
Chapter 5: Digital quantum simulation

I. QUANTUM LOGIC GATES

While the possibilities for quantum simulation based on ultracold atoms outlined previ-

ously have great potential, they are also somewhat constrained by the limits imposed by

the contact interaction. In principle, it is possible to also include different interaction mech-

anisms such as the long-ranged dipole-dipole interaction [1], but as the ultimate goal, we

would like to have a quantum simulator capable of simulating ”any” quantum system. For

practical purposes, we restrict the definition of such a universal quantum simulator to the

simulation of Hamiltonians with short-ranged interactions [2], as all physical interactions

reduce to purely local interaction at some point. Similar to numerical simulations on classi-

cal computers, it is also helpful to introduce abstraction layers so that we can use suitable

approximations for the inner workings of the quantum simulator. If we decide to ignore the

actual physical implementation for now, the lowest level we can consider is given by quantum

logic gates, which have originally been discussed in the context of quantum computing [3].

Quantum logic gates are represented by unitary matrices that transform the quantum

state before the operation into another after the application of the quantum gate. As such,

they can be seen as the time-evolution operator acting for discrete timesteps,

|ψ(τn+1)〉 = U(τn, τn+1)|ψ(τn)〉. (1)

The basis set for the quantum state |ψ〉 is given by a product basis of two-level systems

(quantum bits or “qubits”),

|ψ〉 =
∑

i∈{0,1},j∈{0,1},...
cij...|ij . . .〉. (2)

We can also think of the operation U to be constructed out of several smaller building blocks,

U(τn, τn+1) =
N∏
i

U(τn+(i−1)/N , τn+i/N). (3)

For simplicity, we want to restrict ourselves to a universal set of quantum gates that can be

used to construct any other gate from it. This can be realized by a set of three quantum
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gates, including the z rotation gate,

Rz(φ) = exp(iφσz) =

 eiφ

e−iφ

 , (4)

where φ is an arbitrary rotation angle. To construct any other single qubit quantum gate,

we need a second gate that does not commute with Rz. The most convenient choice is the

Hadamard gate given by

UH =
1√
2

 1 1

1 −1

 . (5)

The Hadamard gate can be used to transform σz into σx and vice versa, i.e.,

Rx(φ) = exp(iφσx) =

 cosφ i sinφ

i sinφ cosφ

 = UHRz(φ)UH (6)

Rz(φ) = UHRx(φ)UH . (7)

Note that while the Hadamard gate is Hermitian, U †H = UH , most quantum gates are not.

Finally, rotations about the y axis can be constructed as

Ry(φ) = exp(iφσy) = Rz(−π/4)Rx(φ)Rz(π/4). (8)

Single qubit rotation do not allow us to generate entanglement between the qubits. There-

fore, it is necessary to include a two-qubit quantum gate, which is most coveniently chosen

as the controlled-not (CNOT) gate, acting on two qubits A and B as

UCNOT = |0〉〈0|A ⊗ 1B + |1〉〈1|A ⊗ σxB =


1

1

1

1

 . (9)

Its function can be understood as follows: If the “control” qubit A is in the 0 state, nothing

happens. However, if A is in 1, the “target” qubit B gets flipped by the σx operation.

As an example, let us study the creation of entanglement between two qubits by a gate

sequence consisting of a single Hadamard gate, followed by a CNOT operation. The qubits

are initialized in the product state |00〉. Then, we have

|ψ〉 = UCNOTU
A
H |00〉 =

1√
2

(|00〉+ |11〉), (10)
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which is a maximally entangled state as its reduced density matrix is the maximally mixed

state. The set of Rz(φ), UH , and UCNOT forms a universal set for all N -qubit quantum gates

[4].

H

•

(a) (b)

FIG. 1: Circuit representation of the Hadamard gate (a) and the CNOT gate (b).

It is often convenient to use a pictorial representation for quantum gate networks, also

known as quantum circuits. Each qubit is represented by a straight line, with the horizontal

axis denoting time, and each single qubit gate is shown a rectangular box acting on the

particular qubit. Two-qubit gates are represented in a similar way, with the control qubit

being indicated by a small circle, see Fig. 1. In this notation, much more complex quantum

circuits can be represented and analyzed, for instance the decomposition of the Toffoli gate,

UT =



1

1

1

1

1

1

1


, (11)

which is a 3-qubit variant of the CNOT gate and is universal for all classical computations.

It can be constructed from elementary gates, see Fig. 2, where T = Rz(π/8) [3].

• • • • T •

• = • • T T †

H T † T T † T H

FIG. 2: Decomposition of the Toffoli gate into elementary quantum gates.
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II. DIGITAL SIMULATION PROCEDURE

Suppose we want to simulate a four-body spin interaction of the form

H = E0σ
(1)
x σ(2)

x σ(3)
x σ(4)

x . (12)

This four-body spin operator has two eigenvalues, ±1, which are eightfold degenerate. The

key idea is to use an additional auxiliary particle and encode the eigenvalue into its spin

state. If the auxiliary control spin is initially in |0〉, this can be done using the gate sequence

G = U
(c)
H

(
4∏
i=1

U
(c,i)
CNOT

)
U

(c)
H . (13)

To understand this in more detail, let us look at the behavior of the gate sequence on the spin

state |± 1, λ〉, where λ labels the state within the degenerate manifold. The first Hadamard

gate will yield

U
(c)
H |0〉c| ± 1, λ〉 =

1√
2

(|0〉c + |1〉c)| ± 1, λ〉. (14)

Applying the sequence of CNOT gates will multiply the eigenvalue of the spin interaction,

conditional on the control spin being in |1〉,∏
i

U c,i
CNOT

1√
2

(|0〉c + |1〉c)| ± 1, λ〉 =
1√
2

(|0〉c ± |1〉c)| ± 1, λ〉. (15)

Finally, the second Hadamard gate will give us

U
(c)
H

1√
2

(|0〉c + |1〉c)|+ 1, λ〉 = |0〉c|+ 1, λ〉

U
(c)
H

1√
2

(|0〉c − |1〉c)| − 1, λ〉 = |1〉c| − 1, λ〉. (16)

Consequently, we have mapped the eigenvalue of the four-body interaction operator onto

the state of a single auxiliary spin.

The full quantum simulation of the dynamics U = exp(−iHt) can then be realized by

applying a z rotation to the control spin and reverse the mapping G,

U = exp(−iE0σ
(1)
x σ(2)

x σ(3)
x σ(4)

x t) = GRz(−φ)G. (17)

The phase of the z rotation is related to the timescale of the simulation according to φ = E0t.

For a many-body system, the full dynamics can be simulated if the gate sequences are

applied in parallel (if they act on independent spins) or sequentially (if they act on the same
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spins). However, in case of non-commuting operators, one has to ensure that this sequen-

tial operations does not introduce errors. This is true if the timestep τ of the simulation

procedure is sufficiently small, as can be seen from the Suzuki-Trotter expansion

exp[−i(HA +HB)τ ] = exp(−iHAτ) exp(−iHBτ) +O(τ 2). (18)

This completes the toolbox required for the realization of a universal quantum simulator.

III. IMPLEMENTATION BASED ON RYDBERG ATOMS

Let us now turn to a possible realization of such a universal quantum simulator based

on ultracold Rydberg atoms [5]. The qubit states are formed by two hyperfine ground

states. Single-qubit gates can be implemented using microwave driving described by the

Hamiltonian

H =

 0 eiφΩ

e−iφΩ ∆

 , (19)

where ∆ is the detuning of the microwave frequency from the resonance between the hyper-

fine levels, Ω characterizes the strength of the microwave field, and φ describes the phase of

the microwave field at t = 0. This allows for the realization of arbitrary single-qubit gates.

For two-qubit gates, we need an interaction mechanism between the qubits. Ideally,

we want the qubits to be separated by more than 500 nm, so they can be addressed inde-

pendently using optical laser fields. Hence, we can think of the atoms being localized in

individual sites of an optical lattice, forming the n = 1 Mott insulator. At such separations,

however, the van der Waals interaction between ground state atoms is completely negligible.

For dramatically increased interactions strengths, we will excite the atoms into a Rydberg

state, which is an electronically excited state with a principal quantum number n > 10. In

these highly excited states, the atoms behave almost hydrogen-like, and their eigenenergies

are given by

E = − 1

2(n− δl)2
, (20)

where δl is the quantum defect that accounts for deviations from the energy levels of hydro-

gen. For example, in rubidium in a l = 0 state, the quantum defect has been measured to

be δ0 = 3.1311 [6].
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In Rydberg states, the excited electron is only very loosely bound and therefore very

sensitive to external perturbations. This is also true if the perturber is another Rydberg

atom and leads to a dramatic increase in the van der Waals interaction coefficients, scaling

as C6 ∼ n11. At the same time, the lifetime limited by spontaneous emission also increases

as τ ∼ n3, leaving enough time to perform a quantum gate before the Rydberg atom decays.

The strong interaction between Rydberg atoms leads to a blockade mechanism: if one atom

has been excited to a Rydberg state, its neighbors can no longer be excited at the same

time as the interaction energy changes the resonance condition [7]. To implement a CNOT

gate, one first excites the |0〉 state of the control atom to the Rydberg state. Then, one

tries to excite the target atom to the Rydberg state as well, which will only work if there

are no interactions (i.e., the control atom is in |1〉), allowing for the conditional dynamics

required for the implementation of the CNOT gate. The total gate requires a total of seven

laser pulses and has been experimentally demonstrated in 2010 [8]. Scaling up to the case

of many qubits required for a full-fledged quantum simulator is currently underway.
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