(S.6)

(S.11)

Die lokalen Eichtransformationen ($U = N \times N$ -Matrix)

$$U = e^{-ig\Lambda^a(x)T^a}$$
 , Λ^a reell , $U^{\dagger}U = 1$ \Rightarrow $T = T^{\dagger}$, (S.1)

eines N-komponentigen Spinors (darum U unitär), deren $n = N^2 - 1$ Gereratoren T spurfrei sind, bilden eine (kontinuierliche, nicht-abelsche Lie-) Gruppe (n = ihre Dimension):

$$a = 1, \dots, n$$
 , $\operatorname{Sp}(T^a) = 0$ \Rightarrow $\det(U) = e^{\operatorname{Sp}[\ln(U)]} = 1$ (S.2)

Jenes S in SU(N) steht für special und dieses für det(U) = 1.

Beispiel: zu N=3, n=8 und $T^a=:\lambda^a/2$ wählt Gell-Mann (1962)

$$\lambda^{1,2,3} = \begin{pmatrix} \sigma^{1,2,3} & 0 \\ 0 & 0 & 0 \end{pmatrix} \ , \ \lambda^{4,5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\substack{\sigma^{1,2} \text{ in} \\ \text{die Ecken}}} \ , \ \lambda^{6,7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \ , \ \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \ .$$

Zu positiv-definitem $U \implies U =: e^A$ gilt das vorletzte Gleichheitszeichen in (S.2) allgemein, denn

$$\partial_x \det \left(e^{xA} \right) = \underbrace{\varepsilon_{j_1...j_N}}_{ \left\{ \left(A e^{xA} \right)_{1j_1} \left(e^{xA} \right)_{2j_2} \cdot \ldots \right.} + \underbrace{\left(e^{xA} \right)_{1j_1} \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left\{ \left(A e^{xA} \right)_{1j_1} \left(e^{xA} \right)_{2j_2} \cdot \ldots \right.} + \ldots = \underbrace{A_{11} \varepsilon_{j_1...j_N} \left(e^{xA} \right)_{1j_1} \left(e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left\{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.} + \ldots = \underbrace{A_{11} \varepsilon_{j_1...j_N} \left(e^{xA} \right)_{1j_1} \left(e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.} + \ldots = \underbrace{A_{11} \varepsilon_{j_1...j_N} \left(e^{xA} \right)_{1j_1} \left(e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.} + \underbrace{A_{11} \varepsilon_{j_1...j_N} \left(e^{xA} \right)_{1j_1} \left(e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A e^{xA} \right)_{2j_2} \cdot \ldots \right.}_{ \left(A e^{xA} \right)_{2j_2} \cdot \ldots \left(A$$

Eine geeigete Orthonormierung (in

fundamentaler, d.h. $N \times N$ -Darstellung) ist

$$\mathrm{Sp}\left(T^{a}T^{b}\right) = \frac{1}{2}\,\delta^{ab} \quad . \tag{S.3}$$

Damit Anwenden zweier U's eine neues U ergibt,

müssen die Generatoren unter Kommutation schließen: $T^a, T^b = i f^{abc} T^c$. (S.4)

Die Strukturkonstanten f sind total antisymmetrisch (weil (S.3), (S.4) auf $f^{abc} = -2i \operatorname{Sp} \left(\left[T^a, T^b \right] T^c \right)$ führen). Beispiel: N = 2, n = 3, $T^a = \sigma^a/2$, $f^{abc} = \epsilon^{abc}$.

Die genannten T-Eigenschaften haben eigenwillige Relationen zur Folge. Eine beliebige hermitesche $N \times N$ -Matrix M läßt sich nach 1 und T^a entwickeln, $M = m_0 \cdot 1 + m_a \cdot T^a$, und die Koeffizienten m folgen durch Bilden von $\mathrm{Sp}(M)$ und $\mathrm{Sp}(MT^a)$ zu $m_0 = \mathrm{Sp}(M)/N$, $m_a = 2\mathrm{Sp}(MT^a)$. Also ist

 $2\operatorname{Sp}(MT^a)T^a = M - \operatorname{Sp}(M)/N , d.h.$

$$2(T^{a})^{\alpha}{}_{\beta}(T^{a})^{\gamma}{}_{\rho}M^{\rho}{}_{\gamma} = \delta^{\alpha}{}_{\rho}\delta^{\gamma}{}_{\beta}M^{\rho}{}_{\gamma} - \frac{1}{N}\delta^{\alpha}{}_{\beta}\delta^{\gamma}{}_{\rho}M^{\rho}{}_{\gamma} , \Rightarrow (T^{a})^{\alpha}{}_{\beta}(T^{a})^{\gamma}{}_{\rho} = \frac{1}{2}\left(\delta^{\alpha}{}_{\rho}\delta^{\gamma}{}_{\beta} - \frac{1}{N}\delta^{\alpha}{}_{\beta}\delta^{\gamma}{}_{\rho}\right) . \quad (S.5)$$

Zu N = 2 $(n = 3, T^a = \sigma^a/2)$ geht (S.5)

über in
$$(\sigma^a)^{\alpha}{}_{\beta}(\sigma^a)^{\gamma}{}_{\rho} = 2\delta^{\alpha}{}_{\rho}\delta^{\gamma}{}_{\beta} - \delta^{\alpha}{}_{\beta}\delta^{\gamma}{}_{\rho}$$
: $\vec{\sigma}_1 \cdot \vec{\sigma}_2 = 2P_{12} - 1$.

Zu $\beta = \gamma$ und Summation

entsteht aus (S.5)

$$T^a T^a = \frac{N}{2} - \frac{1}{2N} = \frac{n}{2N} =: C_F$$
 (S.7)

Multipliziert man (S.5) mit $(T^b)^{\beta}_{\ \gamma}$ und

summiert über
$$\beta, \gamma$$
, dann folgt wegen $\operatorname{Sp}(T^b) = 0$, daß $T^a T^b T^a = -\frac{1}{2N} T^b$. (S.8)

(S.8) und (S.7) geben schließlich
$$T^a T^b T^a T^b = -\frac{n}{4N^2} = -\frac{1}{4} + \frac{1}{4N^2}$$
 (S.9)

Alle Summenregeln für die Strukturkonstanten f lassen sich dadurch beweisen, daß man sie mittels (S.4) in T-Gleichungen überführt und dann (S.2), (S.3) und/oder (S.5) bis (S.9) verwendet – oder auch die Jacobi-Identität [A,B], C] + [B,C], A] + [C,A], B = 0 . (S.10)

$$[A,D], C] + [[D,C], A] + [[C,A], D] = 0.$$
 (5.10)

Beispielsweise klärt sich $f^{acd}f^{cdb}=N\delta^{ab}$, $N=:C_A$, folgendermaßen auf, wobei zunächst (S.4) , später (S.9) und (S.7) herangezogen werden :

$$T^{a}\left(\text{S.11}\right)T^{b} = -\left[T^{c}, T^{d}\right]\left[T^{c}, T^{d}\right] = -2T^{c}T^{d}T^{c}T^{d} + 2T^{c}T^{d}T^{d}T^{c} = \frac{n}{2N^{2}} + 2\left(\frac{n}{2N}\right)^{2} = \frac{n}{2}.$$
(S.11) hilft dann bei der Herleitung von
$$(T^{a})_{10}(T^{b})_{04}f^{abc}(T^{c})_{23} = \frac{i}{2}N(T^{a})_{14}(T^{a})_{23},$$

nämlich wie folgt. Da f^{abc} in a,b antisymmetrisch, ist Ersetzung $(T^a)_{10}(T^b)_{04} \rightarrow \frac{1}{2} [T^a,T^b]$ erlaubt, ergo l.h.s. von $(S.12) = \frac{1}{2}if^{abd}T^d_{14}f^{abc}T^c_{23} = \frac{1}{2}iT^d_{14}N\delta^{dc}T^c_{23}$, qed.

Aufgrund von (S.10) gilt im übrigen
$$f^{ab\bullet}f^{\bullet cd} + f^{bc\bullet}f^{\bullet ad} + f^{ca\bullet}f^{\bullet bd} = 0 , \qquad (S.13)$$

und mit (S.13) wiederum sieht man ein, daß die f^{rsa}/i – mit r,s als Matrix–Indizes verstanden – die Beziehung (S.4) erfüllen: adjungierte Darstellung $(n \times n)$. Manchmal ist es übrigens recht gescheit, sich die Bildung $f^{abc}A^bB^c$ mit $(A \times B)^a$ abzukürzen.

[Kurze (= kopierbare) Darstellungen finden sich in Cheng+Li Gauge theory of elementary particle physics (1984), Kapitel 4, und in DeWitt+Smith Field theory in particle physics (1986), Vol.1, Anhang C]