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1 Probabilities of results

Physicists observe, measure and analyze properties of systems which are prepared in
such a manner that they are simple enough.

Let us consider for definiteness that the system which is to be measured, the state,
is a particle in a beam and that the instrument, which is used to measure the state
splits the beam like a Stern-Gerlach device into different partial beams. The results
a1, a2, . . . , an, . . . of the measurement are the discrete angles of deflection.

Device

a1

a2
...
an
...

State
Source

Figure 1.1: Setup of a Measurement

Quantum mechanics accounts for the following experimental observations

1. For all results ai of an ideal measurement A one can prepare corresponding states
Λi for which the result ai is certain.

2. Even if the state Ψ which is to be measured has been prepared ideally then there are
always measurements A with results a1, a2, . . . , an, . . . which cannot be predicted
with certainty.

and assumes the following Fundamental equation:

If the state Ψ is measured with an instrument A then

w(i, A, Ψ) = |〈Λi|Ψ〉|2 . (1.1)

is the probability that the ith result ai occurs.

For simplicity we suppose that the instrument A distinguishes precisely enough such
that to each result ai there corresponds only one state Λi. This state is called eigenstate
of A corresponding to the eigenvalue ai. If there is only one state corresponding to a
given result of the measurement then this result is called non-degenerate.





2 Basic mathematical facts

2.1 Orthonormal basis

The formula (1.1) for probabilities has to be read in the following way: states like Λi
and Ψ correspond to vectors in a Hilbert space H. A Hilbert space is a vector space
which means that for any two vectors Λ and Ψ their sum Λ + Ψ and each complex
multiple cΨ = Ψc, c ∈ C are vectors in Hilbert space. Moreover there is a scalar
product 〈Λ|Ψ〉 ∈ C for all pairs of vectors with the following properties

〈Λ|Ψ〉∗ = 〈Ψ|Λ〉 , (2.1)

〈Λ|c1Ψ1 + c2Ψ2〉 = c1〈Λ|Ψ1〉 + c2〈Λ|Ψ2〉 ∀c1, c2 ∈ C . (2.2)

The scalar product is linear in the second argument and because of (2.1) antilinear in
the first argument

〈c1Ψ1 + c2Ψ2|Λ〉 = c∗1〈Ψ1|Λ〉 + c∗2〈Ψ2|Λ〉 . (2.3)

The scalar product of a vector with itself is positive definite and is used to define the
length of vectors

0 ≤ 〈Ψ|Ψ〉 = ‖Ψ‖2 < ∞, ‖Ψ‖ = 0⇔ Ψ = 0 . (2.4)

If a state Ψ is measured with an instrument A, then, according to (1.1), the probability
w(i, A, Ψ) for the i-th result ai is the square modulus of the scalar product 〈Λi|Ψ〉 of the
state Ψ, which is being measured, with the eigenstate Λi corresponding to the i-th result.
The scalar product 〈Λi|Ψ〉 is called the probability amplitude of the corresponding i-th
result.

Equation (1.1) implies that the states Λi are normalized and mutually orthogonal.

〈Λi|Λj〉 = δij =

{
0 if i 6= j

1 if i = j
(2.5)

For if an eigenstate Λj is measured then one is certain to obtain the result aj, all other
results occur with probability 0, the probability distribution is w(i, A,Λj) = δij. From
these probabilities and from (2.4) one derives the probability amplitudes (2.5) of the
states Λj.

In addition to (1.1) one assumes in quantum mechanics that the eigenstates Λi con-
stitute a basis. Each state Ψ can be written as a linear combination of the states Λi.

Ψ =
∑

j

Λjψj ψj ∈ C (2.6)
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Using (2.5) the components ψi are obtained as scalar product with Λi

ψi = 〈Λi|Ψ〉 . (2.7)

The components of Ψ in the basis of the eigenstates of the measuring device are the
probability amplitudes of the corresponding results.

If the state Ψ is still unknown, then the modulus of the components in the basis
corresponding to the measurement can be taken from the probability distribution of the
results. The phases of these components have to be taken from other measurements.

2.2 Bracket notation

If we insert the components into (2.6) we obtain

Ψ =
∑

j

Λj〈Λj|Ψ〉 . (2.8)

The scalar product with each vector Φ yields the following formula

〈Φ|Ψ〉 = 〈Φ|

(
∑

j

Λj〈Λj|Ψ〉
)
〉 =

∑

j

〈Φ|Λj〉〈Λj|Ψ〉 . (2.9)

Because this equation holds for all Φ, one skips the symbol “ 〈Φ ” and obtains the
suggestive formula

|Ψ〉 =
∑

j

|Λj〉〈Λj|Ψ〉 =
∑

j

|Λj〉ψj . (2.10)

If one decomposes Ψ in the scalar product 〈Ψ|Φ〉, and uses (2.1) one obtains analogously

〈Ψ| =
∑

j

〈Ψ|Λj〉〈Λj| =
∑

j

ψ∗
j 〈Λj| . (2.11)

Dirac has introduced the name ket vector for the part |Ψ〉 in the scalar product and the
name bra vector for 〈Φ|. The scalar product is a bracket 〈Φ|Ψ〉, composed out of bra
vector and ket vector. The admittedly trivial bijective map1 of vectors to ket vectors
Ψ→ |Ψ〉 is linear, the map to bra vectors Ψ→ 〈Ψ| is antilinear:

〈cΨ| = c∗〈Ψ| . (2.12)

The map of bra vectors to ket vectors is a conjugation |Ψ〉∗ = 〈Ψ|.

1The map is similar to a military promotion where a chevron and a stripe are added.
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2.3 Matrix algebra

Equation (2.9) expresses the scalar product in terms of components.

〈Φ|Ψ〉 =
∑

j

φ∗
jψj (2.13)

If one writes the components of a ket vector as a column and the components of a bra
vector as row – according to (2.11) they are the complex conjugate components of the
ket vector – then the scalar product is obtained by multiplication of the row with the
column.

If one applies an operator A to a vector Ψ then one also obtains the components
(AΨ)n from matrix multiplication.

(AΨ)n = 〈Λn|AΨ〉 =
∑

m

〈Λn|AΛm〉ψm =
∑

m

Anmψm (2.14)

The column vector of components of AΨ is obtained by matrix multiplication of the
matrix, which contains the matrix element Anm = 〈Λn|AΛm〉 in the nth row and the
mth column, with the column vector of components of Ψ.

The hermitean adjoint operator A† of a linear operator is defined by

〈Λ|AΨ〉 = 〈A†Λ|Ψ〉 ∀Λ,Ψ (2.15)

Hermitean conjugation reverses the order of factors of a product.

〈Λ|ABΨ〉 = 〈A†Λ|BΨ〉 = 〈B†A†Λ|Ψ〉 , (AB)† = B†A† . (2.16)

The hermitean adjoint of a complex number is the complex conjugate number. Her-
mitean adjoint matrices, i.e. the transposed and complex conjugated matrices, corres-
pond to hermitean adjoint operators.

(A†)nm = 〈Λn|A†Λm〉 = 〈AΛn|Λm〉 = 〈Λm|AΛn〉∗ = A∗
mn (2.17)

In bracket notation the operators A are written in terms of their matrix elements and
the basis as

A =
∑

nm

|Λn〉Anm〈Λm| , (2.18)

or, more conventionally

A : Ψ→
∑

nm

ΛnAnm〈Λm|Ψ〉 . (2.19)
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2.4 Projectors, resolution of the identity

By (2.10) the operator
∑
j |Λj〉〈Λj| maps each vector |Ψ〉 to itself, the operator therefore

is the identity 1. 1 =
∑

j

|Λj〉〈Λj| . (2.20)

The single parts
Pj = |Λj〉〈Λj| (2.21)

are projectors
P2j = Pj (2.22)

which project to mutually orthogonal subspaces.

PiPj = 0 if i 6= j . (2.23)

The representation (2.20) of the 1-operator as a sum of projection operators is called a
resolution of the identity.

By help of a resolution of the identity and in bracket notation a change of basis is a
simple algebraic task: If |Γi〉 and |Λi〉 are two orthonormal bases, then the components
of a state Ψ in the two bases are related by an insertion of a resolution of the identity.

〈Γi|Ψ〉 =
∑

j

〈Γi|Λj〉〈Λj|Ψ〉 . (2.24)

2.5 Finite norm

Depending on the states which are prepared, the Hilbert space is often not finite di-
mensional and the infinite sums which express vectors in terms of a basis have to be
checked for convergence. In our discussion of quantum mechanics we neglect nearly all
complications which are connected with questions of convergence. We only remark that
vectors in Hilbert space have a finite scalar product

〈Ψ|Ψ〉 =
∑

j

ψ∗
jψj < ∞ (2.25)

and that their components ψj have to be square summable. Conversely, for given or-
thonormal basis, each square summable sequence ψn, n = 1, 2, . . . , defines a vector in
Hilbert space.

More restrictively the square modulus of the components of physical states are the
probabilities for the corresponding results of a measurement. Probabilities satisfy a sum
rule: the sum of probabilities over a complete set of mutually exclusive events gives the
overall probability 1.

1 =
∑

i

w(i, A, Ψ) =
∑

i

|ψi|
2 = 〈Ψ|Ψ〉 (2.26)
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Each vector in Hilbert space which corresponds to a physical state is normalized.

There is no correspondence which attributes to each vector in Hilbert space a physical
state, though one can sometimes hear such statements. In particular the vector 0 in
Hilbert space does not correspond to a physical state though it is tempting to mistake
it for the ground state which is often denoted |0〉.

2.6 Rays in Hilbert space

By (2.5) and (2.26) states correspond to vectors on the unit sphere in Hilbert space.
From the formula (1.1) for the probability of a result of a measurement one concludes
that the unit vector Ψ and the vector which is multiplied by a phase eiαΨ correspond to
the same physical state because for all measuring devices A the probability distribution
of both vectors agree

w(i, A, Ψ) = w(i, A, eiαΨ) ∀α ∈ R . (2.27)

Therefore physical states correspond to equivalence classes of unit vectors with equival-
ence relation

Ψ ∼ Ψ′ ⇔ ∃α ∈ R : Ψ = eiαΨ′ . (2.28)

A more elegant notion than “unit vector up to a phase” is the equivalent concept of
a “ray in Hilbert space”. The ray corresponding to a vector Ψ 6= 0 is the set of all non-
vanishing complex multiples of Ψ. If one attributes to physical states rays in Hilbert
space then one has to adjust the formula (1.1) for the probabilities of results ai such
that it becomes independent of the normalization of the vectors.

w(i, A, Ψ) =
|〈Λi|Ψ〉|2

〈Λi|Λi〉〈Ψ|Ψ〉 (2.29)

For normalized vectors Λi and Ψ this formula agrees with (1.1). The probability does
not depend on which vector one chooses as representative of its ray.

The linear structure of Hilbert space does not allow to add physical states! Physical
states are rays in Hilbert space or, expressed less elegantly, unit vectors up to a phase.
Vectors on the unit sphere do not form a linear space, one cannot combine states with
a unique prescription which has the mathematical properties of addition and there is no
physical correspondence to multiplication of a vector with a complex number.

These remarks are not just a mathematical subtlety. Quantum mechanics is not linear
in all respects. The physical state behind a double slit is not the sum of two physical
states though it can be written as sum of two parts. These parts are not physical
states. The physical state passes both slits. The state which is composed of several
parts depends sensitively on the phases of the parts, which in the example of a double
slit one can control by the distance of the slits. In short: there is no natural addition of
physical states.
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Rather than to use a vector Λi or Ψ as representative of a ray in Hilbert space one
can represent rays by the projectors

Pi,A =
|Λi〉〈Λi|
〈Λi|Λi〉

(2.30)

and

ρ =
|Ψ〉〈Ψ|

〈Ψ|Ψ〉 . (2.31)

In this notation the probability for the i-th result ai is given by the trace of ρ times the
projector Pi,A to the corresponding subspace.

w(i, A, ρ) = trρ Pi,A . (2.32)

We recall: the trace trA of an operator is defined as

trA =
∑

j

〈ξj|Aξj〉 , (2.33)

where ξj constitute an orthonormal basis (e.g ξj = Λj). The trace of an operator does
not depend on the basis and is cyclic trAB = trBA.

Equation (2.32) gives the probability distribution also in case of a degenerate result
when several states Λa,k, k = 1, 2, . . . , which can be distinguished by finer instruments
and are therefore mutually orthogonal, yield the same result a. Then the projector Pa,A
has to be generalized to the operator which projects to the subspace of the states for
which the result a is certain.

Pa,A =
∑

k

|Λa,k〉〈Λa,k|
〈Λa,k|Λa,k〉

(2.34)

It the state ρ is measured then the probability for the result a is

w(a,A, ρ) = trρ Pa,A . (2.35)



3 Density matrix

3.1 Statistical sources

The probability (1.1) of a result can be compared to the frequency with which it occurs
in repeated measurements only if one prepares repeatedly the same state Ψ. For many
sources, in particular if the source is an oven, this is not the case. If the source in
figure (1.1) contains a random generator which prepares the state Ψ1 with probability
p1, the state Ψ2 with probability p2 and so on then the case that the state Ψ1 is
produced and result ai is obtained occurs with probability p1w(i, A, Ψ1), p2w(i, A, Ψ2)

is the probability that Ψ2 is produced and ai is measured and so on.Considering all
possibilities for the occurrence of the i-th result one obtains the probability

w(i, A, ρ) =
∑

n

pnw(i, A, Ψn) =
∑

n

pn〈Λi|Ψn〉〈Ψn|Λi〉 = 〈Λi|ρΛi〉 . (3.1)

The density matrix ρ characterizes the mixture in all measurable properties.

ρ =
∑

n

pn|Ψn〉〈Ψn| (3.2)

The probability to obtain the i-th result of a measurement is the corresponding mat-
rix element 〈Λi|ρΛi〉 on the main diagonal of the density matrix in the basis of the
eigenstates of the measuring device.

The probability (3.1) can be compared with the frequency of the result only if the
production probabilities pn are unchanged during the series of measurements and if the
mixture can be prepared sufficiently often and if there exist instruments which are not
part of the quantum mechanical system which is being measured.

It remains therefore unclear how to interpret a “wavefunction of the universe”. We are
mercifully saved from this problem how to interpret the wave function of the universe
because we do not know it.

The term mixture applies to the generic case that different states Ψn are prepared
with probabilities pn. If in a series of measurements one always prepares the same state
Ψ then one calls the system which is to be measured a pure state. Pure states are special
mixtures where one production probability is 1 and all the others vanish.

The states Ψn which constitute the mixture are normally not mutually orthogonal
and normally do not constitute a basis. In the generic case one cannot reconstruct
the individual parts pn|Ψn〉〈Ψn| from the density matrix ρ similar to a sum which
does not allow to tell its terms. One can, however, determine the eigenvalues ρn and
orthonormalized eigenvectors Υn of ρ

ρΥn = ρnΥn with 〈Υm|Υn〉 = δmn (3.3)
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and use them to write the density matrix in a confusingly similar form

ρ =
∑

n

ρn|Υn〉〈Υn| . (3.4)

The eigenvalues ρn and the projectors to the corresponding eigenspaces are determined
by ρ and the eigenvalue equation.

Each main diagonal element 〈Λ|ρΛ〉 of the density matrix is non-negative

〈Λ|ρΛ〉 =
∑

n

〈Λ|pnΨn〉〈Ψn|Λ〉 =
∑

n

pn|〈Λ|Ψn〉|2 ≥ 0 . (3.5)

Therefore all eigenvalues ρn of a density matrix are non-negative. A main diagonal
element 〈Λ|ρΛ〉 vanishes if and only if all products pn〈Ψn|Λ〉 vanish which means that
ρΛ vanishes

〈Λ|ρΛ〉 = 0⇔ ρΛ = 0 . (3.6)

The trace of the density matrix is fixed by the sum rule for probabilities.

trρ =
∑

i

〈Λi|ρΛi〉 =
∑

in

〈Λi|pnΨn〉〈Ψn|Λi〉 =
∑

n

〈Ψn|pnΨn〉 =
∑

n

pn

trρ = 1 =
∑

n

ρn (3.7)

3.2 Mixing mixtures

Let us imagine two sources in figure (1.1) which prepare mixtures ρ̂ and ρ̃ and a device
which combines the two beams in a random way such that with probability λ particles
are taken from the first beam and in the remaining cases with probability (1−λ) particles
are taken from the second beam.

If the mixture, which is prepared by mixing two mixtures, is measured then the case
that the first beam is chosen and ai is measured occurs with probability λ〈Λi|ρ̂Λi〉, the
case that the second beam is chosen and ai results has probability (1− λ)〈Λi|ρ̃Λi〉.

Altogether the result ai is measured with probability

λ〈Λi|ρ̂Λi〉 + (1− λ)〈Λi|ρ̃Λi〉 = 〈Λi|(λρ̂+ (1− λ)ρ̃)Λi〉 . (3.8)

Mixing two mixtures with mixing parameter λ yields for all measuring instruments the
probability distributions of the density matrix

ρ(λ) = λρ̂+ (1− λ)ρ̃ . (3.9)

We will see that mixing increases the entropy, the lack of knowledge about the under-
lying states, and the uncertainty or standard deviation of each measurement.



4 Operators

4.1 Expectation value

Equation (2.32) specifies the probability distribution for all measurements and contains
the complete information on the results of series of measurements. Often one is interested
in less information, for example the mean value of the results of the measurement. For
many probability distributions the most probable result is near the mean value and the
mean value is then the result which one expects. Therefore physicists call the mean value
expectation value. However, one should be warned that there are distributions with two
or more humps, for example the fanned out beam after a Stern-Gerlach device, where
results near the mean value are improbable and where the expectation value cannot be
expected.

The mean value 〈A〉 of the measured values of an instrument is the sum of the results
weighted with their probabilities

〈A〉 =
∑

i

aiw(i, A, ρ) =
∑

i

ai〈Λi|ρΛi〉 = tr

(
∑

i

ai|Λi〉〈Λi|
)
ρ . (4.1)

The mean value is therefore
〈A〉 = trρA , (4.2)

where A does not only denote the instrument but also the operator

A =
∑

i

ai|Λi〉〈Λi| . (4.3)

The operator A is characteristic for the instrument. The possible results and their
probabilities for a given mixture ρ can be calculated from the operator. Succinctly, to
each measuring instrument there corresponds an operator in Hilbert space.

It is, however, sobering, that producers of measuring instruments do not include the
corresponding operator with their instructions of use.

Contrary to widespread hearsay the application of an operator to the physical state
Ψ does not correspond to the act of measuring.

The notation 〈A〉 for the mean value trAρ originates from the pure state. In that
case, if one employes a normalized Ψ, one has more specifically

〈A〉 = 〈Ψ|AΨ〉 . (4.4)

Without changing anything one writes in bracket notation an additional “ | ”and stresses
with the notation 〈A〉 = 〈Ψ|A|Ψ〉 that it is irrelevant whether the operator A acts on
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the first or second argument of the scalar product. For A is a linear, hermitean operator
(2.15)

A = A† . (4.5)

One easily confirms that the projection operators (2.21) are hermitean 〈Φ|PiΨ〉 =

〈Φ|Λi〉〈Λi|Ψ〉 = 〈PiΦ|Ψ〉 and that real linear combinations (4.3) of hermitean operators
are hermitean.

By the same reason the density matrix ρ (3.2) is hermitean.

ρ = ρ† (4.6)

From (2.5) one concludes immediately that the statesΛi are eigenstates of the operator
A and that the eigenvalues are the possible results ai of the measurement.

AΛi = aiΛi (4.7)

This is how we have constructed the operator A (4.3) from eigenstates and corresponding
results.

Conversely, the results ai and the corresponding eigenvectors Λi up to a complex
factor, i.e. the corresponding ray in Hilbert space, can be determined from the given
operator A as solutions to the eigenvalue equation.

The eigenvalues a of an hermitean operator A = A† are real. This can be seen from
AΛ = aΛ and 〈Λ|Λ〉 6= 0 and the following chain of arguments.

(a∗ − a)〈Λ|Λ〉 = 〈aΛ|Λ〉− 〈Λ|aΛ〉 = 〈AΛ|Λ〉 − 〈Λ|AΛ〉 = 0 (4.8)

Eigenstates corresponding to different eigenvalues are mutually orthogonal.

(ai − aj)〈Λi|Λj〉 = 〈AΛi|Λj〉 − 〈Λi|AΛj〉 = 0 , ai 6= aj ⇒ 〈Λi|Λj〉 = 0 (4.9)

Unitary operators U† = U−1 leave invariant all scalar products.

〈UΦ|UΨ〉 = 〈U†UΦ|Ψ〉 = 〈Φ|Ψ〉 (4.10)

Therefore Ψ and UΨ have the same length and UΨ = λΨ, λ ∈ C, is only possible with
|λ| = 1. This is why eigenvalues of unitary operators have modulus 1.

U† = U−1 and UΨ = λΨ⇒ λ = eiα , α ∈ R . (4.11)

Each unitary operator U can be written as eiH with some hermitean operator H = H†.

4.2 Unbounded spectrum

The set of all eigenvalues of an operator – or to be more precise, the complement of the
set of complex numbers λ ∈ C for which the resolvent (A − λ)−1 exists as operator in
the whole Hilbert space – is called spectrum of A. If the spectrum is not bounded, then
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the operator is not defined on all vectors Ψ and a arbitrarily small change of a state, on
which A is defined, can give an arbitrary large change of the expectation value.

From every day life such a discontinuous behaviour of mean values of probability
distributions of unbounded results is well known. One single student in his 40th term
spoils the average. In statistics one masters this problem with additional arguments
such as “A student in his 40th term is no longer a student” and just skips his data.
Analyzing measured values one often proceeds similarly and drops runaway values from
the determination of mean values.

In distinguished phrases this procedure is called regularization. If one intends to
analyze sufficiently well behaved problems such as “Do students understand the subject
faster after the introduction of the new curriculum?”then the old student is unimportant
anyhow and the regularization is acceptable.

The mathematical difficulties with operators with unbounded spectrum show them-
selves for example with the expectation value of the energy of the harmonic oscillator.
The energies are the eigenvalues of the Hamilton operator H =  hωa†a. They are non-
negative, integer multiples of  hω

H|Λn〉 = En|Λn〉 , En = n hω , n = 0, 1, 2, . . . . (4.12)

We assume that the eigenvectors Λn are normalized. Then they constitute an or-
thonormal basis (2.5) and a general vector can be written as linear combination
|Ψ〉 =

∑
n |Λn〉ψn with square summable components ψn.

The Hamilton operator maps Ψ to HΨ with components

〈Λn|HΨ〉 =  hωn〈Λn|Ψ〉 =  hωnψn . (4.13)

One can easily specify square summable sequences, e. g. ψn = 1/(n+ 1), such that the
sequence nψn is not square summable. The operator H is not defined on the corres-
ponding vectors. If one takes from this sequence only terms until some large N and adds
it with a small coefficient to a physical state, one recognizes that in each neighbourhood
of each state there exists another state whose energy expectation value surpasses each
given bound. This is a mathematical nuisance but unimportant for physics: the large
expectation value results from very rare results with high energy.

Better behaved than operators with unbounded spectrum are projectors (2.21) to the
eigenspaces corresponding to the results of the measurement. If one measures a mixture
ρ then only these projectors are needed to calculate the probability distribution of the
results.

4.3 Uncertainty

Next in importance to the mean value is the deviation ∆ρA, which characterizes the
spread of the results if a mixture ρ (3.2) is measured with an instrument A. More
precisely the square of the deviation is

(∆ρA)2 = 〈(A− 〈A〉)2〉 =
∑

n

pn〈Ψn|(A− 〈A〉)2Ψn〉 = 〈A2〉 − 〈A〉2 (4.14)
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∆ρA is called deviation or uncertainty of A in the mixture ρ. The uncertainty depends
on both the hermitean operator A and the mixture ρ.

The quantity (∆ρA)2 is non-negative, for (4.14) is a sum of squares ‖(A− 〈A〉)Ψn‖2
weighted with non-negative probabilities.

〈Ψ|(A− 〈A〉)2Ψ〉 = 〈(A− 〈A〉)Ψ|(A− 〈A〉)Ψ〉 = ‖(A− 〈A〉)Ψ‖2 (4.15)

The uncertainty vanishes if and only if the mixture is mixed from eigenstates Λn with
the same eigenvalue a = 〈A〉

0 =
∑

n

pn‖(A− 〈A〉)Λn‖2 ⇔ (A− a)Λn = 0 or pn = 0 . (4.16)

The sum
∑
n pn‖

(
cA(A− 〈A〉) + icB(B− 〈B〉)

)
Ψn‖2 is non-negative. If one inspects

hermitean operators A and B and real numbers cA and cB then this observation yields
a general, lower bound for the product ∆ρA∆ρB of the uncertainties of A and B in the
mixture ρ. With the notation

[A,B] = AB− BA (4.17)

for the commutator of A and B one has

0 ≤
∑

n

pn‖
(
cA(A− 〈A〉) + icB(B− 〈B〉)

)
Ψn‖2

=
∑

n

pn〈Ψn|
(
c2A(A− 〈A〉)2 + c2B(B− 〈B〉)2 + icAcB[A,B]

)
Ψn〉

= (cA∆ρA+ cB∆ρB)2 − cAcB
(
2∆ρA∆ρB − i

∑

n

pn〈Ψn|[A,B]Ψn〉
)
.

(4.18)

We exploit this inequality for cA = −∆ρB and cB = ∆ρA. Then the first term vanishes.
If neither ∆A nor ∆B vanish then −2cAcB > 0 and we obtain the general uncertainty
relation

∆ρA∆ρB ≥ 1

2
|〈[A,B]〉| . (4.19)

This relation holds for the modulus of 〈[A,B]〉 because we can repeat our considerations
with B and A exchanged. Thereby the left side is unchanged and the commutator
[A,B] changes sign. The inequality also holds for vanishing uncertainty ∆ρA = 0 (or
∆ρB = 0) for then the mixture ρ consists of eigenstates to A (or B) with eigenvalue a.
The expectation value of a commutator [A,B] vanishes in each eigenstate of A or B.

〈[A,B]〉 =
∑

n

pn〈Ψn|[A,B]Ψn〉 =
∑

n

pn〈Ψn|(aB− Ba)Ψn〉 = 0 (4.20)

Mixing does not decrease the deviation. The square uncertainty of a mixture of
mixtures

(∆ρ(λ)A)2 = trρ(λ)A2 − (trρ(λ)A)2 with ρ(λ) = λρ̂+ (1− λ)ρ̃ (4.21)



4.4 Commutator 15

is a polynomial in λ with non-positive second derivative −2(tr ρ̂A−tr ρ̃A)2 and therefore
a convex function of the mixing parameter

(∆ρ(λ)A)2 ≥ λ(∆ρ̂A)2 + (1− λ)(∆ρ̃A)2 . (4.22)

The square uncertainty of a mixture of mixtures is at least the proportionate sum of the
square uncertainties and coincides with the proportionate sum only if the mean values
tr ρ̂A and tr ρ̃A agree.

4.4 Commutator

In spite of the mathematical complication which originate from unbounded operators
one prefers to specify properties of quantum mechanical systems in terms of operators.

The simplest algebraic relation is that one can exchange the order of two operators
AB = BA. “The operators commute” or, in other words, the commutator

[A,B] = AB− BA (4.23)

vanishes. If A and B commute and if they are diagonalizable, e. g. because they are
hermitean or unitary, then the eigenvectors of A can be chosen to be also eigenvectors
of B and vice versa. For B maps the eigenspace Hi of A with eigenvalue ai to Hi

[A,B] = 0∧ (A− ai)Λi = 0⇒ (A− ai)(BΛi) = B(A− ai)Λi = 0 (4.24)

and can be diagonalized in this subspace. If the dimension di of Hi is larger than 1,
then ai is degenerate and there are linearly independent eigenvectors Λij for A and B

AΛij = aiΛij BΛij = bijΛij j = 1, . . . , di . (4.25)

One can then construct a finer instrument which measures in one measurement A and
B and decomposes the beams ai in figure (1.1) into finer beams bij.

If B is degenerate in the same subspaces as A then B = f(A). In this case B in
not essentially different from A. It only uses a different scale similar to a Volt- and
Ampère-meter.

With respect to a set of measurements, which correspond to mutually commuting
operators quantum mechanical systems behave like classical statistical systems. All
states Ψ are characterized with respect to these measurements completely by classical
probability distributions given by the square modulus of the scalar products 〈Λ|Ψ〉 with
the eigenstates Λ of the commuting operators. Only measurements corresponding to
non-commuting operators become sensitive to the phases of the complex components of
Ψ.

The main algebraic properties of the commutator are antisymmetry, linearity and the
product rule

[A,B] = −[B,A] , (4.26)

[A, λ1B + λ2C] = λ1[A,B] + λ2[A,C] ∀λ1, λ2 ∈ C , (4.27)

[A,BC] = [A,B]C+ B[A,C] . (4.28)
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Taking the hermitean adjoint reverses the order (2.16) and therefore and because the
commutator is antisymmetric the commutator of hermitean operators is antihermitean.

Because of the product rule and because of linearity the operation “taking the com-
mutator with an operator” behaves like a derivative. This derivative does not change
the order of factors.

The product rule implies the Jacobi identity

[A, [B,C]] = [[A,B], C] + [B, [A,C]] (4.29)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 . (4.30)

4.5 Creation annihilation algebra

Algebraic relations generate structure in the Hilbert space of states and restrict this
space. For example the Heisenberg commutation relation

[X, P] = i h (4.31)

of a hermitean position operator X with the corresponding hermitean momentum oper-
ator P cannot hold in a Hilbert space H with finite dimension n. In a finite dimensional
space one would calculate tr(XP − PX) = 0 in contradiction to tr(i h) = ni h. In an
infinite dimensional space the trace cannot be defined on all operators.

If for a real number x0 ∈ R, x0 6= 0 there exist the complex linear combinations

a =
1√
2
(
X

x0
+

i
 h
x0P) , a† =

1√
2
(
X

x0
−

i
 h
x0P) (4.32)

of the position operator and the momentum operator, then these combinations satisfy
the creation annihilation algebra

[a, a] = 0 , [a†, a†] = 0 , [a, a†] = 1 , (4.33)

and there exists an orthonormal basis

Λn,τ =
(a†)n√
n!
Λ0,τ , n = 0, 1, 2, . . . , (4.34)

on which the operator a acts as annihilation operator and a† as creation operator

aΛn,τ =
√
nΛn−1,τ , a†Λn,τ =

√
n + 1Λn+1,τ . (4.35)

This results from the following analysis of the hermitean operator a†a. In anticipation
of later results we call a†a the number operator and denote its eigenvalues with n.

a†aΛn = nΛn . (4.36)

From the creation annihilation algebra (4.33) one concludes that the commutator with
the number operator a†a maps the operators a and a† to multiples of themselves.

[a†a, a] = −a , [a†a, a†] = a† . (4.37)
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Therefore the states aΛn and a†Λn either vanish or are eigenstates of the number
operator with eigenvalues n − 1 and n+ 1 respectively.

a†aaΛn = ([a†a, a] + aa†a)Λn = (−1+ n)aΛn (4.38)

a†aa†Λn = ([a†a, a†] + a† a†a)Λn = (1+ n)a†Λn (4.39)

Because the operator a lowers the eigenvalue of the number operator it is called annihil-
ation operator. Analogously a† is the creation operator. For a normalized state Λn one
can calculate the norm of aΛn and a†Λn from the algebra and the eigenvalue equation

〈aΛn|aΛn〉 = 〈Λn|a†aΛn〉 = n (4.40)

〈a†Λn|a†Λn〉 = 〈Λn|aa†Λn〉 = 〈Λn|([a, a†] + a†a)Λn〉 = n + 1 . (4.41)

All these norms are non-negative (2.4). Therefore n is non-negative. However, repeated
application of the annihilation operator a decreases the eigenvalue of a†a in integer
steps and, before n becomes negative, has to lead to a state Λ0 6= 0 which by further
application of a is mapped to 0.

aΛ0 = 0 . (4.42)

Such a state is called ground state. According to (4.40) it has number eigenvalue n = 0.
Therefore each eigenvalue n is integer and non-negative. The spectrum of the number
operator a†a consists of the integer and non-negative numbers.

a†aΛn = nΛn , n = 0, 1, 2, . . . . (4.43)

In the space of all ground states one chooses an orthonormal basis Λ0,τ and considers
the vectors (4.34), which are generated by n-fold application of the creation operator a†

from the ground state Λ0,τ. Up to a factor these states coincide with the states from
which the ground states had been generated by n-fold application of a

(a†)nanΛn = (a†)n−1(a†a)an−1Λn = (a†)n−1(n− (n− 1))an−1Λn =

= 1 · (a†)n−2(a†a)an−2Λn = 1 · 2 · (a†)n−3(a†a)an−3Λn = · · · = n!Λn .
(4.44)

Therefore the ground states are degenerate in exactly the same way as all other eigen-
states of the number operator.

4.6 Angular momentum algebra

Another example for algebraic relations is the algebra of angular momentum

[Li, Lj] = i hǫijkLk , i, j, k ∈ {1, 2, 3} . (4.45)

A vector space endowed with a bilinear product [A,B], which is antisymmetric and satis-
fies the Jacobi identity (4.30), is called a Lie algebra. The angular momentum operators
therefore are a basis of a Lie algebra, more precisely of the Lie algebra corresponding to
the group SO(3) of rotations in three dimensions.
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Provided the hermitean angular momentum operators Li exist, the Hilbert space H

has an orthonormal basis Λl,m,τ. τ is an index of degeneracy. 2l is non-negative and
integral, thus l can take the values 0, 1/2, 1, 3/2, . . . . The algebra does not imply which
one of the allowed values of l occurs and how they are degenerated. For fixed l, m takes
the values −l,−l+ 1, . . . ,+l. On the orthonormal basis Λl,m,τ the angular momentum
operators can be given explicitly.

L3Λl,m,τ =  hmΛl,m,τ (4.46)

(L1 + iL2)Λl,m,τ =  h
√
l(l+ 1) −m(m+ 1)Λl,m+1,τ (4.47)

(L1 − iL2)Λl,m,τ =  h
√
l(l+ 1) −m(m− 1)Λl,m−1,τ (4.48)

This can be deduced from the angular momentum algebra in the following way. One
verifies that the total angular momentum L2 = (L21+L

2
2+L

2
3) commutes with each of the

angular momentum operators L1, L2 and L3, for angular momentum operators generate
rotations and leave invariant the square of the length of vectors such as x2 + y2 + z2 or
L2.

[Li, L
2] = 0 (4.49)

The angular momentum operators therefore (4.24) map angular momentum multiplets,
i.e. subspaces Hl of eigenstates of L2 with eigenvalue  h2l(l + 1), to themselves. Hence,
one can find common eigenstates Λlm of L2 and L3

L2Λlm =  h2l(l + 1)Λlm , L3Λlm =  hmΛlm . (4.50)

The denomination of the eigenvalue of L2 is chosen in anticipation of later results.
The angular momentum algebra (4.45) implies that the commutator with L3 maps the

complex linear combinations L+ and L− = (L+)†

L+ = L1 + iL2 , L− = L1 − iL2 (4.51)

to a multiple of L+ and L−, respectively, and that their commutator gives 2 hL3

[L3, L+] = + hL+ , [L3, L−] = − hL− , [L+, L−] = 2 hL3 . (4.52)

Therefore L+Λlm and L−Λlm are either zero or eigenstates of L3 with eigenvalue  h(m+1)

and  h(m− 1), respectively

L3L+Λlm = ([L3, L+] + L+L3)Λlm =  h(1+m)L+Λlm (4.53)

L3L−Λlm = ([L3, L−] + L−L3)Λlm =  h(−1+m)L−Λlm . (4.54)

Since L+ and L− raise and lower the eigenvalues of L3 by a constant amount, they are
also called ladder operators or raising and lowering operators. If Λlm has unit length,
the norm of L+Λlm and L−Λlm follows from

L2 = L+L− + L23 −  hL3 = L−L+ + L23 +  hL3 . (4.55)

〈L+Λlm|L+Λlm〉 = 〈Λlm|L−L+Λlm〉 = 〈Λlm|(L2 − L23 −  hL3)Λlm〉 =

= 〈Λlm| h2(l(l+ 1) −m(m+ 1))Λlm〉 =  h2(l(l+ 1) −m(m+ 1)) (4.56)

〈L−Λlm|L−Λlm〉 =  h2(l(l+ 1) −m(m− 1)) . (4.57)
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These norms are non-negative (2.4), so for given l the quantum number m is bounded
from above and below.

Applied to the eigenstate Λlmmax
with maximal eigenvalue of L3, L+ must vanish, and

thus l(l+ 1) −mmax(mmax + 1) = 0. Similarly, l(l+ 1) −mmin(mmin − 1) must be zero.
Hence, the quadratic equations

(mmax +
1

2
)2 = (mmin −

1

2
)2 = l(l + 1) +

1

4
= (l +

1

2
)2 . (4.58)

hold. We choose l + 1
2

to be positive. Because of mmax + 1
2
> mmin − 1

2
the unique

solution is
mmax = l , mmin = −l . (4.59)

Since repeated application of L+ to the state with minimal eigenvalue of L3 increases the
quantum numberm in integral steps until one obtains the state withmmax = l, the differ-
encemmax−mmin = 2l must be integral and non-negative. Thus l ∈ {0, 1

2
, 1, . . . } is integ-

ral or half-integral. The angular momentum operators act in a 2l+1-dimensional space,
the angular momentum multiplet with total angular momentum l, which is spanned by
the basis states Λlm with m = −l,−l+ 1, . . . ,+l.

For l = 1/2 the angular momentum operators, the spin-1/2 operators S1, S2, and
S3, act in a two-dimensional space on the spinors of the spin-1/2 multiplet with basis
states Λl,m with l = 1/2 and m = ±1/2. Because of (4.46), (4.47) and (4.48), the spin
operators are given in this basis by  h/2 times the Pauli matrices σ1, σ2 and σ3

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (4.60)

Si =
 h

2
σi , i ∈ {1, 2, 3} . (4.61)

The Pauli matrices satisfy the algebraic relations

σiσj = δij1 + iǫijkσk . (4.62)

Angular momentum operators generate rotations of states. If the axis of rotation
points into the direction of the unity vector ~e, then to a rotation around an angle α
there corresponds the unitary operator

U(~e, α) = exp(−
iα
 h

~L · ~e) . (4.63)

For spin-1/2 the matrix corresponding to (4.63) can be easily given, since due to
(i~σ · ~e)2 = −1 the exponential series can be summed similarly to the Euler formula
e−iα = cosα− i sinα.

U1/2(~e, α) = exp(−
iα

2
~σ · ~e) = 1 cosα/2 − i~e · ~σ sinα/2 (4.64)

A rotation of a spin-1/2 spinor around α = 2π results in its negative U1/2(~e, 2π) = −1.
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4.7 Measurement of a spin-1/2-mixture

For a system with two basis states Λ1, Λ2 all measurements of all states can be character-
ized by a few parameters. A prominent example for systems with two states are spin-1/2
particles, which are examined with Stern-Gerlach devices, another example are atoms if
due to the experimental setup only two of the energy states need to be considered.

In a Stern-Gerlach device a beam of spin-1/2 particles is split into two separate beams
(n = 2) as shown in picture (1.1). The intensity of the upper beam divided by the
intensity of the incoming beam is the probability with which the spin points up into the
direction into which the Stern-Gerlach device splits the beams. For given beam ρ we
would like to know how the intensity depends on the direction of the device.

The density matrix ρ, which characterizes the mixture in the two state system, is
given by a hermitean matrix, once an orthonormal basis has been chosen, with trace 1.
Hermitean n×n matrices constitute a real n2-dimensional vector space. This means in
our case that one can write each hermitean 2 × 2-matrix as real linear combination of
4 basis matrices. We choose as basis the 1-matrix and the traceless, hermitean Pauli-
Matrices (4.60). Because of the normalization condition tr ρ = 1 the coefficient of the1-matrix is 1/2 and the most general density matrix of a two state system has the form

ρ =
1

2
1 + aσ1 + bσ2 + cσ3 =

(
1/2+ c a− ib
a+ ib 1/2− c

)
a, b, c ∈ R . (4.65)

By choice of the basis in the two state system we can simplify the density matrix. As
long as there is no other choice of a basis we just choose the eigenvectors of ρ as basis.
Then the matrix corresponding to ρ is diagonal and simplifies

ρ =

(
1/2+ c 0

0 1/2− c

)
. (4.66)

More precisely we choose as first eigenvector the one which corresponds to the larger
eigenvalue of ρ, then c is non-negative. Moreover the second diagonal element 1/2−c is
non-negative (3.5). So the density matrix is characterized by the basis and the eigenvalue
ρ1 = 1/2+ c, 0 ≤ c ≤ 1/2.

The values of the results a1 and a2 are not particularly important for the measuring
device: the instrument does not change in an essential way if we introduce new scales.
Important is the probability with which the first result occurs. According to (3.1) we
need the first normalized eigenvector Λ of the device A to calculate it. We write the
components of Λ as modulus times phase. The square modulus have to add up to one
because of 〈Λ|Λ〉 = 1. The modulus are therefore sine and cosine of some angle θ/2. A
common phase of the components is irrelevant1, the relative phase of the two components

1There is no choice of the phases of the components, such that the components are continuous, 2π-

periodic in ϕ and independent of ϕ for θ = 0 and θ = π. So the components cannot be chosen as

continuous functions on the unit sphere. The problem comes from the phases of the vector. The

corresponding rays in Hilbert space vary continuously on the sphere.
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is split and attributed to both components in opposite parts.

Λ =

(
cos(θ/2)e−iϕ/2

sin(θ/2)e+iϕ/2

)
(4.67)

The angles θ and ϕ have geometric meaning. The state Λ (4.67) is eigenstate corres-
ponding to the result  h/2 of the spin-1/2-operator

Sθ,ϕ =
 h

2

(
cosθ sin θe−iϕ

sin θeiϕ − cosθ

)
=

 h

2

(
σxex + σyey + σzez

)
, (4.68)

which measures spin in the direction of ~e (θ,ϕ).

~e (θ,ϕ) =



ex
ey
ez


 =




sin θ cosϕ
sin θ sinϕ

cos θ


 -

�
��/

�
�

��3

y

x

θ

ϕ

~eθ,ϕ
6z

(4.69)

The vector ~e (θ,ϕ) forms an angle θ with the z-axis and its projection into the x-y-plane

forms the angle ϕ with the x-axis.
A spin measurement in direction ~e (θ,ϕ) yields the result spin up with probability

w(↑θ,ϕ) which, according to (3.1), is given by the matrix element 〈Λ|ρΛ〉 Using (4.66)
and (4.67) one calculates

w(↑θ,ϕ) = 1/2+ c cosθ . (4.70)

This probability distribution does not depend on the angle ϕ. It is invariant under
rotations around the z-axis.

Figure (4.1) shows for the values c = 0, c = 1/2 and c = 1/4 the probability to find
spin up as a function of the angle θ which the direction, into which the beam is split by
the Stern-Gerlach device, forms with the z-axis.

The choice to employ the eigenvectors of ρ as basis for the spin states turns out to be
a choice of the z-axis. The z-axis is the direction in which most particles in the mixture
ρ are measured to have spin up.

The representation of the probability in the range 0 ≤ θ ≤ 2π is redundant. The angle
θ to the z-axis only ranges in the interval 0 ≤ θ ≤ π and denotes for values π < θ ≤ 2π
angles θ′ = 2π− θ.

In figure (4.1) the range 0 ≤ θ ≤ 2π has been chosen to show that results of meas-
urements of a spin-1/2-system and the probabilities of the results are unaltered by a
rotation around an angle 2π.

Spin-1/2-spinors (4.67) are mapped by a rotation around 2π to their negative (4.64).
Take for example the eigenstate Λθ,ϕ = Λπ

2 ,0
with spin up in x-direction and rotate it

around the z-axis around an angle 2π, then the angle ϕ increases from 0 to 2π and Λπ
2 ,0

is mapped to its negative.

Λπ
2 ,0

=
1√
2

(
1

1

)
2π−→ 1√

2

(
−1

−1

)
= −Λπ

2 ,0
(4.71)
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w(↑θ,ϕ) = 1/2+ c cos(θ)

θ

c = 0

c = 1/2

6

-

Figure 4.1: Probability of spin up of spin 1/2 particles

This does not mean that after the rotation the spin points down in x-direction −Λπ
2 ,0

6=
Λπ
2 ,π

. The negative sign is an unmeasurable phase. It is the ray in Hilbert space, that
is the vector Ψ up to a non-vanishing number, which corresponds to a physical state.
This ray is mapped to itself by a rotation around 2π. The negative phase can only be
measured if one splits the spin-1/2-state, e.g. in a double slit, rotates one part around
2π and detects the change of phase relative to the second part in an interference pattern.

For c = 1/2 the density matrix ρ describes a mixture in which spin up is found with
certainty if one measure spin in z-direction (θ = 0). The probability w(↑θ=0,ϕ) for
c = 1/2 is 1 and the mixture is a pure state, the eigenstate spin up in z-direction.

ρ|c=1/2
=

(
1 0

0 0

)
=

(
1

0

)(
1 0

)
. (4.72)

It is not always so simple to see whether a density matrix ρ =
∑
j pj|Ψj〉〈Ψj| has rank

1 and can be written with one term. In such a case one probability pj is 1, the other
terms vanish and ρ = ρpure is a projector ρ2pure = ρpure. Because of tr ρ = 1 we then also
have

trρ2pure = 1 . (4.73)

If one evaluates the trace in an eigenbasis of ρ one can see that this equation is also
sufficient for ρ to be a pure state. The trace is the sum of the eigenvalues of ρ. These
eigenvalues lie between 0 and 1 and sum to 1. Therefore their squares sum to 1 if and
only if one eigenvalue is 1 and if all other eigenvalues are 0.
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The difference between the maximal probability wmax and the minimal probability
wmin in relation to the maximal probability is the polarization P of the beam of spin-
1/2-particles.

P =
wmax −wmin

wmax

(4.74)

For a pure state (c = 1/2) the polarization is 100% . For c = 0 the beam is completely
unpolarized and each spin measurement irrespective of its direction splits the beam into
two equally intense beams.

The difference between a pure state and a mixture is seen experimentally only after
measuring with different, in the case at hand rotated, devices. The corresponding prob-
ability distributions depend strongly on the apparatus, in our example on θ, if a pure
state is measured. This contrast becomes smaller if mixtures are measured. Another
example is the interference pattern of light behind a double slit: the interference pattern
fades if the ligth, as in the case of light from the sun, is a mixture of different colours.

4.8 Perturbation theory

We investigate discrete eigenvalues and normalizable eigenstates of a differentiable set
H(λ) of hermitean operators. If one knows the spectrum for λ = 0, for instance, one
may try to approximate the spectrum and the eigenstates for neighbouring values of λ
by a Taylor series.

(H(λ) − En(λ))Ψn(λ) = 0 (4.75)

We assume that the operator H(λ), its eigenvalues En(λ) and its eigenstates Ψn(λ) de-
pend on λ in a differentiable way. All results of stationary perturbation theory follow
from (4.75) by repeated differentiation with respect to λ, because the expansion coeffi-
cients of a Taylor series around λ = 0 are given there by repeated differentiation.

The eigenvalue equation does not fix the corresponding eigenvector Ψn(λ) 6= 0 com-
pletely. All complex multiples of Ψn(λ) also satisfy the equation. To fix the normaliza-
tion and the phase of Ψn(λ) we require

〈Ψm(λ)|Ψn(λ)〉 = δmn (4.76)

〈Ψm(λ)|
d

dλ
Ψn(λ)〉|m=n

= 0 . (4.77)

The condition (4.76) is satisfied for En 6= Em, since eigenvectors of a hermitean operator
with different eigenvalues are orthogonal (4.9). In every subspace where an eigenvalue
is degenerate, an orthonormal basis can be chosen and (4.76) can be satisfied.

Differentiation of (4.76) for n = m shows that 〈Ψn(λ)| d
dλ
Ψn(λ)〉 = i f(λ) is imaginary.

By choosing the phase

Ψ̃n(λ) = eiα(λ)Ψn(λ) α(λ) = −

∫λ

0

dλ′f(λ′) (4.78)

equation (4.77) can be satisfied with Ψ̃n. We assume that the equations (4.76) and (4.77)
hold already without a redefinition of the phases.
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Differentiating (4.75) with respect to λ results in

( d

dλ
H−

d

dλ
En
)
Ψn +

(
H− En

) d

dλ
Ψn = 0 . (4.79)

Taking the scalar product with Ψn leads to 〈Ψn|( d
dλ
H− d

dλ
En)Ψn〉 = 0, hence

d

dλ
En = 〈Ψn|

( d

dλ
H
)
Ψn〉 . (4.80)

The scalar product with Ψm, m 6= n, gives

〈Ψm|
( d

dλ
H
)
Ψn〉 +

(
Em − En

)
〈Ψm|

d

dλ
Ψn〉 = 0 . (4.81)

If an eigenvalue E is degenerate, i.e. if Em1
= Em2

= · · · = Emk
= E holds for a value

of λ for some orthonormal states Ψmi
which span a k-dimensional subspace, then these

states can depend on the perturbation parameter in a differentiable way only if the
perturbation operator ( d

dλ
H) does not lead to transitions between these states, i.e. if

〈Ψmi
|
( d

dλ
H
)
Ψmj

〉 = 0 for Emi
= Emj

and mi 6= mj . (4.82)

In the subspace where an eigenvalue is degenerate, the orthonormal basis is to be chosen
such that the perturbation operator d

dλ
H restricted to this subspace is diagonal.

Equations (4.81), (4.82) and (4.77) fix the scalar products of d
dλ
Ψn with all basis

vectors Ψm. Therefore

d

dλ
Ψn = −

∑

m: Em 6=En

Ψm
〈Ψm|

(
d
dλ
H
)
Ψn〉

Em − En
. (4.83)

The coefficients of d
dλ
Ψn are square summable if the vector Ψn depends on λ in a

differentiable way,

∑

m: Em 6=En

∣∣∣∣∣
〈Ψm|

(
d
dλ
H
)
Ψn〉

Em − En

∣∣∣∣∣

2

< ∞ (4.84)

The equations (4.80) and (4.83) are a coupled system of differential equations for En
and Ψn, from which by means of repeated differentiation all higher derivatives and thus
the series expansion in λ can be determined algebraically.

If the Hamiltonian H(λ) depends linearly on λ, the second derivative of the ground
state energy E0(λ) is negative and it is decreased in second order. The ground state
energy therefore is a convex function of the perturbation parameter.

d2E0
dλ2

= −2
∑

m: Em>E0

|〈Ψm|
(

d
dλ
H
)
Ψ0〉|2

Em − E0
≤ 0 (4.85)

In relativistic theories one wants a Poincaré invariant ground state with vanishing en-
ergy for every value of the coupling constant. The equation H(λ)Ψ0 = 0 should hold
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identically in the coupling λ. Then H cannot simply depend linearly on λ, otherwise the
ground state energy would be a convex function of λ.

If we consider the spin operator Sθ,ϕ for θ = π
2

as a function of ϕ and vary ϕ on a
full circle, then the operator is mapped to itself

Sπ
2 ,0

= Sπ
2 ,2π

. (4.86)

The corresponding eigenstate with the spin pointing upwards, whose phase and normal-
ization are fixed by (4.77) and (4.76), changes into itself only up to a phase, or more
generally in the case of an operator with degenerate states up to a unitary transforma-
tion,

Ψπ
2 ,0

= eiπ Ψπ
2 ,2π

. (4.87)
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5.1 Wave function

Many measurement devices, in particular the measurement of position or momentum,
have a continuum of possible results, which may be measured together with discrete
values, called spin in the following. In the basis of eigenstates of the commuting operators
that correspond to the measurement, Ψ is given by the probability amplitude ψi(x) for
continuous real measured values x and for the i-th discrete measured values ai , i ∈ I,
counted by an index set I. The state Ψ is given by a map from the set of jointly
measurable real values D ⊂ (I ×Rn) into the complex numbers C.

Ψ : (i, x) → ψi(x) (5.1)

If x belongs to the position measurement, the functions ψi(x) are called position wave
functions.

The square modulus |ψi(x)|
2 is a probability density, i.e. the probability to measure

the position within a domain ∆ and to measure the i-th spin result ai is

w(i, ∆, Ψ) =

∫

∆

dnx |ψi(x)|
2 . (5.2)

For a small domain ∆ which is so small that the probability density |ψi(x)|
2 is nearly

constant there, the integral can be approximated. Denoting the size of the domain with
dnx, we obtain

w(i, ∆, Ψ) ≈ |ψi(x)|
2 dnx . (5.3)

The probability to measure the particle around x within a small domain and that the
spin has the i-th value ai is the square modulus of the wave function |ψi(x)|

2 multiplied
with the size dnx of the domain.

Since probabilities are dimensionless, wave functions carry dimension

dim(ψi(x)) =
(
dim(dnx)

)−1/2
. (5.4)

If the domain ∆ comprises the set of all possible continuous measurement values and
if one sums over all possible spin values, the sum rule for probabilities implies that Ψ is
normalized.

∑

i

∫

dnx |ψi(x)|
2 = 1 (5.5)
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Here one can read off the scalar product.

〈Φ|Ψ〉 =
∑

i

∫

dnxφ∗
i (x)ψi(x) (5.6)

Strictly speaking, one integrates only over all possible measurement values (i, x) ∈ D ⊂I×Rn. We can easily take into consideration this restriction by confining ourselves to
the Hilbert space of square integrable functions that vanish outside of D.

Applied to wave functions the operators Xl , l ∈ {1, 2, . . . , n} corresponding to the con-
tinuous measurement values give the probability amplitude multiplied with the measured
value

Xl : Ψ→ XlΨ XlΨ : (i, x) → xlψi(x) . (5.7)

Functions f(X) of the operators Xl, for example the potential V(X) or a plane wave eik·X,
act by multiplication with f(x)

f(X) : Ψ→ f(X)Ψ f(X)Ψ : (i, x) → f(x)ψi(x) . (5.8)

The operators Xl are defined only on states Ψ whose corresponding wave function
ψi(x) remains square integrable after multiplication with xl. The operators eik·X are
defined for all k ∈ Rn in the entire Hilbert space.

5.2 Transformations of position

The notion of a position wave function easily transfers to manifolds. Equation (5.3)
gives the probability of finding a particle with i-th spin quantum number ai in the range
of points that belong to the coordinate interval ∆. The equation holds in all coordinate
systems if under general coordinate transformations x′(x) the wave function transforms
as a density of weight 1/2

ψ′
i(x

′) =
∣∣det

∂x

∂x′

∣∣ 12ψi(x(x′)) . (5.9)

This defines unitary transformations U(T) of states corresponding to invertible maps
of the manifold onto itself.

T : x→ x′ = T(x) (5.10)

If dT denotes the Jacobi matrix of partial derivatives

(dT)kl =
∂x′k

∂xl
(5.11)

the unitary transformation is

U(T)Ψ = | det dT |−
1
2Ψ ◦ T−1 (5.12)
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The operators U(T) are linear and unitary. Linearity in Ψ is obvious. Unitarity means
invariance of scalar products. This invariance follows from the definition of U(T) and
the integral substitution theorem

〈UΦ|UΨ〉=
∑

i

∫

dnx′ (UΦ)∗i(x
′) (UΨ)i(x

′)

=
∑

i

∫

dnx′ | det
∂x

∂x′
|φ∗
i (x(x

′))ψi(x(x
′)) =

∑

i

∫

dnxφ∗
i (x)ψi(x) = 〈Φ|Ψ〉 . (5.13)

Invertible maps T of the manifold onto itself form a group with successive application
of transformations as the group multiplication and the identity map as the unit element.
The unitary transformations (5.12) are a representation of this group in the Hilbert space,
i.e. they are linear transformations of the Hilbert space and satisfy the multiplication
law

U(T2)U(T1) = U(T2 ◦ T1) , (5.14)

which connects successive transformations.
If we use the chain rule

(dT2 · dT1)kl =
∂x′′k

∂x′m
∂x′m

∂xl
=
∂x′′k

∂xl
= (d(T2 ◦ T1))kl (5.15)

the representation property follows from

U(T2)U(T1)Ψ = | det dT2|
− 1
2 (U(T1)Ψ) ◦ T−1

2

= | det dT2|
− 1
2 | det dT1|

− 1
2Ψ ◦ T−1

1 ◦ T−1
2

= | det dT2 · dT1|−
1
2Ψ ◦ (T2 ◦ T1)−1

= | det d(T2 ◦ T1)|−
1
2Ψ ◦ (T2 ◦ T1)−1 = U(T2 ◦ T1)Ψ . (5.16)

We consider a one-parameter continuous group Tα of transformations, for example
rotations or translations, which are parameterized such that Tα+β = TαTβ. Then α = 0

corresponds to the identity mapping T0 = id and one has (Tα)−1 = T−α. If α varies,
then Tαx = x′(α, x) as a function of α for each fixed x traces out a curve, the orbit, with
tangent vectors

d(Tαx)
m

dα
= ξm(Tα(x)) . (5.17)

The tangent vectors to these curves define a vector field, which due to Tα+ǫ(x)−Tα(x) =

Tα ◦ (Tǫ(x) − T0(x)) = (Tǫ − T0) ◦ Tα(x) depends on α and x only via Tα(x). The vector
field is obtained by differentiation at α = 0.

ξm(x) =
d(Tαx)

m

dα |α=0

(5.18)

The vector field ξm(x) is called an infinitesimal transformation. The solution x(α) to
the corresponding system of differential equations

dxm

dα
= ξm(x(α)) (5.19)
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defines Tα as a map of the initial values x(0) to x(α).

Tα(x(0)) = x(α) (5.20)

If we differentiate the transformation law (5.12) for a one-parameter continuous group

Tα at α = 0, or if we expand x′m = xm + αξm and U(Tα) = e− i
 hαN with respect to α,

we obtain the infinitesimal form

−
i
 h

(NΨ)i(x) = −
1

2
(∂mξ

m)ψi(x) − ξm∂mψi(x) . (5.21)

HereN = i hU−1∂αU denotes the Hermitean operator which generates the unitary trans-
formation U(Tα)

U(Tα) = e− i
 hαN . (5.22)

It is Hermitean, as follows from the unitarity condition U† = U−1. The derivative of
| det dTα|−

1
2 contributes the term −1

2
(∂xmξ

m) in (5.21), because the determinant det dTα
has the expansion (D.5)

det
∂x′m

∂xn
= 1+ α∂mξ

m +O(α2) . (5.23)

On manifolds the components Xk of the position operator loose their significance since
coordinates x serve only as labels of the positions, their value is irrelevant. On the circle,
for instance, there exists no Hermitean position operator: spinless states on a circle with
circumference l are rays in the Hilbert space of the l-periodic position wave functions
ψ(x) = ψ(x + l), which are square integrable in the interval 0 ≤ x ≤ l. But xψ(x) is
not periodic. X is not an operator in the Hilbert space of the wave functions on a circle.

The fact that there is no operator X on the circle is the solution to the puzzle of why
for a normalized momentum eigenstate on the circle ψn(x) = 1√

l
ei 2πxl n with momentum

p = 2π h
l
n the expectation value of [X, P]

?
= i h gives, depending on the calculation, i h

on the one hand and 0 on the other.

i h〈Ψ|Ψ〉 ?
= 〈Ψ|[X, P]Ψ〉 = 〈Ψ|(XP − PX)Ψ〉 = 〈Ψ|(Xp− pX)Ψ〉 = 0

If one examines the same calculational steps on the real axis instead of the circle, then
the Hermitean operators X and P do exist, but there is no normalized eigenstate of P or
X.

The position measurement on the circle measures an angle and corresponds to a unit-
ary operator

U : Ψ→ UΨ , UΨ : x→ ei 2πl xψ(x) . (5.24)

From its eigenvalues eiλ one can read off the position x = λl
2π

up to multiples of l.
To a periodic potential V(x + l) = V(x) there corresponds the operator VΨ(x) =

V(x)ψ(x). The potential can be written as a Fourier series V(x) =
∑
n cnein 2πl x and the

operator V therefore as a series in U

V =
∑

n

cnU
n . (5.25)
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5.3 Translation and momentum

The requirement that translations can be defined and that no translation, apart from
T0 = id, keeps a point fixed Ta : x → Tax = x + a determines the possible values of
position measurements: D = I × Rn, where n is the dimension of the space.

According to (5.12) translations map states Ψ unitarily to shifted states U(Ta)Ψ in
a natural way. One has det(dTa) = 1 and the transformed wave functions have at the
point Tax = x+ a the same value as ψi at the inverse image x.

(U(Ta)Ψ)i(x) = ψi(x− a) (5.26)

We obtain the infinitesimal form (5.21) of this transformation if we differentiate the
one-parameter transformations Tα·a at α = 0. The generating vector field ξk = ak is
x-independent and thus divergence-free ∂kξ

k = 0. Hence, the right-hand side of (5.21)
is simply −ak∂kψi(x). Therefore the operator N, which generates the unitary trans-
formation U(Tα), is linear in ak: N = Pka

k. Here the generating operators Pk, which
belong to translations in the coordinate direction xk, are by definition the momenta Pk
belonging to the coordinates. A comparison of coefficients at the parameters ak in (5.21)
implies that the momentum operator differentiates the position wave function.

(PkΨ)i(x) = −i h∂kψi(x) (5.27)

The operators Pk generate the unitary transformation U(Ta) (5.26), which corresponds
to finite translations.

U(Ta) = e− i
 hP·a (5.28)

The momentum operators are defined on vectors in the Hilbert space which corres-
pond to differentiable wave functions with a square integrable derivative. The operators
U(Ta) = e− i

 hP·a are defined for all a ∈ Rn in the entire Hilbert space, if D admits
translations.

On vectors which allow multiple applications of position and momentum operators,
the components of the position operator as well as the components of the momentum
operator commute due to xkxl = xlxk and ∂k∂l = ∂l∂k. Because of

((XkPl − PlX
k)Ψ)i(x) = −i hxk∂lψi(x) + i h∂l(x

kψi(x)) = (i hδklΨ)i(x)

position and momentum operator satisfy the Heisenberg commutation relations

[Xk, Xl] = 0 , [Pk, Pl] = 0 , [Xk, Pl] = i hδkl . (5.29)

Thus the position uncertainty ∆Xk and the momentum uncertainty ∆Pk in the same
direction cannot be made small simultaneously by preparation of the state, because the
Heisenberg uncertainty relation

∆Xk∆Pl ≥
 h

2
δkl (5.30)
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follows from the general uncertainty relation (4.19) and the Heisenberg commutation
relation. It is certainly possible to focus the position in a plane by means of an aperture
and to prepare a definite momentum perpendicular to this plane in the third direction.
In this way one prepares particle beams. If one narrows the aperture, the unfocused
momentum in these two directions is noticeable as diffraction at the aperture.

5.4 Rotation and angular momentum

Rotations are linear transformations of the position D : x→ Dx, which leave invariant
all lengths squared.

∑

k

(Dklx
l)2 = DklD

k
mx

lxm = xkxk ∀x⇔ DklD
k
m = δlm (5.31)

The corresponding matrices D thus satisfy the orthogonality relation

DT = D−1 . (5.32)

They form the group O(n) of the orthogonal transformations of Rn. Here and in the
following we allow ourselves to employ the convenient and, among physicists, customary
convention and do not distinguish between the transformations and the corresponding
matrices.

Equation (5.32) implies that detD = (detD)−1, so detD = ±1. Orthogonal trans-
formations whose determinant has the special value 1 form the subgroup SO(n) of the
special orthogonal transformations.

Every one-parameter subgroup of rotations is a set of matrices Dα = eαω with gener-
ating matrix ω, which because of D−1

α = e−αω = DT
α = eαω

T

(5.32) is antisymmetric.

(ω)kl = −(ω)lk (5.33)

In n=3 space dimensions the matrix ω is therefore a linear combination of three anti-
symmetric basis matrices τm, whose matrix elements we write using the ǫ-tensor

ωkl = ϕmǫkml , (τm)kl = ǫkml . (5.34)

If ~ϕ = ~e is a unity vector, then α is the rotation angle, for Dα = eαω has the following
properties: ω acts on every vector ~v as a vector product ω~v = ~e×~v. Thus ω~e vanishes
and ~e marks the rotation axis Dα~e = ~e. A unit vector ~n1 orthogonal to ~e is mapped by
ω to the unit vector ~n2 which is orthogonal to both.

ω~n1 = ~n2 , ω~n2 = −~n1 . (5.35)

If one applies the series eαω to ~n1 and ~n2 and separates the even and odd powers of ω,
one obtains the series of cosine and sine

eαω~n1 = ~n1 cosα+ ~n2 sinα , eαω~n2 = −~n1 sinα+ ~n2 cosα . (5.36)
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In particular a rotation about 2π is the identity D2π = 1.

The vector field ξ(x) = ∂αDαx|α=0
corresponding to the transformation x′ = Dαx is

ξk = ωklx
l = (~ϕ × ~x)k. The vector field has vanishing divergence ∂kξ

k = δlkω
k
l = 0

and the infinitesimal transformation (5.21) of the wave function is

−
i
 h

(NΨ)i(x) = −ωklx
l∂kψ(x) = −ϕmǫkmlx

l∂kψ(x) . (5.37)

The right-hand side is linear in ϕm, thus the operator N is linear in ϕm and of the form
N = Lmϕ

m. By definition the operators Lm that occur here are the components of the
orbital angular momentum: they generate rotations around the coordinate axes, ~L · ~e
generates rotations around ~e. A comparison of coefficients of ϕm gives

(LmΨ)i(x) = −i hǫmklx
k∂xlψi(x) , Lm = ǫmklX

kPl . (5.38)

With the Heisenberg algebra (5.29) it follows that the components of the orbital angular
momentum satisfy the angular momentum algebra (4.45).

[Li, Lj] = ǫiklǫjmn[XkPl, X
mPn]

= ǫiklǫjmn([Xk, XmPn]Pl + Xk[Pl, X
mPn])

= i hǫiklǫjmn(XmδknPl − Xkδml Pn)

= i h(ǫiklǫjmk − ǫimkǫjkl)X
mPl

= i h(δimδlj − δijδlm + δijδml − δilδmj)X
mPl

= i hǫijkǫkmnX
mPn = i hǫijkLk .

(5.39)

The finite unitary transformation belonging to a rotation around the axis ~e with an
angle α is

(U(~e, α)Ψ)i(x) = (exp(−
iα
 h

~L · ~e)Ψ)i(x) = ψi(D~e,α
−1(x)) . (5.40)

Rotations around α = 2π map positions to themselves D~e,2π
−1x = x. For orbital

angular momenta (5.38) one therefore has the restriction U(~e, 2π) = exp(−2πi
 h

~L · ~e) = 1.
Applied to L3-eigenstates this means for rotations around the z-axis exp(−2πim) = 1.
Thus the m-quantum numbers of the orbital angular momentum and hence also the
l-quantum numbers can take integer values only.

5.5 Continuum basis

If we introduce suitable generalized basis elements Λi,x, we can write states Ψ with the
position wave functions as expansion coefficients.

Ψ =
∑

i

∫

dnxΛi,xψi(x) (5.41)
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The scalar product (5.61) with a similarly expanded vector Φ fixes the scalar products
of the basis elements.

∑

i,j

∫

dnx dnx′φ∗
i (x) 〈Λi,x|Λj,x′〉ψj(x′) =

∑

i

∫

dnxφ∗
i (x)ψi(x) ∀Φ,Ψ

⇔ 〈Λi,x|Λj,x′〉 = δn(x− x′)δij (5.42)

We see that Λi,x has no finite length and is not a vector in the Hilbert space, but that
Λi,x is a distribution. Only the integral (5.41) with the square integrable wave functions
ψi(x) yields a vector in the Hilbert space. A generalized basis with scalar products given
by δ-functions as in (5.42) is called continuum normalized.

Because of (5.42) the position wave function ψi(x) is given by the scalar products of
Ψ with the position basis

ψi(x) = 〈Λi,x|Ψ〉 . (5.43)

In particular the position wave functions of the basis elements Λj,x′ are delta-functions
δn(x− x′)δij. The basis elements are generalized eigenvectors of the position operator

XkΛj,x′ = x′kΛj,x′ . (5.44)

If we insert into (5.41), we obtain in bracket notation

|Ψ〉 =
∑

i

∫

dnx |Λi,x〉〈Λi,x|Ψ〉 . (5.45)

Analogously to (2.20) the identity can be resolved with the continuum basis Λi,x.1 =
∑

i

∫

dnx |Λi,x〉〈Λi,x| (5.46)

The generalized eigenstates Γj,p of the momentum operator

PkΓj,p = pkΓj,p (5.47)

with the eigenvalues pk, p ∈ Rn form a continuum basis similar to the position states
Λi,k. Their position wave functions (Γj,p)i(x) = 〈Λi,x|Γj,p〉 are solutions to the eigenvalue
equation

−i h∂xk(Γj,p)i(x) = pk(Γj,p)i(x) (5.48)

and, after a suitable choice of normalization factors cij, are given by

〈Λi,x|Γj,p〉 = (Γj,p)i(x) =
1√

(2π h)n
δije

i
 hp·x (5.49)

As one sees with ∫
dnx

(2π)n
e−ix·(y−y′) = δn(y− y′) (5.50)
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the basis Γj,p is continuum normalized

〈Γi,p|Γj,p′〉 = δn(p− p′)δij (5.51)

and yields a resolution of the identity.1 =
∑

i

∫

dnp |Γi,p〉〈Γi,p| (5.52)

Analogously to the position wave function one defines the momentum wave functions1

of a state Ψ as the scalar product with the continuum basis of momentum eigenstates

ψ̃j(p) = 〈Γj,p|Ψ〉 =
∑

i

∫

dnx 〈Γp,j|Λi,x〉〈Λi,x|Ψ〉 . (5.53)

So the momentum wave function is the Fourier transform of the position wave function
and, up to a sign, vice versa

ψ̃i(p) =

∫
dnx√
(2π h)n

e− i
 hp·xψi(x) , ψi(x) =

∫
dnp√
(2π h)n

e
i
 hp·x ψ̃i(p) . (5.54)

We may represent a state Ψ by the momentum wave function ψ̃i(p) or the position wave
function ψi(x). One can construct one from the other.

Due to 〈Γj,p|PkΨ〉 = pk〈Γj,p|Ψ〉 the momentum wave function that belongs to PkΨ is

pkψ̃j(p). The momentum wave function that belongs to XkΨ is

〈Γj,p|XkΨ〉 =
∑

i

∫

dnx 〈Γj,p|Λix〉〈Λi,x|XkΨ〉

=

∫
dnx√
(2π h)n

e− i
 hp·xxkψj(x) = i h∂pkψ̃j(p) ,

(PkΨ)∼
i(p) = pkψ̃i(p) , (XkΨ)∼

i(p) = i h∂pkψ̃i(p) . (5.55)

The square modulus of the momentum wave function is the probability density for
momentum measurements. The probability to find the momentum in the interval ∆p
and to obtain the i-th discrete result ai is

w(i, ∆p, Ψ) =

∫

∆p

dnp |ψ̃i(p)|
2 . (5.56)

The orbital angular momentum ~L = ~X×~P rotates the arguments of the momentum wave
function ψ̃i(p) in the same way as the position arguments of the position wave function
(5.40).

(LmΨ)∼
i(p) = −i hǫmkl p

k ∂

∂pl
ψ̃i(p) (5.57)

(U(~e, α)Ψ)∼
i(p) = (exp(−

iα
 h

~L · ~e)Ψ)∼
i(p) = ψ̃i(D~e,α

−1(p)) . (5.58)

1To distinguish the position wave functions from the momentum wave functions we mark the latter

with “̃ ”.
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5.6 Multiparticle states

The consideration of measurement results in a higher dimensional contiuum, such as the
six position coordinates of a two particle system, and the consideration of additional
discrete measurement values, like the spins of the two particles for instance, is obvious.
Such a two particle state Ψ assigns a probability amplitude for results in a six dimensional
continuum with two discrete quantum numbers

Ψ : (i,~x, j,~y) → ψij(~x,~y) (5.59)

and is given by wave functions ψij(~x,~y). Here

w(i,~x, d3x, j,~y, d3y, Ψ) ≈ |ψij(~x,~y)|
2d3x d3y (5.60)

is the probability of measuring the first particle with spin i at ~x in the range d3x and
the second particle with spin j at ~y in the range d3y. From the probability formula one
reads off the scalar product

〈Φ|Ψ〉 =
∑

ij

∫

d3x d3yφ∗
ij(~x,~y)ψij(~x,~y) . (5.61)

One has identical particles, if for all two-particle states the probability of measuring the
first particle at ~x with spin i and the second particle at ~y with spin j coincides with the
one of measuring the first particle at ~y with spin j and the second particle at ~x with spin i,
i.e. if for all states of the two identical particles the wave function ψji(~y,~x) coincides with
ψij(~x,~y) up to a phase. If the phase is 1 the particles are called bosons, if it is −1 they
are called fermions. More precisely the wave functions for n-particle states of identical
bosons are invariant under every permutation π : (1, . . . , n) → (π(1), . . . , π(n)).

(ψBoson)i1,...,in (x1, . . . , xn) = (ψBoson)iπ(1),...,iπ(n)
(xπ(1), . . . , xπ(n)) (5.62)

Upon odd permutations sign(π) = −1, n-particle wave functions of identical fermions
are mapped to their negative.

(ψFermion)i1,...,in (x1, . . . , xn) = sign(π) (ψFermion)iπ(1),...,iπ(n)
(xπ(1), . . . , xπ(n)) (5.63)

As a consequence fermions are subject to the Pauli exclusion principle, which prohibits
that multi-fermion states contain a product of the same one-particle states or, collo-
quially, that two identical fermions occupy the same state. But it is possible for the
ground state wave function of the two electrons in the helium atom, for instance, to be
a product of the same position wave function χ, since it is antisymmetric in the spin
quantum number

ψij(~x,~y) = ǫijχ(~x)χ(~y), ǫij = −ǫji, ǫ↑↓ = 1, i, j ∈ {↑, ↓} . (5.64)
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Slater determinants are totally antisymmetric n-particle states. They arise from a
product (7.1) of orthonormal one-particle states χi which is antisymmetrized.

Ψn =
1√
n!

∑

π

sign(π)χπ(1) ⊗ χπ(2) ⊗ · · · ⊗ χπ(n)

=
1√
n!
ǫi1i2...inχi1 ⊗ χi2 ⊗ · · · ⊗ χin (5.65)

The Pauli exclusion principle and the fact that electrons carry spin 1/2 explain the basic
structure of the periodic system of the elements, if one has understood the hydrogen
atom, and are crucial for chemistry. Similarly condensed matter physics is ruled by
the Pauli exclusion principle, for instance with the implication that in the ground state
electrons occupy all one-particle states up to the Fermi energy.

Fermions carry half-integer spin, bosons have integer spin. This is first of all an
experimental result. As the spin-statistics theorem these properties follow from the
basic assumptions of relativistic quantum mechanics.

For states of identical particles there exist no operators which measure individual
quantum numbers, say the momentum p1 of the first particle, because the eigenstates Λ
of the measurement operators are also subject to the Bose- or Fermi-symmetry and the
operators preserve the Bose- or Fermi-symmetry of the states. The individual quantum
numbers p1 and p2 can be reconstructed only up to particle permutation from the
eigenvalues of the symmetric operators P1 + P2 and P1

2 + P2
2.
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6.1 Schrödinger equation

In figure (1.1) we can vary the distance between the source and the measuring device
and thereby vary the time of flight. We want to discuss how the probability to obtain a
result ai depends on this time and consider for simplicity pure states. The input of the
measuring device is a state Ψ(t) which depends on the time of flight t.

The time evolution maps rays Ψ(0) in Hilbert space to rays Ψ(t). If we represent rays
by normalized vectors then one has to have

〈Ψ(t)|Ψ(t)〉 = 1 (6.1)

for all times and a changed phase of Ψ(0) must change Ψ(t) by a phase at most. With
these restrictions the time evolution maps the unit sphere in Hilbert space to itself.

If we differentiate with respect to time we obtain

〈∂tΨ(t)|Ψ(t)〉+ 〈Ψ(t)|∂tΨ(t)〉 = 0 . (6.2)

The infinitesimal time evolution should be given by a differential equation of first
order, otherwise Ψ(0) would not characterize the system completely at time t = 0 and
additional data such as ∂tΨ could be prepared and would become measurable in the
course of time.

The assumption that the time evolution is linear in Ψ is the true content of the
superposition principle of quantum mechanics. It postulates the Schrödinger equation.

i h∂tΨ = HΨ H = H† (6.3)

For if ∂tΨ = OΨ holds for some linear operator O then this operator is antihermitean by
(6.2). The Schödinger equation expresses this fact after factorization of i and Planck’s
constant  h. The Hamilton operator generates the time evolution. It has the dimension
of an energy.

A mixture ρ =
∑
j pj|Ψj〉〈Ψj| changes with time because the states Ψj change. The

probabilities pj are the probabilities with which the states Ψj(0) are produced in the
source and with which Ψj(t) occurs at time t. These probabilities remain unchanged by
time evolution which is generated by the Hamiltonian.

ρ(t) =
∑

j

pj|Ψj(t)〉〈Ψj(t)| (6.4)
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If one differentiates with respect to time and observes that bra vectors are antilinear
(2.12) and therefore satisfy

−i h∂t〈Ψ(t)| = 〈i h∂tΨ(t)| = 〈HΨ(t)| (6.5)

then one obtains from the Schrödinger equation (6.3) the von-Neumann equation for the
time evolution of the density matrix

i h∂tρ = Hρ− ρH = [H, ρ] . (6.6)

It is compatible with the basic structures of quantum mechanics that Ψ(t) depends
non-linearly on Ψ(0) and is given by a map Ψ(t) = Φt(Ψ(0)) of H − {0} to itself, which
maps rays in Hilbert space to rays

Φt(λΨ) = ft(λ, Ψ)Φt(Ψ) , ∀Ψ 6= 0 , ∀λ 6= 0 , (6.7)

where the complex factor ft(λ, Ψ) ∈ C does not vanish. The corresponding differential
equations for the time evolution are called “non-linear Schrödinger equation”. Non-
linear time evolution is studied in ongoing research, its physical relevance is unclear. We
follow the widespread terminology and restrict the term quantum mechanical system to
physical systems with a linear time evolution.

It is one of the peculiarities of quantum mechanics that time is not measured as a
property of the physical state in figure (1.1) but that time and the measuring device is
part of the outer world. From measuring the state one cannot tell the time though one
can compare the evolution of the system and a clock and tell from the clock how much
time has passed.

In quantum mechanics there is no operator which corresponds to the measurement of
time. This has the welcome consequence that there are no eigenstates of time. Such
states would be at one and no other time, for these states time would not pass.

From the general uncertainty relation (4.19) and the Schrödinger equation one can
deduce a lower bound of the product of the uncertainty of time and the uncertainty of
energy. One defines the uncertainty of time ∆t to be given by the time which passes in
a state until the expectation value 〈A〉 has changed by the uncertainty of A.

∆t =
∆A∣∣ d
dt
〈A〉
∣∣ (6.8)

Then (4.19) and (6.3) imply

∆A∆H ≥ 1

2
|〈[A,H]〉| =

 h

2
|
d

dt
〈A〉| , (6.9)

and from the definition of ∆t one concludes

∆t∆E ≥
 h

2
(6.10)

irrespective of which device A is used for the measurement.
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Even in relativistic quantum mechanics the variable t of time dependent wave func-
tions is basically different from the position variables x. Multiparticle states have wave
functions with several position variables but with one and only one time. In the scalar
product t is no integration variable, w(∆,Ψ(t)) is not the probability to find the result
t in an interval dt. The time t rather parameterizes the states Ψ(t) between source and
measuring device. Where exactly the source ends and the device starts is irrelevant. The
setup in figure (1.1) is not changed essentially if we count part of the evolution of the
state to the preparation in the source or to the measurement in the device. The time t
between preparation and measurement is positive.

If the Hamilton operator H does not change with time and if the initial state Ψ(t = 0)

is an eigenstate of H then the probabilities of all results do not depend on time, because

i h∂tΨ = HΨ = EΨ (6.11)

implies Ψ(t) = e− i
 hEtΨ(0) and the ray in Hilbert space corresponding to Ψ(t) does not

change with time. Energy eigenstates are therefore termed stationary states.
If the Hamilton operator is time independent and if it commutes with a hermitean

operator A
[H,A] = 0 , (6.12)

which corresponds to a time independent measuring device then the probability
w(i, A, Ψ(t)) (1.1) to obtain the i-th result ai does not change with time. This holds
because the corresponding normalized eigenstate Λi can be chosen as eigenstate of H
(4.24) HΛi = EiΛi and the probability amplitude 〈Λi|Ψ(t)〉 changes by a phase only

i h∂t〈Λi|Ψ(t)〉 = 〈Λi|HΨ(t)〉 = 〈HΛi|Ψ(t)〉 = Ei〈Λi|Ψ(t)〉
〈Λi|Ψ(t)〉 = e− i

 hEit〈Λi|Ψ(0)〉 . (6.13)

In particular if Ψ(0) is eigenstate of A corresponding to the result a then it stays ei-
genstate and the quantum number a is a conserved quantity. This is the reason for
the outstanding role of energy, momentum and angular momentum. Outside of interac-
tion regions, in particular before and after scattering, energy, momentum and angular
momentum are conserved.

If the Hamilton operator is time independent and if one knows its eigenvalues
{E1, E2, . . . , Ei, . . . } together with their corresponding, orthonormalized eigenstates
Λ1, Λ2, . . .Λi, . . . , then the problem to determine the time evolution of an arbitrary
state Ψ is simplified to the task to determine the components of the initial state in the
eigenbasis of the Hamilton operator and to compose the state at later time with phase
shifted components

Ψ(t) =
∑

i

e− i
 hEitΛiψi , ψi = 〈Λi|Ψ(t = 0)〉 . (6.14)

Consequently there corresponds to each given Hamilton operator the standard task to
determine its spectrum and its eigenstates.
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The eigenvalue equation of the Hamilton operator

(H− Ei)Λi = 0 (6.15)

is the time independent Schrödinger equation. Contrary to widespread opinion this
equation does not allow to calculate the state of the quantum mechanical system. Un-
stable particles or wave packets of free particles or more generally all non-stationary
states are no energy eigenstates. However, parts of a state with different energy sep-
arate automatically, if one just waits sufficiently long, if these parts are separated by a
finite energy difference and if their velocity is different. In this way energy eigenstates
are often prepared automatically.

If the quantum mechanical state is a particle moving in one dimension without spin,
then the most general state (5.41) is a linear combination of position eigenstates Λx with
expansion coefficients given by the wave function ψ(x)

Ψ =

∫

dxΛxψ(x) . (6.16)

The Hamilton operator which corresponds to motion in a potential consists of kinetic en-
ergy P2

2m
and potential energy V(X). Applied to position wave functions the momentum

operator acts as derivative (PΨ)(x) = −i hdψ(x)

dx
(5.27) and the potential multiplies the

position wave function (VΨ)(x) = V(x)ψ(x) (5.8). So the stationary Schrödinger equa-
tion (H− E)Ψ = 0 reads

(
−

 h2

2m

d2

dx2
+ V(x) − E

)
ψ(x) = 0 . (6.17)

The solutions have to be normalizable, if they are to correspond to vectors in the Hilbert
space of square integrable wave functions. In addition, all solutions are of interest, which
do not grow with x→ ±∞, because from these solutions one can construct wave packets
Ψ which approximate the energy eigenvalue equation ‖(H − E)Ψ‖2 < ǫ to each given
precision ǫ > 0. For example, if the potential vanishes then the generalized momentum

eigenstates ψp(x) = 1√
2π h

e
i
 hpx are generalized energy eigenstates with E = p2

2m
. They

belong to the continuous spectrum of the kinetic energy which consists of the real, non-
negative numbers E ≥ 0.

To keep the mathematical problems simple one prefers to investigate the time inde-
pendent Schrödinger equation (6.17) for simplified potentials like the potential well or
the potential barrier.

6.2 Schrödinger picture, Heisenberg picture

In quantum mechanics one cannot decide whether the probability distributions of results
change because the state Ψ changes in the course of time or because the measuring device
changes and the state remains unchanged.
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In the Schrödinger picture, which we use in our discussion, one attributes the time
evolution to the states and uses time independent operators for the measuring devices.

If one is given a set of unitary operators which depend in a differentiable way on the
time t

U†(t) = U−1(t) (6.18)

and if one uses Ψ′(t) as state and Λ′
i(t) as eigenstate of the operator A′(t)

Ψ′(t) = U(t)Ψ(t) , Λ′
i(t) = U(t)Λi , A′(t) = U(t)AU−1(t) , (6.19)

rather than Ψ(t) and Λi and A, then one obtains for all times and all measuring devices
and all physical states unchanged probability amplitudes and unchanged eigenvalues of
the operators corresponding to the measuring devices

〈Λ′
i(t)|Ψ

′(t)〉 = 〈U(t)Λi|U(t)Ψ(t)〉 = 〈Λi|U†(t)U(t)Ψ(t)〉 = 〈Λi|Ψ(t)〉 .

AΛi = aiΛi ⇔ U(t)AU−1(t) U(t)Λi = aiU(t)Λi .

Differentiating ∂t(U(t)U−1(t)) = 0 one obtains from the product rule

∂tU
−1 = −U−1(∂tU)U−1 . (6.20)

Therefore the product U−1(t)∂tU(t) is antihermitean.

(U†∂tU)† = (∂tU
−1)U = −U−1∂tU. (6.21)

If we write
U−1(t)i h∂tU(t) = −H0(t) H0 = H

†
0 (6.22)

then the Schrödinger equation for Ψ(t) implies the time evolution

i h∂tΨ
′ = H′(t)Ψ′ where H′ = U(H−H0)U

−1 . (6.23)

Operators which correspond to measuring devices satisfy

i h∂tA
′(t) = −[H̃, A′(t)] where H̃ = UH0U

−1 . (6.24)

In particular, if one chooses H0 = H and determines U(t) as solution of i h∂tU = −HU

with U(0) = 1, then Ψ′ is time independent and H̃ = H. The primed quantities are the
states and measuring operators in the Heisenberg picture. They satisfy

i h∂tΨH = 0 , i h∂tρH = 0 , i h∂tAH = −[H,AH] . (6.25)

At t = 0 the states and measuring operators in the Heisenberg picture and in the
Schrödinger picture coincide.

If states traverse an interaction region then for early and late time the interaction
Hint vanishes. In the interaction picture one chooses H0 in such a manner that Hint =

U(H − H0)U
−1. Then the states become time independent for early and late times
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and the limit limt→±∞ΨW(t) exists. This picture is advantageous for the discussion of
scattering.

Even if all pictures are mathematically equivalent they are nevertheless differently
intuitive. In the Schrödinger picture one can intuitively understand that a free wave
packet of a massive particle spreads because the wave packet consists of parts with
different momentum and, because the mass is not zero, with different velocity. The
spread of the wave packet is completely analogous to a race where the competitors start
at the same line and finish one after the other. In the equivalent Heisenberg picture the
state does not change but the measuring instrument as if not the competitors but the
referees at the finishing line separated from each other.

6.3 Groundstate energy

Strictly speaking the eigenvalues of the Hamilton operator which generates the time
evolution, the energy, is not measurable. Only differences of energies can be determined.
In particular the energy of the ground state cannot be inferred from the time evolution.

For one cannot distinguish the states Ψ(t) from Ψ′(t) = eiαt/ h Ψ(t) for arbitrary, real
α. Ψ′ and Ψ yield at all times and for all measuring instruments the same probability
distribution of results. If Ψ satisfies the Schrödinger equation (6.3) with some Hamilton
operator H then Ψ′(t) satisfies the Schrödinger equation with H′ = H − α. Therefore
one cannot distinguish between H and H − α. Discussions about the magnitude of the
ground state energy are therefore similar to medieval considerations, how many angels
fit on the tip of a needle. At least we know that we cannot determine the ground state
energy from any measurement of the time evolution.

In the Heisenberg picture it is even simpler to see that the time evolution of the
measuring operators is unchanged, if one adds a number α to the Hamilton operator,
because a number α commutes with each operator.

Not the time evolution but other effects can fix the absolute value of the energy.
Density of energy or more precisely the energy momentum tensor contributes in general
relativity to gravity and curvature of spacetime. From the observations one concludes
that contribution of the energy density of the ground state to the curvature of spacetime
is small and compatible with a vanishing ground state energy. However, there is no
theory which successfully unites quantum mechanics and general relativity.

To a free, non-relativistic particle with momentum ~p one attributes the energy E =

~p 2/(2m) ≥ 0 and has thereby chosen the groundstate energy such that the energy at
rest vanishes.

The hydrogen atom has a continuous non-negative energy of motion of the center
of mass. In bound states the relative motion of proton and electron has a discrete,
negative spectrum with energies En,l,m = −Ry

n2
and eigenstates Λn,l,m. In this formula

Ry = µe4

2 h2
is the Rydberg constant. For each natural number n = 1, 2, . . . and for each

l = 0, 1, . . . , n− 1, which ranges in integer steps between 0 and an upper bound n − 1

for each fixed energy, there are 2l+ 1 states corresponding to m = −l,−l + 1, . . . , l. If
more precisely one takes into account the spin of the electron, then the number of states
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double and if one considers the spin of the proton, they double again. The spin of the
electron is crucial for the periodic system of the elements, the spin of the proton makes
itself felt only in the hyperfine structure of the energies and is often not even mentioned
in text books. Above the discrete spectrum there is the continuous spectrum of positive
energies of the ionized electron proton pair. It is natural to attribute the energy 0 to
the lowest ionized state.

In relativistic theories in flat space the energy of the groundstate is fixed. There the
Hamilton operator H = cP0 is a component of the four vector Pm, m = 0, 1, 2, 3, which
satisfies together with the generators of Lorentz transformations Mmn = −Mnm the
following commutation relations

[Mmn, Pl] = −i(ηmlPn − ηnlPm) m,n, l ∈ {0, 1, 2, 3} . (6.26)

These relations do not allow to add numbers to Pm. In relativistic theories the
groundstate, the vacuum, must have energy 0 if a normalizable groundstate exists at
all. Moreover, a free particle with momentum ~p and mass m must have the energy
E =

√
m2c4 + ~p 2c2.

Traditionally the groundstate of the harmonic oscillator is attributed the energy  hω/2.
In his derivation of the black body energy density, with which quantum mechanics was
founded in 1900, Planck knew this better: he attributed to states with n photons the
energy n hω rather than (n+ 1/2) hω, which moreover would be incompatible with a
relativistic covariant description of photons.

We have already argued that the energy of the groundstate is not measurable, therefore
one should choose it such that calculations become simple and finite. A finite volume
allows for infinitely many frequencies ωi of photons. If one attributes to each frequency
a contribution  hωi/2 to the groundstate energy then already the state without photons
has infinite energy

∑
i
 hωi/2 = ∞.

The misconception that the groundstate energy is well defined starts already in clas-
sical physics. The choice of the Hamilton function

H =
p2

2m
+
1

2
mω2x2 (6.27)

disposes of the energy in such a way that the state with lowest energy, the point (x =

0, p = 0) in phase space has energy 0. This choice simplifies the algebraic expression for
the potential energy V(x). However, one could have chosen V(x) = 1/2mω2x2 −  hω/2

equally well.

6.4 Canonical quantization, normal order

The misconception that the groundstate energy is well defined is continued with canon-
ical quantization. Canonical quantization is the prescription to read in the algebraic
expression for the Hamilton function H(p, x) the symbols p and x as hermitean oper-
ators P and X which satisfy the Heisenberg commutation relations (5.29). From the
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Hamilton function of the one dimensional harmonic oscillator one obtains for example
the Hamilton operator

HOszillator =
P2

2m
+
1

2
mω2X2 . (6.28)

This operator has eigenvalues (n+ 1/2) hω, n = 0, 1, 2, . . . .
Simple as canonical quantization seems to be, it is not even defined: canonical quantiz-

ation is not a map of Hamilton functions to Hamilton operators. The result of canonical
quantization does not only depend on the function in phase space H(p, x) but on its
algebraic form.

We can write the Hamilton function of the harmonic oscillator as square modulus of

complex phase space coordinates using x0 =
√

 h
mω

6= 0.

a =
1√
2
(
x

x0
+

i
 h
x0p) , a† =

1√
2
(
x

x0
−

i
 h
x0p) (6.29)

H =  hωa†a (6.30)

If we quantize the Hamilton function is this algebraic form then a and a† become anni-
hilation and creation operators (4.33) and the Hamilton operator corresponding to (6.30)
has eigenvalues n hω (section 4.5).

If we write the Hamilton function as H =  hω((1− λ)a†a + λaa†) with some λ ∈ R,
then we obtain an arbitrary ground state energy λ hω upon canonical quantization.

In any case the groundstate satisfies the equation aΨ0 = 0, which determines the
position wave function

(
x

x0
+ x0∂x)ψ0(x) = 0 . (6.31)

The groundstate wave function of the harmonic oscillator is a Gauß function

ψ0(x) = (π− 1
4x

− 1
2

0 ) e
−
x2

2x20 . (6.32)

The result of canonical quantization and in particular the groundstate energy depend
on the algebraic form of the classical Hamilton function. Canonical quantization is
therefore no map of a function of phase space to a corresponding operator.

There is, however, a different, very simple rule of quantization, which attributes op-
erators to analytic functions H, the normal order : H : . The normal order is linear

: c1H1 + c2H2 : = c1 :H1 : + c2 :H2 : , : 1 : = 1 , (6.33)

and is declared recursively on monomials in a, a†

: aH : = :Ha : = :H : a , : a†H : = :Ha† : = a† :H : ∀H . (6.34)

The normal order of a monomial is a product of creation and annihilation operators a†

and a, in which the creation operators stand on the left and the annihilation operators
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stand on the right. The definition of normal order is easily extended to several creation
and annihilation operators a†

i and aj, as long as the order among the creation operators
and the order among the creation operators is irrelevant.

[ai, aj] = 0 , [a
†
i, a

†
j ] = 0 , [ai, a

†
j] = δji . (6.35)

The arguments of normal order consist of commuting variables, for if the argument is a
product of factors H1, H2, H3 then one has

:H1H2H3 : = :H2H1H3 := :H3H1H2 : . (6.36)

In particular the argument of normal order cannot satisfy an identity such as XP−PX =

i h (5.29) because the normal order of XP − PX vanishes.
Normal order is linear, but the normal order of a product factors is not the product

of the normal order of the factors.

:H1H2 : 6= :H1 : :H2 : (6.37)

This is welcome. Otherwise all products of normal order operators would commute by
(6.36). Then quantum mechanical systems would behave like classical statistical systems
because with respect to commuting operators all states Ψ are characterised by classical
probability distributions given by the square modulus of the scalar products 〈Λ|Ψ〉.

Normal order (6.27) implies a vanishing groundstate energy. It is nevertheless an ar-
bitrary prescription of quantization which regrettably depends on the chosen phase space
coordinates. Classical systems before quantization can be cast into different, equivalent
forms by canonical transformations. The quantization of the system in the different
forms leads to quantum models which can be inequivalent. My disappointment about
the lack of a unique quantization prescription and the arbitrariness of the quantization
prescription is limited. One does not need a correspondence principle between clas-
sical and quantum systems. Otherwise one could tell the quantum properties from the
classical system and two different quantum systems could not coincide in their classical
regime. Canonical quantization leads the intuition which quantum system one should
investigate. No matter how such a model is constructed, whether such a model is right
is decided by the observations which have to agree with the theoretical conclusions from
the model.

6.5 Reduction of state

Some authors postulate as axiom for quantum mechanical systems the reduction of
state, that as a result of an ideal measurement with a device A the state instantaneously
changes into the eigenstate corresponding to the measured value.

This axiom implies seemingly paradoxical conclusions such as the Einstein-Rosen-
Podolsky paradox. The axiom can be replaced by an unspectacular physical analysis.

If in figure (1.1) we mask all rays which correspond to results a2, a3, . . . and only
consider the ray with the result a1 then we have prepared a new source consisting of the
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original source, the beam and the device. The properties of the state which is prepared
in this fashion depend on the device and should not be fixed by axioms. For example,
a homogeneous magnetic field orthogonal to the outgoing beam would not influence
the splitting of the beam into the partial beams and the distribution of the results ai.
Therefore the homogeneous magnetic field would not change the reading of the device.
However, it would rotate the spin in the outgoing beams. Without changing the results
one can change the measuring device and change the states which are prepared by the
measurement.

One can, of course, restrict the term “ideal measuring device” to such devices which
prepare eigenstates to a repeated measurement with a similar device. But then the
axiom of state reduction turns into a definition of a class of devices which happen to be
ideal. For each real measuring device one has to measure whether it prepares eigenstates
for a repeated measurement with a similar device.

Which state results after a measurement depends on the experimental setup. If all
partial beams behind the device are combined to a new beam and if there is no fixed
relative phase of the different beams and if the device prepares eigenstates to a repeated
measurement then the combined beam behind the device is a mixture

ρA,Ψ =
∑

i

w(i, A, Ψ)|Λi〉〈Λi| . (6.38)

In such a mixture the conditional probability, to measure again the result ai if one had
measured ai at first, is 1. The restriction of the set of possible events to the subset of
events where ai was measured in the first measurement is the reduction of state. This
reduction can be made long after the measurement if only the result of the measurement
has been recorded. The reduction can take place instantaneously after the result of the
first measurement is known. It can also retroact: if the result fo the second measurement
is known and the first is unknown then one can predict the first result and confirm this
prediction later from the records.

Some devices are so simple and controllable that phase relations of the different par-
tial beams which correspond to the results ai can be controlled. The state which one
combines from the partial beams depends sensitively on the process of combination. In
the extreme case, e.g. a double slit, the partial beams combine to a pure state where
the parts interfere with each other. If the possible results ai can really be read off then
the phase relations between the corresponding partial beams become uncontrollable and
the combined beam is a mixture such as (6.38).

Numerous devices do not prepare eigenstates for a repeated measurement. This is true
in particular for measurements which determine the number of photons, which cross a
given area within a given time: photosensitive layers and photomultipliers count and
destroy photons.

The measuring device in figure (1.1) has input and output. For each state it takes
time to cross the device and to split the beam into separate partial beams. This time
depends on the internal details of the device. However, for no device does this time
vanish, as assumed in Zenon’s paradox. The idealization that the duration between the
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begin and the end of a measurement can become infinitely short contradicts the quantum
mechanical uncertainty relation (9.10) ∆t∆E ≥  h/2.

6.6 Time evolution of the two state system

The time evolution of a two state system is simple enough to obtain for each time
independent Hamilton operator an overview over the time dependence of the probabilities
of results of all measuring devices and all states.

For our discussion we use the eigenbasis of the Hamilton operator. In this basis it is
diagonal and has in all conceivable cases the form

H =

(
E1 0

0 E2

)
E1, E2 ∈ R . (6.39)

We choose the eigenstates Λi, i = 1, 2, of H time independent, then the components
ψi(t) = 〈Λi|Ψ(t)〉, i = 1, 2 , of each state satisfy the following, decoupled Schrödinger
equation

i h∂tψi(t) = Eiψi(t) , i = 1, 2 , (6.40)

and have the solution

ψ1(t) = ψ1(0)e
− i

 hE1t , ψ2(t) = ψ2(0)e
− i

 hE2t . (6.41)

If the state Ψ is measured at time t then the first result of any measuring device occurs
with probability

w(t) = |φ∗
1ψ1(t) + φ∗

2ψ2(t)|
2 . (6.42)

In this equation φ1 and φ2 are the components of the first eigenvector of the measuring
device. Elementary calculation shows that w(t) has the form

w(t) = a+ b cos(ωt+ α), a ≥ b ≥ 0, ω, α ∈ R (6.43)

with a = |φ∗
1ψ1(0)|

2 + |φ∗
2ψ2(0)|

2, beiα = 2φ1φ
∗
2ψ1(0)

∗ψ2(0) and

ω =
E1 − E2

 h
. (6.44)

The probability for the occurrence of the first result oscillates with the Rabi frequency
ω/2π which is given by the energy difference. No absolute value of the energy appears
in the time evolution of a measurable quantity.

The amplitude b of the Rabi oscillation vanishes if Ψ(0) or the eigenstate Φ of the
device is an energy eigenstate.

Rabi oscillations occur in physically different situations whenever the time evolution
concerns only two states. In particle physics the phenomenon is termed particle oscilla-
tion. It is observed at the neutral K-mesons and also at neutrinos. In quantum optics
the phenomenon is called “quantum beat”.
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If a mixture ρ with eigenvalues ρi and eigenstates Υi is measured rather than a pure
state then the Rabi frequency remains unchanged. The parameters a, b and α are
a = ρ1a1 + ρ2a2 and beiα = ρ1b1e

iα1 + ρ2b2e
iα2, where ai, bi and αi correspond to

Ψ = Υi. Taking into account that 〈Υ1|Υ2〉 = 0 one confirms that the amplitude b of
Rabi oscillations is proportional to the difference (ρ1 − ρ2) of the eigenvalues of the
density matrix. The amplitude decreases with decreasing polarization.

6.7 Energy bands

Let us investigate the spectrum (6.17) of a Hamilton operator of a one dimensional
spinless system in a periodic potential [2, chapter XIII.16]

V(x + l) = V(x) ∀x . (6.45)

The differential equation (6.17) with a periodic function V(x) is called Hill’s equation.
It occurs in mechanics in the context of oscillations with time dependent, periodic fre-
quency, for example in the calculation of the orbit of the moon.

Because of the periodicity the Hamilton operator commutes with the translation Ul
(5.26) by the length l

(
HUlΨ

)
(x) =

(
−

 h2

2m

d2

dx2
+ V(x)

)(
UlΨ

)
(x) =

(
−

 h2

2m

d2

dx2
+ V(x)

)
ψ(x − l)

=
(
−

 h2

2m

d2

dx2
+ V(x− l)

)
ψ(x− l) =

(
UlHΨ

)
(x) . (6.46)

Therefore, the Hamilton operator and the unitary transformation Ul can jointly be
diagonalized (4.24).

The translation is a unitary transformation (5.26) with complex eigenvalue with mod-
ulus 1 (4.11). We write these eigenvalues as e−ikl with a real k. Then the eigenvalue
equation U−lΨk = eiklΨk reads

ψk(x+ l) = eiklψk(x) . (6.47)

This is a periodicity condition for the wave function which among physicists is called
Bloch theorem, to mathematicians it is known as Floquet theorem. The condition is
compatible with the eigenvalue equation and can be imposed to simplify the mathemat-
ical analysis. The condition does not state that each wave function in a periodic potential
is periodic up to a phase. As a counterexample one can consider a free particle with
vanishing potential. The potential V ≡ 0 is trivially periodic. Nevertheless the wave
packets of free particles are not periodic, they are composed of periodic functions.

The eigenvalue equation (6.17) is a real, linear, homogeneous differential equation of
second order for the wave function ψ(x). Therefore the wave function and its derivative
at x = l are linearly related to the initial values at x = 0. If we combine the wave
function and its derivative to the components of a vector u then we can write the linear
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relation with a matrix A

u(x) =

(
ψ(x)

ψ′(x)

)
, (6.48)

u(l) = Au(0) . (6.49)

The linear map A of initial values u(0) to u(l) is termed return map or stroboscopic
map.

The 2 × 2 matrix A is real, because real initial conditions u(0) have real solutions
u(x).

A = A∗ =

(
a b

c d

)
, a, b, c, d ∈ R . (6.50)

The matrix elements of A are differentiable functions of the energy E, because the
solution ψ(x) and its derivative at x = l are differentiable functions of the parameter E
of the differential equation.

From the eigenvalue equation (6.17) one easily concludes that the quantum mechanical
current j, the Wronski determinant, does not depend on x

2mi
 h
j = ψ∗

↔
∂xψ = ψ∗∂xψ− ∂xψ

∗ψ = u†(x)I u(x) , where I =

(
0 1

−1 0

)
,

∂x
(
u†(x)I u(x)

)
= 0 . (6.51)

In particular the value of u†(x)I u(x) at x = 0 coincides with the value at x = l.
Therefore for all initial conditions u = u(0) one has

(Au)†IAu = u†I u ∀u (6.52)

and therefore
A†IA = I . (6.53)

This matrix relation is satisfied for real 2× 2 matrices A if and only if the determinant
has the special value 1.

ad− bc = 1 (6.54)

The matrix A is an element of the group of special linear transformations of a two
dimensional real vector space.

A ∈ SL(2,R) (6.55)

The eigenvalues of A

λ1,2 =
a+ d

2
±
√
(a+ d

2

)2
− 1 (6.56)

are real, if |trA| = |a + d| ≥ 2. Because of detA = 1 these eigenvalues are inverse to
each other and the modulus of one of the real eigenvalues is larger or equal to 1.

|trA| ≥ 2⇒ λ1 = λ∗1 =
1

λ2
(6.57)
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Solutions u(x) which correspond to eigenvalues with |λ| > 1 grow for x → ∞ exponen-
tially u(x+nl) = λnu(x). The solution corresponding to the other eigenvalue λ2 = λ−1

grows according to u2(x − nl) = λ2
−nu2(x) for x → −∞. One cannot combine these

exponentially growing solutions to normalizable wave packets.

If the modulus of the trace of A is smaller than 2, then the eigenvalues are complex
and, because A is real, one eigenvalue is the complex conjugate of the other. Because
their product is detA = 1, the modulus of the complex eigenvalues is 1

|trA| < 2⇒ λ1 = λ∗2 , |λ1| = 1 . (6.58)

The periodicity condition (6.47) states that the function ψ(x) belongs to eigenvectors
of the matrix A with complex eigenvalues eikl with modulus 1.

(
A− eikl

)(ψ(0)

ψ′(0)

)
= 0 . (6.59)

This restricts the energy E to bands which in our one dimensional system is determined
by |trA(E)| ≤ 2 such that the eigenvalues of A lie on the unit circle in the complex
plane.

In the neighbourhood of the band edge, e.g. where trA = 2 holds, the matrix A has
the form

A =

(
a b

c 2− a

)
+ δE

(
α β

γ δ

)
. (6.60)

Here δE is the deviation of the energy from the band edge, the matrix elements b and c
are restricted by detA = 1 or bc = −(1− a)2, and α, β, γ and δ are the derivatives of
the matrix elements a, b, c and d. If |trA| − 2 changes sign and if d

dE
trA = α+ δ 6= 0,

then the eigenvalues of A vary in the neighbourhood of the band edge in lowest order in
(δE)

1
2 as

λ1,2 ≈ sign(trA) ±
√
δE(α+ δ)sign(trA) . (6.61)

At the lower band edge one has (α+ δ)sign(trA) < 0 and energies above the lower band
edge lead to complex eigenvalues e±ikl ≈ 1± ikl. If here one solves for the energy as a
function of k then one obtains in lowest order

E(k) = E(0) +
 h2k2

2M
+ . . . where M =

 h2

2l2
|
d

dE
trA| . (6.62)

This is the energy momentum relation of a particle with an effective mass M.

If the value of |k| increases together with the energy in an allowed band then for
k = ±π

l
the upper band edge is reached. If |trA| − 2 changes sign and if α+ δ 6= 0, then

the derivative dE
dk

vanishes and the second derivative d2E
dk2

is negative.

dE

dk |k=±π
l

= 0 ,
d2E

dk2 |k=±π
l

= −2l2|
d

dE
trA|−1 . (6.63)
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Within each band k(E) is a monotonous function. To see this, one writes the eigenfunc-
tion of (6.17) and (6.47) as a product of eikx and a periodic function uk(x+ l) = uk(x).

ψk(x) =

√
l

2π
eikx uk(x) (6.64)

The eigenvalue equation then reads

H(k)uk =
(
E −

 h2k2

2m

)
uk , H(k) =

− h2

2m

d2

dx2
+

 hk

m

(
−i h

d

dx

)
+ V(x) . (6.65)

The Hamilton operator H(k) acts as a hermitean operator on l-periodic functions u and
v which have a scalar product

〈u|v〉 =

∫ l

0

dxu∗(x)v(x) , (6.66)

these are position wave functions on a circle with circumference l.
Within a band k(E) is a differentiable function, for k is a differentiable function (6.56)

of the matrix elements of A which in turn depend in a differentiabe way on E. If we
differentiate the eigenvalue E −

 h2k2

2m
of H(k) with respect to E then, because of (4.80),

we obtain for normalized uk

Puk(x) = −i h
d

dx
uk(x) (6.67)

1−
 h2k

m

dk

dE
= 〈uk|

dH(k)

dk
uk〉

dk

dE
= 〈uk|Puk〉

 h

m

dk

dE
. (6.68)

This equation excludes zeros of dk
dE

because the matrix element 〈uk|Puk〉 is finite. There-
fore k(E) is invertible within each energy band and the energy is a strictly monotonous
function of k between k = 0 and k = π

l
.

The group velocity of wave packets

vgroup =
∂ω

∂k
=
1

 h

∂E

∂k
=
1

m
( hk+ 〈uk|Puk〉) (6.69)

is a combination of the momentum carried by the factor eikx and the expectation value
of the momentum within a periodicity interval. Near k = 0 it is proportional to k

〈uk|Puk〉 =  hk(
m

M
− 1) +O(k2) , (6.70)

at k = ±π
l

it compensates the momentum of eikx

〈uπ
l
|Puπ

l
〉 = −〈u−π

l
|Pu−π

l
〉 = − h

π

l
. (6.71)

The functions uk are periodic and can be written as a Fourier series (5.25)

uk(x) =
∑

n

cnein 2πl x (6.72)
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The corresponding eigenfunctions ψk(x) =

√
l
2π

eikx uk(x) with −π
l
≤ k ≤ π

l
are there-

fore continuum normalized on the real line if the wave functions uk are orthonormalized
in the periodicity interval.

〈Ψk|Ψk′〉 =
l

2π

∫

dx
(
eikx

∑

n

cnein 2πl x
)∗

(eik′x
∑

m

c′meim 2π
l x
)

= l
∑

m,n

c∗nc
′
mδ(k

′ − k + (m− n)
2π

l
)

= (l
∑

n

c∗nc
′
n)δ(k′ − k) = 〈uk|u′

k〉δ(k′ − k) . (6.73)

If the wave functions belong to the same band then uk and u′
k agree and from 〈uk|uk〉 =

1 one concludes
〈Ψk|Ψk′〉 = δ(k′ − k) . (6.74)

If the wave functions belong to different bands then uk and u′
k are orthogonal because

they solve the eigenvalue equation (6.65) of an hermitean operator with different eigen-

values E−
 h2k2

2m
.

If |trA| − 2 changes sign at the edge of a band then a gap separates this band from
the next. This gap vanishes if |trA| = 2 has a local maximum.

To each energy within the band there correspond two eigenvalues eikl and e−ikl of Ul.
The dispersion relation E(k) = E(−k) is therefore an even function of k.

To each eigenvalue eikl 6= ±1 of the translation Ul (6.47) there correspond denumer-
ably many energy eigenstates with non-degenerate energies. These eigenstates belong to
the different bands. At the eigenvalue eikl = ±1 the energy is degenerate if and only if
A(E) = ±1.
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7.1 Product space

Often a quantum mechanical system is composed of identifiable parts, for example of
two different particles whose properties can be measured separately. Then the Hilbert
space H is a product space

H = H1 ⊗ H2 (7.1)

and has an orthonormal basis Λi,α = Λi ⊗ Λα, where i counts an orthonormal basis
Λi of H1 and α an orthonormal basis Λα of H2. States Ψ in the product space have
components

ψi,α = 〈Λi,α|Ψ〉 (7.2)

If the components ψi,α can be written as a product uivα, i.e. if the matrix ψi,α has
rank 1, then Ψ = u ⊗ v is a product state with u =

∑
iΛiui and v =

∑
αΛαvα.

More generally, states in product spaces are sums of product vectors. States that are
not product states are called entangled states. All many-particle states of identical
bosons or fermions which are composed of different one-particle states, such as slater
determinants (5.65) for instance, are entangled.

The index i counts possible results ai of a measurement of the first subsystem, the
index α counts results bα of the second subsystem. Let the operator A represent a
measuring instrument which measures the first subsystem, i.e. which maps H1 onto H1,
and let B represent a device to measure the second subsystem, then their tensor product
A⊗ B is defined by the matrix elements

(A⊗ B)i,α j,β = AijBαβ (7.3)

They act on product states u⊗ v by

(A⊗ B) (u⊗ v) = (Au) ⊗ (Bv) (7.4)

and are declared on sums of product states, i.e. on entangled states, by linearity.
Operators of the composite system H1 ⊗ H2 of the form A ⊗ 1 correspond to the

measurements of the first subsystem, the operators of the form 1⊗B to the measurements
of the second subsystem.

(A⊗ 1)Λi,α = aiΛi,α ∀α , (1⊗ B)Λi,α = bαΛi,α ∀i . (7.5)

The results ai and bα are degenerate. The degree of degeneracy of each eigenvalue ai of
A⊗ 1 is a multiple of the dimension of H2, the degree of degeneracy of the eigenvalues
bα of 1⊗ B is a multiple of the dimension of H1.
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7.2 Addition of angular momentum

Let us consider the quantum mechanical system which is formed by two spin-1/2 particles
that, for simplicity, cannot move. The Hilbert space of the one-particle states is then
spanned simply by basis states Λ↑ and Λ↓. A basis of the product space of the two-
particle states is

Λ↑↑ , Λ↑↓ , Λ↓↑ , Λ↓↓ . (7.6)

The basis is chosen such that the spin operators for the first and the second particle ~S1
and ~S2 act by multiplication with the Pauli matrices.

~S1Λij =
 h

2
Λkj~σki , ~S2Λij =

 h

2
Λik~σkj . (7.7)

All spin operators of the first particle commute with all spin operators of the second
particle.

[S1a, S2b] = 0 a, b ∈ {1, 2, 3} (7.8)

Hence, the sums Sa = S1a + S2a are components of angular momentum operators that
satisfy the angular momentum algebra (4.45).

[Sa, Sb] = i hǫabcSc (7.9)

The spectrum of S3 = S13 + S23 can be read off immediately

S3Λ↑↑ =  hΛ↑↑ , S3Λ↓↑ = 0  hΛ↓↑ , S3Λ↑↓ = 0  hΛ↑↓ , S3Λ↓↓ = − hΛ↓↓ . (7.10)

Accordingly, Λ↑↑ belongs to an angular momentum multiplet with total spin s = 1,
because the total spin s can be read off the highest S3-eigenvalue (4.59). Similarly, the
state Λ↓↓ with lowest S3-eigenvalue − h belongs to total spin s = 1. The state with

s = 1 and S3-eigenvalue 0 is obtained with a factor
√
1(1+ 1) − 1(1− 1) =

√
2 (4.48)

by applying the ladder operator S− to Λ↑↑

S−Λ↑↑ = (S1− + S2−)Λ↑↑ =

√
1

2
(
1

2
+ 1) −

1

2
(
1

2
− 1)(Λ↓↑ +Λ↑↓) (7.11)

Λs=1,s3=1 = Λ↑↑ , Λs=1,s3=0 =
1√
2
(Λ↓↑ +Λ↑↓) , Λs=1,s3=−1 = Λ↓↓ . (7.12)

These three basis vectors span a total spin-1 multiplet. As eigenstates of S2, further
total angular momentum multiplets are orthogonal to this total spin-1 multiplet if they
belong to different total spin, or can be chosen orthogonal to this total spin-1 multiplet.
In our example they are therefore spanned by the state

Λs=0,s3=0 =
1√
2
(Λ↓↑ −Λ↑↓) . (7.13)

It is an S3 -eigenstate belonging to the eigenvalue 0. Since the total spin in an angular
momentum multiplet can be read off the highest and the lowest S3 -eigenvalue, this state
belongs to total spin 0. This one can easily check, for S3, S+ and S− vanish on this
state.

The states Λs=0,s3=0 and Λs=1,s3=0 are entangled.
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7.3 Independent composite systems

Mixtures ρ of composite systems are composed independently, if for all measurements
A ⊗ 1 of the first subsystem and for all measurements 1 ⊗ B of the second subsystem
the probabilities factorize with which one obtains the i-th result ai of device A and the
α-th result bα of device B

w(i, α, A, B, ρ) = w1(i, A, ρ̂) ·w2(α, B, ρ̃) . (7.14)

Here w1(i, A, ρ̂) =
∑
αw(i, α, A, B, ρ) is the probability of measuring the i-th result ai

with device A, w2(α, B, ρ̃) =
∑
iw(i, α, A, B, ρ) is the probability of measuring the α-th

result with device B and w(i, α, A, B, ρ) is the probability of measuring both ai and bα.
If a mixture is not composed independently, we call the subsystems correlated.

Let us analyze what it means mathematically that systems are composed independ-
ently. The probabilities are given by main diagonal elements 〈Λ|ρΛ〉 (3.1). The condition
(7.14) must hold for all Λ that are eigenstates of an operator A ⊗ 1 and an operator1⊗ B, thus (7.14) must hold for all Λ that are product states u⊗ v.

u∗
iv

∗
αρi,α j,βujvβ = u∗

i (
∑

α

ρi,α j,α)uj · v∗α(
∑

i

ρi,α i,β)vβ (7.15)

Both sides of the equation are bilinear forms in u and in v and are equal for all u and
v if and only if the mixture is a tensor product of mixtures.

ρindependent = ρ̂⊗ ρ̃ (7.16)

ρi,α j,β = (ρ̂)ij(ρ̃)αβ where (ρ̂)ij =
∑

α

ρi,α j,α and (ρ̃)αβ =
∑

i

ρi,α i,β (7.17)

Only for independently composed systems there are no correlations of probabilities
for results of measurements of the first and of the second subsystem. Then one can
restrict oneself to one subsystem and analyze its properties isolated from the second
subsystem. For instance in picture (1.1) one first has to check whether the combination
of two particles in the beam to a two-particle system does not exhibit correlations which
are not observed if one presupposes that the beam just contains repeatedly prepared
one-particle states.

If the systems are not composed independently, the measurement results of the first
and second subsystem are correlated. In the extreme case one can predict after a meas-
urement of the first subsystem the result of the measurement of the second subsystem.

In the formulation “By measuring the first subsystem the second measurement is pre-
determined” such a correlation seems paradoxical, in particular if the result of the first
measurement is unknown at the second device and could not have any effect. The denom-
ination “Quantum teleportation” suggests a non-classical faster than light transmission
of quantum properties. The denomination insinuates that the first measurement is the
cause of the second measured value. In fact even in retrospect, long after the first and
second measurement, one can derive from the protocol of the one measurement what
has been measured at the other device and vice versa.
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State reduction is the transition from probabilities to conditional probabilities. It
happens instantly and also in retrospect, as soon as the outcome of the first measurement
is known. The first measurement does not cause the second measured value, however.
The correlation of the measured values results since the two subsystems have not been
prepared independently.

The claim that the first measurement determines the result of the second, contradicts
quantum mechanics. Quantum mechanics does not know of a reason for the probability
distribution (1.1) of the results of a measurement. If there were a reason and if the
results of the measurement were predetermined as in classical physics, then the state Ψ
would be an incomplete description of the physical system that is to be measured.

Among the surprising properties of correlated composite systems is the fact that a
pure entangled state Ψ appears to be mixed if one measures only the first subsystem.
Incomplete measurement has the same effect as ignorance of the system that is to be
measured.

w1(i, A, Ψ) =
∑

α

w(i, α, A, B, Ψ) =
∑

α

|〈Λi,α|Ψ〉|2 =
∑

α

|ψi,α|2 (7.18)

So for all measurements of the first subsystem one obtains probability distributions as
from the density matrix

(ρ̂)ij =
∑

α

ψi,αψ
∗
j,α (7.19)

This density matrix corresponds to a pure state u of the first subsystem

∑

α

ψi,αψ
∗
j,α = uiu

∗
j , (7.20)

only if Ψ is a product state. This one concludes as follows. Equation (7.20) implies with
the definition vβ =

∑
i u

∗
iψiβ that u and v are normalized because Ψ is normalized. In

addition it follows from (7.20) that
∑
βψiβv

∗
β = ui and

∑

β

(ψiβ − uivβ)(ψ∗
jβ − u∗

jv
∗
β) = 0 . (7.21)

For i = j this is a sum of squares. It vanishes only if ψiα = uivα holds, i.e. if Ψ = u⊗ v
is a product state.

7.4 Bell Inequalities

Bell inequalities are bounds for expectation values which follow from the seemingly
irrefutable supposition of classical physics that the results of all measurements of single
particles in a two particle system are in principle determined by hidden local parameters.
In such a picture the outcome of a measurement is uncertain because one does not know
the hidden parameters and the measured results of one particle do not depend on the



7.4 Bell Inequalities 59

kind of measurement performed on the other particle because the parameters have only
local effects.

We consider two spin-1/2 particles which are generated by the decay of a spin-0
particle. We measure in a series of measurements the individual spins in several directions
and denote with

 h
2
a1 i the resulting spin of the first particle in the i-th measurement, if

we measure in the direction ~a. With
 h
2
c2j we denote the result of the spin measurement

of the second particle in the j-th experiment, if there we measure in direction ~c. Because
the particles are generated by the decay of a spin-0 particle the resulting spin of the
second particle is opposite to the spin of the first particle, for all directions ~b and in all
experiments one has b1i = −b2 i.

Because the results a1i, b2i and c2i take only values 1 or −1 one has in all cases,
irrespective whether b2i = c2i or b2i = −c2i,

a1i(b2i − c2i) ≤ 1− b2ic2i = 1+ b1ic2i . (7.22)

The inequality makes only use of the supposition that for each experiment and for all
directions ~a, ~b and ~c there exist the corresponding results a1 i, b2 i and c2i and that
these results are do not depend on the direction which is chosen for measuring the other
particle.

If we sum the inequalities for N experiments and if we devide by N then in the limit
N→ ∞ we obtain a Bell inequality for the expectation values

〈A1B2〉 − 〈A1C2〉 ≤ 1+ 〈B1C2〉 . (7.23)

Here A1 is the device with reading 1 if the spin of the first particle is up in direction ~a

and −1 otherwise. The device C2 shows 1 if the spin of the second particle, measured
in direction ~c, is up and so on.

In quantum mechanics the individual results a1i and b1i are not determined in each
case. They have to be measured in different experiments a1 i and b1j with i 6= j. The
quantum mechanical expectation values are therefore not subject by Bell inequalities.

In fact, in the spin-0-state (7.13)

Ψ =
1√
2
(| ↑↓〉 − | ↓↑〉) (7.24)

the result that the spin of the first particle is up and the spin of the second particle is
up in direction (θ,ϕ) (4.67) occurs with probability

w(↑↑(θ,ϕ)) = |〈↑↑(θ,ϕ) |Ψ〉|2 = | cos
θ

2
eiϕ2 〈↑↑ |Ψ〉+sin

θ

2
e−iϕ2 〈↑↓ |Ψ〉|2 =

1

2
sin2

θ

2
. (7.25)

More generally both spins are found up in direction ~a for the first particle and ~b for
the second particle with probability

w(↑~a↑~b) =
1

2
sin2

β

2
, (7.26)
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where β is the angle enclosed by ~a and ~b. For the state Ψ is invariant under rotations
and | ↑~a↑~b〉 can be rotated by a unitary transformation into the state | ↑↑(θ=β,ϕ=0)〉 in
which the first spin points up in z-direction and the second in direction (θ = β,ϕ = 0).

This probability yields the expectation value

〈A1B2〉 = w(↑~a↑~b) −w(↓~a↑~b) −w(↑~a↓~b) +w(↓~a↓~b) =

=
1

2
sin2

β

2
−
1

2
cos2

β

2
−
1

2
cos2

β

2
+
1

2
sin2

β

2
= − cosβ .

(7.27)

The combination of expectation values

〈A1B2〉 − 〈A1C2〉 − 〈B1C2〉 = − cosβ+ cosγ+ cos(β− γ) , (7.28)

where γ denotes the angle between ~a and ~c and β−γ the angle between ~b and ~c, takes
the value 3

2
for β = 2π

3
and γ = π

3
and violates the Bell inequality (7.23). Quantum

mechanics is not compatible with the supposition that the results of each measurement
is determined in principle by unknown parameters with local effects.

That quantum mechanical expectation values coincide with experimental results and
violate Bell inequalities shatters classical views of physics. The physical probability
distributions cannot be caused by hidden, unknown parameters which have only local
effects, i.e., which determine each individual result and do not depend on which kind of
measurement is performed elsewhere.
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8.1 Entropy

Lack of polarization (4.74) or the variable 1− (trρ2) can be used as a measure for how
much the prepared state differs from a pure state. A better suited measure of the lack
of knowledge about the prepared state is the entropy S. The entropy is additive, if two
independent systems are combined, it stays constant during the time evolution according
to the Schrödinger equation and increases by mixing and by random perturbations.

Lack of knowledge or entropy is defined as a function of the eigenvalues ρi of the
density matrix

S = −
∑

i

ρi ln ρi = − tr ρ lnρ . (8.1)

The function x ln x is continuously completed for x = 0 and vanishes there. The entropy
is non-negative because the eigenvalues ρi of the density matrix vary between 0 and 1.
The entropy of a pure state vanishes.

If a mixture is composed of two independent parts

ρ = ρ̂⊗ ρ̃ , (8.2)

then the eigenstates are product states Υ̂i ⊗ Υ̃j of eigenstates of the density matrices ρ̂
and ρ̃. The eigenvalues of the composite density matrix are products of the eigenvalues
of the separate density matrices.

ρij = ρ̂iρ̃j ,
∑

i

ρ̂i = 1 ,
∑

j

ρ̃j = 1 . (8.3)

Therefore the entropy of independently composed systems is the sum of the entropy of
its parts.

S = −
∑

ij

ρ̂iρ̃j ln(ρ̂iρ̃j) = −
∑

ij

(ρ̂iρ̃j ln ρ̂i + ρ̂iρ̃j ln ρ̃j)

= −(
∑

j

ρ̃j)
∑

i

ρ̂i ln ρ̂i − (
∑

i

ρ̂i)
∑

j

ρ̃j ln ρ̃j = Ŝ+ S̃ (8.4)

The density matrix changes in the course of time (6.6), its eigenvalues ρi, however,
do not change on account of the Schrödinger equation. If one adapts the notation then
(4.80) and (6.6) and the eigenvalue equation ρΥi = ρiΥi imply ∂tρi(t) = 0, because in
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eigenstates of an hermitean operator ρ the expectation value of each commutator [H, ρ]

vanishes.

i h∂tρi(t) = i h〈Υi|∂tρ(t)Υi〉 = 〈Υi|(Hρ− ρH)Υi〉 = 〈Υi|(Hρi − ρiH)Υi〉 = 0 (8.5)

So the entropy does not change in the course of the time evolution of the states which
is generated by the Hamilton operator.

The entropy increases by true mixing. If a mixture ρ(λ) is mixed out of different
mixtures ρ̂ and ρ̃, ρ̂ 6= ρ̃

ρ(λ) = λρ̂+ (1− λ)ρ̃ with 0 < λ < 1 , (8.6)

then the entropy S(ρ(λ)) is larger than the proportionate sum by the entropy generated
by mixing

S(ρ(λ)) > λS(ρ̂) + (1− λ)S(ρ̃) . (8.7)

Before we prove this assertion we make two remarks: If ρ̂ 6= ρ̃ and λ 6= λ′ then one
also has ρ(λ) 6= ρ(λ′). In the range 0 < λ < 1 the kernel, the space which is mapped to
0, of ρ(λ) does not depend on λ.

The second remark holds because ρ̂ and ρ̃ and therefore also ρ(λ′) vanish in the kernel
of ρ(λ) for each chosen λ.

〈Λ|(λρ̂+ (1− λ)ρ̃)Λ〉 = 0 ⇒ 〈Λ|ρ̂Λ〉 = 0 and 〈Λ|ρ̃Λ〉 = 0

⇒ ρ̂Λ = 0 and ρ̃Λ = 0

The first implication follows because λ and (1 − λ) are positive and main diagonal ele-
ments of density matrices are non-negative (3.5). The second implication holds because
main diagonal elements 〈Λ|ρΛ〉 of a density matrix ρ vanish only if ρΛ vanishes (3.6).

After these preparatory remarks we prove for different density matrices ρ and ρ′, ρ 6=
ρ′, if ρ′ has only non-vanishing eigenvalues, the inequality

trρ lnρ′ < tr ρ lnρ . (8.8)

To show the inequality we evaluate the trace in the eigenbasis Υi of ρ and insert a
resolution of the identity with the eigenbasis Υ′

i of ρ′.

trρ(lnρ′ − ln ρ) =
∑

ij

〈Υi|ρΥ′
j〉〈Υ′

j|(ln ρ
′ − ln ρ)Υi〉

=
∑

ij

|〈Υi|Υ′
j〉|2ρi(lnρ′j − lnρi)

=
∑

ij

|〈Υi|Υ′
j〉|2ρi ln

ρ′j

ρi
.

For positive x the inequality ln x ≤ (x− 1) is strict if x 6= 1.
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If the matrices ρ and ρ′ are different then there exists at least one pair of eigenvalues
ρ′j and ρi, ρ

′
j 6= ρi, with eigenvectors Υ′

j and Υi which have a non-vanishing scalar
product. This implies the inequality we want to show.

trρ(lnρ′ − ln ρ) <
∑

ij

|〈Υi|Υ′
j〉|2ρi(

ρ′j

ρi
− 1) =

∑

ij

|〈Υi|Υ′
j〉|2(ρ′j − ρi) =

=
∑

ij

〈Υ′
j|ρ

′Υi〉〈Υi|Υ′
j〉 −

∑

ij

〈Υ′
j|ρΥi〉〈Υi|Υ′

j〉 = tr ρ′ − trρ = 0 .

If ρ̂ 6= ρ̃ and 0 < λ < 1 holds then one also has ρ̂ 6= ρ(λ) 6= ρ̃. We use the inequality
(8.8) for the density matrix ρ(λ) in place of ρ′ and ρ̂ and ρ̃ in place of ρ. We take the
trace over the space orthogonal to the kernel of ρ(λ).

The inequality (8.8) implies

tr ρ̂ ln(λρ̂+ (1− λ)ρ̃) < tr ρ̂ ln ρ̂ , (8.9)

tr ρ̃ ln(λρ̂+ (1− λ)ρ̃) < tr ρ̃ ln ρ̃ . (8.10)

If we multiply (8.9) with λ, 0 < λ < 1 and (8.10) with (1 − λ) and if we add the
resulting inequalities we obtain

tr(λρ̂+ (1− λ)ρ̃) ln(λρ̂+ (1− λ)ρ̃) < λ tr ρ̂ ln ρ̂+ (1− λ) tr ρ̃ ln ρ̃ (8.11)

Finally we change the sign and obtain for the entropy of a mixture of ρ̂ with ρ̃, ρ̂ 6= ρ̃,
for 0 < λ < 1

S(ρ(λ)) > λS(ρ̂) + (1− λ)S(ρ̃) . (8.12)

The entropy of a mixture is larger than the proportionate sum of the entropies of its
parts. Entropy increases by true mixing.

A mixture ρ(λ) can be mixed from ρ(λ1) and ρ(λ2) with neighbouring mixing para-
meter 0 ≤ λ1 < λ < λ2 ≤ 1.

ρ(λ) =
λ2 − λ

λ2 − λ1
ρ(λ1) +

λ− λ1

λ2 − λ1
ρ(λ2) (8.13)

S(ρ(λ)) >
λ2 − λ

λ2 − λ1
S(ρ(λ1)) +

λ− λ1

λ2 − λ1
S(ρ(λ2)) (8.14)

So the entropy S(ρ(λ)) is a convex function of the mixing parameter λ.
Random perturbation of the time evolution is a mixing process and increases the

entropy. We consider in figure (1.1) a beam in a vacuum which is not perfect and take
into account only the two possibilities that with probability λ no atom of the rest gas
perturbs the beam and with probability (1−λ) the case that an atom perturbs the beam.
If we denote the mixtures which develop with and without perturbation as ρ̂ and ρ̃, then
the input to the measuring device is the mixture λρ̂ + (1 − λ)ρ̃ if the perturbation by
the rest atom occurs at random, independent from the preparation in the source.
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λ

S(ρ(λ))6

-

Figure 8.1: Entropy as convex function of the mixing parameter

8.2 Equilibrium

If the state in figure (1.1) is repeatedly and randomly perturbed before the measurement
then ultimately the probability distribution of the results w(i, A, ρ(t)) no longer depends
on the time t at which the measurement is performed. By the von-Neumann equation
(6.6) the density matrix ρ commutes in such a situation with the Hamilton operator

i h∂tρ(t) = [H, ρ] = 0 (8.15)

and both operators have joint eigenstates Λi

HΛi = EiΛi , ρΛi = ρiΛi . (8.16)

Because with each random perturbation the entropy has increased one expects to find
a mixture ρ with an entropy which is as large as possible. Time independent mixtures
with maximal entropy define thermodynamic equilibrium.

If for example the mixture exchanges energy with its environment in such a way
that the mean value has the constant value 〈E〉 then in thermodynamical equilibrium
the entropy is maximal as a function of the eigenvalues ρi which are subject to the
constraints

∑
i ρi = 1 and

∑
i ρiEi = 〈E〉. We take these constraints into account by

Lagrange multipliers α and β and determine the maximum of

S = −
∑

j

ρj ln ρj + α(1−
∑

j

ρj) + β(〈E〉 −
∑

j

ρjEj) . (8.17)

The derivatives with respect to α and β are zero if the constraints hold. Differentiating
with respect to ρi gives

0 = −(ln ρi + 1) − α− βEi . (8.18)
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So ρi is a Boltzmann distribution.

ρBoltzmann i =
e−βEi

Z
(8.19)

The factor Z is determined by the constraint
∑
i ρi = 1, Z is the partition sum.

Z(β) =
∑

i

e−βEi (8.20)

The partition sum is the Laplace transformed density of energy eigenstates. The
parameter β is the inverse temperature

β =
1

T
, (8.21)

which is determined implicitly by the constraint
∑
i ρiEi = 〈E〉 as a function of the mean

value 〈E〉 of the energy.

〈E〉 =
∑

i

ρiEi =
1

Z

∑

i

e−βEiEi = −
1

Z
∂β

∑

i

e−βEi = −∂β lnZ(β) (8.22)

The logarithm of the partition sum is a function of β, its derivative determines the mean
energy.

The entropy of the Boltzmann distribution is closely related to the partition sum and
the mean energy.

S = −
∑

i

ρi lnρi = −
∑

i

e−βEi

Z
(−βEi − lnZ) = β 〈E〉 + lnZ (8.23)

In terms of the free energy F = 〈E〉 − TS one has

Z = e−βF (8.24)

and the Boltzmann distribution can be written as

ρi = e−β(Ei−F) . (8.25)

The probabilities ρi only depend on differences of energy, not on the absolute value of
the groundstate energy. The claim “Cold helium does not become solid because the
groundstate energy is not zero” is wrong.

If no heat bath guarantees the mean energy of the mixture ρ then in (8.17) there is no
Lagrange factor β, the other algebraic steps to determine the maximal entropy can be
taken over as if β = 0. The entropy becomes maximal for equal distribution ρi = 1/N,
where N is the dimension of the Hilbert space. The maximal entropy is

S = lnN . (8.26)
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If the dimension N is infinite then there is no mixture with maximal entropy.
Important examples of thermodynamical systems in thermal equilibrium are the har-

monic oscillator and the two state system. If one chooses the groundstate energy to
vanish then the energies of the harmonic oscillator are given by

En = nE n = 0, 1, 2, . . . (8.27)

In the two state system the energies En are of the same form, but n can take the
values 0 and 1 only. The energies are the energies of free, identical bosons and fermions.
E =  hω is the energy of one particle. A state with several particles has a multiple of
the one particle energy because the particles are free and have no interaction. The Pauli
exclusion principle forbids n ≥ 2 for fermions.

The partition sum of the harmonic oscillator is a geometric series,

Zboson =

∞∑

n=0

e−βEn =
1

1− e−βE
(8.28)

the partition sum of the two state system is as simple as simple can be.

Zfermion = 1+ e−βE (8.29)

The energy expectation value is determined by (8.22).

〈E〉boson =
E

eβE − 1
〈E〉fermion =

E

eβE + 1
(8.30)

More complicated systems often consist of several, different bosons and fermions, for
example of photons with different wave vector ~k, with no interaction among each other.

More precisely we call a system freely composite if the Hilbert space is a product space
H = H1 ⊗ H2 and if the Hamilton operator H = H1 ⊗ 1 + 1 ⊗ H2 is the sum of the
single Hamilton operators . Then there are energy eigenstates Λi,α, where i enumerates
a basis of H1 and α a basis of H2, and the energy is a sum of the single energies.

Ei,α = E1(i) + E2(α) (8.31)

In such a case the partition sum of the composite system is the product of the single
partition sums

Z =
∑

i,α

e−β(E1(i)+E2(α)) =
∑

i

e−βE1(i)
∑

α

e−βE2(α) = Z1Z2 , (8.32)

and the expectation value of the energy is the sum of the single expectation values.

〈E〉 = 〈E1〉 + 〈E2〉 (8.33)
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9.1 Lorentz resonance

We consider a Hamiltonian with continuous energies and continuum normalized energy
eigenstates ΛE,p

HΛE,p = EΛE,p 〈ΛE,p|ΛE′,p′〉 = δ(E− E′)δ(p− p′) . (9.1)

The variable p distinguishes states with degenerate energy. If we represent states Ψ(t)

that satisfy the Schrödinger equation as a linear combination of this continuous basis,
then Ψ(t) has the following form

Ψ(t) =

∫

dEdpΛE,pψ(E, p) e− i
 hEt , ψ(E, p) = 〈ΛE,p|Ψ(0)〉 . (9.2)

A measurement device which examines whether the normalized initial state Ψ(0) is
present, finds this state at the instant t with the probability

w(t) = |a(t)|2 , (9.3)

a(t) = 〈Ψ(0)|Ψ(t)〉 =

∫

dE F(E)2 e− i
 hEt , (9.4)

where we use the notation

F(E)2 =

∫

dp |〈ΛE,p|Ψ(0)〉|2 . (9.5)

The probability w(t) decreases exponentially with the time t if the state is a Lorentz
resonance.

FLorentz(E) =
∣∣
√
Γ

2π

1

(E− E0) + iΓ
2

∣∣ (9.6)

E0 is the resonance energy and |Γ | ≥ 0 the width of the resonance curve. However,
the resonance energy and width are not defined as the energy expectation value 〈H〉
and energy uncertainty ∆H. These quantities diverge, since the function F(E) does not
decrease fast enough (cf. section (4.2)). Ψ(t) = exp(−iHt/ h)Ψ(0) satisfies the integrated
Schrödinger equation, but Ψ(t) is at no instant differentiable, ‖HΨ(t)‖ diverges.

One can evaluate the amplitude

aLorentz(t) =
Γ

2π

∫

dE
e− i

 hEt

(E− E0)2 + Γ2

4

(9.7)
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with the theorem of residues, since for positive (negative) times one may close the in-
tegration path in the lower (upper) complex half-plane, and obtains

aLorentz(t) = e− i
 hE0te−

|Γt|
2 h . (9.8)

So the probability w(t) of still finding the Lorentz resonance at the time t > 0 decreases
exponentially.

wLorentz(t) = e−t/τ for t > 0 (9.9)

The lifetime is the inverse width τ =  h/|Γ |, which is read as the uncertainty relation

∆t∆E ≥  h/2 . (9.10)

This uncertainty relation is problematic, however: ∆E diverges and one does not measure
t but the property of still being the Lorentz resonance Ψ(0) at the time t.

The width |Γ | is the decay rate of the exponentially decaying state

|Γ | = − h
1

w(t)

d

dt
w(t) . (9.11)

From equation (9.4) one infers that the phase of ψ(E, p) is irrelevant. This is under-
standable, because any continuum normalized basis Λ′

E,p = eiϕ(E,p)ΛE,p with arbitrary
real function ϕ(E, p) could have been used as well. In contrast to position and mo-
mentum there is no operator T conjugate to the Hamiltonian with commutation relation
[T,H] = i h. Such an operator would be T = i h∂E in an energy basis and would fix the
relative phases of the basis ΛE,p.

Similarly, the sign of Γ is without significance, as (9.7) shows. The decay rate is |Γ |.

9.2 Deviation from exponential decay

Strictly speaking, there is no Lorentz resonance, since every realistic Hamiltonian has a
spectrum that is bounded from below (ψ(E, p) = 0 for E < Emin), and since the energy
expectation value must be finite. So the Lorentz resonance is unrealistic for small and
large energies. Strictly speaking, there is no exponential decay, either.

There are no states which satisfy the differential Schrödinger equation i h∂tΨ = HΨ

and which satisfy a law of exponential decay for all times. The probability w(t) is
differentiable if Ψ(t) is differentiable and is maximal w(0) = 1 at the time t = 0.
Therefore its time derivative vanishes then

d

dt
w(t)|t=0 = 0 (9.12)

and exponential decay is impossible for small times.
All deviations from exponential decay occur because the decay products regenerate

the original state. This one sees with the following decomposition of the amplitude

a(t+ t′) = 〈Ψ(0)|Ψ(t+ t′)〉 = 〈Ψ(0)|e− i
 hHte− i

 hHt
′
Ψ(0)〉 . (9.13)
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If one inserts in between the e-functions a resolution of the identity1 = |Ψ(0)〉〈Ψ(0)| +
∑

n

|Υn〉〈Υn| , (9.14)

where the states Υn complement the initial state Ψ(0) to an orthonormal basis and
represent the decay products, one sees

a(t+ t′) = a(t)a(t′) +
∑

n

〈Ψ(0)|e− i
 hHtΥn〉〈Υn|e− i

 hHt
′
Ψ(0)〉 . (9.15)

The last term is the amplitude for the decay and reproduction of the initial state. If
this last term were zero, the relation a(t+ t′) = a(t)a(t′) would follow and would imply
exponential decay. Since the decay products leave the site and thereby reduce their
density, one should guess for local interactions that deviations from exponential decay
are observed only for time resolutions that are small as compared to the time of flight
in which the decay products are diluted so that the reproduction can be neglected.

There must be deviations from the exponential decay also for large times if the de-
caying state was created by the action of the Hamiltonian H during times t < 0. The
requirement that the Schrödinger equation was valid also at negative times is not man-
datory, however: what happens at the preparation and measurement depends on the
setup of the source and the measurement device and is not necessarily described by the
Hamiltonian (cf. section (6.5)).

If however we accept (9.2) for all times, the modulus of the amplitude a(t) decreases
exponentially for positive times and is bounded by Ce−t/τ with positive constants C and
τ, if and only if |a(t)| < Ce−|t|/τ holds for all times. In this case the Fourier transform

ã(E) =

∫
dt√
2π h

e− i
 hEt a(t) (9.16)

is an analytic function of complex energies E in the range |ℑ(E)| <  h/τ, which in addition
vanishes for real energies E = E∗ < Emin below the minimal energy, if the energy is
bounded from below. Thus ã(E) must vanish. This, however, is in contradiction to

a(t) =
∫

dE√
2π h

e
i
 hEt ã(E) and a(0) = 1. Therefore the modulus of the amplitude a(t)

cannot be bounded exponentially but has to decrease more slowly for large times.

9.3 Golden Rule

An energy eigenstate cannot decay, since from Ψ(t) = e− i
 hEtΨ(0) it follows for real

energy E that w(t) = 1. So derivations of the law of exponential decay for a state
which is assigned a definite energy are self contradictory. The energy E cannot have a
negative imaginary part Γ/2, either. While this would imply w(t) = e− Γt

 h and is being
used to parameterize decaying states without having to describe the decay products, a
Hamiltonian which completely describes the time evolution of a decaying state has to
describe also the decay products and their time evolution. It has to be hermitean, so
that Ψ(t) remains normalized for all times, and can have only real eigenvalues.
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Let us consider a Hilbert space which is spanned by a normalized state Υ and con-
tinuum normalized basis states ΛE,p orthogonal to it with E ≥ Emin

〈Υ|Υ〉 = 1 , 〈Υ|ΛE,p〉 = 0 , 〈ΛE,p|ΛE′,p′〉 = δ(E− E′)δ(p− p′) . (9.17)

Let this basis be adjusted to the decomposition

H = H0 +Hint (9.18)

of the Hamiltonian and be chosen such that Υ is a normalized H0-eigenstate with eigen-
value E0 > Emin in the continuum and that ΛE,p are generalized eigenstates with energy
E in the continuous spectrum of H0 and with an index p to discriminate states with
degenerate energy

H0Υ = E0Υ , H0ΛE,p = EΛE,p , E ≥ Emin. (9.19)

For example H0 can contain the rest energy of the decaying particle and the kinetic
energies including the rest energy of the decay products with continuous kinetic energies
of the relative motion. The variable p can be taken in the example as angles under which
the decay products are emitted.

We consider the amplitude

〈ΛE,p|e− i
 hHtΥ〉 (9.20)

for the transition of the normalized H0-eigenstate Υ into the orthogonal continuum
normalized H0-eigenstates ΛE,p to lowest order in the interaction Hint and expand for

this purpose e− i
 hHt into a Taylor series in tHint. We extract the coefficients of the series

by repeated differentiation from the relation

∂λe
A(λ) =

∫1

0

dz ezA(λ) ∂λA e(1−z)A(λ) . (9.21)

One proves this relation by expansion of both sides

∑

n

1

n!

n−1∑

l=0

An−l−1(∂λA)Al =
∑

k

1

k !

∑

l

1

l !

∫

dz zk (1− z)lAk (∂λA)Al (9.22)

with the combinatorial formula

∫1

0

dz zk (1− z)l =
k ! l !

(k+ l+ 1)!
. (9.23)

If we expand the time evolution operator e− i
 hHt with respect to tHint using (9.21), the

transition amplitude vanishes to lowest order and is given up to terms of higher order
by

〈ΛE,p|e− i
 hHtΥ〉 = −

i
 h
t〈ΛE,p|HintΥ〉

∫1

0

dz e− i
 hztEe− i

 h (1−z)tE0 + . . . . (9.24)
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Here we have employed the H0-eigenvalue equations.
In this order of approximation the reproduction of Υ from the decay products and the

interaction of the decay products is not taken into account.
The z-integration gives

〈ΛE,p|e− i
 hHtΥ〉 = 〈ΛE,p|HintΥ〉

e− i
 hEt − e− i

 hE0t

E − E0
+ . . . . (9.25)

The probability of finding a state ΛE,p in the H0-energy range ∆ at the time t is de-
termined by the modulus squared of this amplitude and given to lowest order by

w(∆, t) =

∫

∆

dEdp |〈ΛE,p|HintΥ〉|2
sin2

(
t
 h

(E−E0)

2

)
(
E−E0
2

)2 (9.26)

Due to (B.3) one has for sufficiently large times approximately

w(∆, t)

t
=
2π

 h

∫

dEdp |〈ΛE,p|HintΥ〉|2δ(E− E0) . (9.27)

However, the limit t → ∞ must not be taken, since otherwise higher powers of tHint

cannot be neglected anymore. In particular the time t has to remain small as compared
to the lifetime of the decaying state: for larger times the probability of finding decay
products does not increase linearly with time. For small times t that are large enough
for the approximation (B.3) we interpret w(∆,t)

t
as the derivative −dw

dt
of the probability

of still finding the decaying state and read off the decay rate.

ΓGolden Rule = 2π

∫

dEdp |〈ΛE,p|HintΥ〉|2 δ(E− E0) (9.28)

The decay rate is composed additively of partial decay rates dΓ of various processes

dΓ = 2π δ(E− E0) |〈ΛE,p|HintΥ〉|2 dEdp . (9.29)

For this standard derivation of the Golden Rule the time t is sufficiently large, because
no quantum mechanical system can decay exponentially for small times (see section
(9.2)). In addition this time t is small against the lifetime τ. It is remarkable how
obediently this textbook derivation of the Golden Rule is accepted by students and
recited by lecturers. The assumptions on t exclude each other in the limit and errors
that one makes for intermediate times, which are both sufficiently large and sufficiently
small, are not easily estimated.

9.4 Decay into the continuum

One can solve the time evolution of the decaying state exactly in terms of integrals
without approximations. The Golden Rule arises in the limit of small and non-resonant
transition amplitudes.
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A general state is written with an expansion coefficient ψ0 = 〈Υ|Ψ〉 and a wave
function ψ(E, p) = 〈ΛE,p|Ψ〉 in the basis (9.17) as a linear combination

Ψ = Υψ0 +

∫

dEdpΛE,pψ(E, p) , ψ(E, p) = 0 for E < Emin . (9.30)

The probability w0(∆,Ψ) of finding the energy belonging to H0 in the open interval
∆ upon measuring Ψ amounts to

w0(∆,Ψ) =

{ ∫

∆
dEdp |ψ(E, p)|2 if E0 /∈ ∆

|ψ0|
2 +

∫

∆
dEdp |ψ(E, p)|2 if E0 ∈ ∆

. (9.31)

So the part Υψ0 contributes to the probability density of the energy a sharp line at E0,
which is sharper than any detector resolution ∆ and whose area amounts to |ψ0|

2.
The interaction Hint = H

†
int causes transitions from the normalized H0-eigenstate Υ

into the continuum and vice versa

HintΥ =

∫

dEdpΛE,p v(E, p) , HintΛE,p = v∗(E, p)Υ , (9.32)

v(E, p) = 〈ΛE,p|HintΥ〉 . (9.33)

The matrix elements 〈Υ|HintΥ〉 and 〈ΛE′,p′ |HintΛE,p〉 vanish in our computation. This
is no essential restriction, we can imagine such a part of the interaction to be absorbed
already in H0. Similarly, v(E, p) = 〈ΛE,p|HintΥ〉 vanishes for E < Emin.

The operator Hint is defined on Υ only if ‖HintΥ‖ < ∞.
∫

dEdp |v(E, p)|2 < ∞ (9.34)

No matter how small the amplitude v(E, p) is for transitions into the continuum, if
at an energy E1 it does not vanish for all p, there is no normalizable H-eigenstate with
this energy. For the equation (H− E1)Ψ = 0 determines the energy wave function

ψ(E, p) = −
v(E, p)

E − E1
ψ0 (9.35)

and the energy E1 by means of the gap equation

E1 − E0 = −

∫∞

Emin

dEdp
|v(E, p)|2

E − E1
. (9.36)

ψ(E, p) is a square integrable function only if
∫
dp |v(E1, p)|

2 vanishes.
If the interaction v(E, p) is sufficiently large, then there is a normalizable H-eigenstate

below the continuous energies, here v(E, p) vanishes, since the gap equation (9.36) has
for E1 < Emin exactly one solution, if

lim
ǫ→0+

∫∞

Emin

dEdp
|v(E, p)|2

E− Emin + ǫ
≥ E0 − Emin (9.37)
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Namely, the left side of (9.36) is a monotonically increasing function of E1 and the right
side decreases monotonically. In addition for strongly negative E1 the left side of (9.36)
is smaller than the right, for E1 = Emin the left side is larger than the right, if the
interaction v(E, p) is sufficiently large.

We now investigate the time evolution of the state Ψ(t) = e− i
 hHtΥ, which was prepared

at the time t = 0 as a normalized eigenstate Υ of the unperturbed Hamiltonian H0. The
amplitude a(t) for finding the initial state in a measurement at the time t is the matrix
element

a(t) = 〈Υ|e− i
 hHtΥ〉 . (9.38)

We use the theorem of residues and represent e− i
 hHt as an integral along a curve Γ which

surrounds the spectrum in the complex plane in the counter-clockwise direction.

e− i
 hHt =

1

2πi

∮

Γ

dz e− i
 htz

1

z−H
(9.39)

The formula can easily be verified with the theorem of residues in the case of a discrete
spectrum HΛn = EnΛn with Ψ(0) =

∑
nΛnψn

1

2πi

∑

n

∮

Γ

dz e− i
 hzt

1

z−H
Λnψn =

=
1

2πi

∑

n

∮

Γ

dz e− i
 hzt

1

z− En
Λnψn =

∑

n

Λnψne− i
 hEnt

and holds also for a continuous spectrum.
The negative resolvent (z − H)−1 can be written as a geometric series. Namely, one

has for operators A and V, provided A and A− V are invertible,

(A− V)−1 = (A(1−A−1V))−1 = (1−A−1V)−1A−1 =

∞∑

n=0

(A−1V)nA−1 (9.40)

on states on which the series converges. We thus write

1

z−H
=

1

z−H0 −Hint

=

∞∑

n=0

( 1

z−H0
Hint

)n 1

z−H0
. (9.41)

The powers of (z − H0)
−1Hint are easily applied to Υ, since Υ is eigenstate of ((z −

H0)
−1Hint)

2. With the notation

|V(E)|2 =

∫

dp |v(E, p)|2 (9.42)

one has

1

z−H0
HintΥ =

∫

dEdpΛE,p
v(E, p)

z− E
(9.43)

( 1

z−H0
Hint

)2
Υ =

1

z− E0

∫

dE
|V(E)|2

z− E
Υ . (9.44)
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Hence, to the matrix element 〈Υ|(z−H)−1Υ〉 only the even powers of (z−H0)
−1Hint

contribute.

〈Υ|
1

z−H
Υ〉 =

∑

n

( 1

z− E0

∫

dE
|V(E)|2

z− E

)n 1

z− E0

=
(
z− E0 −

∫

dE
|V(E)|2

z− E

)−1
(9.45)

For a(t) it then follows due to (9.38) and (9.39)

a(t) =
1

2πi

∮

Γ

dz e− i
 hzt

1

z− E0 +
∫
dE |V(E)|2

E−z

. (9.46)

We choose the path of integration Γ around the spectrum in the counter-clockwise
direction such that we traverse with fixed imaginary part ǫ > 0 the points z = x + iǫ
from x = ∞ to x = −∞ and then the points z = x − iǫ from x = −∞ to x = ∞. Then
the complex path integral is the difference of two integrals along the real axis.

The integral does not depend on ǫ and we evaluate it in the limit ǫ→ 0+.

a(t) = lim
ǫ→0+

i

2π

∫∞

−∞

dx
(
e− i

 ht(x+iǫ) 1

x + iǫ− E0 +
∫
dE |V(E)|2

E−x−iǫ

− (ǫ→ −ǫ)
)

(9.47)

As shown in appendix A, the denominator

f(x) = x + iǫ− E0 +

∫

dE
|V(E)|2

E − x − iǫ
(9.48)

tends in the limit ǫ→ 0+ to

f(x) = x− E0 + −

∫

dE′
|V(E′ + x)|2

E′
+ iπ|V(x)|2 , (9.49)

where −
∫

denotes the principal value integral. The denominator f does not vanish if V(x)

is small enough such that no bound state exists, which solves the gap-equation (9.36).
The second contribution to a(t) which is obtained with ǫ replaced by −ǫ yields the

complex conjugate denominator f∗. Therefore the integrand is of the form

e− i
 htx
(1
f

−
1

f∗

)
= e− i

 htx
(f∗ − f

ff∗

)
(9.50)

and a(t) is of the form

a(t) =

∫

dE e− i
 hEt|F(E)|2 (9.51)

F(E) =
V(E)

E− E0 + −
∫

dE′ |V(E′+E)|2

E′ + iπ|V(E)|2
. (9.52)
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Due to the coupling to the continuum the decaying state is no longer an energy
eigenstate, but a resonance similar to the Lorentz resonance, because for small transition
amplitude V(E), F(E) is nearly the function FLorentz(E) given in (9.6). The deviations
from the Lorentz resonance lead to deviations from the exponential decay.

In the denominator of F(E) the real part dominates

f(E) = E− E0 + −

∫

dE′
|V(E′ + E)|2

E′
(9.53)

except in the small neighbourhood of the root Ê of f(E). The numerator V(E) eliminates
the unphysical aspects of the Lorentz resonance. It ensures that the energy wave function
vanishes for E < Emin and improves the high energy behaviour, such that HΥ has finite
norm. Then there exist the expactation value 〈H〉 and the uncertainty ∆H, however,
these quantities depend on the behaviour of V(E) for E 6= Ê and need not coincide with
the resonance energy and the width.

If in the neighbourhood of the root of f(E) the imaginary part of the denominator
of F(E) does not vary strongly, we can approximate it there by π|V(Ê)|2 and obtain
approximately

F(E) ≈ V(Ê)

(E− Ê)(1+ ∂Ê −
∫

dE′ |V(E′+Ê)|2

E′ ) + iπ|V(Ê)|2
(9.54)

with the resonance energy Ê, which is defined implicitly by the gap equation f(Ê) = 0,
and the width

Γ =
2π

∫
dp |v(Ê, p)|2

1+ ∂Ê −
∫

dE′dp |v(E′+Ê,p)|2

E′

. (9.55)

To lowest order this is the Golden Rule.

ΓGolden Rule = 2π

∫

dEdp δ(E− Ê) |〈ΛE,p|HintΥ〉|2 (9.56)

The decay rate of a state, which decays by transitions into a continuum of energy states,
is a 2π-multiple of the integral of the square modulus of the transition amplitude v(Ê, p)
at the resonance energy Ê times a delta function for the conservation of energy. More
exactly, equation (9.52) shows that the decaying state is not an energy eigenstate but a
resonance similar to the Lorentz resonance.

This derivation of the Golden Rule shows that an exact computation of the transition
amplitude 〈ΛE,p|HintΥ〉 at higher order in perturbation theory is to be supplemented by
an exact computation of the time behaviour of the decaying state. The Golden Rule is
valid to lowest order of the transition amplitude.

The approximation (9.54) assumes not only that V(E) is small, but also that V(E) is
smooth and is not by itself a Lorentz resonance with resonance energy E1 and width Γ1.
Otherwise the denominator f(E1) ≈ (E1 − E0) in (9.52) suppresses the contribution of
the resonance at E1 to be sure, but if the width Γ1 is small against 2π|V(Ê)|2, first the
state Υ decays quickly as a resonance with energy Ê up to a small, longer living remnant
of the resonance with energy E1 and width Γ1.
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9.5 General validity

In (9.51,9.52) we have computed in full generality the amplitude for some normalized
state Ψ(t), which as a wave packet is composed of continuous energy eigenstates, to
coincide with the state Ψ(0). Namely, let the normalized initial state Υ = Ψ(0) be
composed of continuous energy eigenstates of the Hamiltonian H. The projector

P = |Υ〉〈Υ| , P2 = P , 1 = P + (1− P) , (9.57)

is used in the definition of the unperturbed Hamiltonian

H0 = PHP + (1− P)H(1− P) . (9.58)

The state Υ = PΥ is a normalized eigenstate of H0

H0Υ = PHPΥ = Υ〈Υ|HΥ〉 = E0Υ (9.59)

with eigenvalue E0 = 〈Υ|HΥ〉, which lies in the continuum of the eigenvalues of H0.
The interaction

Hint = H−H0 = PH(1 − P) + (1− P)HP (9.60)

makes transitions from Υ to states orthogonal to it.
So every state Υ and every Hamiltonian H with continuous spectrum satisfy the as-

sumptions we made in section (9.4). By choice of the arbitrary state Υ the function F(E)
in (9.51) with the restrictions F(E) = 0 for E < Emin and

∫
dE |F(E)|2 = 1 can be chosen

arbitrarily. Therefore the amplitude usually does not decrease exponentially.
The state decreases exponentially if the amplitude v(E, p) for the decay into the con-

tinuum of the decay products is small and does not show resonant behaviour by itself.

9.6 Decay of moving particles

In relativistic quantum mechanics the Hamiltonian H = cP0 is a component of the four-
momentum. To Lorentz transformations Λ, which satisfy Λ00 ≥ 1 and thus do not
reverse the time direction, there correspond unitary operators U(Λ) which represent the
Lorentz transformations on states with integral spin.

U(Λ2Λ1) = U(Λ2)U(Λ1) (9.61)

For half-integral spin and for Lorentz transformations which reverse the time direction
the situation is more involved [3, chapter 2]: time reversal can only be realized as an
antiunitary transformation and on states with half integer spin the universal covering
group SL(2,C) of the Lorentz group is represented. These complications do not matter
here, however.

The unitary transformations generate time direction preserving Lorentz transforma-
tions of the four-momenta

U−1(Λ)PmU(Λ) = ΛmnP
n . (9.62)
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Hence, applied to a four-momentum eigenstate Φp with PmΦp = pmΦp, U(Λ) gives an
eigenstate with Lorentz transformed four-momentum.

PmU(Λ)Φp = U(Λ)ΛmnP
nΦp = Λmnp

nU(Λ)Φp (9.63)

For decaying particles which move with velocity v it follows from this that their lifetime
τv is increased by time dilation.

τv =
1√
1− v2

c2

τ0 (9.64)

The relation is not mathematically exact due to quantum mechanical reasons. Strictly
speaking, a particle at rest cannot be prepared, to this there would correspond a constant
and thus non-normalizable position wave function. If in order to keep the localization
energy small one works with wave functions which are constant in a large domain and
go to zero outside the domain, a Lorentz transformed observer sees the state in this
large domain before and after a long period of time. If the idealization that the state
decays exponentially has already been made, then for a Lorentz transformed observer
there corresponds to this decay a wave function which increases exponentially in the
opposite direction of motion of the particle. One encounters similar difficulties if one
wants to describe a decaying state as a momentum eigenstate and as an eigenstate of a
non-hermitean Hamiltonian. If the energy has a negative imaginary part, the Lorentz
transformed state has a complex momentum eigenvalue. The corresponding wave func-
tion then increases exponentially in some direction.

If one considers wave packets and works with normalized states, the amplitude a(t)

(9.4) is time-dependent already for stable particles. This is because wave packets of free
massive particles spread in time since they are composed of parts with different momenta
and thus different velocities. Apart from this the amplitude

〈Ψv(0)|Ψv(t)〉 (9.65)

of a state moving with velocity v is time-dependent simply because it moves with velocity
v and thus overlaps less and less with the wave packet at time t. In order to determine
the amplitude of the state to still be present at the time t for a nearly monochromatic
wave packet, Ψv(t), one therefore has to compare with the state e− i

 h
~P~vtΨv(0) shifted by

x = vt (5.26).

av(t) = 〈e− i
 h

~P~vtΨv(0)|Ψv(t)〉 = 〈Ψv(0)|e
i
 h

~P~vte− i
 hHtΨv(0)〉 (9.66)

One obtains the states Ψv moving with velocity v from states Ψ0 at rest, they are
eigenstates of the spatial momentum ~PΨ0 = 0, by means of the unitary transformation

Ψv = U(Λ(v))Ψ0 , (9.67)

which belongs to the rotation-free Lorentz transformation Λ(v), for instance

Λ(v) =




1√
1− v2

c2

(
1 v

c
v
c
1

)

1

1


 (9.68)
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for a state moving in x-direction. Ψv is no momentum eigenstate if Ψ0 is unstable, since
Ψ0 is no energy eigenstate.

If we insert (9.67) into (9.66) and employ (9.62), it follows with um = (ct,−vt, 0, 0)

〈Ψ0|U−1e− i
 humP

m

UΨ0〉 = 〈Ψ0|e− i
 humU

−1PmUΨ0〉 = 〈Ψ0|e− i
 humΛ

m
nP

n

Ψ0〉 (9.69)

From umΛ
m
nP
n =

√
1− v2

c2
tcP0 and cP0 = H we finally obtain

av(t) = 〈Ψ0|e− i
 h

√
1− v2

c2
tH
Ψ0〉 = a0(

√
1−

v2

c2
t) . (9.70)

So the moving particle decays more slowly than the one at rest. If the probability of
survival of the particle at rest decreases exponentially with a lifetime τ, i.e. if |a0(t)|

2 =

e− t
τ , then one has for the moving particle |av(t)|

2 = e−

√
1− v

2

c2
t

τ . So it has a lifetime of

τv =
τ√
1− v2

c2

. (9.71)

There is no universal answer to the question whether the acceleration influences the
lifetime or whether quantum mechanical particles are ideal clocks and measure the length
of the world line. One has to expect that the kind of acceleration is essential. For example
a magnetic field changes the energy differences of atomic levels. Therefore acceleration
in a magnetic field changes the rates of clocks which measure the time by counting
atomic transitions. If one brings to mind that the notion of proper time makes use of
the localization of the clock on a world line, but that such a localization at different
times contradicts quantum mechanics, one realizes that already the question whether
quantum mechanical clocks measure the length along a world line is problematic.
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A limǫ→0+ 1
x+iǫ = PV 1

x − iπδ(x)

In order to examine the limit limǫ→0+
1

x+iǫ
we apply 1

x+iǫ
= x−iǫ
x2+ǫ2

to a real test function
t(x).

The imaginary part is identified by substitution of variables.

∫

dx t(x)
−ǫ

x2 + ǫ2
= −

∫
dx

ǫ
t(ǫ
x

ǫ
)

1

1+
(
x
ǫ

)2 = −sign(ǫ)

∫

dx t(ǫx)
1

1+ x2

For continuous, bounded test functions t(x) this tends for ǫ→ 0+ to

−t(0)

∫
dx

1+ x2
= −π t(0) = −

∫

dx t(x)πδ(x) . (A.1)

The real part x
x2+ǫ2

is an odd function of x. Hence, applied to a test function t(x) which

decreases fast enough for large x, only the odd part xt̂(x) of the test function contributes.

t(x) − t(−x) = 2x t̂(x) (A.2)

∫

dx t(x)
x

x2 + ǫ2
=

∫

dx
1

2

xt(x) − xt(−x)

x2 + ǫ2
=

∫

dx
x2

ǫ2

1+ x2

ǫ2

t̂(x)

=

∫

dx t̂(x) − |ǫ|

∫

d
(x
ǫ

) 1

1+ x2

ǫ2

t̂(ǫ
(x
ǫ

)
)

=

∫

dx t̂(x) − |ǫ|

∫

dx
t̂(ǫx)

1 + x2
−−−→
ǫ→0

∫

dx t̂(x)

(A.3)

For differentiable test functions t, t̂ is continuously completed at x = 0 and assumes the
value dt

dx
there. The integral over t̂ is the principal value PV 1

x
integrated with a test

function t(x).

∫

dx
1

2

t(x) − t(−x)

x
= lim
ǫ→0+

(∫−ǫ

−∞

dx
t(x)

x
+

∫∞

+ǫ

dx
t(x)

x

)
= −

∫

dx
t(x)

x
(A.4)

This proves the assertion.

lim
ǫ→0+

1

x+ i ǫ
= PV

1

x
− iπδ(x) (A.5)



B limt→∞
sin2(tx)

tx2
= πδ(x)

The integral with a test function f(x) is written as

∫

dx f(x)
sin2(tx)

tx2
=

∫

tdx f(
tx

t
)

sin2 tx

(tx)2
=

∫

dx f(
x

t
)

sin2 x

x2
(B.1)

and, if f is a continuous and bounded test function, it tends for t→ ∞ to

f(0)

∫

dx
sin2 x

x2
= f(0)π . (B.2)

So one has

lim
t→∞

sin2(tx)

tx2
= πδ(x) . (B.3)



C Remark on Fourier transformation

Fourier transformations map square integrable functions ψ unitarily to square integrable
functions ψ̃

ψ̃(x) =

∫
dy√
2π

eixyψ(y) , ψ(x) =

∫
dy√
2π

e−ixyψ̃(y) , (C.1)

because the scalar product

∫

dx φ̃∗(x)ψ̃(x) =

∫

dydy′
dx

2π
e−ixyeixy′

φ∗(y)ψ(y′) (C.2)

coincides due to (5.50) with the original scalar product
∫
dyφ∗(y)ψ(y). Because of

˜̃
f(x) = f(−x) a Fourier transformation repeated four times leads back to the original
function f. Since the Fourier transformation is unitary, it can only have eigenvalues
λ with absolute value 1 which moreover satisfy λ4 = 1. So the possible eigenvalues
are ±1,±i. If one decomposes a function f = g + u into an even g(x) = g(−x) and
an odd u(x) = −u(−x) part, one can write f as a sum of four eigenfunctions under
Fourier transformations with eigenvalues ±1,±i: g = 1/2(g + g̃) + 1/2(g − g̃) and
u = 1/2(u− iũ) + 1/2(u+ iũ).

It is therefore not exceptional that Fourier transformations map a function such as
the Gauß function to itself.



D Derivative of the determinant

The determinant of a matrix M is a polynomial function of the matrix elements Mi
j.

From its definition
detM = ǫi1i2...inM

i1
1M

i2
2 . . .M

in
n (D.1)

it follows by differentiation that

∂ detM

∂Mi
j

= ǫi1,...,ij−1, i ,ij+1,...inM
i1
1 . . .M

ij−1
j−1M

ij+1
j+1 . . .M

in
n . (D.2)

If one multiplies this derivative with Mi
l and sums over i, one obtains again the de-

terminant, if l = j. In all other cases l 6= j one obtains zero, since in the sum with the
ε-tensor Mil

l already occurs and since ǫ is totally antisymmetric. These observations
suffice to identify the derivative ∂detM

∂Mi
j

.

∂ detM

∂Mi
j

= detM(M−1)ji (D.3)

Together with the chain rule one obtains the derivative of the determinant of matrices
M(α) which depend on a parameter

∂α detM(α) = detM(M−1)ji ∂αM
i
j . (D.4)

If for α = 0 the matrix is M(0) = 1, as in one-parameter matrix groups, then the
derivative of the determinant at α = 0 is the trace of the differentiated matrix ∂αM|α=0

∂α detM|α=0
= 1 · δij ∂αMi

j|α=0
= ∂αM

i
i|α=0

= tr ∂αM|α=0
. (D.5)
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