
Chapter 2: Interacting Rydberg atoms

I. DIPOLE-DIPOLE AND VAN DER WAALS INTERACTIONS

In the previous chapter, we have seen that Rydberg atoms are very sensitive to external

electric fields, with their polarizability scaling with the principal quantum number like n∗7.

This is also the case when the electric field is generated by the charge distribution of the

Rydberg electron of another atom, therefore we can expect Rydberg atoms to exhibit very

strong interactions. To understand the interactions between Rydberg atoms, we will assume

in the following that they are separated far enough so that their electron wave functions

do not overlap. As the Rydberg wave functions decay exponentially at large distances, it is

possible to express this in terms of a single quantity, the Le Roy radius RLR [1], which is

given by

RLR = 2
(√
〈n1, l1|r2|n1, l1〉+

√
〈n2, l2|r2|n2, l2〉

)
, (1)

where |ni, li〉 refers to the electron eigenstate of the ith atom. Treating the Rydberg electrons

as hydrogenic, we obtain for the expectation value (see [2])

〈r2〉 =
n2

2
[5n2 + 1− 3l(l + 1)]. (2)

For example, the Le Roy radius of two rubidium atoms in the 43S state is RLR = 532 nm.

In this regime, the interaction potential between two atoms separated by a distance R can

be expressed as an Laurent series in R,

V (r1, r2) =
1

|r1 − r2|
= −

∞∑
n=1

Cn
Rn

. (3)

The first two terms of the series correspond to the Coulomb and charge-dipole interaction,

respectively, and therefore vanish for neutral atoms. The first contribution therefore comes

from the dipole-dipole interaction, which is given by

V (r1, r2) = (1− 3 cos2 ϑij)
didj
R3

, (4)

where di and dj are the electric dipole operators and ϑij is the angle between the interatomic

axis and the quantization axis of the atoms. The higher order terms can be expressed in

terms of a series expansion involving spherical harmonics [3],

V (r1, r2) =
∑
l,L=1

VlL(r1, r2)

Rl+L+1
(5)
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VlL(r1, r2) =
(−1)L4π√

(2l + 1)(2L+ 1)

∑
m

√(
l + L

l +m

)(
l + L

L+m

)
rl1r

l
2Ylm(r1)YL−m(r2). (6)

In the following we will concentrate on two atoms in the same s state |r〉, i.e., n1 = n2 ≡ n.

In this case, the main contribution comes from a single combination of p states |r′r′′〉 =

|n′1, p1, n
′
2, p2〉. In the case of rubidium, we have n′1 = n and n′2 = n − 1, as the difference

in the quantum defect for s and p states is close to 0.5. The energy difference between the

states |rr〉 and |r′r′′〉 is the Frster defect δF . Then, we can write the interaction Hamiltonian

in the basis consisting of |rr〉 and |r′r′′〉 as

H =

 δF
dr′r′drr′′

R3

√
Dϕ

dr′r′drr′′
R3

√
Dϕ 0

 , (7)

where the coefficient Dϕ = 3 follows from the angular part of the dipole operators [4]. The

eigenvalues of the interaction Hamiltonian are

Vint(R) =
δF
2
± 1

2

√
δ2
F + 4

(d1d2)2Dϕ

R6
. (8)

Let us now consider two regimes of this interaction Hamiltonian, depending on the strength

of the interaction Vdd = d1d2/R
3 compared to the Frster defect δF . At short distances, we

have Vdd � δF , therefore the eigenvalues of H are given by

Vint(R) = ±dr′r′drr′′
R3

√
Dϕ. (9)

As the dipole-dipole interaction is so strong that it mixes the electronic eigenstates, the

interaction decays like 1/R3 even though the unperturbed eigenstates do not have a finite

electric dipole moment. The other regime is where the atoms are so far apart that Vdd � δF .

Then we can perform a Taylor expansion of Vint(R), obtaining

Vint(R) = ±(d1d2)2Dϕ

δFR6
. (10)

This interaction is a van der Waals interaction decaying like 1/R6. In the limit R→∞, the

negative eigenvalue connects to the unperturbed state |rr〉. From this, we can read off the

van der Waals coeffcient C6 to be

C6 =
(d1d2)2Dϕ

δF
. (11)

Note that δF may be negative for certain combination of states, in this case the van der

Waals interaction is repulsive. Consequently there is is a crossover from a resonant dipole
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interaction at short distances to a van der Waals interaction at large distances taking place

at a critical radius rc, which is given by

rc = 6

√
4(d1d2)2

δ2
F

. (12)

In the case of two Rb atoms in the 43s state, the van der Waals coefficient is given by

C6 = 1.7 × 1019. The behavior of the interaction energy depending on the interatomic

separation is shown in Fig. 1. For comparison, the van der Waals coefficient for the ground

state of Rb is C6 = 4707 [5].
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FIG. 1: Dependence of the interaction potential V on the interatomic separation r for the 43s

state. The crossover from a dipolar to a van der Waals interaction takes place at rc.

This huge difference suggests a dramatic scaling of the van der Waals coefficient with the

principal quantum number n∗. Each transition dipole moment scales as di ∼ n∗2, resulting

in a n∗8 dependence from the dipole matrix elements. However, the Frster defect δF has the

same scaling as the energy splitting between neighboring Rydberg states, δ ∼ n∗−3. Overall,

this results in a scaling of the van der Waals coefficient like C6 ∼ n∗11.

Finally, Rydberg atoms in states with nonzero angular momentum quantum number l

have a finite quadrupole moment. The quadrupole-quadrupole interaction decays like 1/R5,

therefore it will become larger than the van der Waals interaction at very large distances.

The distance where both interactions are equal can essentially be calculated as [4]

〈r2〉2
R5

=
〈r〉4
δFR6

. (13)

The expectation values are comparable, resulting in R = 1/δF . For typical Frster defects on

the order of a few GHz, this translates to a distance of R ≈ 100µm, where both interaction

are already vanishingly small. Therefore, one can simply neglect the quadrupole-quadrupole

interaction in most cases.
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II. THE RYDBERG BLOCKADE MECHANISM

Let us now have a look how the presence of interactions modifies the excitation dynamics.

As before, we will assume resonant laser excitation between the ground state |g〉 and a single

Rydberg state |r〉. Furthermore, we will assume that the atoms are separated by more than

rc so that the treatment in terms of a van der Waals interaction is appropriate. Therefore,

the system is fully described by the states |gg〉, |gr〉, |rg〉, and |rr〉. The Hamiltonian in this

basis is of the form

H =
Ω

2
(|g〉〈r| ⊗ 1 + 1⊗ |g〉〈r|+ H.c.) − C6

R6
|rr〉〈rr|

=
Ω

2
(|gg〉〈gr|+ |gg〉〈rg|+ |gr〉〈rr|+ |rg〉〈rr|+ H.c) − C6

R6
|rr〉〈rr|. (14)

We can simplify the problem by noting that the state |−〉 = (|gr〉 − |rg〉)/
√

2 does not

take part in the dynamics, i.e., it is an eigenstate of the Hamiltonian with an eigenvalue of

zero. We can therefore introduce an effective three-level system consisting of the states |gg〉,
|+〉 = (|gr〉+ |rg〉)/

√
2, and |rr〉. In this new basis, the Hamiltonian becomes

H =

√
2Ω

2
(|gg〉〈+|+ |+〉〈rr|+ H.c.) − C6

R6
|rr〉〈rr|. (15)

Note the enhancement of the Rabi frequency by a factor of
√

2 in this basis. The resulting

dynamics depends on the strength of the interaction compared to the Rabi frequency. In

the weakly interacting regime given by |C6|/R6 � Ω, the system will undergo slightly

perturbed Rabi oscillations with Rabi frequency Ω, but the qualitative picture is hardly

modified compared to the single atom case. However, in the regime of strong interactions

denoted by |C6|/R6 � Ω, the system behaves differently. The first excitation from |gg〉 to

|+〉 is unaffected by the interaction. The second excitation from |+〉 to |rr〉 is off-resonant

because of the strong interaction, see Fig. 2. Effectively, the |rr〉 state is decoupled from

the dynamics, as it can never be reached. This decoupling of the doubly excited state is

called the “Rydberg blockade”.

We can reduce the description to a two level system consisting only of |gg〉 and |+〉,
governed by the Hamiltonian

H =

√
2Ω

2
(|gg〉〈+|+ H.c.) . (16)

The dynamics of this Hamiltonian again produces Rabi oscillations, however with two im-

portant differences to the non-interacting case. First, the maximum probability to find an
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FIG. 2: For two spatially close atoms only one can be excited as the strong interaction shifts the

doubly excited state out of resonance.

atom in the Rydberg state, pr is 1/2, as the |+〉 state has only one of the two atoms in the

Rydberg state. Second, the Rabi frequency is enhanced by a factor of
√

2, resulting in

pr(t) =
1

2
sin2

(√
2Ωt
)
. (17)

The distance at which the blockade sets in can be determined by setting the interaction

strength equal to the Rabi frequency. This results in a blockade radius rbgiven by

rb =
6

√
|C6|
Ω

. (18)

In typical experiments, rb is on the order of 5–10µm.

If we stop the laser excitation process at the time t = π/
√

8Ω, the system will be in the

state |+〉 = (|gr〉+ |rg〉)/
√

2. This state has some very interesting properties. Remarkably,

this state cannot be written as a product state of the form

|ψ〉 = |φ〉 ⊗ |χ〉. (19)

This can be proven by noting that for each product state |ψ〉, there exists a unitary trans-

formation U = U (1) ⊗ U (2) that transforms the product state |gg〉, i.e.,

|ψ〉 = U (1) ⊗ U (2)|gg〉. (20)

U (1) and U (2) are unitary 2 × 2 matrices, and we can carry out the matrix multiplication

explicitly using their matrix elements U
(i)
αβ ,

U (1) ⊗ U (2)|gg〉 = U (1)
[
U (2)
gg |gg〉+ Urg|gr〉

]
= U (1)

gg U
(2)
gg |gg〉+ U (1)

gg U
(2)
rg |gr〉+ U (1)

rg U
(2)
gg |rg〉+ U (1)

rg U
(2)
rg |rr〉. (21)
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The |+〉 state does not have any |gg〉 component, so either U
(1)
gg or U

(2)
gg would have to be

zero. But any of these choices will also cause the |gr〉 or |rg〉 component to vanish, making

it impossible to write |+〉 as a product state. Such quantum states that cannot be written

as product states are entangled [6]. Entanglement is a type of quantum correlation that is

not found in classical system and is a key ingredient for a quantum computer. The state |+〉
is actually a maximally entangled state because the two atoms are perfectly anticorrelated.

This possiblity to create entangled quantum states using the Rydberg blockade has resulted

in proposals to use Rydberg atoms as the building blocks of a quantum computer [7], and

the first proof-of-principle experiments have already been carried out [8].

As the blockade radius rb can be much larger than the typical interparticle distance that

can be achieved with laser-cooled atoms, it is natural to ask what happens when there are

more than two atoms located inside the blockade radius. For N atoms that can be either

in the |g〉 or in the |r〉 state, the tensor product Hilbert space contains 2N basis states.

This exponential scaling of the complexity of the problem cannot be underestimated: For

N = 300, the number of basis states already exceeds the number of atoms in the universe!

Nevertheless, we can expand each state according to

|ψ〉 =
2N∑
k=1

ck|k〉 (22)

|k〉 =
N∏
i=1

|αi〉i, (23)

where αi is either g or r. The Hamiltonian for this quantum many-body system can be

written as

H =
Ω

2

∑
i

(|g〉i〈r|i + H.c.) +
∑
i<j

Vij|r〉i|r〉j〈r|i〈r|j, (24)

where Vij is the strength of the van der Waals interaction between atoms i and j. Now, we

are interested in the blockaded regime, where all the interaction strengths are much larger

than the Rabi frequency, i.e., Vij � Ω. Then, the dynamics of the system is restricted two

the manifold of zero or one Rydberg excitation. We can simplify the problem further by

going to a basis of collective states given by:

|G〉 =
N∏
i=1

|g〉i = |g1g2g3 . . . gN〉 (25)
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|R〉 =
1√
N

∑
i

|g1 . . . ri . . . gN〉. (26)

The |R〉 state is a symmetric superposition of a single Rydberg excitation. In order to

express the Hamiltonian in the new basis, we need to calculate the transition matrix element

〈G|H|R〉, which is given by

〈G|H|R〉 =
Ω

2
〈G|

N∑
i=1

|gi〉〈ri|R〉 =
Ω

2

N∑
i=1

1√
N

=

√
NΩ

2
. (27)

In the collective basis, the Hamiltonian is given by

H =

√
NΩ

2
(|G〉〈R|+ H.c.) , (28)

as the matrix elements to all other states in the single excitation manifold are zero. Con-

sequently, we obtain collectively enhanced Rabi oscillation by a factor of
√
N , leading to a

probability to find an atom in the Rydberg state that is given by

pr(t) =
1

N
sin2

(√
NΩt

)
. (29)

It is also possible to use these collective quantum states as the computational basis in a

quantum computer [9].

III. LIGHT-MATTER INTERACTIONS

So far, we have only looked into the dynamics of the atomic states, ignoring the effects

on the light field. However, there are situations where the interplay between Rydberg

interactions and coupling between the atoms and the radiation field results in some very

interesting consequences. This is particularly true when the light field is so weak that its

quantization in terms of single photons becomes relevant.

A. Open quantum systems

To understand the dynamics of an atom coupled to the radiation field, one needs to adopt

a description for an open quantum system as atoms in excited states can spontaneously emit

photons via an interaction with the vacuum of the radiation field. The most straight-forward
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way to describe the state of an open quantum system is to use a statistical sum (mixture)

of Hilbert space vectors, giving rise to a density matrix of the form

ρ =
∑
i

pi|ψi〉〈ψi|, (30)

where 0 ≤ pi ≤ 1 denotes the probability to find the system in the (pure) quantum state

described by the Hilbert space vector |ψi〉. Being probabilities, they are subject to the

constraint
∑

i pi = 1, resulting in Tr{ρ} = 1 while the non-existence of negative probabilities

requires the density matrix to be positive-semidefinite.

As the state of the quantum system is no longer described by a Hilbert space vector, the

dynamics is no longer described by the Schrdinger equation. Instead, we have

d

dt
ρ =

d

dt

∑
i

pi|ψi〉〈ψi| =
∑
i

pi

[(
d

dt
|ψi〉

)
〈ψi|+ |ψi〉

(
d

dt
〈ψi|

)]
(31)

= −
∑
i

pi
i

~
(H|ψi〉〈ψi| − |ψi〉〈ψi|H) = − i

~
[H, ρ] , (32)

which is called the Liouville-von Neumann equation. Note that this equation is analogous

to the Liouville for the classical phase space density, where the commutator is replaced by

Poisson brackets.

If we also want to introduce irreversible processes such as spontaneous emission, we have

to go beyond the Liouville-von Neumann equation and describe the dynamics in terms of a

quantum master equation. In the simplest case, the environment (i.e., the radiation field)

is static and does not have a memory of previous irreversible events, such an environment

is called to be ”Markovian”. Then, one can show that the dynamics of the atom coupled to

the radiation field is given by a Lindblad master equation

d

dt
ρ = −i[H, ρ] +

d2−1∑
i=1

γi

(
ciρc

†
i −

1

2

{
c†ici, ρ

})
, (33)

where d is the dimension of the Hilbert space of the atom, γi are decay rates that describe the

frequency of the irreversible events, and the quantum jump operators ci describe the action

of the irreversible event [10]. Note that the jump operators can be non-Hermitian. For a

better understanding of the meaning of the Lindblad master equation, it is instructive to look

into an alternative formulation in terms of a stochastic process [11]. In this approach, each

state |ψj〉 of the statistical ensemble is propagated under the non-Hermitian Hamiltonian

H ′ = H − i

2

∑
i

γic
†
ici. (34)
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For each infinitesimally small timestep τ , the probability of a quantum jump in the ith

channel is calculated as

pi = τ〈ψj|c†ici|ψj〉. (35)

If such a quantum jump occurs, the system is brought into the state |ψ′j〉 = ci|ψj〉 and

the final result is normalized. Repeating this process over all channels and states in the

ensemble then reproduces the Lindblad form of the quantum master equation. Remarkably,

this method converges rapidly with the number of states in the ensemble, n. Essentially,

the stochastic process performs a Monte-Carlo sampling of the quantum master equation,

yielding an error for any observable 〈O〉 = Tr{Oρ} proportional to 1/
√
n. In many cases, this

allows the number of samples to be chosen much smaller than the Hilbert space dimension

of the problem, d, reducing the computational complexity of simulating the quantum master

equation.

IV. RESONANCE FLUORESCENCE

As a first example for an open quantum system, let us consider a single two-level system

interacting with the vacuum of the radiation field. Additionally, we will assume that the

two-level system consisting of the states |g〉 and |e〉 is resonantly driven by an external laser.

The Hamiltonian is then given bymation we neglect the fast oscillating term. Then, we can

write the laser Hamiltonian as

H =
Ω

2
(σ+ + σ−), (36)

where we have introduced the spin-flip operators σ+ = |e〉〈g| and σ− = σ†+ = |g〉〈e|. The

interaction with the radiation field will lead to spontaneous emission with a rate

γ =
4

3
ω3d2, (37)

where ω is the frequency of the transition and d is the dipole matrix element [10]. Sponta-

neous emission results in the atom changing the state from |e〉 to |g〉, so the corresponding

quantum jump operator is simply given by σ−. The total quantum master equation then

reads
d

dt
ρ = −i [H, ρ] + γ

(
σ−ρσ

+ − 1

2
{σ+σ−, ρ}

)
. (38)

The interesting aspect about this master equation is that it exhibits a competition between

the coherent dynamics generated by the laser and the dissipative dynamics arising from the
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decay into the vacuum of the radiation field. The solution to this master equation can be

found by introducing the Bloch vector 〈~σ〉 given in terms of the expectation values of the

Pauli matrices as [10]

〈~σ〉 =


〈σx〉
〈σy〉
〈σz〉

 . (39)

The equations of motion for the Bloch vector are given by

d

dt
〈~σ〉 = G〈~σ〉+~b, (40)

using the matrix G given by

G =


−γ/2 0 0

0 −γ/2 −Ω

0 Ω −γ

 (41)

and the vector ~b,

~b =


0

0

−γ

 . (42)

This equation of motion is called the optical Bloch equation. Its stationary state 〈~σ〉s can

be found from the condition d/dt〈~σ〉 = 0 and is given by

〈σz〉s = − γ2

γ2 + 2Ω2
(43)

〈σ+〉s = 〈σ−〉∗s = −i Ωγ

γ2 + 2Ω2
. (44)

Note that the population of the excited state,

pe =
1

2
(1 + 〈σz〉s) =

Ω2

γ2 + 2Ω2
(45)

is always less than 1/2 even in the limit of strong driving, i.e., Ω � γ. Thus, it is not

possible to create population inversion in a two level system in the stationary state by

coherent driving. The population will merely saturate at pe = 1/2. The off-diagonal elements

are related to the linear susceptibility χ, which is defined in terms of the polarization P ,

according to

〈P 〉 =
χE

4π
=
N

V
d〈σ+〉, (46)
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where N/V is the atomic density. Using the relation Ω = dE and solving for χ, we obtain

χ = 8πi
N

V
d2 γ

γ2 + 2Ω2
. (47)

As the susceptibility is purely imaginary, the medium formed by the atoms is purely absorp-

tive, with an absorption coefficient that is proportional to the decay rate γ.

V. ELECTROMAGNETICALLY INDUCED TRANSPARENCY

The steady state of the driven two-level atom is not particularly exciting, but this changes

drastically when a third level (e.g., a Rydberg state) is introduced. The presence of the

third state enables interference effects between different excitation and deexcitation paths

and leads to a much richer structure in the susceptibility. In the following, we consider

a ladder-type three-level system, consisting of a ground state |g〉, an intermediate excited

state |e〉, and a Rydberg state |r〉. Furthermore, we assume laser driving of the transitions

between the ground state and the intermediate state and the intermediate state and the

Rydberg state. Then, the Hamiltonian is given by

H =


0 0 Ωp

2

0 δ Ωc

2

Ωp

2
Ωc

2
∆

 , (48)

where ∆ is the detuning between |g〉 and |e〉, and δ is the two-photon detuning between |g〉
and |r〉.

On two-photon-resonance, the eigenstates of this Hamiltonian can be expressed by intro-

ducing two angles θ and φ, which are defined as

tan θ =
Ωp

Ωc

(49)

tan 2φ =

√
Ω2
p + Ω2

c

∆
. (50)

Then, the eigenstates of the Hamiltonian are given by [12]

|a+〉 = sin θ sinφ|g〉+ cosφ|e〉+ cos θ sinφ|r〉 (51)

|a0〉 = cos θ|g〉 − sin θ|r〉 (52)

|a−〉 = sin θ cosφ|g〉 − sinφ|e〉+ cos θ cosφ|2〉. (53)
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Remarkably, the state |a0〉 does not contain the intermediate state |e〉. This means that once

the system is in the state |a0〉, it remains there as spontaneous emission is no longer effective.

On the other hand, if we wait long enough, the system will eventually end up in |a0〉 as the

other two eigenstates of the Hamiltonian can decay via spontaneous emission events. Such

a behavior is called ”coherent population trapping”. Moreover, the once the system is in

|a0〉, its susceptibility vanishes since we have ρge = 〈a0|g〉〈e|a0〉 = 0. Consequently, |a0〉
is called a ”dark state” of the dynamics, as the system does not absorb any photons any

more. As all incoming photons simply pass through such a medium, this effect is known as

”electromagnetically induced transparancy”.

Away from the two-photon resonance (δ 6= 0), we can calculate the susceptibility in the

limit of a weak probe laser, i.e., Ωp � Ωc, γ [12], obtaining

χ = 4π
N

V
d2

[
4δ(Ω2

c − 4δ∆)

|Ω2
c + i2δ(γ + i2∆)|2 + i

8δ2γ

|Ω2
c + i2δ(γ + i2∆)|2

]
. (54)
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