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We consider layers of filiform molecules which are aligned par-
allel to each other and parallel to the surface, where the orientation
changes from one layer to the next by a small angle, leading to a
screw structure. The polarizability of the molecules is anisotropic,
so this structure leads to a screw structure of the index of refrac-
tion. This ordering is found in cholesteric liquid crystals and in the
cuticles of some beetles.

Such layers reflect light similarly to layers with periodically
changing index of refraction, with the remarkable difference that
the reflected light is circularly polarized.

Calculation of the reflectivity

We assume that the surface is the plane z = 0 and that the ori-
entation of the molecules corresponds to a left-handed screw. The
anisotropy is described by a tensorial dielectric constant, which at
z = 0 is assumed to be given by

ϵ(0) =

 ϵ + δ 0 0
0 ϵ − δ 0
0 0 ϵ − δ

 (1)

where ϵ and δ have to be obtained from experimental data on the
refractive indices.
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The z-dependent rotation is described by the matrix cos(Kz) sin(Kz) 0
− sin(Kz) cos(Kz) 0

0 0 1

 (2)

with
K =

2π

H
, (3)

where H is the pitch of the “screw”. The dielectric permittivity ten-
sor at the coordinate z is then given by

ϵ(z) =

 ϵ + δ cos(2Kz) −δ sin(2Kz) 0
−δ sin(2Kz) ϵ − δ cos(2Kz) 0

0 0 ϵ − δ

 (4)

Starting point are Maxwell’s equations:

∇× E⃗ = −∂B⃗
∂t

(5)

∇× B⃗ = µµ0⃗ j + ϵϵ0µµ0
∂E⃗
∂t

(6)

∇ · E⃗ =
1

ϵϵ0
ρ (7)

∇ · B⃗ = 0 (8)

In the present case the charge density is zero, ρ = 0 as well as the
electric conductivity and the current density j⃗, in addition the mag-
netic susceptibility is µ = 1. This leads to simpler equations. With
the time derivative of Eq. (6) the magnetic field B⃗ is eliminated:

−∇× (∇× E⃗) = ϵϵ0µ0
∂2E⃗
∂t2
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With
∇× (∇× E⃗) = ∇(∇ · E⃗)−∇2E⃗

and assuming plane waves propagating in ±z-direction with time
dependence e−iωt, we obtain with ϵ0µ0 = 1/c2 and ω/c = k

∇2E⃗ + ϵk2E⃗ = 0 , (9)

or, written in components

∂2

∂z2 Ex + k2 [(ϵ + δ cos(2Kz))Ex − δ sin(2Kz)Ey
]

= 0

∂2

∂z2 Ey + k2 [−δ sin(2Kz)Ex + (ϵ − δ cos(2Kz))Ey
]

= 0
(10)

For numerical integration by the Runge-Kutta method, this pair
of differential equations is transformed by the introduction of new
variables

Px :=
1
k

∂Ex

∂z
, Py :=

1
k

∂Ey

∂z
(11)

to a set of four linear differential equations.

∂Px

∂z
= −k(ϵ + δ cos(2Kz))Ex + kδ sin(2Kz)Ey

∂Ex

∂z
= kPx

∂Py

∂z
= kδ sin(2Kz)Ex − k(ϵ − δ cos(2Kz))Ey

∂Ey

∂z
= kPy (12)

The quantities Ex, Ey are complex, but the real and imaginary parts
are not linked by the equations (12), the equations can be integrated
separately for the real and the imaginary parts. This is no longer the
case if absorption is accounted for which leads to an imaginary part
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of ϵ. However, numerical Runge-Kutta integration is still possible
without problems.

Behind the screwy layer, at z > L, a homogeneous isotropic
medium with refractive index n is assumed. For z ≥ L there can be
only an outgoing wave (moving in z-direction), but its polarization
in unknown. Therefore the computation is performed for two dif-
ferent polarizations of the outgoing wave; the choice of righthanded
and lefthanded circular polarization is most convenient:

E⃗(z ≥ L) = aeiϕ (⃗ex ∓ i⃗ey)eink(z−L) (13)

This yields the boundary conditions at z = L for the integration.
The integration is performed with negative stepsize from z = L

to z = 0 and yields the electric field and its derivative at the point
z = 0 for two linearly independent solutions of the set of equations,
i.e. two sets of numerical values for the quantities E1 . . . E4, P1 . . . P4,
where

Ex(z = 0) = E1 + iE2 , Ey(z = 0) = E3 + iE4 ,
Px(z = 0) = P1 + iP2 , Py(z = 0) = P3 + iP4 . (14)

In the region z < 0 right- and left-circular ingoing and outgoing
waves are to be specified, i.e the sum of the following four terms:
Ingoing righthanded:

(A1 + iA2)(⃗ex − i⃗ey)eikz (15)

ingoing lefthanded:

(B1 + iB2)(⃗ex + i⃗ey)eikz (16)

outgoing righthanded:

(C1 + iC2)(⃗ex + i⃗ey)e−ikz (17)
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Figure 1: Integration of the wave equation in a lefthanded helical medium. Inte-
gration goes from right to left, plotted is the real part of the wave at t = 0. Black
line: left-handed, light grey line: right-handed circular outgoing wave.

outgoing lefthanded:

(D1 + iD2)(⃗ex − i⃗ey)e−ikz (18)

From the continuity condition of E⃗ and ∂E⃗/∂z one gets eight equa-
tions from which the amplitudes A1 to D2 can be determined. The
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result is

A1 = 1
4(E1 + P2 + P3 − E4), A2 = 1

4(−P1 + E2 + E3 + P4),
B1 = 1

4(E1 + P2 − P3 + E4), B2 = 1
4(−P1 + E2 + E3 − P4),

C1 = 1
4(E1 − P2 + P3 + E4), C2 = 1

4(P1 + E2 − E3 + P4),
D1 = 1

4(E1 − P2 − P3 − E4), D2 = 1
4(P1 + E2 + E3 − P4).

(19)

Figure 2: Reflectivity of a lefthanded helical layer for unpolarized light. Pitch of
the helix: 357 nm, refractive indices: nparallel = 1.701, nperpendicular = 1.535, Thick-
ness of the layer is 2856 nm. The colour sample shows the computed colour in the
upper half, in the lower half the same colour with doubled brightness.
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In this way we obtain two different solutions which, however,
both contain left- and righthanded circular incoming waves (i.e.
both are polarized elliptically). From these we can form linear com-
binations where the incoming waves have definite handedness. We
first re-write the two solutions:

E⃗(1) =
(

A(1) (⃗ex − i⃗ey) + B(1) (⃗ex + i⃗ey)
)

eikz

+
(

C(1) (⃗ex + i⃗ey) + D(1) (⃗ex − i⃗ey)
)

e−ikz
(20)

with

A(1) = A(1)
1 + iA(1)

2 = |A(1)| eiα(1) , α(1) = arctan(A(1)
2 /A(1)

1 ) (21)

etc., and the same is done for the other solution. (The PostScript-
funktion atan needs two arguments and yields the angle in the
proper quadrant; in Fortran the corresponding function is atan2,
atan yields only angles between −π

2 and π
2 .)

Now the solution with left-circular ingoing wave is

E⃗lh = E⃗(1) − A(1)

A(2)
E⃗(2) (22)

and the right-circular one is

E⃗rh = E⃗(1) − B(1)

B(2)
E⃗(2) . (23)

The reflectivity for unpolarized light is the average of those ob-
tained for E⃗lh and E⃗rh.

In the same way linear polarization of the incoming waves can
be obtained; the average for unpolarized light remains the same.
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Generalization for inclined incidence

Let the x-z-plane be the plane of incidence. The wave vector of
the incoming wave is in the “vacuum” (air)

k⃗ = k(sin(θ), 0, cos(θ)) (24)

end the electric field has now a nonvanishing z-component. Equa-
tion (9), written in components, is now

∂2

∂x2 Ex +
∂2

∂z2 Ex + k2 [(ϵ + δ cos(2Kz))Ex − δ sin(2Kz)Ey
]
= 0

∂2

∂x2 Ey +
∂2

∂z2 Ey + k2 [−δ sin(2Kz)Ex + (ϵ − δ cos(2Kz))Ey
]
= 0

∂2

∂x2 Ez +
∂2

∂z2 Ez + k2(ϵ − δ)Ez = 0
(25)

At first glance, this seems to be much more complicated than eq.
(10), but that is not the case. The simple geometry and the boundary
conditions at z = 0 demand that the dependence of all quantities on
the coordinate x is given by the factor eikxx. The only consequence is
the replacement of ϵ by ϵ − sin2(θ) in the equations (10). The third
equation becomes

∂2

∂z2 Ez + k2(ϵ − δ − sin2(θ))Ez = 0 , (26)

which is immediately solved analytically.
The boundary conditions are now slightly more complicated.

For the wave outgoing into the substrate we write

A0(⃗ex cos(θ0)− e⃗z sin(θ0)∓ i⃗ey)eik0(cos(θ0)(z−L)+sin(θ0)x) (27)

with k0 = n0k and n0 sin(θ0) = sin(θ). The upper sign is for right
handed circular polarization.
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In the region z ≤ 0 four waves are superposed as before; in-
coming righthanded, incoming lefthanded, outgoing righthanded,
outgoing lefthanded. These are consecutively

(A1 + iA2)(cos(θ)⃗ex − sin(θ)⃗ez − i⃗ey)eik(sin(θ)x+cos(θ)z)

(B1 + iB2)(cos(θ)⃗ex − sin(θ)⃗ez + i⃗ey)eik(sin(θ)x+cos(θ)z)

(C1 + iC2)(cos(θ)⃗ex + sin(θ)⃗ez + i⃗ey)eik(sin(θ)x−cos(θ)z)

(D1 + iD2)(cos(θ)⃗ex + sin(θ)⃗ez − i⃗ey)eik(sin(θ)x−cos(θ)z)

(28)

From the continuity of the tangential components of E⃗ and H⃗
and of the normal components of D⃗ and B⃗ at the boundary at z =
L, x = 0 one gets

Ez = E0,z
n2

0
ϵ−δ = −A0

n0
ϵ−δ sin(θ)

Ex = A0 cos(θ0)
1
k (

∂Ex
∂z − ∂Ez

∂x ) = iA0n0
Ey = ∓iA0

1
k

∂Ey
∂z = ±A0n0 cos(θ0) .

(29)

These are the starting values for the integration of eqs. (25, 26). The
solution of (26) is

Ez(x, z) = −A0
n0

ϵ − δ
sin(θ)eik(sin(θ)x+

√
ϵ−δ−sin2(θ)(z−L)) , (30)

the other ones are integrated numerically as described in the previ-
ous section. Then, from the field strengths and their derivatives at
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z = 0 the following quantities are obtained

1
cos(θ)

Ex =: E1 + iE2

1
k

(
∂Ex

∂z
− ∂Ez

∂x

)
=: P1 + iP2

Ey =: E3 + iE4

1
k cos(θ)

∂Ey

∂z
=: P3 + iP4 .

(31)

These are continuous and one can obtain the amplitudes A1 to D2
from them. The result is the same as that given in equations (19),
and also the subsequent computations are identical.

Separation of the surface gloss from the remission of the volume

Objects which show colours due to helicoidal molecular order-
ing are samples of cholesteric liquid crystals and many beetles of
the superfamily Scarabaeoidea, in Central Europe mainly the flower
chafers Cetonia aurata and Protaetia cuprea.

In both cases the elongate molecules are approximately, but not
exactly parallel to the surface. While the reflection at the surface is
mirrorlike, the light reflected by the helicoidal structures in the vol-
ume is somewhat more diffuse. This makes it easy to discriminate
between surface gloss and the remission from deeper layers. In the
computation “ideal” conditions have been assumed, so that this dis-
tinction is not possible.

But the surface gloss can be eliminated, assuming in the region
z < 0 there is not vacuum, but instead a medium with refractive
index n =

√
ϵ, so to say putting a covering glass layer on top. The

angle θ, however, still refers to the waves in vaccuum or air. Instead
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Figure 3: Reflectivity of a lefthanded helicoidal layer for unpolarized light. Pitch
of the helix: 386.9 nm, refractive indices: nparallel = 1.6, nperpendicular = 1.5, thick-
ness of the layer is 4000 nm.

of equations (31) one now has to use

1
cos(θ0)

Ex =: E1 + iE2

1
n0k

(
∂Ex

∂z
− ∂Ez

∂x

)
=: P1 + iP2

Ey =: E3 + iE4

1
n0k cos(θ0)

∂Ey

∂z
=: P3 + iP4 .

(32)
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where
cos(θ0) =

√
1 − sin2(θ)/n2

0 . (33)

Figure 4: Reflectivity of a lefthanded helicoidal layer for unpolarized light. Pitch
of the helix: 386.9 nm, refractive indices: nparallel = 1.6, nperpendicular = 1.5, thick-
ness of the layer is 4000 nm. Surface gloss eliminated.


