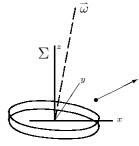
22) Rotierende Raumstation

Astronauten möchten die Winkelgeschwindigkeit $\vec{\omega} = \omega \vec{e}$ ihrer ringförmigen Station ermitteln. Sie schießen dazu ab Ursprung = Zentrum eine Leuchtkugel ins All und beobachten ihren Ort:



 $\vec{r}'(t) = v_0 t \begin{pmatrix} \sqrt{2}(c+s) \\ 1+c-s \\ 1-c+s \end{pmatrix} \quad \text{mit} \quad \begin{array}{c} c = \cos(\omega t) \\ s = \sin(\omega t) \end{array}$

Daß es sich bei ω um den Betrag der gesuchten Winkelge—schwindigkeit handelt, ist den Leuten sofort klar. Sie beginnen jedoch darüber zu streiten, ob die Entfernung der Kugel etwas mit ω zu tun hat.

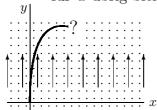
- (a) Nanu, so etwas erledigt sich doch durch Ausrechnen: $|\vec{r}'| = ?$
- (b) Die Achsen des körperfesten Systems Σ' der Station mögen zu t=0 mit jenen des skizzierten Inertialsystems Σ zusammenfallen. Zu $\vec{r}'=D\vec{r}$ wissen wir Dreierlei. 1. In Σ hat die Leuchtkugel konstante Geschwindigkeit, so daß $\vec{r}=v_0\,t\,\vec{a}$ gilt mit zeitlich konstantem (und dim.losem) Vektor \vec{a} . 2. $D=c\,1+(1-c)\,\vec{e}\circ\vec{e}-s\,\vec{e}\times 3$. In der Gleichung $\vec{r}'=D\vec{r}$ ist (nach beidseitigem Streichen von $v_0\,t$) Koeffizientenvergleich möglich: Terme mit c müssen sich kompensieren, ebenso Terme mit s und ebenso Terme ohne c oder s \curvearrowright welche drei Gleichungen? $\vec{e}=?$
- (c) Achse \vec{e} und Drehwinkel ωt bekannt welche neun Elemente hat also die Drehmatrix D? Sp(D) = ? Stehen z.B. der zweite und der dritte Spaltenvektor wirklich senkrecht aufeinander?
- (d) Nun kann \vec{a} auf zwei Weisen erhalten werden, via $D^T \vec{r}'$ oder aus den drei Gln. bei (b). Wählen Sie den bequemer erscheinenden Weg. Ist $|\vec{r}| = |\vec{r}'|$ erfüllt?

23) Nebelkammer — q in \overrightarrow{B} mit v^2 -Reibung

Wenn ein Proton im Magnetfeld durch Gas fliegt, dürfte Reibungskraft $\sim -v^2$ einigermaßen realistisch sein. Wir setzen also $\vec{F} = -m\lambda v\vec{v}$. Nur und genau diese Abwandlung erfährt nun der Text von Übung 17) (b). ER für $\vec{v}(t)$, Ansatz und Lösung $\vec{v}(t) = ?$ Mit der 17)–(b)–Lösung als "Fahrplan" wird die Angelegenheit recht einfach.

Ein geladenes Teilchen $(q, m, \text{zu } t = 0 \text{ bei } \vec{r}(0) = \vec{0} \text{ mit } \vec{v}(0) = \vec{0})$ erlebt ein Magnetfeld $\vec{B} = (0, 0, B)$ und ein elektrisches Feld $\vec{E} = (0, E, 0)$ (E und B positiv konstant).

(a) Zuerst notieren wir natürlich den ER für \vec{v} . Durch Abspalten eines konstanten Vektors \vec{a} kann nun per $\vec{v} = \vec{u} + \vec{a}$ zu einer neuen unbekannten Vektorfunktion $\vec{u}(t)$ übergegangen werden. Wir bestimmen \vec{a} so, daß ein möglichst einfacher ER für \vec{u} übrig bleibt, nämlich? Lösung $\vec{u}(t) = ?$ — und folglich $\vec{v}(t) = ?$



(b) Durch komponentenweises Aufleiten erhalten wir auch $\vec{r}(t)$. In Parameterdarstellung (Parameter t) ist damit die in der xy-Ebene liegende Bahnkurve des Teilchens bekannt. Sie soll grob qualitativ skizziert werden (Überraschung?!). Zu welchen Zeiten t_n berührt das Teilchen die x-Achse?

2