric
part, denoted by A, 5= A(a 3y and its antisymmetric part, proportional to ®, such that

B.. = A .—1lc .®. (VIL.299)
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Defining additionally
Xia = %szjmiﬁfl and G5 = %aijlegkl, (VIL.300)

we have thus recovered the field content of the NV = 4 super Bogomolny equations together
with the appropriate field equations (IV.85). Up to a constant, the action functional of
the super Bogomolny model (IV.87) can be obtained from the action functional of phCS
theory (VIL.293) by substituting the above given expansion and integrating over the
sphere (DP‘,}:’,7 c P21,
816 The linear systems. To improve our understanding of the vector bundle £ over
KCP12N et us consider the linear system underlying the equations (VIL.290). This system
reads
(Wa' +A)de = 0,
Vige =0,
and has indeed (VII.290) as its compatibility conditions. Using the splitting AT‘Y& =

(VIL301)

widﬂb;l, we can switch now to the Cech description of an equivalent vector bundle £
with transition function fi_ = w;lw,. Similarly to the description of the vector bundles
involved in the Penrose-Ward transform over the supertwistor space P3N , we can find a
gauge transformation generated by the globally defined group valued function ¢, which

acts by ¢ — zﬁi = o194 and leads to
AT = AT = T Ao+ T W = WLt

—
Ay = Ay = o7 AT o+ o Wi = Wit = 0,
Ay = A7 = o' ATe+ o Wi = Wit
0= Ay = uVids! — A = o 'Wie = yYuVigs!,
(VIL.302)
while fi_ = w;lzﬂ_ = w;lw_ remains invariant. In this new gauge, one generically has
i # 0 and the new gauge potential fits into the following linear system of differential
equations:
Wi+ A )y = 0, (VIL.303a
Wipe = 0, (VIL.303b

(W + A3 )pe =
(Vi+Ap)ps =
which is gauge equivalent to the system (VIL.301).

Due to the holomorphy of ¢4 in Ay and the condition A} = A7 on Vi NV_, the
components AT, o 1.43% and A’ must take the form

AF = MNBy . AT = 2ANIB; and AL = AGAL . (VIL304)

with A-independent superfields B, 5= fldﬁ — %% /@CID agd ft’a Aftef’introdAucin%the first-
order differential operators V5 := 8(d 5T B, 4 and DY, = % + A% =: 0, + A, we can
write the compatibility conditions of the linear system (VIL.303) as
(Vi Vsl + [Vas Vsl = 0, [D5, Vg +[D5, V] = 0, (VIL305)
{szaDg} + {Dszi} = 0.

These equations are the constraint equations of the super Bogomolny model, see also
(IV.88).
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8§17 The one-to-one correspondence. Summarizing, we have described a bijection
between the moduli space Mppcg of certain solutions to the field equations (VII.290)
of phCS theory and the moduli space Mgp of solutions to the supersymmetric Bogo-
molny equations (IV.85). The moduli spaces are obtained from the respective solution
spaces by factorizing with respect to the action of the corresponding groups of gauge
transformations.

VII.6.3 Holomorphic BF theory

So far, we defined a Chern-Simons type theory corresponding to the super Bogomolny

KCPI2N | after inter-

model, but this model was constructed on the correspondence space
preting it as a partially holomorphic manifold. This is somewhat unusual, and one is
naturally led to ask whether there is an equivalent model on the mini-supertwistor space.
In fact there is, and we will define it in this section. For simplicity, we will restrict all

our considerations from now on to the case N = 4.

8§18 Holomorphic BF theory on P24, Consider the mini-supertwistor space P24
together with a topologically trivial holomorphic vector bundle £ of rank n over M.
Let A% be the (0,1)-part of its connection one-form A, which we assume to satisfy
the conditions VA% = 0 and Vi(a@f JA%1) = 0. Recall that P21 is a Calabi-Yau
supermanifold and thus comes with the holomorphic volume form €2 which is defined in
(VIL.269). Hence, we can define a holomorphic BF (hBF) type theory (cf. [227, 142, 21])
on P2* with the action

Shr = / QA tr {B@A 4 A1 A A0} — / QA tr{BFO?} | (VIL306)
y2\4 322‘4

where B is a scalar field in the adjoint representation of the gauge group GL(n, C), 9 is
the antiholomorphic part of the exterior derivative on P24 and F%2 the (0,2) part of the
curvature two-form. The space 22214 is the subsupermanifold of P2l* constrained®® by
_+

;. = 0.

8§19 Equations of motion. The corresponding equations of motion of hBF theory are
readily derived to be

HAYY + A0 A AT =
OB+ [A% B] =

)

(VIL.307a)
(VIL.307D)

[en}

Furthermore, both these equations as well as the Lagrangian in (VIL.306) can be
obtained from the equations (VII.289) and the Lagrangian in (VII.293), respectively, by

imposing the condition 8“71 Ape = 0 and identifying

AO,I

p, = dolAdg +dwid,: and BT = B, = Ay . (VIL308)

wy

On P24, "[lu_)i behaves as a scalar and thus, (VII.307) can be obtained from (VIL.289) by
demanding invariance of all fields under the action of the group ¢’.

281n string theory, one would regard 224 as the worldvolume of a stack of n not quite space-filling
D3-branes.
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§20 Interpretation of the B-field. By construction, B = {B*} is a gl(n, C)-valued
function generating trivial infinitesimal gauge transformations of A%! and therefore it
does not contain any physical degrees of freedom. To understand this statement, let us
look at the infinitesimal level of gauge transformations of A% which take the form

SAY = dB + [A% B] (VIL.309)
with B € HO(P?* EndE). Such a field B solving moreover (VIL.307b) generates holo-
morphic transformations such that §. 4% = 0. Their finite version is

and for a solution (A%, B) to equations (VIL.307) of the form

AW, = 9u0Pyt and B = ¢uBygLl, (VIL311)

such a ¢ takes the form
o+ = @ieB‘??ﬁf with o, = ¢o_ on V.NV_. (VIL.312)

8§21 Full equivalences. Altogether, we arrive at the conclusion that the moduli space
of solutions to hBF theory given by the action (VII.306) is bijective to the moduli space
of solutions to the phCS-equations, and therefore we can sum up the discussion up to
now with the diagram

phCS theory on K5I8

/ \ (VIL.313)
supersymmetric

hBF theory on P24 Bogomolny model on R?

describing equivalent theories defined on different spaces. Here, it is again implied that
the appropriate subsets of the solution spaces to phCS and hBF theories are considered.

VII.7 Superambitwistors and mini-superambitwistors

VII.7.1 The superambitwistor space

Recall that in the construction of the ambitwistor space in section [VIL.3.3, we “glued
together” both the self-dual and anti-self-dual subsectors of Yang-Mills theory to obtain
the full theory. It is now possible to define a super-extension of this construction, which
sheds more light on the role played by the third order thickening.

81 Definition. For the definition of the superambitwistor space, we take a supertwistor
space P33 with coordinates (2%, 23, nli) together with a “dual” copy?” P2 3 with coordi-
nates (ug, uf’t, 6%.). The dual supertwistor space is considered as a holomorphic supervec-
tor bundle over the Riemann sphere CP. covered by the patches U with the standard
local coordinates pr = ui For convenience, we again introduce the spinorial notation

(ut) = (1,p)" and (u3) = (u—,1)T. The two patches covering P21 will be denoted by

29The word “dual” refers again to the spinor indices and not to the line bundles underlying P3/°.
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Uz = 773 |3|Uj[ and the product space P3P x 77;;3 13 of the two supertwistor spaces is thus

covered by the four patches

Uny = Up XU, Upy = U-xU;, Ug) = U xU, Uy = U-xU*, (VIL314)

on which we have the coordinates (261 ) z?a) , nga); uf“a), u%a), 9%{1)). This space is furthermore
a rank 4/6 supervector bundle over the space CP* x CPL. The global sections of this

bundle are parameterized by elements of €46 x (Dfﬂ6 in the following way:

oy = oAl = Ny = gl 6l = 6w (VIL3LS)
The superambitwistor space is now the subspace £56 ¢ P3I3 x 773 3 obtained from the
quadric condition (the “gluing condition”)

F) = 2yl —ul A + 200 0@ = 0. (VIL316)

In the following, we will denote the restrictions of U, to L£516 by a(a).
§2 Moduli space and the double fibration. Due to the quadric condition (VII.316),
the bosonic moduli are not independent on £, but one rather has the relation

T = 0% —9%p¢  and x§Y = 299 4 0%l (VIL.317)

The moduli (z3%) and (z¢%) are therefore indeed anti-chiral and chiral coordinates on the
(complex) superspace ©*12 and with this identification, one can establish the following
double fibration using equations (VII.315):

F6[12
WE/ \711 (VIL.318)

516 42

where FO12 o~ ¢412 » OP! x CP! and 7 is the trivial projection. Thus, one has the

correspondences

{subspaces (CP! x @Pi)x%g in £5‘6} — {points (z,n,0) in (D4|12} ,

VIIL.319
{points p in 55‘6} — {null superlines in @4|12} . ( )

The above-mentioned null superlines are intersections of a-superplanes and dual G-super-
planes. Given a solution (£, /¢, %) to the incidence relations (VIL.315) for a fixed point
p in £%06 the set of points on such a null superline takes the form

{(J:advniaveai)} with xad = j:ad—i_tut(la))‘?a)v 77? = ﬁ?+5i>‘?a)’ aai = éai_{—gi/j’?a) .

Here, t is an arbitrary complex number and &; and & are both three-vectors with Graf-
mann-odd components. The coordinates )\?‘a) and u‘(la) are chosen from arbitrary patches
on which they are both well-defined. Note that these null superlines are in fact of dimen-
sion 1|6.
83 Vector fields. The space F'2 is covered by four patches L?(a) =Ty I(Z/?(a)) and the
tangent spaces to the 1|6-dimensional leaves of the fibration mp : FO12 — 256 from
(VIL.318) are spanned by the holomorphic vector fields

W = pigNadaa Dy = NoDe

«

and D\ = p® Doi . (VIL320)
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where D,; and Dg are the superderivatives defined by

0

n & 0 )
o0 T D

and DY := + 0 : (VIL.321)

Dai = o T By

Recall that there is a one-to-one correspondence between isomorphism classes of

vector bundles and locally free sheaves and therefore the superambitwistor space £516
corresponds in a natural way to the sheaf #516 of holomorphic sections of the bundle
£o6 — ¢pP! x CP..
84 £51% as a Calabi-Yau supermanifold. Just as the space P34, the superambitwistor
space £51% is a Calabi-Yau supermanifold. To prove this, note that it is sufficient to show
that the tangent bundle of the body £ of £5I6 has first Chern number 6, which is then
cancelled by the contribution of —6 from the (unconstrained) fermionic tangent directions.
Consider therefore the map

e (2™ A ) Oy 1) (g AL ) (VIL322)
where £, has been defined in (VIL.316). This map is a vector bundle morphism and
gives rise to the short exact sequence

0 — L5 — 0O(1,0)®0(1,0) @ 0(0,1)  O(0,1) = O(1,1) — 0, (VIL323)

where O(m,n) is a line bundle over the base CP! x CP! having first Chern numbers m
and n with respect to the two CP's in the base. The first and second Chern classes of
the bundles in this sequence are elements of H2(CP! x CP!,7Z) = 7 x 7 and H*(CP' x
CP!,7Z) = 7, respectively. Let us denote the elements of H2(C P x CPY,Z) by ihy + jho
and the elements of H*(CP* x CP!,7Z) by khihy with 4,7,k € Z. (That is, hy, hy and
hihy are the generators of the respective cohomology groups.) Then the short exact
sequence (VII.323) together with the Whitney product formula yields

(1+h1)(1+h1)(1+h2)(1—|—h2) = (1+051h1+042h2+,8h1h2)(1+h1+h2) R (VH.324)

where a1 + as and 3 are the first and second Chern numbers of £® considered as a
holomorphic vector bundle over CP! x CPL. Tt follows that ¢; = 2 (and ¢y = 4), and
taking into account the contribution of the tangent space to the base3? CP! x CPL, we
conclude that the tangent space to £° has first Chern number 6.

Since £°l6 is a Calabi-Yau supermanifold, this space can be used as a target space
for the topological B-model. However, it is still unclear what the corresponding gauge
theory action will look like. The most obvious guess would be some holomorphic BF-type
theory, see section IV.3.3} §12, with B a “Lagrange multiplier (0,3)-form”.

85 Reality conditions on the superambitwistor space. Recall that there is a real
structure which leads to Kleinian signature on the body of the moduli space RY2V of real
holomorphic sections of the fibration o in (VIL162). Furthermore, if A/ is even, one can
define a second real structure which yields Euclidean signature. Above, we saw that the
superambitwistor space £°/6 originates from two copies of P33 and therefore, we cannot
impose the Euclidean reality condition. However, besides the real structure leading to a
Kleinian signature, one can additionally impose a reality condition for which we obtain
a Minkowski metric on the body of R4*V. In the following, we will focus on the latter.

30Recall that TH°CP = O(2).
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Consider the anti-linear involution 73, which acts on the coordinates of £5/6 according
to - -
Sections of the bundle £°6 — CP! x CP! which are 7y;-real are thus parameterized by
moduli satisfying

2% = —gPa and npf = 6 . (VIIL.326)
We can extract furthermore the contained real coordinates via the identification
xli = —izg? —iz? , xlé = —ig! — 22 ,
. ) (VIL.327)
22 = —igt 4+ 2? , 222 = —iz% 4123 ,

and obtain a metric of signature (3,1) on R* from ds? := det(dz®*). In this section, we
will always adopt this convention, even in the complexified Euclidean situation.

VII.7.2 The Penrose-Ward transform on the superambitwistor space

§6 The holomorphic vector bundle £. Let £ be a topologically trivial holomorphic
vector bundle of rank n over £5/ which becomes holomorphically trivial when restricted
to any subspace (CP! x @Pl)xm,g%ﬁaﬁ. Due to the equivalence of the Cech and the
Dolbeault descriptions of holomorphic vector bundles, we can describe £ either by holo-
morphic transition functions {f.} or by a holomorphic structure J = d + A: Starting
from a transition function f,;, there is a splitting

fab = 07 0y, (VIIL.328)

where the 1), are smooth GL(n, C)-valued functions®! on U(q), since the bundle £ is
topologically trivial. This splitting allows us to switch to the holomorphic structure
d+ A with A = 1&51&*1, which describes a trivial vector bundle € = £. Note that the
additional condition of holomorphic triviality of £ on subspaces ((DP1 X @Pl)x’mg will
restrict the explicit form of A.

§7 Relation to N =3 SYM theory. Back at the bundle £, consider its pull-back 73&
with transition functions {73 f,p }, which are constant along the fibres of my : F' 6112 _, £516.

Wi fa = Digmifa = D\%5fa = 0, (VIL.329)

The additional assumption of holomorphic triviality upon reduction onto a subspace
allows for a splitting

T fap = Uy 'y (VIL.330)

into GL(n, C)-valued functions {t,} which are holomorphic on Z;l(a): Evidently, there is
such a splitting holomorphic in the coordinates A(q) and p(,) on (CP! x @Pl)x,n’g, since
& becomes holomorphically trivial when restricted to these spaces. Furthermore, these
subspaces are holomorphically parameterized by the moduli (¢, nf‘, 6°%), and thus the
splitting (VI1.330) is holomorphic in all the coordinates of F%'2. Due to (VIL.329), we
have on the intersections Z;{(a) N Z;l(b)

vaDigva' = Dty = AyAs (VIL331a)
va D\t = Dyt = 1oy Aai (VIL.331b)
YWyt = WOyt = pl A A, (VIL331c)

31In fact, the collection {1} forms a Cech O-cochain.
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where Afw Ao and Ay are independent of H(a) and )\(a). The introduced components
of the supergauge potential A fit into the linear system

1A (Pa + Aaa)tPa = 0, (VIL.332a)
(Dl + Ai)a = 0, (VIL.332b)
poy(Dai + Aai)tha = 0, (VIL332¢)

whose compatibility conditions are
{(VEVI}+ (V5 VA = 0, {Vai, Vig} +{Vi, Vag} = 0,

. . (VIL.333)
{VM,VQ} — 25§Vad =0.

Here, we used the obvious shorthand notations ij{ = Da + .Afj{, Vai := Dai + Aai, and
Vaa = Oaa + Aaa- Equations (VIL.333) are well known to be equivalent to the equations
of motion of A" =3 SYM theory on*? C* [290], and therefore (up to a reality condition)
also to N' = 4 SYM theory on C*.

We thus showed that there is a correspondence between certain holomorphic struc-
tures on £5/%, holomorphic vector bundles over £56 which become holomorphically trivial
when restricted to certain subspaces and solutions to the N' = 4 SYM equations on C*.
The redundancy in each set of objects is modded out by considering gauge equivalence
classes and holomorphic equivalence classes of vector bundles, which renders the above

correspondences one-to-one.

VII.7.3 The mini-superambitwistor space £*°

In this section, we define and examine the mini-superambitwistor space £46, which we
will use to build a Penrose-Ward transform leading to solutions to N' = 8 SYM theory
in three dimensions. We will first give an abstract definition of £*¢ by a short exact
sequence, and present more heuristic ways of obtaining the mini-superambitwistor space
later.

88 Abstract definition of the mini-superambitwistor space. The starting point

is the product space P23 x 733 13 of two copies of the N’ = 3 mini-supertwistor space. In

analogy to the space P33 x Pf'g

1 2 _ (@), 1 2 i
(w(a)’ Wiay = ANa)s Wi 5 Yay Ya) = Ha) 9(a)) (VIL.334)

on the patches V(,) which are unions of Vi and Vi:

, we have coordinates

V(l) = V.;.XVi, V(Q) = V_XVi, V(g) = V.;.XVj, V(4) = V_xV*. (VH.335)

For convenience, let us introduce the subspace (DPlA of the base of the fibration P23 x

3'3 — CP! x (DPi as

CPL\ := diag(CP' x CP)) = {(us,\s) € CP' x CPL|ps = At} .  (VIL336)
Consider now the map & : P23 x 733‘3 — O®P1A(2) which is defined by

4 ’lUl a Ul + QQZ 'j:7 w2 for ’LU2 = /02
£: (w(l")’w(za)’nz(a)Q”(1a)=v(2a)792a)) . { (wi —vi Lt wl) 2 2

(0, w(Qa) else
(VIL.337)

32Note that most of our considerations concern the complexified case.
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where Ogp1 (2) is the line bundle O(2) over CPL. In this definition, we used the fact
that a point for which w3 = v2 holds, is located at least on one of the patches V) and
V(). Note in particular that the map ¢ is a morphism of vector bundles. Therefore, we
can define a space £46 via the short exact sequence

0 — o4l _, p23 pA3 &, Oppr (2) — 0. (VIL.338)

We shall call this space the mini-superambitwistor space and denote the restrictions of
the patches V() to L4 by v(a).

§9 £%6 is not a vector bundle. An important consequence of this definition is that
the sheaf 246 of holomorphic sections of £46 is not a locally free sheaf, because over
any open neighborhood of (DPIA, it is impossible to write £46 as a direct sum of line
bundles. This is simply due to the fact that the stalks over (DPlA are isomorphic to the
stalks of ﬁCPlA (2), while the stalks over (CP! x CPL)\CPL are isomorphic to the stalks
of @DPGCPi(z?Q)‘

It immediately follows that the space £46 is not a vector bundle. However, one can
casily see that p : £46 — CP! x CPL =: B is a fibration since the necessary homotopy
lifting property is inherited from the one on £°/6. Given a commutative diagram

X % {0} s pas
l r lp (VIL339)

h
Xx[0,1] —~ B

the homotopy lifting property demands a map ¢ : X x [0,1] — L£46 which turns the
commutative square diagram into two commutative triangle diagrams. Omne can now
always lift the map h to a map h: X x {0} — £516 and since £°19 is a vector bundle over
CP! x CP! and thus a fibration, there is a map §: X x [0,1] — £%I6 which leads to two
commutative triangle diagrams in the square diagram

X x {0} Ts psis
l 7 l P (VIL340)
hy
X x[0,1] — B

The function g we are looking for is then constructed by composition: g = 7 o g, where
7 is the natural projection 7 : £2/6 — £46 with pom = p.

The fact that the space £46 is neither a supermanifold nor a supervector bundle over
B seems at first slightly disturbing. However, once one is aware of this new aspect, it does
not cause any deep difficulties as far as the twistor correspondence and the Penrose-Ward
transform are concerned.

8§10 The mini-superambitwistor space by dimensional reduction. To obtain a
clearer picture of the fibration £*% and its sections, let us now consider the dimensional
reduction of the space £°6. We will first reduce the product space P33 x 733 3 and
then impose the appropriate reduced quadric condition. For the first step, we want to

eliminate in both P33 and 733 13 the dependence on the bosonic modulus 2. Thus we
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should factorize by

2] 3_0
afi - zi% on Up) o~ Ut oul on Uy
3 0
P g on U . s ~ Ui on U
Ta) = ) 3 0 and  J(,) = 3" o 9 ’
9.2 ~ Ftp.r O U ulos = o o Ug
0 o) ; 3 3
F—5:Z T 9.L O u(4) ui% — 83£ on U(4)
(VIL.341)
which leads us to the orbit space
2B« P23 = (P33 /g) x (P3G | (VIL.342)

where G and G* are the Abelian groups generated by .7 and .7*, respectively. Recall
that the coordinates we use on this space have been defined in (VIL.334). The global
sections of the bundle P24 x 733 4 opt x CP! are captured by the parameterization

wly = vANINT L vl = v 0 = 0% = Al (VIL343)

a a g &
where we relabel the indices of ,u&a) — u((;) and the moduli yfﬁ — yf o , 0" — 9 since
there is no distinction between left- and right-handed spinors on R? or its complexification
3.

The next step is obviously to impose the quadric condition, gluing together the self-
dual and anti-self-dual parts. Note that when acting with 7 and 7™ on £, as given in
(VIL.316), we obtain

Tnrw = Thew = (e — A1) . Jokp) = Joke) = A-py—1),
Tak@) = Ipee = (L=An-) . Fuke = ke = (A= —p-) .
(VIL.344)
This implies that the orbits generated by 7 and .7* become orthogonal to the orbits of
% only at pr = Ax. Therefore, it is sufficient to impose the quadric condition x4 =0
at uyr = Ay, after which this condition will automatically be satisfied at the remaining
values of py and Ay. Altogether, we are simply left with

(wh — vl +200nF) =0, (VI1.345)

}/\i:ui

and the subset of P23 x 733 13 which satisfies this condition is obviously identical to the
mini-superambitwistor space £4¢ defined above.

The condition (VII.345) naturally fixes the parameterization of global sections of the
fibration £46 by giving a relation between the moduli used in (VIL.343). This relation is
completely analogous to (VIL.317) and reads

ydﬂ- = ygﬁ—e(aznzﬂ) and y:‘fg = yS‘B—l-H(mn?) (VII346)

We clearly see that this parameterization arises from (VII.317) by dimensional reduction

from ©* — €3. Thus indeed, imposing the condition (VII.345) only at Ay = p4 is the

dimensionally reduced analogue of imposing the condition (VIL.316) on P33 % 775:’ 3,
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§11 Comments on further ways of constructing £*6. Although the construction
presented above seems most natural, one can imagine other approaches of defining the
space £Y6. Completely evident is a second way, which uses the description of £5/6 in terms
of coordinates on F012. Here, one factorizes the correspondence space F0l12 by the groups
generated by the vector field .75 = 75" and obtains the correspondence space o2 o
€312 x CP! x CP! together with equation (VII.346). A subsequent projection s from the
dimensionally reduced correspondence space K°'2 then yields the mini-superambitwistor
space £46 as defined above.

Furthermore, one can factorize P33 x 733 3 only by G to eliminate the dependence on

one modulus. This will lead to P23 x P2 1% and following the above discussion of imposing
the quadric condition on the appropriate subspace, one arrives again at (VIL.345) and
the space £46. Here, the quadric condition already implies the remaining factorization
of P2 x P33 by g*.

Eventually, one could anticipate the identification of moduli in (VII.346) and therefore

want to factorize by the group generated by the combination .7 + 7*. Acting with this
sum on £,y will produce the sum of the results given in (VIL.344), and the subsequent
discussion of the quadric condition follows the one presented above.
8§12 Double fibration. Knowing the parameterization of global sections of the mini-
superambitwistor space fibred over CP! x ©P! as defined in (VIL.346)), we can establish
a double fibration, similarly to all the other twistor spaces we encountered so far. Even
more instructive is the following diagram, in which the dimensional reduction of the
involved spaces becomes evident:

6]12
™2 ™

1516 / \ 412
" o112 ”
416 / \ 312
The upper half is just the double fibration for the quadric (VIL.318), while the lower
half corresponds to the dimensionally reduced case. The reduction of C*'2 to €312 is

(VI1.347)

obviously done by factorizing with respect to the group generated by 2. The same is
true for the reduction of F012 = €412 x CP! x CP! to £°N? = €312 x CP! x CPL.
The reduction from £%/6 to £46 was given above and the projection o from K52 onto
£46 is defined by equations (VIL.343). The four patches covering FOI12 will be denoted
by V(a) = 1/2_1(]}(@)).

The double fibration defined by the projections 11 and vy yields the following twistor
correspondences:

{subspaces ((DP1 X @Pl)ymmg in 54\6} — {points (yo,m,0) in @3|12} 7
{generic points p in 54‘6} — {null superlines in @3|12} . (VIL348)
{points pin £4|6 with A\ = M:I:} — {superp]anes in @3‘12} .

The null superlines and the superplanes in C3'2 are defined as the sets {(ydB , nf‘, 6%%)}
with

Yo = ol +t/\E§)M€3)a no= 0 ey, 0 = fai | zi ey
= ey, 6 = BN

ydﬁ = gdﬁ +/€(d)\( )
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where t, k%, ¢; and & are an arbitrary complex number, a complex commuting two-spinor
and two three-vectors with Grafimann-odd components, respectively. Note that in the
last line, A} = u¢, and we could also have written

{0, 0%} with y = g%kl = ity 0% = 09+l
The vector fields spanning the tangent spaces to the leaves of the fibration v, are for
generic values of put and Ay given by

@ _ &6 5
W=l Ny O )

i ﬁ A . \B 9 vig

%

@ . o p. oo (98

D7 = i Dai = i) (aeéw a(aﬁ)) :

where the derivatives J,g) have been defined in (IV.77) and (IV.78). At ps = Mg,
however, the fibres of the fibration £46 over CP' x CPL loose one bosonic dimension.
As the space K°I'2 is a manifold, this means that this dimension has to become tangent

to the projection 5. In fact, one finds that over (DPlA, besides the vector fields given in
(VIL.349), also the vector fields

W5 = uldss = A2 (VIL.350)

annihilate the coordinates on £*6. Therefore, the leaves to the projection vy : K212 —
£46 are of dimension 2|6 for 4+ = A+ and of dimension 1|6 everywhere else.

§13 Real structure on £4%. Quite evidently, a real structure on £46 is inherited from
the one on £ and we obtain directly from (VIL.325) the action of 7p; on P24 x 732|4
which is given by

™ (wjt,)\a,nZ ,vi,,uaﬁi) = ( vi,ua, : wi,)\a,nz> . (VIL.351)

This action descends in an obvious manner to £4‘6, which leads to a real structure on
the moduli space C3'2 via the double fibration (VIL.347). Thus, we have as the resulting
reality condition

yOB = —ygd‘ and nf = 64 (VIL.352)
and the identification of the bosonic moduli ydfé with the coordinates on R? reads as
yéi = —ig¥ —iz? y(i]i = ygi = —iz!, ygé = —iz% +iz? . (VIL.353)

The reality condition 7a/(+) = - is indeed fully compatible with the condition (VII.345)
which reduces P24 x ”Pf|4 to £46. The base space CP' x CPL of the fibration £*6 is
reduced to a single sphere S? with real coordinates $(A+ +p4) = 3(Ar 4+ A1) and 2 (A —
) = %()\i — A+), while the diagonal CPY is reduced to a circle Sk parameterlzed by
the real coordinates %(Ai + A1+). The 1ps-real sections of £40 have to satisfy wl =
mar(wh) = oL Thus, the fibres of the fibration £46 — CP! x CPL, which are of complex
dimension 2|6 over generic points in the base and complex dimension 1|6 over (DPlA,
are reduced to fibres of real dimension 2|6 and 1|6, respectively. In particular, note
that 0%n"= = = 1; 9’ = —0'n ’i is purely imaginary and therefore the quadric condition
(VIL ?45) together with the real structure 7 implies that wl = 0} = w} + 207 for

A+ = p+ = Ax. Thus, the body wi of wl is purely real and we have w} = wli — i777;

and vl = ﬁ)i + 9;77?: on the diagonal S}.
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§14 Interpretation of the involved real geometries. For the best-known twistor cor-
respondences, i.e. the correspondence (VII.45)), its dual and the correspondence (VII.129),
there is a nice description in terms of flag manifolds, see e.g. the diagrams (VIL.74),
(VIL.75) and (VII.132) as well as the discussion in [284]. For the spaces involved in the
twistor correspondences including mini-twistor spaces, one has a similarly nice interpreta-
tion after restricting to the real situation. For simplicity, we reduce our considerations to
the bodies®? of the involved geometries, as the extension to corresponding supermanifolds
is quite straightforward.
Let us first discuss the double fibration for the mini-twistor space, cf. (VIL.275),

JCBI12N
”f/ \/1 (VIL.354)
AN 312N

and assume that we have imposed a suitable reality condition on the sections of PAN
CP!, the details of which are not important. We follow again the usual discussion of the
real case and leave the coordinates on the sphere complex.

As correspondence space on top of the double
fibration, we have thus the space R? x S2, which

we can understand as the set of oriented lines>*

in R? with one marked point. Clearly, the point / \
of such a line is given by an element of R3, and

the direction of this line in R? is parameterized

by a point on S2. The mini-twistor space P? =

O(2) now is simply the space of all lines in R?

[126]. Similarly to the case of flag manifolds,

the projections v; and vo in (VIL.354) become therefore obvious. For vj, simply drop
the line and keep the marked point. For vo, drop the marked point and keep the line.
Equivalently, we can understand v5 as moving the marked point on the line to its shortest
possible distance from the origin. This leads to the space T'S? = (O(2), where the S?
parameterizes again the direction of the line, which can subsequently be still moved
orthogonally to this direction, and this freedom is parameterized by the tangent planes
to 52, which are isomorphic to R2.

Now in the case of the fibration which is in-

cluded in (VIL.347), we impose the reality condi-

tion (VIL.351) on the fibre coordinates of £*. In

/ \ the real case, the correspondence space K° be-

comes the space R? x S? x §2 and this is the

space of two oriented lines in R? intersecting in

a point. More precisely, this is the space of two

oriented lines in R? each with one marked point,

for which the two marked points coincide. The

projections v; and vy in (VIL.347) are then interpreted as follows. For vy, simply drop the
two lines and keep the marked point. For vs, fix one line and move the marked point (the
intersection point) together with the second line to its shortest distance to the origin.

33i.e. drop the fermionic directions

34not only the ones through the origin
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Thus, the space £* is the space of configurations in IR3, in which a line has a common
point with another line at its shortest distance to the origin.
Let us summarize all the above findings in the following table:

Space Relation to R3
R3 marked points in R3
R3 x §? oriented lines with a marked point in R?3

P2 0(2) oriented lines in R? (with a marked point at shortest dis-
tance to the origin.)

R3 x 82 x §? | two oriented lines with a common marked point in R3

4 two oriented lines with a common marked point at shortest
distance from one of the lines to the origin in R3

§15 Remarks concerning a topological B-model on £46. The space £46 is not
well-suited as a target space for a topological B-model since it is not a (Calabi-Yau)
manifold. However, one clearly expects that it is possible to define an analogous model
since, if we assume that the conjecture in [202] is correct, such a model should simply
be the mirror of the mini-twistor string theory considered in [63]. This model would
furthermore yield some holomorphic Chern-Simons type equations of motion. The latter
equations would then define holomorphic £46-bundles by an analogue of a holomorphic
structure. These bundles will be introduced in section 4.3 and in our discussion, they
substitute the holomorphic vector bundles.

Interestingly, the space £46 has a property which comes close to vanishing of a first
Chern class. Recall that for any complex vector bundle, its Chern classes are Poincaré
dual to the degeneracy cycles of certain sets of sections (this is a GauB-Bonnet formula).
More precisely, to calculate the first Chern class of a rank r vector bundle, one considers
r generic sections and arranges them into an r X r matrix L. The degeneracy loci on the
base space are then given by the zero locus of det(L). Clearly, this calculation can be
translated directly to £416.

We will now show that £46 and £%/6 have equivalent degeneracy loci, i.e. they are
equal up to a principal divisor, which, if we were speaking of ordinary vector bundles,
would not affect the first Chern class. Our discussion simplifies considerably if we restrict
our attention to the bodies of the two supertwistor spaces and put all the fermionic
coordinates to zero. Instead of the ambitwistor spaces, it is also easier to consider the
vector bundles P2 x P2 and P2 x P2 over CP! x CPL, respectively, with the appropriately
restricted sets of sections. Furthermore, we will stick to our inhomogeneous coordinates
and perform the calculation only on the patch Uy, but all this directly translates into
homogeneous, patch-independent coordinates. The matrices to be considered are

ziONE zlont  alaat aleat > 5
- ; 5 ; aBy+y+ @Byt
m%o‘)\g x%o‘)\g x%a)\a* xia/\z Y1 )‘oz)‘ﬁ' Ya Aa)‘g

LLS - L£4 -

al, + al, + al, + al, + ’ Y3 v ’
Ty Ha To Ha T3 He Ty Mo y?ﬁ,u;t,ug y;"gugug
R T e TR o TR i T

and one computes the degeneracy loci for generic moduli to be given by the equations

A —p)? =0 and (A —py)(Ap—or) = 0 (VIL.355)
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on the bases of £5 and £*, respectively. Here, o, is a rational function of ;. and therefore
it is obvious that both degeneracy cycles are equivalent.

When dealing with degenerated twistor spaces, one usually retreats to the correspon-
dence space endowed with some additional symmetry conditions [195]. It is conceivable
that a similar procedure will help to define the topological B-model in our case. Also,
defining a suitable blow-up of £4¢ over (DPlA could be the starting point for finding an
appropriate action.

VII.7.4 The Penrose-Ward transform using mini-ambitwistor spaces

§16 £4%-bundles. Because the mini-superambitwistor space is only a fibration and not a
manifold, there is no notion of holomorphic vector bundles over £4/%. However, our space
is close enough to a manifold to translate all the necessary terms in a simple manner.

Let us fix the covering 4 of the total space of the fibration £46 to be given by
the patches V) introduced above. Furthermore, define & to be the sheaf of smooth
GL(n, ©)-valued functions on £*% and $ to be its subsheaf consisting of holomorphic
GL(n, ©)-valued functions on £, i.e. smooth and holomorphic functions which depend
only on the coordinates given in (VIL343) and A, f(a)-

We define a complez £35-bundle of rank n by a Cech 1-cocycle {fw} € Z1(4, &) on
£46 in full analogy with transition functions defining ordinary vector bundles, see section
I1.2.3. If the 1-cocycle is an element of Z' (41, $), we speak of a holomorphic L46-bundle.
Two L£46-bundles given by Cech 1-cocycles {fq} and { fl.} are called topologically equi-
valent (holomorphically equivalent) if there is a Cech O-cochain {14} € C°(4, &) (a Cech
O-cochain {¢,} € CO(4,$)) such that fu, = ¥7 ' f . An LY -bundle is called trivial
(holomorphically trivial) if it is topologically equivalent (holomorphically equivalent) to
the trivial £4%-bundle given by {fup} = {1}

In the corresponding discussion of Cech cohomology on ordinary manifolds, one can
achieve independence of the covering if the patches of the covering are all Stein manifolds.
An analogous argument should be also applicable here, but for our purposes, it is enough
to restrict to the covering L.

Besides the Cech description, it is also possible to introduce an equivalent Dolbeault
description, which will, however, demand an extended notion of Dolbeault cohomology
classes.

§17 The Penrose-Ward transform. With the double fibration contained in (VIL.347),
it is not hard to establish the corresponding Penrose-Ward transform, which is essentially
a dimensional reduction of the four-dimensional case presented in section 4.1.

On £ we start from a trivial rank n holomorphic £*%-bundle defined by a 1-
cocycle {fu} which becomes a holomorphically trivial vector bundle upon restriction to
any subspace ((DP1 X @Pl)y7n79<—>£4|6. The pull-back of the £46-bundle along 1 is the
vector bundle € with transition functions {V5 fap} satisfying by definition

WOuS fa, = Diyvifar = Divifa, = 0, (VIL356)
at generic points of £46 and for A+ = p, we have
W fuy = Digvifar = D\sfuy = 0. (VIL357)

Restricting the bundle € to a subspace (CP' x CPY), , gL ¢ F212 yields a splitting
Y1,
of the transition function v fg

Vs fab = g 'y (VIL358)
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where {1,} are again GL(n,C)-valued functions on f/(a) which are holomorphic. From
this splitting together with (VIL.356), one obtains at generic points of £46 (we will discuss
the situation over CPj shortly) that

¢abéa)1/)_ = ¢bD wb =: (a)AZ,
Ya DMyt = DMyt = pioy Adi (VIL.359)
(@)1 — (@)= —. & \B .
YW = W % = M(a)/\(a)Baﬁ’
where B 1s a superfield which decomposes into a gauge potential and a Higgs field ®:
Big = Awp +2%ap® - (VIL360)

The zeroth order component in the superfield expansion of ® will be the seventh real
scalar joining the six scalars of A/ = 4 SYM in four dimensions, which are the zeroth
component of the superfield ®;; defined in

{Dai + Asis DBj + Aﬁ]} =: 26aﬁ(I) . (VIL.361)

Thus, as mentioned above, the Spin(7) R-symmetry group of N'=8 SYM theory in three
dimensions will not be manifest in this description.

The equations (VII.359) are equivalent to the linear system

& B _ _ _
i Na) Oag) T Bagl¥a = 0,
(a)(DZ + Ay, = 0, (VIL.362)
,u(a)( ai +Aai)Va = 0.

To discuss the corresponding compatibility conditions, we introduce the following differ-
ential operators:
Vi = DL+ AL, Vi = Dai+ A,
¢ ¢ . oo (VIL363)
Vap = Oap) +Bag

We thus arrive at
{V%, vf}+{v2,vf} = 0, {Vai,Vy} +{Vy,Va;} =0

4 (VIL.364)
{vdi,vfﬁ.} - 25§Vdﬂ- =0,
and one clearly sees that equations (VII.364) are indeed equations (VII.333) after a di-
mensional reduction C* — €3 and defining ® := Ay. (Recall that we are reducing the
coordinates by x2.) As it is well known, the supersymmetry (and the R-symmetry) of
N =4 SYM theory are enlarged by this dimensional reduction and we therefore obtained
indeed N' = 8 SYM theory on C3.
Let us now examine how the special case Ay = p4 fits into the picture. One im-
mediately notes that a transition function v f,p, which satisfies (VII.356)) is of the form

far = Fan@ NNy O AL ) (VIL365)

and thus the condition (VIL.357) is obviously fulfilled for Ay = pi. This implies in
particular that for A+ = p+, nothing peculiar happens, and it suffices to consider the
linear system (VIL.362).
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Following the above analysis in a straightforward manner for A+ = p4, one arrives at a
linear system which contains singular operators on ©P4 and the compatibility conditions
of this system cannot be pushed forward from the correspondence space K°1'2 down to
©31'2. As mentioned above, we can ignore this point, as it will be equivalent to considering
the linear system (VIL.362) over CPL.

To sum up, we obtained a correspondence between holomorphic £46-bundles which
become holomorphically trivial vector bundles upon reduction to any subspace ((DP1 X
@Pl)ym,9<—>£4‘6 and solutions to the three-dimensional N' = 8 SYM equations. As this
correspondence arises by a dimensional reduction of a correspondence which is one-to-
one, it is rather evident that also in this case, we have a bijection between both the
holomorphic £46-bundles and the solutions after factorizing with respect to holomorphic
equivalence and gauge equivalence, respectively.

818 Yang-Mills-Higgs theory in three dimensions. One can translate the discussion
of the ambitwistor space in [VIL.3.3 to the three-dimensional situation, giving rise to
a Penrose-Ward transform between holomorphic £* bundles and the Yang-Mills-Higgs
equations. First of all, recall from section IV.2.5/ §30| the appropriate Yang-Mills-Higgs
equations obtained by dimensional reduction are

V(dB)F

s = [0 Visp0l and Ad = VIV a0 =0, (VIL366)

while the self-dual and anti-self-dual Yang-Mills equations correspond after the dimen-
sional reduction to two Bogomolny equations which read

F

e o
@) = CapaheaY 00 and Fuges = —EepeaenY ¢, (VIL36T)

respectively. Using the decomposition F| (@B)(46) = Ea fB s+ €85 fary, the above two equa-
tions can be simplified to

fap = %V(aﬁ)ﬁb and  f.5 = —%V(dﬁ')qb- (VIL.368)

Analogously to the four-dimensional case, we start from a vector bundle E over the space
©3 x ©3 with coordinates p(@ and ¢(®?); additionally we introduce the coordinates

y(@f) = %(p(dﬁ) +4¢%) and B = %(p(dﬂ) — ¢ (VIL.369)
and a gauge potential

— AP dp @D L A7 qa@D) — AV Q@B L ah . qplad)
A A(dﬁ)dp + A(ag)dq A(@g)dy + A(dﬁ)dh (VIL.370)
on E. The differential operators we will consider in the following are obtained from
covariant derivatives by dimensional reduction and take, e.g., the shape

Co— : Voo v .
vdﬁ dy(aB) T [A((m) + 3€439% ] (VIL.371)

We now claim that the Yang-Mills-Higgs equations (VIL.366) are equivalent to the equa-

tions )
P P _ p P
[vaﬁ7v7(5] - *[va,@7vv5] + O(h ) ’

[Vip Vil = =V, Vil +0(%) (VIL372)

[VZB’V?‘W;] = O(hQ)a
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where we can use *[V?’g
e}

the coordinates (y,h) to equations similar to (VIL.151), which are solved by the field
expansion

,Vs ’Sq} = €aps ééV;qubp’q. These equations can be simplified in

A?ozﬂ') - _%F(yéi%)wé)h(w B %h(&é)v?%%)g(aﬁ')(éo(w(Vz(fg 'O
A RS R G S e (VIL373)
Aty = At~ aieien (Tun O — ROIVEG (UG L JHEO
o o= v 4 %g(aﬂ'xe’c’)(w) F(yé,g)w) heg + 5 h(%)v?ﬁ;)(v(a,@'ﬁby’o) h(eh)

if and only if the Yang-Mills-Higgs equations (VIL.366) are satisfied.

Thus, solutions to the Yang-Mills-Higgs equations (VIL.366) correspond to solutions
to equations (VIL372) on €3 x C3. Recall that solutions to the first two equations
of (VIL.372) correspond in the twistor description to holomorphic vector bundles over
P? x P2. Furthermore, the expansion of the gauge potential (VI.373) is an expansion in
a second order infinitesimal neighborhood of diag(C?x C3). As we saw in the construction
of the mini-superambitwistor space £46, the diagonal for which h(®* = 0 corresponds to
L£* € P?2xP2. The neighborhoods of this diagonal will then correspond to sub-thickenings
of £* inside P? x P2, i.e. for u+ = A1, we have the additional nilpotent coordinate &. In
other words, the sub-thickening of £% in P? x P? is obtained by turning one of the fiber
coordinates of P2 x P? over CPY into a nilpotent even coordinate (in a suitable basis).
Then we can finally state the following:

Gauge equivalence classes of solutions to the three-dimensional Yang-Mills-Higgs
equations are in one-to-one correspondence with gauge equivalence classes of holomorphic
L*-bundles over a third order sub-thickening of £, which become holomorphically trivial
vector bundles when restricted to a CP! x CP! holomorphically embedded into £*.

VII.8 Solution generating techniques

In this section, we will discuss solution generating techniques which are related to the
twistorial description of field theories.

The Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of instantons [13] reduces
the self-duality equations to a simple set of matrix equations. This construction has been
shown to be complete, i.e. all instanton solutions can be obtained by this algorithm. The
original idea was to find an instanton bundle over P? (a topologically trivial holomorphic
vector bundle, which becomes holomorphically trivial upon restriction to any (DPJIC c P?)
from a so-called monad. Nevertheless, a very nice interpretation in terms of D-brane
configurations has been found later on [295, 84, 85], see also [83, 274]. Furthermore,
supersymmetric extensions of the ADHM construction have been proposed [256, 282].

The corresponding reduction to the three-dimensional Bogomolny equations is given
by the Nahm construction [200] with a D-brane interpretation developed in [75]. A
corresponding superextension was proposed in [176], and we will present this extension
in section [VII.8.4.

We will present further solution generating techniques in section [VIII.3.2.
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VII.8&.1 The ADHM construction from monads

In discussing the ADHM construction from monads, we follow essentially the presenta-
tions in [284] and [94]. The technique of obtaining vector bundles from monads stems
originally from Horrocks [132], see also [12].

§1 Monads. A monad 9% over a manifold M is a triple of vector bundles A, B, C' over
M, which fits into the sequence of vector bundles

A2 lo, (VIL374)

and thus the linear maps « and [ satisfy Sa = 0. The vector bundle E = ker3/ima« is
called the cohomology of the monad.

The rank and the total Chern class of the cohomology E of the monad 9t constructed
above can be derived from the corresponding data of the triple A, B, C via the formulae

rkE = rkB —rkA —rkC |

C(E) — C(B)C(A)_lc(C)_l ) (VII375)

§2 Annihilator. The annihilator U? C V of a subspace U of a symplectic vector space>®

V is given by those vectors v € V, which vanish upon pairing with any element of U and
applying the symplectic form:

U° == {veV|w,u)=0foralluecU} . (VIL.376)

83 The instanton monad. Let us now construct a monad 91, which yields an instanton
bundle as its cohomology. For simplicity, we will restrict ourselves to the gauge group
SU(2), but via embeddings, it is possible to generalize this discussion to gauge groups
SU(n), SO(n) and Sp(n).

Note that by introducing a symplectic form w on a vector bundle B, B can be identified
with its own dual. Furthermore, A will be dual to C' and « to 8. Thus, we can reduce
the data defining our monad 9 to A, (B,w) and «. For our construction, we choose A
to be OF(—1) over CP3 and B is the trivial bundle C%*+2 — CP3.

It now remains to specify a. For this, take two complex vector spaces V = C2¥*+2 and
W = CF with a symplectic form w on V, on both of which we have antilinear maps 7,
with 73, = 1 (a complex conjugation) and 7& = —1 (induced from the real structure on
CP3), the latter being compatible with the symplectic form w: w(rvy, Tve) = w(vy,v2)
and the induced Hermitian form h(vi,v2) = w(vi,7v2) for v12 € V shall be positive
definit. Additionally, we assume a map

a:W — V with a = A;Z° = A%\ + Aqw® (VIL.377)

where (Z) := (w®, \s) will become the homogeneous coordinates on the twistor space
CP3 and A%, A, are constant linear maps from W to V. The map « satisfies the com-
patibility condition 7a(Z)w = a(rZ)Tw with the maps 7. Since « is linear in Z, we
can also see it as a homomorphism of vector bundles a : W(—1) — V x CP3, where
W(—=1) = W ® Ogps(—1). From the map o : V¥V =V — WV, we obtain the monad 9

W(-1) %V x CP?* 25 wV(1) | (VIL378)

35 A symplectic vector space is a vector space equipped with a symplectic form w. That is, w is a
nondegenerate, skew-symmetric bilinear form.
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where WV(1) is the space W @ (Ogps(—1))".

We impose now two additional conditions on the linear map «. First, the space
Uz := oW is of dimension k and second, for all Z # 0, Uz is a subset of Ug. The latter
condition is automatically satisfied for £ = 1. For k£ > 1, this amounts to the matrix

Twa = 0. The instanton bundle over®® CP3 is then given by the resulting

equation «
cohomology

Ey = Uy/Uy (VIL.379)

of M. Since both Ug and Uz are independent of the scaling, we have E; = E;7 and
therefore the family of all E is indeed a vector bundle E over CP3. In particular, since
dimUy; = k and dim Ug = k + 2, we have dim F; = 2, which is the desired result for
an SU(2)-instanton bundle. The symplectic form w on V induces a symplectic form w on
Ez, which renders the latter bundles structure group to SL(2, C).

One can verify that the bundle FE constructed in this manner is in fact an instanton
bundle [12], and via the Penrose-Ward transform, one obtains the corresponding self-dual
gauge potential.

84 The picture over the moduli space. Instead of constructing the vector spaces
V and W over the twistor space CP? fibered over S%, we can discuss them directly
over the space S* To this end, define V and W as before and choose 7 to be the
complex conjugation on W. The symplectic form w on V is given by a skew-symmetric
tri-band matrix of dimension (2k + 2) x (2k 4 2) with entries +1. The reality condition
Ta(Z)w = a(TZ)Tw on the map a can now be restated in the following way: Let us
denote the components of the matrix B by Bffj- Then for fixed values of m,n, the
2 X 2-matrix B;er beim should be a quaternion. Applying the same argument to C, we
arrive at a representation of the map « in terms of a (k + 1) x k-dimensional matrix of
quaternions

A=A-Cz. (VIL380)

The remaining condition that a(Z?)W should be of dimension k for Z* # 0 amounts to the
fact that A(x)A(z) is nonsingular and real for each =, where A is the conjugate transpose
of A. This condition is equivalent to the so-called ADHM equations, which will arise in
the following section. Omne can easily “supersymmetrize” the above considerations, by
considering a supertwistor space CP3W and adding appropriate linear terms to (VIL.377)
and (VIIL.380).

VII.8.2 The ADHM construction in the context of D-branes

85 The D5-D9-brane system. As stated in the introduction to this section, the ADHM
algorithm for constructing instanton solutions has found a nice interpretation in the
context of string theory. We start from a configuration of k£ D5-branes bound to a stack
of n D9-branes, which — upon dimensional reduction — will eventually yield a configuration
of k D(-1)-branes inside a stack of n D3-branes.

§6 D5-D5 strings. From the perspective of the D5-branes, the N’ = 2 supersymmetry
of type IIB superstring theory is broken down to N/ = (1,1) on the six-dimensional
worldvolume of the D5-brane, which is BPS. The fields in the ten-dimensional Yang-
Mills multiplet are rearranged into an N = 2 vector multiplet (¢a, Aad; X', ﬂf‘), where

36Usually in this discussion, one considers the twistor space CP? of S$*, and imposes the restrictions
only for Z% # 0.
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the indices ¢ = 1,...,4, a = 1,...6 and «a,& = 1,2 label the representations of the
Lorentz group SO(5,1) ~ SU(4) and the R-symmetry group SO(4) ~ SU(2)1 x SU(2)g,
respectively. Thus, ¢ and A denote bosons, while x and i refer to fermionic fields.

Note that the presence of the D9-branes will further
break supersymmetry down to N’ = (0,1) and there-
fore the above multiplet splits into the vector mul-
tiplet (@, i) and the hypermultiplet (Ang, x4). In
the following, we will discuss the field theory on the
D5-branes in the language of NV = (0,1) supersym-
metry.

Let us now consider the vacuum moduli space of
this theory which is called the Higgs branch. This is
the sector of the theory, where the D-field, i.e. the
auxiliary field for the A/ = (0,1) vector multiplet,
vanishes?”. Therefore, we can restrict our analysis in

\ W\

the following to a few terms of the action. From the
Yang-Mills part describing the vector multiplet, we
have the contribution 47%a/? [ d®z trk%wa, where B
we also introduce the notation D,, = tr2(66,,) - D. The hypermultiplet leads to an
additional contribution of f dSx tr kiﬁ .5 B/_laﬁ.Aad. Note that we will use a bar instead

of the dagger to simplify notation. However, this bar must not be confused with complex

conjugation.

87 D5-D9 strings. It remains to include the contributions from open strings having
one end on a Db-brane and the other one on a D9-brane. These additional degrees of
freedom are aware of both branes and therefore form hypermultiplets under N' = (0, 1)
supersymmetry. One of the hypermultiplets is in the (k, n) representation of U(k) x U(n),
while the other one transforms as (k,n). We denote them by (wg,’) and (@w%,1?),
where wg and @w® and 9* and )¢ denote four complex scalars and eight Weyl spinors,
respectively. The contribution to the D-terms is similar to the hypermultiplet considered
above: [ d®z tr D - Edgu_}ﬂwd.
§8 The D-flatness condition. Collecting all the (algebraic) contributions of the D-field
to the action and varying them yields the equations of motion

«2D = 16;2 5% 50 ws + A Aog) . (VIL381)

After performing the dimensional reduction of the D5-brane to a D(-1)-brane, the condi-
tion that D vanishes is precisely equivalent to the ADHM constraints.

89 The zero-dimensional Dirac operator. Spelling out all possible indices on our

fields, we have Anapg and wyps, where p,qg = 1,. ..,k denote indices of the representation
k of the gauge group U(k) while u = 1,...,n belongs to the n of U(n). Let us introduce
the new combinations of indices r = u®&pRa =1,...,n+ 2k together with the matrices
(arga) = [ Vuos @) = (2%, A%) and 00) = | . ° (VIL382)
rqa) — Aadpq ) q - qu Dq rq/ T 50/3617(1 ) .

37This is often referred to as the D-flatness condition.
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which are of dimension (n + 2k) x 2k, 2k x (n+ 2k) and (n + 2k) x 2k, respectively. Now
we are ready to define a (n + 2k) x 2k dimensional matrix, the zero-dimensional Dirac
operator of the ADHM construction, which reads

Arpa(T) = @rpa + bipTas (VIL.383)

and we put Agr = (Aypa)*. Written in the new components (VII.382), the ADHM

constraints amounting to the D-flatness condition read &% B(@B ag) = 0, or, more explicitly,

@dag + dﬂ-ad =0, (VH.384)

where we defined as usual ag = 5dﬁ~dﬁ . All further conditions, which are sometimes also
summarized under ADHM constraints, are automatically satisfied due to our choice of
by, and the reality properties of our fields.
810 Construction of solutions. The kernel of the zero-dimensional Dirac operator
is generally of dimension n, as this is the difference between its numbers of rows and
columns. It is spanned by vectors, which can be arranged to a complex matrix U,, which
satisfies

ASUpy = 0. (VIL.385)

Upon demanding that the frame U,, is orthonormal, i.e. that U;Um = Oy, We can
construct a self-dual SU(n)-instanton configuration from

(Mad)uv = U;;aadUrv . (VII386)
Usually, one furthermore introduces the auxiliary matrix f via
f = 20%e + (Aaa + Taa ® 15)%) 7", (VIL387)

which fits in the factorization condition AS"A B = 5;( f™Ypg- Note that the latter

condition is equivalent to the ADHM constraints (VII.384) arising from (VIL.381). The
matrix f allows for an easy computation of the field strength
Fuw = AUbo, fOU (VIL388)

and the instanton number

1 1
~ o3 /d4x trnﬂ‘iy = 162 /d4x 2 tr,, log f . (VIIL.389)

Note that the self-duality of .%,,, in (VIL.388) is evident from the self-duality property of

Opw-

VII.8.3 Super ADHM construction and super D-branes

811 Superspace formulation of SYM theories. First, recall from section IV.2l that
one can formulate the equations of motion of N' = 4 super Yang-Mills theory and self-
dual Yang-Mills theory with arbitrary N both in terms of ordinary fields on R* (or its
complexification ©*) and in terms of superfields on certain superspaces having R* as
their body. For N' = 4 SYM theory, the appropriate superspace is R*16 (or @4‘16),
while for N-extended SDYM theory, one has to use R4V (or C4?V). One can find an
Euler operator, which easily shows the equivalence of the superfield formulation with the
formulation in terms of ordinary fields.
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§12 Superbrane system. For the super ADHM construction, let us consider k& D5|8-
branes inside n D9|8-branes. To describe this scenario, it is only natural to extend
the fields arising from the strings in this configuration to superfields on €18 and the
appropriate subspaces, respectively. In particular, we will extend the fields wg and Aqg
entering into the D-flatness condition in the purely bosonic setup to superfields living
on C%8. However, since supersymmetry is broken down to four copies of N” = 1 due
to the presence of the two stacks of D-branes, these superfields can only be linear in
the Gramann variables. From the discussion in [120], we can then even state what the
superfield expansion should look like:

wa = Wa+Pnia and  Aag = Aaa + Xilia - (VIL.390)

8§13 Super ADHM equations. The D-flatness condition we arrive at after following
the above discussion of the field theories involved in the D-brane configurations reads
again

o?D = % (@ ws + AP Aas) = 0, (VIL391)

i
1672
but here, all the fields are true superfields. After performing the dimensional reduction
of the D9|8-D5|8-brane configuration to one containing D3|8- and D(-1|8)-branes, and
arranging the resulting field content according to (VII.382), we can construct the zero-
dimensional super Dirac operator

R

ad

R+l (VIL392)

o
A’I‘idc = Qpia T b%l‘ = Qpig + b%l’

where (29, 7%) are coordinates on the (anti-)chiral superspace C*®. That is, from the

point of view of the full superspace C*16 with coordinates (o9, g, nf‘), we have m‘j‘%d =

¥ 9“‘17?. The ADHM constraints are now turned into the super ADHM constraints,

which were discussed in [256] for the first time, see also [7] for a related recent discussion.
Explicitly, these super constraints (VII.384) read here

° o ° o

Eldaﬁ' + Cglﬁ'cold =0, asgc —ciag = 0, Cicj — Cjcy = 0. (VH.393)

The additional sign in the equations involving ¢; arises from ordering and extracting the

Grafimann variables 1 as well as the definition ¢;nf = nfe; = —eind.

§14 Construction of solutions. As proven in [256, 280)], this super ADHM construction
gives rise to solutions to the N/ = 4 supersymmetrically extended self-dual Yang-Mills
equations in the form of the super gauge potentials

o, = UdaU and o) = UDLU , (VIL.394)

where U and U are again zero modes of A and A and furthermore satisfy UU = 1.
That is, the super gauge potentials in (VIL.394) satisfy the constraint equations of N' = 4
self-dual Yang-Mills theory (IV.64).

One might be tempted to generalize the Dirac operator in (VIL.392) to higher orders
in the Gralimann variables, but this is unnatural both from the point of view of broken
supersymmetry due to the presence of D-branes and from the construction of instanton
bundles via monads (the original idea which gave rise to the ADHM construction). Be-
sides this, higher powers of Graimann variables will render the super ADHM equations
38

insufficient for producing solutions to the self-dual Yang-Mills equations Note also

38In [82], a Dirac operator with higher powers is mentioned, but it is not used to obtain solutions in
the way we do.
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that this construction leads to solutions of the A/ = 4 SDYM equations, for which the
Higgs fields tend to zero as x — oo. Since the Higgs-fields describe the motion of the
D3-brane in the ambient ten-dimensional space, this merely amounts to a choice of coor-
dinates: The axes of the remaining six directions go through both “ends” of the stack of
D3-branes at infinity. For a discussion of the construction of solutions which do not tend
to zero but to a constant value ~ o see [82] and references therein.

The fact that solutions to the N' =4 SDYM equations in general do not satisfy the
N = 4 SYM equations does not spoil our interpretation of such solutions as D(-1|8)-
branes, since in our picture, N’ = 4 supersymmetry is broken down to four copies of
N = 1 supersymmetry. Note furthermore that N/ = 4 SYM theory and N' = 4 SDYM
theory can be seen as different weak coupling limits of one underlying field theory [297].

VI1.8.4 The D-brane interpretation of the Nahm construction

Before presenting its super extension, let us briefly recollect the ordinary Nahm con-
struction [200] starting from its D-brane interpretation [75] and [124], see also [274]. For
simplicity, we restrict ourselves to the case of SU(2)-monopoles, but a generalization of
our discussion to gauge groups of higher rank is possible and rather straightforward.

8§15 The D3-D1-brane system.

We start in ten-dimensional type N ] /

IIB superstring theory with a pair

rections 1,2, 3 and located at z* = <
+1, 2™ = 0 for M > 4. Consider
now a bound state of these D3- \ [\
branes with k D1-branes extend-

of D3-branes extended in the di- \\—E_

ing along the z*-axis and ending
on the D3-branes. As in the case of the ADHM construction, we can look at this config-
uration from two different points of view.

From the perspective of the D3-branes, the effective field theory on their worldvolume
is N' = 4 super Yang-Mills theory. The DI-branes bound to the D3-branes and ending
on them impose a BPS condition, which amounts to the Bogomolny equations in three
dimensions

D,® = ZeapcFye , (VIL395)

where a,b,c = 1,2,3. The end of the D1-branes act as magnetic charges in the worldvol-
ume of the D3-branes, and they can therefore be understood as magnetic monopoles [51],
whose field configuration (®, A%) satisfy the Bogomolny equations. These monopoles are
static solutions of the underlying Born-Infeld action.

From the perspective of the D1-branes, the effective field theory is first NV = (8,8)
super Yang-Mills theory in two dimensions, but supersymmetry is broken by the presence
of the two D3-branes to N' = (4,4). As before, one can write down the corresponding
D-terms [274] and impose a D-flatness condition:

0xX*®

D= —
ozt

+[Ag, X = eane[ X% XT+R = 0, (VIL.396)

where the X are the scalar fields corresponding to the directions in which the D3-branes
extend. The R-term is proportional to §(z* + 1) and allow for the D1-branes to end on
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the D3-branes. They are related to the so-called Nahm boundary conditions, which we
do not discuss. The theory we thus found is simply self-dual Yang-Mills theory, reduced
to one dimension.

8§16 Nahm equations. By imposing temporal gauge A4 = 0, we arrive at the Nahm

equations
0X?

Os

where we substituted s = z

— e [X0,X] =0 for -1 < s <1, (VIL397)

4. From solutions to these (integrable) equations, we can

construct the one-dimensional Dirac operator
s .z 0 .z
AY = (1,)% @ 5t oléd) (g0 — X | (VII.398)
s

The equations (VIL.397) are analogously to the ADHM equations the condition for AA
to commute with the Pauli matrices, or equivalently, to have an inverse f:

AA = T f1. (VIL.399)

8§17 Construction of solutions. The normalized zero modes U of the Dirac operator
A satisfying

AU = 0, /_ 11 ds U(s)U(s) = 1 (VIL400)

then give rise to solutions to the Bogomolny equations (VIL.395) via the definitions
1 ~ 1 ~
D(z,t) = / ds U(s)sU(s) and (z,t) = / ds U(s)0,U(s) . (VIIL.401)

-1 -1

The verification of this statement is straightforward when using the identity
Us)U(s') = d(s— ') — A(s)f(s,8)A(s) . (VIL402)

Note that all the fields considered above stem from D1-D1 strings. The remaining D1-D3
strings are responsible for imposing the BPS condition and the Nahm boundary conditions
for the X% at s = +1.

8§18 Super Nahm construction. The superextension of the Nahm construction is ob-
tained analogously to the superextension of the ADHM construction by extending the
Dirac operator (VIL.398) according to

A = (1)@ o+ ol (@ — X + (X7 . (VIL403)
The fields x* are Weyl-spinors and arise from the D1-D1 strings. (More explicitly,
consider a bound state of D7-D5-branes, which dimensionally reduces to our D3-D1-
brane system. The spinor x* is the spinor X, we encountered before when discussing
the /' = (0,1) hypermultiplet on the D5-brane.)
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CHAPTER VIII

MATRIX MODELS

It is essentially three matrix models which received the most attention from string theo-
rists during the last years. First, there is the Hermitian matrix model, which appeared in
the early nineties in the context of two-dimensional gravity and ¢ = 1 non-critical string
theory, see [103] and references therein. It experienced a renaissance in 2002 by the work
of Dijkgraaf and Vafa [78]. Furthermore, there are the two matrix models which are
related to dimensional reductions of ten-dimensional super Yang-Mills theory, the BFSS
matrix model [20] and the IKKT matrix model [140], see also [5]. The latter two are
conjectured to yield non-perturbative and in particular background independent defini-
tions of M-theory and type IIB superstring theory, respectively. The same aim underlies
the work of Smolin [262], in which the simplest possible matrix model, the cubic matrix
model (CMM), was proposed as a fundamental theory.

In this chapter, we will furthermore present the results of [176], in which two pairs of
matrix models were constructed in the context of twistor string theory.

VIII.1 Matrix models obtained from SYM theory

For the comparison with the twistor matrix models presented later, let us review some
aspects of the BFSS and the IKKT matrix models. The motivation for both these models
was to find a non-perturbative definition of string theory and M-theory, respectively.

VIII.1.1 The BFSS matrix model

In their famous paper [20], Banks, Fishler, Shenkar and Susskind conjectured that M-
theory in the infinite momentum frame (IMF, see e.g. [34]) is exactly described by large
N supersymmetric matrix quantum mechanics.

§1 Matrix quantum mechanics. The Lagrangian for matrix quantum mechanics with
Minkowski time is given by

L= tr (%dﬂ —U((I))) : (VIIL1)

where ® is a Hermitian N x N matrix. This Lagrangian is invariant under time-
independent SU(V) rotations. To calculate further, it is useful to decompose ® into
eigenvalues and angular degrees of freedom by using ®(t) = QT (t)A(t)Q(t), where A(t)
is a diagonal matrix with the eigenvalues of ®(¢) as its entries and (¢t) € SU(N). We
can furthermore rewrite tr ®2 = tr A2 + tr [A, QQF)? and decompose QQf using symmet-
ric, antisymmetric and diagonal generators with coefficients c;;, ﬁzy and ¢;, respectively.
After performing the trace, the Lagrangian reads as

L= (%A? + UQ\@')) +I> = N)a + ) (VIIL.2)

% 1<j
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The integration measure of the path integral is transformed to 2® = ZQA?(A)IL;d\;,
where A(A) =[],
ing Hamiltonian reads as

(Ai —A;) is the so-called Vandermonde determinant. The correspond-

d2 117, +H2
H = _2523(1\) ZWA(A) +ZU Z Y (VIIL.3)

1<j

where II;; and ﬁij are the momenta conjugate to a;; and g;;. For more details, see [153].
82 BFSS action. The action of the BFSS model, describing N DO0-branes, can be ob-
tained by dimensional reduction of 10-dimensional N' = 1 super Yang-Mills theory with
gauge group U(V) to 0+ 1 dimensions in temporal gauge Ay = 0:

S=4 / dt [trX’XZ 42076+ & 5 T (X7, X7)? — 207 ~,[0, X7]| . (VIIL4)

Here, the X* are nine Hermitian N x N matrices and 6 is a Majorana-Weyl spinor. Note
that the bosonic part of the BFSS Lagrangian is a matrix quantum mechanics Lagrangian.
Putting all the fermions to zero, one obtains the bosonic equations of motion

Xt = —[[X% X7],X7]. (VIIL5)

Restricting to the special class of classical (vacuum) solutions which satisfy [X?, X7] =
0, the matrices are simultaneously diagonalizable and for gauge group U(IV) we can inter-
pret such solutions as a stack of N D0-branes, whose positions in the normal directions
are given by the eigenvalues of the X*.

The remaining classical solutions to (VIIL5) do not annihilate the positive-definite

potential term and are thus no vacuum solutions. They break supersymmetry, and in
particular, correspond to DO-branes, whose worldvolumes are smeared out in the normal
directions.
83 The BFSS model on a circle. To describe DO-branes in a spacetime, which has been
compactified in one direction normal to the worldvolume of the DO-branes, we consider
infinitely many copies of a D0-brane configuration and mod out the lattice symmetry
group afterwards. A good reference here is [272].

To describe the copies of the DO-brane configuration, we extend the N x N-dimensional
matrices X to oo x co-dimensional matrices X*, which are divided into N x N-dimen-
sional blocks, specified by the indices n,m € Z. We furthermore impose the condition
Xon = —le on the blocks. The new Lagrangian then reads

1 1 A S o

L = 2% tr Xmeﬁlm 3 —tr (anng X,]an;n)(XﬁmXﬂm - X2 X)) (VIIL6)

The periodicity condition from compactifying the X '-direction on a circle with radius
R translates into the following conditions on the matrices X7 .

Xnn = X(im_1)(n_1)7 i>1 (VIILT)
X%m = X(lm_l)(n_l)a m#n (VIIL.8)
Xim = X{n-1)m-1) + 27 R, (VIIL)

The first equation renders all blocks on diagonals equal for ¢ > 1, the second equation
does the same for some of the diagonals of X'. The third equation shifts subsequent
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blocks on the principal diagonal for ¢ = 1 by an amount of 27 R, the circumference of the
circle. Anti-Hermiticity of the X! = implies furthermore (X?)! = —X? . We thus arrive

mn

X¢—2rR1  X{ 1

xt = | ... X1, Xt X! . (VIIL.10)

Xt X', X} +2nR1

Rewriting the Lagrangian (VIIL6) in terms of X! gives the description of DO-branes
moving in a compactified spacetime. Expansions around the classical vacuum [X?, X7] = 0
lead to the expected mass terms proportional to the distance of the branes plus the
winding contribution 27w Rn, similarly to our discussion of T-duality in section [V.2.3.

Note that this matrix quantum mechanics is automatically a second quantized for-
malism as it allows for an arbitrary number of DO-branes. This analysis can also be easily
generalized to more than one compact dimension [271].

84 Reconstruction of spatial dimensions. Let us consider the following correspon-

dence:
P qgrl
$(&) = > ™M o | gy (VIIL11)
" ¢1
where R = ﬁ. Then X' is a matrix representation of the covariant derivative along the
compactified direction:
(10; + A1 (2))p(2) — X'¢ (VIIL12)

where Al(%) is a gauge potential whose Fourier modes are identified with X!:

Al@) = Y Aled/R = N7 xleind/R, (VIIL13)

n n

Here, the derivative leads to the inhomogeneous terms ~ 27rnl and the gauge field gives
rise to the remaining components.

To return to the dual space, we can consider an analogous Fourier decomposition of
Yiz)=>, Xflei"i’/}%, with which we can rewrite the BFSS Lagrangian as

dz! 1

= [ = — | tr YY" ALAY — Y —i[AY Y2 + S tr[Y? Y2
L 7R 2g {tr + +tr tr (04 i[AS Y')* + 2tr[ Y]

1

By integrating over ', we obtain again the Lagrangian (VIIL6).

This result corresponds to T-duality in the underlying string theory and describes k
D1-branes wrapped around a compact circle of radius R’ = ﬁ. Using this construction,
we can reduce the infinite-dimensional matrices of the model to finite dimensional ones
by introducing an additional integral.

Altogether, we have identified the degrees of freedom of a compact U(oo) matrix model
with the degrees of freedom of a U(NN) gauge potential on a circle S with a radius dual

to R. In this manner, one can successively reconstruct all spatial dimensions.
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VIII.1.2 The IKKT matrix model

The IKKT model was proposed in [140] by Ishibashi, Kawai, Kitazawa and Tsuchiya. It
is closely related to the BFSS model, but while the latter is conjectured to give rise to a
description of M-theory, the former should capture aspects of the type IIB superstring.
85 Poisson brackets. A super Poisson structure has already been introduced in section
111.2.1), |58. Here, we want to be more explicit and consider a two-dimensional Riemann
surface ¥, i.e. the worldsheet of a string. On X, we define

{X,Y} = %eabaaxaby : (VIIL14)

where /g is the usual factor containing the determinant of the worldsheet metric and gab
is the antisymmetric tensor in two dimensions.

§6 Schild-type action. Using the above Poisson brackets, we can write down the Schild
action, which has been shown to be equivalent! to the usual Green-Schwarz action (V.29)
of the type IIB superstring in the Nambu-Goto form. It reads as

SSchild = /dZU Vg (o (X XV} — ST {XH 