- 58) $\operatorname{\mathbf{div}} \overset{\rightarrow}{?} = \operatorname{Quellenst\"{a}rke}$
- (a) Die Erde (M,R) hat \approx konstante Massendichte $\rho_{\rm M}=$? Die Kraft auf eine Probemasse m im Erdinneren bestimmen wir "mal schnell" aus ${\rm div}\,\vec{K}=-4\pi\gamma m\rho_{\rm M}$ mittels Ansatz $\vec{K}=(xf\,,\,yf\,,\,zf\,)$ (es hätte doch wohl niemand etwas anderes angesetzt $\not\in$), f-Dgl und Variation der Konstanten: $\vec{K}_{\rm innen}=$? Zur Kontrolle: folgt $\vec{K}_{\rm innen}$ auch aus unserem Ü.47-Resultat $V=-\frac{\gamma mM}{R}\left(\frac{3}{2}-\frac{r^2}{2R^2}\right)$?
- (b) Inmitten des Stillen Ozeans wurde (für alle z) ein zylindersymmetrisches Quellenfeld realisiert: $\operatorname{div} \vec{v} = g(\rho)$. Ansatz $\stackrel{!}{=}$ wirbelfrei. Ein bestimmtes Integral noch enthaltend (aber per Argument keine Konstante mehr): $\vec{v}(\vec{r}) = ?$ Auch zu speziell $g(\rho) = \alpha \, \delta(\rho R)$ läßt sich $\vec{v}(\vec{r})$ in geschlossener Form angeben.
- (c) Sie haben soeben das elektrische Feld eines homogen geladenen Hohlzylinders ermittelt, denn nach Maxwell, div $\overrightarrow{E} = \rho_L/\varepsilon_0$, brauchen wir nur \overrightarrow{v} als \overrightarrow{E} zu lesen. Welchen Wert hat α , wenn der Zylinder auf Höhenintervall h die Ladung Q trägt? (Vorübergehend heiße die Ladungsdichte ρ_L , um nicht mit ρ = Zylinderkoordinate zu verwechseln.)
- (d) Welches elektrostatisches Potential ϕ hat das \overrightarrow{E} -Feld von (c) im Außenraum? Welche Spannung U herrscht zwischen Zylinder und einem Punkt bei $\rho = R + d$? Es hat (wie wir aus (b) wissen) keinen Einfluß auf ϕ , wenn wir dort (bei R + d) einen zweiten Zylinder mit -Q pro h aufstellen, wo das elektrische Feld wieder "hineinströmt". Jetzt läßt sich die Kapazität C := Q/U = ? eines Zylinderkondensators angeben ! Bei $d \to 0$ sollte C in ε_0 · Zylindermantel-Fläche/d übergehen. Ist es so ?
- 59) Vertikaler dicker Leitungsdraht

Noch einmal zur Rotation — aber gleich mit Maxwell (Statik) unterm Arm: $\operatorname{rot} \overrightarrow{B} = \overrightarrow{\jmath}/(\varepsilon_0 c^2)$. Ganz anders als in Übung 55 (b) zeigen jetzt die Wirbel nach oben, $\overrightarrow{\jmath} = f(\rho)\overrightarrow{e}_3$, während \overrightarrow{B} ... — sich von Ihnen einen Ansatz wünscht (quellenfrei natürlich). Eine Dgl für eine von ρ abhängende Funktion bleibt zu lösen und eine Konstante per Argument festzulegen. Fließt ein bekannter Strom I durch einen vertikalen Hohldraht (R) nach oben, so ist $f(\rho) = (\operatorname{Faktor}?) \cdot \delta(\rho - R)$ und gibt $\overrightarrow{B} = (\operatorname{Funktion} \operatorname{von} \rho ?) \cdot \theta(\rho - R) \cdot \overrightarrow{e}_?$.

- (a) Auch mit der Einbettung $\chi(r) = \frac{1}{\varepsilon + r}$ läßt sich obiger Zusammenhang gut nachweisen. Zuletzt ist dabei per $\int d^3r \dots$ eine neue $\delta(\vec{r})$ -Darstellung dingfest zu machen.
- (b) Wenn wir in 2D leben würden, dann wäre $\Delta_2 = \partial_x^2 + \partial_y^2$ unser Laplacian. Wir hätten $\Delta_2 f(r) \stackrel{?}{=} \frac{1}{r} \partial_r r \partial_r f(r)$ zu zeigen (tun!) und uns an das Coulomb-Potential $\sim \ln(r)$ zu gewöhnen, denn daß $\Delta_2 \ln(r)$ eine Null gibt (eine mit $? \not> >$), sehen wir im Kopf.
- (c) Wir erwarten, daß $\Delta_2 \ln(r) = \lambda \, \delta(\vec{r})$ gilt. Um den Faktor λ zu ergründen, sind Sie nun frei (endlich mal!), Ihre eigene Einbettung zu erfinden.