
Gottfried Wilhelm Leibniz Universität Hannover
Institut für theoretische Physik

Bachelor Thesis
B.Sc. Physics

The Quantum Approximate Optimization
Algorithm and the Time-Dependent Variational

Principle

by
Leonhard Felix Richter

Student number: 10019579

Supervised by
Prof. Dr. Tobias J. Osborne

Hanover
26.01.2023

Contents

Contents i

List of Illustrations iii

Summary iv

1 Introduction to quantum algorithms 1
1.1 The Qubit . 1
1.2 Quantum gates . 4
1.3 Single qubit gates . 5
1.4 Multi-qubit gates and circuits . 7

2 Key concepts 10
2.1 The Quantum Approximate Optimization Algorithm (QAOA) 10

2.1.1 Underlying theorems . 10
2.1.2 The general principle . 12
2.1.3 QAOA for combinatorial optimization problems 15
2.1.4 Example: Maximum Cut Problem (Max-Cut) 19

2.2 The Time-Dependent Variational Principle (TDVP) 21
2.2.1 Real time evolution . 23
2.2.2 McLachlan minimal error principle 24
2.2.3 Imaginary time evolution . 26

3 TDVP-optimization of QAOA 28
3.1 The metric of QAOA . 28
3.2 The gradient of QAOA . 31

4 Numerical simulations 34
4.1 Methods . 35

4.1.1 Performance measures . 35
4.1.2 Effect size . 38
4.1.3 Remarks on the implementation 39

4.2 Results . 41
4.2.1 Quality comparison (Q1) . 41
4.2.2 Computational resources (Q2) . 45
4.2.3 Analysis of efficiency (Q3) . 46

5 Conclusion and outlook 58

i

A Proofs 61

B Differential geometry 66

References 70

ii

List of Illustrations

Figures
1.1 The Bloch sphere representation of a qubit 2

2.1 Example of Max-Cut . 20

4.1 Results of the approximation ratio . 48
4.2 Results of the expected approximation ratio 49
4.3 Results of the groundstate overlap . 50
4.4 Results of the groundstate sharpness . 51
4.5 Results of the gate count . 52
4.6 Results of the circuit count . 53
4.7 Results of the expected approximation ratio per circuit 54
4.8 Results of the path length . 55
4.9 Energy landscape of Max-Cut . 56
4.10 Energy landscape of Max-Cut . 57

B.1 The one-dimensional unit sphere S1 ⊂ C ∼= R2 68

Tables
4.1 Categories for the effect size . 39
4.2 The success ratios of each algorithm . 42
4.3 Effect size of the quality measures . 43
4.4 Effectsize of the resource measures . 45
4.5 Effectsize of the efficiency measures . 46

Summary

The idea of quantum computing was first proposed by Feynman and independently by
Benioff in the 1980s [1–3]. Since then, it has been picked up by many scientists and
especially over the last years it has also gotten large interest from industrial companies.
The current state of the art in the so-called noisy intermediate-scale quantum (NISQ) era
are hardware realizations with a low but growing number of qubits that are vulnerable to
noise and errors [4]. One field of practical applications is solving optimization problems
[5]. Among the more auspicious approaches to such problems are variational quantum
algorithms, which are hoped to be beneficial in the near future [6, 7]. A commonly used
variational algorithm is the Quantum Approximate Optimization Algorithm (QAOA),
first introduced by Farhi, Goldstone and Gutmann [8]. The QAOA and variants of
it have been tested extensively especially for the Maximum Cut (Max-Cut) problem,
which is a prominent example of a combinatorial optimization problem [9–27].

In this thesis, we extend the variants of the QAOA by utilizing the Time-Dependent
Variational Principle (TDVP) for the parameter optimization of QAOA. This optim-
ization approach recognizes the geometry of the accessible state space and promises
provably optimal parameter paths during the optimization process [28]. A method to
compute the metric and the gradient of QAOA by quantum circuits is being introduced,
a basic complexity result for this method is shown (Chapter 3) and the QAOA with
TDVP-optimization is simulated for several Max-Cut-instances (Chapter 4). The
simulation results of QAOA with the TDVP-optimization are being compared to those
of QAOA with the well-established Constrained Optimization BY Linear Approxima-
tion (COBYLA) [29–31] and with the standard gradient-descent (GD) for parameter
optimization.

In summary, the results confirm the TDVP to deliver slightly better results, while the
computational resources needed to achieve these results are significantly larger compared
to the two established algorithms. In comparison to the gradient descent, the results hint
that the TDVP takes a more efficient path and is less likely to shoot over the nearest
local minimum due to finite stepsizes.

Chapter 1 gives a short introduction to quantum algorihtms and Chapter 2 explains the
two central concepts concerned in this thesis. These concepts get combined in Chapter 3,
where a method to compute the metric of QAOA is introduced. Chapter 4 describes the
methods and results of numerical simulations.

iv

Chapter 1

Introduction to quantum
algorithms

There are different computational models for quantum computing. This thesis sorely
relies on the circuit model of quantum computation, which is briefly introduced in this
chapter. The notions of quantum bits (qubits), gates and measurements, as well as some
key differences to classical computation, are presented.

Although this text requires just minimal prior knowledge about quantum computing, it
is by far neither a complete nor a coherent introduction to the topic. For more details
and further reading, consider for instance Nielsen and Chuang [32] and de Wolf [33].

1.1 The Qubit
The goal of an algorithm is solving some computational problem. In order to perform
computations, information needs to be stored in some memory. In classical computation,
it is widely common to use bits for storing information. Mathematically a bit is not more
than a variable with exactly two possible values like x ∈ {0, 1}. Variables of this kind are
called binary, and the terms "bit" and "binary variable" are used equivalently. Given a
set of bits, a register, an algorithm changes its values according to some predefined rules
and their current value. After the algorithm is finished, the given values are its answer.

The quantum analog of a binary variable is a two-dimensional quantum state, called
qubit, represented as a vector in two-dimensional Hilbert space. Measurements in a
two-dimensional Hilbert space give one of two answers with certain probability. These
measurement outcomes can also be viewed as the two real eigenvalues of a 2×2 self-adjoint
matrix on C2. Thus, after a measurement was performed, a qubit gives a probability
distribution of a binary variable. However, before measurement, the quantum state
itself can take more than just two states, as quantum mechanics inherently allow for
superposition.

This is one of the main differences between classical and quantum computation. Even if
the variables obtained in measurements are classical and binary, the states with which
the computation is done are not classical and in a sense non-binary. The goal for the
rest of this section is to make this concept more precise.

1

1.1. THE QUBIT

Definition 1.1. Consider the two-dimensional Hilbert space H = C2, endowed with the
usual inner product 〈·|·〉 : : H × H → C; 〈φ, ψ〉 = 〈ψ|φ〉 =

∑2
j=1 ψ̄jφj. A qubit is a

two-dimensional quantum state described by some normalized vector ψ ∈ C2, ‖ψ‖ = 1.

Measurements of a qubit are represented by self-adjoint matrices A ∈ C2×2. The two
possible measurement outcomes are the two real eigenvalues of A. Here and in the
following, we follow Dirac’s bra-ket notation [34]. Denote the standard basis vectors

of C2 by |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
. Qubits, being described by vectors in C2, can be

written as linear combination

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1, (1.1)

where α, β ∈ C. These kinds of linear combinations are often referred to as superpositions
of the states |0〉 and |1〉. An example for a superposition state is 1/

√
3 |0〉 +

√
2/
√
3 |1〉.

When expanded in the eigenbasis of the measurement matrix one can directly read
of useful information about measurement outcomes. The measurement of the above
superposition state will give 0 with a chance of (1/√3)2 = 1

3 and 1 with a chance of 2/3.
For a general superposition state as in (1.1), the probability for observing |0〉 is |α|2 and
for observing |1〉 is |β|2.1 It is worth emphasizing again, that the state generally does
not correspond to either of the two classical states 0 or 1 before measurement.

ϕ

θ

|+〉

|0〉

|1〉

|ψ〉

Figure 1.1: The Bloch sphere representation of a qubit

One very useful way to think about qubits is the Bloch sphere representation. As in
Equation (1.1) |α|2+|β|2 = 1 we can write |α|2 = αᾱ = cos (θ/2) and |β|2 = ββ̄ = sin (θ/2).
Thus, for α = |α|eiλ1 and β = |β|eiλ2 we can write any qubit state as

|ψ〉 = cos (θ/2) |0〉+ eiϕ sin (θ/2) |1〉 , (1.2)

where ϕ = λ2 − λ1, and we neglect a global phase factor eiλ1 as it is not detectable by
measurements. The numbers ϕ ∈ [0, 2π) and θ ∈ [0, π) can be interpreted as spherical

1Here "probability for observing |0〉" means the expectation value of the projection |0〉 〈0|, i.e. |〈0|ψ〉|2

2

1.1. THE QUBIT

coordinates of a point on a unit sphere: the Bloch sphere. In Figure 1.1 a plot of the
Bloch sphere together with some important points is shown. The North Pole corresponds
to |0〉, the South Pole to |1〉. In between there are superpositions of those. For example
for θ = π/2 on the equator of the sphere, there are states with equal portions of |0〉 and
|1〉. They only differ in the phase difference ϕ. For ϕ = 0 in the front, there is the state

|+〉 := 1√
2
(|0〉+ |1〉) (1.3)

and on the opposite side (not drawn) for ϕ = π is the state

|−〉 := 1√
2
(|0〉 − |1〉) . (1.4)

These states form another basis of C2 known as the Hadamard basis.

It is a common misconception that qubits can somehow store more information than
classical bits because they have infinitely many possible states. Unfortunately, this is not
true. Every information that can be observed lies in the results of measurements, which
are classical. "We cannot ’see’ a superposition itself, but only classical states."[33, p. 3]

This implies that only one qubit will hardly suffice. Serious algorithms certainly need more
than one qubit. While the experimental realization of many connected qubits is one of
the biggest challenges quantum computing is facing at the moment [35], the mathematical
description of interactions of qubits, is the same as for general composed quantum systems.
Multi-qubit systems are mathematically described by the corresponding tensor product of
the single-qubit Hilbert spaces. For n qubits we get the Hilbert space H =

(
C2

)⊗n ∼= C2n .
Note that the complex dimension 2n grows exponentially with a rising number of qubits.

Take for example n = 2. Then, the Hilbert space describing the multi-qubit system is(
C2

)⊗2 ∼= C4 and for example one state is given by |0〉 ⊗ |1〉 =: |01〉. It describes a state
of a two-qubit system, where the first qubit is in state |0〉 and the second qubit is in
state |1〉. In the standard notation for vectors, it is written as

(
1
0

)
⊗
(
0
1

)
=

1 ·
(
0
1

)
0 ·

(
0
1

)
 =

0
1
0
0

 (1.5)

and builds one of the standard basis vectors of C4. In general for {|e0〉 , |e1〉} being a
basis of C2,

{|ej1 . . . ejn〉 | jk ∈ {0, 1} ∀k ∈ {1, . . . , n}} (1.6)

is a basis of
(
C2

)⊗n. So in the example above {|00〉 , |01〉 , |10〉 , |11〉} is a basis. Note
that the labels of the states look very much like binary counting. Indeed, the label of the
m-th basis state will be the binary representation of m with n−m leading zeros. This
basis is referred to as the computational basis.

3

1.2. QUANTUM GATES

1.2 Quantum gates
The ability to save and read information does not suffice for computation in the quantum
circuit model. Algorithms also need a controllable way to alter qubits. As we have
mathematically introduced qubits as vectors in a two-dimensional Hilbert space, the
natural objects to describe transformations of qubits are linear mappings defined on
this Hilbert space. A transformation of objects should preserve their defining properties,
so the selection of valid linear mappings is further restricted to the norm-preserving
ones. Norm-preserving linear mappings on finite vector spaces are represented by unitary
matrices. A square matrix U is unitary if U∗U = UU∗ = I, where (U∗)i,j := Uj,i is the
adjoint operator. The same applies to multi-qubit systems. Being invertible, unitary
matrices are the mathematical realization of reversibly changing the state of a qubit
system.

Definition 1.2 (Quantum gates). A quantum gate on n qubits is a unitary 2n × 2n

complex matrix. Especially for one and two-qubit systems, these matrices are often
referred to as n-qubit gate.

Quantum gates replace classical logic gates in quantum circuits. A quantum circuit
is essentially a synonym for just any unitary matrix and builds the main ingredient
in designing a quantum algorithm. The general procedure of quantum circuit-based
algorithms is as follows. Initially, the (multi-)qubit system is prepared in state |ψin〉.
Then a quantum circuit U (unitary operator) is applied to change the state of the system
to some output state |ψout〉 = U |ψin〉, which is being measured in the last step. The
measurement outcome is the result of the algorithm. The key to algorithm design is,
to find or construct a circuit that solves the desired computational problem encoded
in the initial state of the qubit system. One way to construct circuits is by composing
multiple well-known gates into one. In this context, composing quantum gates means
simple matrix multiplication of unitaries. The result will again be unitary because

(U1U2)
∗(U1U2) = U∗

2 U
∗
1U1︸ ︷︷ ︸
=I

U2 = U∗
2U2 = I, (1.7)

if U1 and U2 are unitary.

Note that in general, there is no difference between a "quantum gate" and a "quantum
circuit", as both are defined to be unitary operations. In practice, the difference comes
from the way they are constructed. "Quantum gates" are unitary operations that are
concretely defined and whose properties and actions on quantum states are well-known.
"Quantum circuits" on the other hand are unitary operations that are a priori not well-
known or that are designed for a specific purpose. Typically, a quantum circuit is viewed
as a sequence of quantum gates chosen from some fixed set. In this perspective, quantum
gates are the building blocks of quantum circuits. The distinction also comes from the
physical realization of quantum computers, where there is a technical limitation to which
unitaries may be applied directly.

4

1.3. SINGLE QUBIT GATES

1.3 Single qubit gates
In order to make use of the circuit model for quantum algorithms we need to know some
quantum gates to begin with.

The simplest gate is the identiy

I =

(
1 0
0 1

)
(1.8)

on H, which does only act trivially: I |ψ〉 = |ψ〉 ∀ψ ∈ H.

Often, quantum gates can be constructed by analogy to classical logic gates. Take for
example the logical NOT operation. It flips the value of a bit x from 0 to 1 and vice versa:
NOT(0) = 1, NOT(1) = 0. The quantum counterpart to NOT is called the X-gate and is
defined by

X =

(
0 1
1 0

)
. (1.9)

Note that the matrix representation of quantum gates is basis dependent. In this text
we exclusively refer to the computational basis {|0〉 , |1〉}. Direct computation shows:
X |0〉 = |1〉 and X |1〉 = |0〉, so on computational basis states X acts like classical NOT.
For arbitrary qubit states expanded in the computational basis, it swaps the amplitudes
of |0〉 and |1〉 by linearity:

X (α |0〉+ β |1〉) = α |1〉+ β |0〉 . (1.10)

Two other gates are called very similar: the Y -gate and the Z-gate.

Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(1.11)

On computational basis states, Y acts as follows. It adds a phase factor in addition to
swapping |0〉 and |1〉: Y |0〉 = i |1〉 , Y |1〉 = −i |0〉. This also changes the behavior for
arbitrary qubit states:

Y (α |0〉+ β |1〉) = i(α |1〉 − β |0〉). (1.12)

The Z-gate does not act noticeably on computational basis states at all. It will exclusively
flip the sign of the amplitude for |1〉 and leaves |0〉 invariant. For arbitrary qubit states
this results in:

Z(α |0〉+ β |1〉) = α |0〉 − β |1〉 . (1.13)

Note that the Z-gate swaps |−〉 and |+〉 just the way as X swaps |0〉 and |1〉. This is
an example of the basis dependency of the representations we choose. We could choose
the Hadamard states {|−〉 , |+〉} instead of {|0〉 , |1〉} as a basis and the roles of X and Z
would swap.

5

1.3. SINGLE QUBIT GATES

A more intuitive and visual description of these three gates becomes clear when exponen-
tiating them. Then we obtain the rotation matrices with angle θ around the x-, y- and
z-axis, respectively [32].

RX(ϑ) = e
−iϑX/2 = cos

(
ϑ

2

)
I− i sin

(
ϑ

2

)
X =

(
cos

(
ϑ
2

)
−i sin

(
ϑ
2

)
−i sin

(
ϑ
2

)
cos

(
ϑ
2

))
(1.14)

RY (ϑ) = e
−iϑY/2 = cos

(
ϑ

2

)
I− i sin

(
ϑ

2

)
Y =

(
cos

(
ϑ
2

)
− sin

(
ϑ
2

)
sin

(
ϑ
2

)
cos

(
ϑ
2

))
(1.15)

RZ(ϑ) = e
−iϑZ/2 = cos

(
ϑ

2

)
I− i sin

(
ϑ

2

)
Z =

(
e−iϑ/2 0

0 eiϑ/2

)
(1.16)

In fact, the gates RX(ϑ), RY (ϑ) and RZ(ϑ) map a qubit state with some representation
on the Bloch sphere (Figure 1.1) to the qubit state corresponding to the point on the
Bloch sphere that is rotated by the angle ϑ about the respective axis [32]. The gates X,
Y and Z are special cases of these for ϑ = π and therefore act like 180°-rotations in the
Bloch sphere representation.

X, Y and Z are commonly known as the Pauli matrices and written as σx, σy and σz in
physics and mathematics. Being 180°-rotations means, that applying them twice is just
the identity. This can also be seen by their definitions as direct calculations show, that
the Pauli matrices are both self-adjoint and unitary. On the other hand, products of two
distinct Pauli matrices σj , σk for j 6= k show another structure. Then, the Pauli matrices
do not commute but form the Pauli algebra characterized by the commutator relation

[σj , σk] = 2i

3∑
l=0

εj,k,lσk, j, k ∈ {0, 1, 2, 3} , (1.17)

where σ0 := I and εj,k,l is the Levi-Civita symbol. Note the similarity to the commutator
relation of rotational momenta Lj , j = 0, 1, 2, 3 in classical mechanics, where

[Lj , Lk] =

3∑
l=0

εj,k,lLk for j, k ∈ {0, 1, 2, 3} . (1.18)

Another very important single qubit gate is the Hadamard gate H. It is defined as

H =
1√
2

(
1 1
1 −1

)
(1.19)

and acts like a change of basis from the computational basis to the Hadamard basis. For
example, when acting on computational basis states, it creates superposition states [32]:

H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉 (1.20)

6

1.4. MULTI-QUBIT GATES AND CIRCUITS

H |1〉 = 1√
2
(|0〉 − |1〉) = |−〉 . (1.21)

On the other hand, when acting on a Hadamard state it turns back to a computational
basis state:

H |+〉 = |0〉 (1.22)
H |−〉 = |1〉 . (1.23)

In the same way, as for the Pauli matrices, the Hadamard gate is self-adjoint and unitary
so H2 = I. It can also be visualized on the Bloch sphere as a 90° rotation around the y
axis followed by a 180° rotation around the x axis [32].

1.4 Multi-qubit gates and circuits
A single qubit operation U on the j-th qubit of an n-qubit system is given by

Uj := I⊗(n−j) ⊗ U ⊗ I⊗n. (1.24)

However, there is not only the possibility to act on each qubit individually, but there are
also quantum gates that act non-trivially on more than one qubit at the time. One of
such is the controlled-not gate CNOT. It acts on two qubits, called the control qubit and
the target qubit. On computational basis states, depending on the state of the control
qubit, the target qubit is flipped or not:

CNOT |c, t〉 = |c, t⊕ c〉 , (1.25)

where ⊕ denotes addition mod 1. The corresponding matrix representation

CNOT =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

 (1.26)

is unitary and hence CNOT is a quantum gate. It may seem like the control qubit is always
left invariant by this gate. However, this is not the case for superposition states. For
example in the Hadamard basis, the role of control and target qubit get swapped entirely
[32]. By a direct calculation, the action of CNOT can be viewed as computing the parity
of the qubits. For computational basis states the target qubit is set either to 0 or to 1,
depending on whether both qubits are in the same state or not.

At this point, it is convenient to introduce a visual notation for quantum circuits. Each
qubit corresponds to a horizontal line.

|x1〉 ⊗ |x2〉 ⊗ |x3〉 =
|x1〉
|x2〉
|x3〉

(1.27)

7

1.4. MULTI-QUBIT GATES AND CIRCUITS

Qubit regesiters, i.e. collections |x1〉 ⊗ · · · ⊗ |xn〉 of a possibly large number of qubits,
are often drawn as

.|x1〉 ⊗ · · · ⊗ |xn〉 (1.28)

A sequence U4U3U2U1 |x〉 of gates applied one after the other is drawn from left to right.

|x〉 U1 U2 U3 U4
(1.29)

Controlled gates are drawn by vertical lines between the control and target qubits. For
example, the CNOT-gate is drawn as

|c〉

|t〉 .

Another two-qubit gate is the SWAP-gate. As its name suggests, it simply swaps the states
of the two qubits it acts on: SWAP |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉. Its matrix representation is

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (1.30)

and it is drawn as

= (1.31)

in quantum circuit diagrams, where we have used that SWAP can be decomposed
into three CNOT gates [32]. While swapping of qubits is possible, creating a copy of an
arbitrary unkown qubit state in a unitary way is proven to be impossible. This result is
known as the "No-Cloning-Theorem" and demonstrates that quantum computing works
fundamentally different compared to classical computation [32].

In Section 2.1, we need a two-qubit version of the single qubit rotation gates (1.14)–(1.16).
They are defined as the exponential of a double Pauli matrix like Z ⊗ Z,

RZZ(θ) = e
−iθZ⊗Z/2 =

(
RZ(θ) 0

0 RZ(−θ)

)
=

e−iθ/2 0 0 0

0 eiθ/2 0 0

0 0 eiθ/2 0

0 0 0 e−iθ/2

, (1.32)

where we used block-matrix notation. RXX and RY Y are defined analougusly as the
exponential of X ⊗ X and Y ⊗ Y . These gates can be represented by a single qubit

8

1.4. MULTI-QUBIT GATES AND CIRCUITS

rotation and two CNOT gates as a phase factor is applied only depending on the parity of
the two qubits [32].

RZZ (θ) =
RZ (θ)

(1.33)

There are also three-qubit gates. For example the Toffoli-gate

.
(1.34)

On computational basis states, it flips the third qubit exactly when the first and the second
qubit are in state |1〉. Its most significance lies in its ability to simulate any reversible
classical computation, proving that quantum circuits can perform any computation that
classical computational models can perform [32].

Note that the SWAP-gate as well as the RXX , RY Y and RZZ gates can be composed
by CNOT-gates and single qubit rotations (Equations (1.31) and (1.33)). As discussed in
Section 1.2, this kind of decomposition into a set of well-known gates that are available
on hardware is an important concept. This lead to the question of how many and which
different building blocks are necessary to construct every unitary matrix, i.e. every
circuit. In classical computation one single operation, the classical Toffoli gate, already
suffices for this task [36]. Such a set of operations is called universal. In quantum
computation, arbitrary single qubit gates together with the CNOT-gate suffice to construct
every quantum circuit [37]. Thus, the set {RX , RY , CNOT} forms a universal family of
quantum gates as two rotation matrices allow for arbitrary single-qubit unitaries [32]. In
this thesis, the available gates are assumed to be at least single qubit rotations RX , RY ,
RZ and CNOT.

9

Chapter 2

Key concepts

Building on the background on quantum algorithms, given in Chapter 1, this chapter
discusses the two key concepts considered in this thesis. First, the central quantum
algorithm considered in the present work, namely the Quantum Approximate Optimization
Algorithm (QAOA) is explained in Section 2.1 in detail. Secondly, the Time-Dependent
Variational Principle is introduced in Section 2.2.

2.1 The Quantum Approximate Optimization Algorithm
(QAOA)

This section presents the Quantum Approximate Optimization Algorithm (QAOA) which
builds the center of this thesis. First, two theorems that serve as motivation for the
algorithm are presented in Section 2.1.1. In Section 2.1.2, the algorithm is explained from
a general perspective, while its most prominent application for combinatorial optimization
problems is discussed in Section 2.1.3. A concrete example is given by the Max-Cut
problem in Section 2.1.4. For further details on the QAOA, we refer to Farhi, Goldstone
and Gutmann [8] and Hadfield [12].

2.1.1 Underlying theorems

There are two theorems in quantum theory that are important for understanding QAOA.
The first one is about the dynamics of eigenspaces under "slow" time evolution. This
theorem is known as the quantum adiabatic theorem. The second theorem is called the
Lie product formula and generalizes the identity ex+y = exey for x, y ∈ R to operators
on Hilbert space.

The Adiabatic theorem considers a time dependent hamiltonian H(s) where the
time dependency is only due to scaled time s = t/T . t is the ordinary time parameter of
quantum time evolution, T > 0 some number and s is the fraction of time between the
initial time and T . The time-dependent Schrödinger equation then can be written with
respect to scaled time s in the form

i∂sψ(s) = TH(s)ψ(s). (2.1)

Denote the spectrum of the Hamiltonian H(s) by σ(s) for every s ∈ [0, 1]. Assume that
the set

{
(s, λ) ∈ R2

∣∣ s ∈ [0, 1] , λ ∈ σ(s)
}

has a region which is separated from the rest

10

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

of the spectrum by some spectral gap s 7→ g(s). The general statement of the adiabatic
theorem is that for large T a system governed by H(s) stays in the eigenspace of that
separated band with high probability. This means that the eigenspace of H(s) can be
approximated by the corresponding eigenspace of H(0) evolved by the time evolution
given by Equation (2.1). In the following, we approximate ground states of H(1) by
evolving ground states of H(0).

There are several precise formulations of the adiabatic theorem in quantum mechanics,
some being stronger than others. Here, we only state one of these theorems in order to
give a motivation for the QAOA. The subsequent theorem follows Jansen, Ruskai and
Seiler [38].

Theorem 2.1 (Adiabatic theorem). Denote the unitary time evolution given by (2.1)
by UT (s) and let H(s) be a twice continuously differentiable map from [0, 1] to bounded,
self-adjoint operators on a fixed domain. Let there be continuous real functions b+ and
b− and a number g > 0 such that

dist ({b+(s), b−(s)} , σ(s)) > g for s ∈ {0, 1} , (2.2)

where σ(s) is the spectrum of H(s) and dist (A,B) = infx∈A,y∈B (‖y − x‖) is the minimal
distance between two sets A,B ⊂ Rn. When P (s) is the projector on the separated band
σ(s) ∩ [b−(s), b+(s)] and PT (s) = UT (s)P (0)UT (s)

∗, then for ψ ∈ ImP (0)

〈UT (s)ψ|(I− P (s))UT (s)ψ〉 ∈ O(1/T 2) (2.3)
‖PT (s)− P (s)‖ ∈ O(1/T), (2.4)

where O(h) is the set of all functions f s.t. f(x) < ch(x), for x > x0, c ∈ R.

The main application of the adiabatic theorem in the context of quantum computing
is to consider some convex combination H(s) = (1 − s)HB + sHP . It is useful to
choose HB to be some simple Hamiltonian with exact knowledge of the spectrum
while HP is the Hamiltonian of interest with little to no knowledge of the spectrum or
eigenspaces. For example, HP could encode some kind of combinatorial optimization
problem (Section 2.1.3). In such scenarios, the adiabatic theorem provides an algorithm
to approximately compute the spectrum of HP and thereby find solutions to a given
combinatorial optimization problem [39–41].

The Lie product formula is the second basic result that motivates the QAOA. It
provides a way to make use of the adiabatic theorem on a universal quantum computer
with low circuit depth. Recall that a quantum algorithm is just some unitary matrix
U acting on a collection of input qubits and measuring some output qubits. For either
implementing this algorithm on quantum hardware or analyzing it in more detail we need
to rewrite it as a sequence of basic quantum gates like one or two-qubit Pauli-rotations
RX , RZ , RZZ , . . . (Chapter 1). Generally, this compilation has proven to be a hard
problem on its own [42]. In the case that the unitary is generated by a Hamiltonian

11

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

H = HB + HP and takes the form U = e−iH , the Lie product formula may help to
compile the circuit.

For the exponential on the reals, there is a simple identity for expanding such expressions:
ex+y = exey. In fact, this relation still holds for the matrix exponential in the case of
mutually commuting matrices A,B. Then eA+B = eAeB is true.1 However, for example
the Pauli matrices do not commute (Equation (1.17)), so that the exponential of their
sum does not split as nicely. In this case, the Lie-product formula provides at least an
approximate splitting.

Theorem 2.2 (Lie product formula). Let A,B ∈ Cn×n be two matrices. Then

eA+B = lim
p→∞

(eA/peB/p)p. (2.5)

Proof. A proof of a more general result for self-adjoint operators on Hilbert space is
given by Nielsen and Chuang [32, Theorem 4.3, p. 207].

The process of splitting a term like eA+B into (eA/peB/p)p for a finite p is commonly
called Trotterization, after the Lie-Trotter product formula, which is a generalization for
semigroups [43].

2.1.2 The general principle

Combining the adiabatic theorem (Theorem 2.1) and the Lie product formula (The-
orem 2.2) gives reason to formulate the QAOA. Despite the "Optimization" in the name
of the algorithm, we define the algorithm in the sense of finding ground states of a
given Hamiltonian first. This slightly more general formulation benefits in a better
understanding of the basic idea of the algorithm. In Section 2.1.3, we show how it can
be used as a quantum heuristics for solving combinatorial optimization problems.

As the adiabatic theorem formalizes, the main idea is to slowly shift from a well-
understood, simple Hamiltonian HB to the Hamiltonian HP , we are interested in. The
system is initially prepared in a ground state of HB. By shifting slowly enough towards
HP we hope that the system remains in a ground state ending up in a ground state of
HP , due to the adiabatic theorem.

Assume H(s) = (1−s)HB+sHP to have a finite minimal spectral gap g > 0 between the
instantaneous ground states of H(s) and the rest of its spectrum. We want to evaluate the
time evolution of the initial state |ψ0〉 under H(s). By the adiabatic theorem, e−isH(s) |ψ0〉
has big overlap with the eigenspace of the groundstate energy of H(s) for large enough T .
For s = 1 i.e. t = T , we get high overlap with the desired eigenspace of the groundstate
energy of HP [39, 40, 44].

1This is easily shown by using the Cauchy product and the binomial expansion of (A + B)n for
[A,B] = 0

12

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

This relies on slowly evolving under H(s), i.e. on T being large enough. What is regarded
as T being "large enuogh" depends on several factors, but is dominated by the minimal
spectral gap g [39].

There are so-called quantum annealers, which can perform such evolutions for certain
HP [45]. However, evolving continuously under a time-dependent Hamiltonian is not
possible on universal quantum computers.2 In order to implement the quantum adiabatic
approach on a universal quantum computer, we need to discretize it into a series of gates.
Therefore, we apply the Lie product forumla (Theorem 2.2). It approximates

e−isH(s) ≈
(
e−i (1−s)/pHBe−i s/pHP

)p
, (2.6)

for some p ∈ N, which serves as a motivation for considering

|β, γ〉p := U (p) (β, γ) |ψ0〉 := e−i βpHBe−i γpHP . . . e−i β1HBe−i γ1HP |ψ0〉 , (2.7)

where β, γ ∈ Rp. There is a lack of clarity in changing from the same (1 − s)/p and
s/p for all repetitions to different numbers βj and γj . Equation (2.6) only serves as
motivation to consider the following definition.

Definition 2.1. Let p ∈ N and

R2p 3 (β1, . . . , βp, γ1, . . . , γp) = δ ∼= (β, γ) ∈ (Rp)2. (2.8)

Denote the gates UP (γj) := e−iγHP and UB(βj) := e−iβHB as QAOA-gates and one pair
UB (βj)UP (γj) as a QAOA-block for 1 ≤ j ≤ p. The circuit

U (p) (δ) := U (p) (β, γ) := UB (βp)UP (γp) . . . UB (β1)UP (γ1) (2.9)

is called QAOA-circuit and δ, β and γ are called QAOA-parameters respectively. States
of the form

|ψp(δ)〉 := |β, γ〉p = U (p) (δ) |ψ0〉 (2.10)

are called QAOA-states.

The whole procedure can be illustrated as follows:

U (p) (β, γ)

. . .|ψ0〉 UP (γ1) UB (β1) UP (γp) UB (βp) |ψp(δ)〉 (2.11)

The remaining task is to choose suitable β and γ. The intuition is that each βj and
γj defines how fast the evolution should be at the given step. Recall that in order for

2Of course as e−isH(s) is unitary one can run it on a quantum computer for some fixed s. The problem
here is to change this s continuously.

13

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

the adiabatic theorem 2.1 to apply, the evolution should take place sufficiently "slow".
Wherever the spectral gap is small, the evolution should be especially slow to prevent
tunneling in an excited state. So on the one hand, the corresponding QAOA-parameters
need to be chosen accordingly. On the other hand, if all QAOA-parameters are very
small the last QAOA-parameters need to be very high in order to terminate at the
equivalence of s = 1. This would result in a high probability to tunnel in an excited
state. However, the spectrum of H(s) is unkown for s 6= 0 so suitable parameters need
to be determined by minimizing the energy expectation of the system prepared in the
QAOA-state. The optimal parameters in this sense are denoted by δ∗ = (β∗, γ∗) ∈ R2p,
which are yet to be found. Then, the state |β∗, γ∗〉 has ideally large overlap with the
eigenspace of the ground state energy of HP . Measuring it gives knowledge about ground
states of HP .

For the QAOA usually a classical optimization algorithm (optimizer) is used. There are
several of those, for example, the Constrained Optimization BY Linear Approximation
(COBYLA) [46]. The concrete function being optimized is the expectation

fp(β, γ) = p〈β, γ|HP |β, γ〉p (2.12)

of HP in state |β, γ〉p. In each optimization step of the optimizer the state |β, γ〉p gets
prepared and measured, repeatedly. As the probability for the measurement outcome
to be |x〉 is |〈x|β, γ〉p|

2, the repeated measurement allows sampling of the QAOA-state
|β, γ〉p [47]. Subsequently, the product p〈β, γ|HP |β, γ〉p can be estimated easily for
suitable HP . According to the optimizer, β and γ get adjusted and the whole process gets
repeated until some condition is met. Classical general-purpose optimization algorithms
usually do not respect the restriction of possible states to the ones parametrized by |β, γ〉p
properly. The classical optimizer may be substituted by a partly quantum algorithm
based on the Time-Dependent Variational Principle (Section 2.2). This is the approach
in this thesis.

But for now, define the QAOA in a compact way first. The general procedure is to
approximate the states that can be reached by evolving |ψ0〉 under e−isH(s) by the
parametrization given in Equation (2.7) and to find the ones with the lowest expectation
under HP . This is done by a suitable optimization algorithm. The only role of quantum
computing is boosting the evaluation of the expectation values by preparing the para-
metrized state on the quantum computer instead of doing long matrix multiplication.
This procedure will be summarized and properly defined in the subsequent definition,
following Hadfield et al. [47].

Definition 2.2 (QAOA). Given Hamiltonians HP and HB such that e−isHP and e−isHB
can be implemented efficiently, a groundstate |ψ0〉 of HB and some p ∈ N define for every
β, γ ∈ Rp the trial state |β, γ〉p like in Equation (2.7). Furthermore, let O be some classical
optimization algorithm, that given a function f : (Rp)2 → R, approximates the input
(β∗, γ∗) such that f (β∗, γ∗) is minimal: O (β, γ, f) = (β′, γ′) s.t. ‖(β∗, γ∗)− (β′, γ′)‖ < ε.
Then QAOA is defined as follows.

14

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

1. Initialize parameters β, γ.

2. (β′, γ′) = O (β, γ, fp), where fp is evaluated as follows:

(a) Prepare initial state |ψ0〉.

(b) Apply e−i βpHBe−i γpHP . . . e−i β1HBe−i γ1HP to prepare |β, γ〉p.

(c) Sample |β, γ〉p by repeating 2a, 2b and measurement.

(d) Compute and return expectation value fp(β, γ).

3. Sample |β′, γ′〉p by repeating 2a, 2b and measurement.

One may ask what benefit may lie in this procedure as in the end a classical optimizer is
used. Whether QAOA offers some provable complexity benefit over classical optimization
algorithms is still an open research question, but one possible benefit is the following.
The QAOA allows the computation of the expectation value p〈ψ|HC |ψ〉p of a given cost
function C using a quantum circuit. Furthermore, it reduces the domain of the cost
function handed over to the optimization algorithm from the Hilbert space H = C2n ∼= R4n

to a parameter set in R2p. For large n or small p respectively, this reduces the dimension
of the search space of the optimization algorithm. This comes at the cost of also reducing
the state space from H to some subset of states, that are given by Equation (2.7) for
some δ ∈ Rp. Only in the limit p→ ∞ the Trotterization can generate every vector in{
e−iH(s)

∣∣ s ∈ R
}

. So in general there is a trade-off between more accuracy for higher p
and a smaller search space for smaller p.

2.1.3 QAOA for combinatorial optimization problems

In the preceding Section 2.1.2 the general principle of QAOA is introduced in the context
of finding ground states of a given Hamiltonian. This section covers how this algorithm
can be used for solving combinatorial optimization problems.

Combinatorial optimization problems have a wide variety of applications and many
other problems can be reformulated in this form. Famous examples are the Traveling
Salesperson Problem (TSP), the Knapsack problem and the Maximum Cut problem
(Max-Cut). They all have in common that some function on a discrete domain should
be minimized.

Definition 2.3 (Combinatorial optimization problem).

• For each problem instance let S be the discrete set of feasible solutions and f : S → R

the cost function. Find x ∈ S such that f(x) is minimal.3

3Note that maximizing f is equivalent to minimizing −f , so maximization problems are also included
in this definition.

15

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

Problems of this kind are called combinatorial optimization problems. Denote an
optimal solution by x∗ with value f∗ = f (x∗).

• A binary combinatorial optimization problem is a combinatorial optimization prob-
lem, where S ⊂ {0, 1}n for some n ∈ N.

We focus on the latter. Every binary function f can be expressed in the form

f(x) = C +
∑
j

Cjxj +
∑
j,k

Cj,kxjxk +
∑
j,k,m

Cj,k,mxjxkxm + . . . (2.13)

and the coefficients C,Cj,k, Cj,k,m, . . . can be computed by Fourier transform [48]. Binary
functions that can be expressed as a polynomial like in Equation (2.13) with a degree
of at most 2 often suffice to model many interesting optimization problems in diverse
contexts and give rise to the following definition.

Definition 2.4 (Quadratic Unconstrained Binary Optimization (QUBO)). A Combin-
atorial Optimization Problem associated with a binary polynomial of degree at most 2 is
called Quadratic Unconstrained Binary Optimization (QUBO) problem.

Sometimes it is more convenient to avoid the binary polynomial in the form of Equa-
tion (2.13) and replace it by a symmetric (or upper triangular) matrix Q ∈ Rn×n

as
f(x) = xTQx+ C (x ∈ Rn) (2.14)

Thus, diagonal of Q consists of the linear coefficients Cj and the (non-zero) off-diagonal
elements correspond to the quadratic coefficients Cj,k (2 · Cj,k).

QAOA approximately solves combinatorial optimization problems with corresponding
cost function f . This can be achieved by using the algorithm to find a ground state of a
specific Hamiltonian Hf as described in Section 2.1.2. On computational basis states,
Hf is defined as the multiplication operator with f that "simulates" the cost function in
the sense that it acts like

Hf |x〉 = f(x) |x〉 (2.15)

on computational basis states |x〉. It is self-adjoint, since f is real valued.

Definition 2.5. For a function f : S → R denote the Hamiltonian satisfying Equa-
tion (2.15) by Hf and say Hf represents the function f .

By definition (2.15) ground states of Hf correspond to solutions x∗ minimizing f . For
example, for functions of the form (2.13), the Hamiltonian representing it is obtained by
exploiting the following Lemma due to Hadfield [12, 48].

Lemma 2.1. Let f, g be binary functions and x ∈ {0, 1} be a binary variable. Then, the
following identities hold:

16

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

(a) Hx 7→x = 1
2 (I− Z)

(b) Hx 7→¬x = 1
2 (I+ Z)

(c) Hλ2f+λ2g = λ1Hf + λ2Hg, λ1, λ2 ∈ R

Proof. See Hadfield [48].

This immediately allows the representation of QUBO functions when given explicitly in
terms of constant, linear and quadratic monomials.

Lemma 2.2. The Hamiltonian, which represents a binary polynomial

f (x) = C +
∑
j

Ljxj +
∑
j<k

Qj,kxjxk (2.16)

of degree 2, is given by

Hf = (C − L+Q)I− 1

2

∑
j

(Lj +Qj)Zj +
1

4

∑
j<k

Qj,kZjZk, (2.17)

where L =
∑

j Lj, Qj =
∑

k : k 6=j Qj,k and Q =
∑

j,kQj,k.

Proof. Substitute xj 7→ 1
2 (I− Zj) and expand the arising products (I − Zj)·(I − Zk).

Remark 2.5.1. The same procedure leads to similar expressions

Hf = C̃ +
∑
j

C̃jZj +
∑
j,k

C̃j,kZjZk +
∑
j,k,m

C̃j,k,mZjZkZm + . . . (2.18)

for general functions as in (2.13). But for sake of simplicity, we restrict to QUBO
functions.

For implementing QAOA the unitary evolution generated by Hf needs to be compiled
into a sequence of known quantum gates. The form of Hf given in Equation (2.17) allows
exactly that.

Lemma 2.3. Let f(x) = C +
∑

j Ljxj +
∑

j<kQj,kxjxk. Then

e−iγHf =
∏
j

RZ;j (−γCj)
∏
j,k

RZZ;j,k

(
1

4
γQj,k

)
, (2.19)

where again Cj = Lj + Qj = Lj +
∑

k : k 6=j Qj,k, RZ;j(ω) = e−iωZj/2 and RZZ;j,k(ω) =

e−iωZjZk/2 (Equation (1.24)).

17

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

Proof. Note that eA+B = eAeB for commuting matrices A and B. With this in mind
Equation (2.19) can be computed directly [32].

We still lack a concrete choice of HB (2.7) and |ψ0〉. The most basic and commonly used
possibility is

HB =
∑
j

Xj . (2.20)

Its ground state is of the Hadamard states

|ψ0〉 = |−〉 = 1√
2
n (|0〉 − |1〉)⊗ · · · ⊗ (|0〉 − |1〉) (2.21)

and the corresponding unitary evolution can be implemented by X-rotations on each
qubit:

e−iβHB =
∏
j

RX (2β) . (2.22)

Thus, together with Definition 2.2 we have given complete instructions for implementing
QAOA for apprxoimately solving combinatorial optimization problems including QUBO
problems. When considering the final state |ψp(δ′)〉 of QAOA as probability distribution

prob(x) =
∣∣〈x∣∣ψp(δ′)〉∣∣2 (2.23)

of classical bitstrings, the answer of the QAOA to the given problem is given by the
bitstring x1 with highest probability prob(x1). With these definitions and for the QUBO-
instance given by

Q =

1 2 0
2 0 3
0 3 4

 (2.24)

one QAOA-block UB (β)UP (γ) looks like

UP (γ) UB (β)

RZ (−1γ) RX (2β)

RZ (2 · γ/4) RX (2β)

RZ (−4γ) RZ (3 · γ/4) RX (2β) ,

(2.25)

where RZZ gates are implemented according to Equation (1.33).

Having explicit expressions for HB and HP another non-formal intuition for the QAOA
circuit can be given putting it in the perspective of another more general algorithm. Note

18

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

that the RX rotations create superposition states when acting on computational basis
states. Thus, following Hadfield et al. [47], e−iβHB is called a mixing-operator as it mixes
between |0〉 and |1〉. The RZ rotations on the other hand only change the phases of each
basis state in the superposition. By including the coefficients of the problem function
the separate rotations get weighted according to the function. Thus, following Hadfield
et al. [47], e−iγHP is called phase-separation operator as it separates the phases according
to penalty values given by the function of the problem. Then, the algorithm mixes the
qubits and weighs their amplitudes according to the cost function repeatedly.

This scheme can be generalized to arbitrary mixing and phase-separation unitaries,
possibly not generated by some Hamiltonian. According to Hadfield et al. [47], the
mixing unitaries just need to satisfy two conditions. Firstly, they need to "preserve
the feasibility" of the state and secondly, they need to "explore the feasible subspace".
The phase separators then just include the information about the cost function and not
about the constraints of the problem. By this, the algorithm stays within the subspace
of feasible solutions and potentially saves resources for problems with hard constraints.
This Quantum Alternating Operator Ansatz for constructing QAOA-like algorithms was
first introduced by Hadfield [12] and generalizes the original QAOA scheme.

To conclude this section, the following remark justifies the assumption that QAOA
actually solves problems.

Remark 2.5.2. When denoting the minimum of fp(β, γ) (2.12) by

Fp = min
β,γ

(
p〈β, γ|HP |β, γ〉p

)
= fp (β

∗, γ∗) (2.26)

it can be shown ([8, 12]) under minor assumptions that QAOA solves many combinatorial
optimization problems exactly in the sense that

lim
p→∞

Fp = f∗, (2.27)

where f∗ = minx∈S f(x) However, in practis, only fixed-p circuits can be implemented
and QAOA solves combinatorial optimization problems just approximately [12].

2.1.4 Example: Maximum Cut Problem (Max-Cut)

This section introduces the Maximum Cut (Max-Cut) problem, which is proven to be
NP-complete [49]. Already in the original paper by Farhi, Goldstone and Gutmann
[8], Max-Cut was the main example for demonstrating the performance of QAOA and
since then it has been tested extensively for the Max-Cut problem [9–27]. It is the main
application considered in this thesis. Beyond defining the problem, we show how the
instructions given in the preceding Section 2.1.3 may be applied to this problem.

Roughly speaking, Max-Cut addresses the problem of finding a cut in a graph that
passes as many edges as possible (see Figure 2.1). Each edge is allowed to be crossed

19

2.1. THE QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

3

4

1

2

5

Figure 2.1: An example of a labled graph. The colors of the nodes
correspond to a partitioning of the graph solving Max-Cut. Edges
connecting the two subsets are dashed. In red there is an illustration
of the "cut" corresponding to this partitioning.

only once and the cut must return to its starting point. Mathematically, an undirected
graph G = (V,E) consists of a finite set V of vertices4 and a set E of edges. Each vertex
is labeled by some number j ∈ N. Each edge e ∈ E connects two of such vertices j, k ∈ V
and is given by the labels of those vertices as e = jk := {j, k}. The graph is called
undirected, because the order of j and k does not matter and kj = {k, j} = {j, k} = jk
is the same edge. For two disjoint subsets V1, V2 ⊂ V , we say an edge jk ∈ E connects
V1 and V2, if either j ∈ V1 and k ∈ V2 or the other way around.

In Figure 2.1 there is an example of a graph G and a solution U to Max-Cut. With a
precise mathematical notion of graphs, we can now define the Max-Cut problem.

Definition 2.6 (Weighted Max-Cut). Let a graph G = (V,E) and weights wj,k ∈ R

for each j, k ∈ V , with wj,k = 0 for jk /∈ E be given. Find a partition of V into two
complementary sets V1 = U ⊆ V and V2 = V \ U such that the sum of all weights
associated with edges connecting the two subsets is being maximized, i.e. find a subset
U ⊆ V that realizes the minimum

max
U∈P(V)

∑
j∈U, k/∈U
j,k∈V

wj,k. (2.28)

An instance of weighted Max-Cut is given by a graph G = (V,E) and weights
{wj,k | j, k ∈ V, wj,k = 0 for jk /∈ E}.

The weights of the edges make the problem slightly more general. However, most of the
4also called "nodes"

20

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

time they are set to wj,k = 1 for all edges jk ∈ E. Then, the matrix (wj,k)j,k, called the
adjacency matrix, represents the graph by defining all of its edges. The adjacency matrix
of the graph in Figure 2.1 is given by

wj,k =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

. (2.29)

The Max-Cut problem is an example of binary combinatorial optimization problem.
Moreover, we have the following result.

Lemma 2.4 (QUBO formulation of Max-Cut). Solving a Max-Cut instance given by
G = (V,E) and weights {wj,k | j, k ∈ V, wj,k = 0, for jk /∈ E} may be done by solving a
corresponding QUBO problem, with QUBO matrix

(Qj,k)1≤j,k≤|V | , Qj,k =

{
wj,k (j 6= k)∑|V |

l=1wj,l (j = k)
. (2.30)

Proof. See Appendix A.

For example the QUBO-matrix of the graph in Figure 2.1 is given by

Q =

2 1 1 0 0
1 2 0 1 0
1 0 3 1 1
0 1 1 3 1
0 0 1 1 2

. (2.31)

The partition illustrated in Figure 2.1 is encoded by the binary string x = 10011 and its
cost is C(x) = 10, which is twice the number of edges connecting the two subsets.

Now, having formulated Max-Cut in terms of a QUBO cost function as in Equa-
tion (2.16), we can immediately make use of Lemma 2.2 and Lemma 2.3 in order to get
an appropriate problem Hamiltonian HP = HC and QAOA phase-separation unitary,
respectively. Thus, Lemma 2.4 gives all information needed to apply the QAOA on
Max-Cut-instances.

2.2 The Time-Dependent Variational Principle (TDVP)
A crucial choice in the QAOA approach is the subroutine optimizer O searching for the
optimal parameters β∗, γ∗ (Section 2.1.2). Commonly used optimization algorithms like

21

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

Constrained Optimization BY Linear Approximation (COBYLA)[50] or Sequential Least
SQuares Programming (SLSQP)[51] are applicable quite generally. This has the drawback
that they do not respect the structure of the QAOA. In particular, the geometry of the
QAOA-state space is usually neglected. An example is the standard gradient descent
(GD), attributed to Cauchy, who introduced the concept in 1847 first, and to Hadamard
(1908) [52–55]. It is defined iteravely by

δn+1 = δn −∆ · ∇f(δn) (n ∈ N ∪ {0}), (2.32)

where f(δ) is the function to be minimized, ∇f is the gradient of f and ∆ > 0 is some
fixed stepsize. It follows the opposite direction of the steepest increase in f , without
considering the structure of the QAOA-states producing f . This implies the risk of losing
the optimality of the chosen direction when the parameter dependence is restricted in
some sense, resulting in non-euclidean geometry. This is the case for the QAOA-manifold

Mp =
{
|β, γ〉p

∣∣∣ β, γ ∈ R2p
}

(2.33)

of QAOA-states (2.7), where the Trotterization (2.6) only approximates arbitrary states
for small p.

In this thesis we consider an optimization algorithm that is aware of the geometry of
the QAOA-submanifold Mp. This algorithm is based on a variational formulation of
the imaginary time evolution eitH reducing its evaluation to solving a set of ordinary
differential equations (ODEs) in parameter space. In some way, the algorithm presented
in this section resembles basic gradient descent (2.32), but respects the geometry of the
submanifold and thus is provably optimal [28].

This section introduces the Time-dependent variational principle (TDVP) in a general
setting as a variational formulation of the real and imaginary time evolution of paramet-
rized quantum states [56, 57]. In Chapter 3 we will show how to apply the algorithm
described here for QAOA including the evaluation of its crucial parts by quantum
circuits.

We begin in Section 2.2.1 by introducing the TDVP for real time evolution on a
parametrized submanifold of the entire Hilbert space first. In Section 2.2.2 we put it into
a geometric perspective showing its optimality by the Mc Lachlan minimal error principle.
This geometric perspective is applied to the imaginary time evolution in Section 2.2.3
deriving a set of ODEs very similar to those of real time evolution. These ODEs give
rise to the beforementioned optimization algorithm.

A short introduction to the mathematical notions used in this section is given in Ap-
pendix B. For further details, we refer to the literature [28, 56–61]. The proofs of several
Lemmas can be found in Appendix A.

22

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

2.2.1 Real time evolution

At first, the TDVP offers a variational formulation of real time evolution, which is defined
by the Time-Dependent Schrödinger Equation (TDSE)[<empty citation>]

d

dt
|ψ(t)〉 = −iH(t) |ψ(t)〉 (ψ(t) ∈ H). (2.34)

The TDSE is a partial differential equation given by some self-adjoint operator (the
Hamiltonian) H acting on the Hilbert space H. The TDVP considers this equation as
the solution to a variational problem, minimizing the action functional

S
[
ψ̄(t), ψ(t)

]
=

∫ t2

t1

L
(
ψ̄(t), ψ(t)

)
dt

L
(
ψ̄(t), ψ(t), t

)
=
i

2
〈ψ(t)|ψ̇(t)〉 − i

2
〈ψ̇(t)|ψ(t)〉 − 〈ψ(t)|H(t) |ψ(t)〉 ,

(2.35)

where L is called the Lagrangian and ψ̇ denotes the time derivative d
dtψ [28]. The

following Lemma formalizes that the TDSE can be derived by minimizing the action
functional S.

Lemma 2.5. A curve R 3 t 7→ ψ(t) ∈ H which extremalizes S as given in Equation (2.35),
solves the TDSE (2.34).

The above Lemma puts the equation governing time evolution in Quantum Mechanics
into the same perspective as in classical mechanics. However, of course, this does not
mean Quantum Mechanics is a classical theory. Introducing a Lagrangian has proven
worthy just not only in classical mechanics but also in many other theories.

Another reason for putting the TDSE into this perspective becomes clear when restricting
to a subset

M = {ψ(x) ∈ H | x ∈ Rn} ⊂ H (2.36)

of parametrized vectors. Requiring that x 7→ ψ(x) is an embedding makes M a n-
dimensional embedded submanifold of H, called the variational manifold. It is convenient
to assume that all vectors in M are normalized and thus define a unique pure quantum
state.

General Assumption. Assume all vectors in M to be normalized, i.e.

∀ψ ∈ M : ‖ψ‖ = 1

Note that in contrast to H, M does in general not carry vector space structure. However, it
inherits a symplectic structure from the inner product 〈·|·〉[58]. This has many implications
and roughly spoken means that M is a suitable manifold for many physical theories. For
example, classical Hamiltonian mechanics follow naturally from a symplectic structure

23

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

[62].
Another thing to point out is that the RHS of (2.34) is not an element of M as we cannot
assume that M is closed under H : H → H in general. This leads to the question of how
to define time evolution on M such that the evolved state stays in the variational manifold
M. While not being the same, the time evolution on M should at least approximate
the TDSE on H. This can be achieved by the TDVP in the same way as before. By
defining the time evolution via minimizing the Lagrangian under small variations inside
M it is assured that the time evolution restricts to M while following the same principle
as the TDSE does on the entire Hilbert space [28].

Lemma 2.6. Let M = {ψ (x) ∈ H | x ∈ Rn} be an embedded submanifold of H. Curves
R 3 t 7→ ψ (x(t)) ∈ M minimizing the action functional (2.35) when restricted to M
satisfy the following Euler-Lagrange equations:

ωj,kẋ(t)
k = −2Re

(
〈∂jψ (x(t))|H |ψ (x(t))〉

)
, (2.37)

where ∂j denotes ∂
∂xj

and ωj,k = 2 Im 〈∂jψ (x(t))|∂kψ (x(t))〉 is a symplectic structre on
M [58].

2.2.2 McLachlan minimal error principle

Solving Equation (2.37) for the curve x(t) with initial point x(0) = x0 gives the evolution
of ψ(x(t)) of the initial vector ψ0 = ψ(x0). Although this evolution follows from the
same action principle that leads to the ordinary real time evolution (2.34) on the Hilbert
space H, it is in general not clear whether there is a "better" choice of time evolution on
M. What we really want in the end is that the time evolution on M gives at any time
the change of x that results in a change of ψ(x) closest to the change given by the TDSE
of the vector ψ ∈ H. This change in full Hilbert space is given by −iH(t) |ψ(t)〉 as in
Equation (2.34). So the "best" possible time evolution on M ⊆ H should give a change
of state that is closest to −iH(t) |ψ(t)〉. When speaking of "changes" at a given point x,
we mean tangent vectors ψ 7→ ∂jψ(x) in the embedded tangent space Tψ(x)M ⊂ H. So
the "best" time evolution R 3 t 7→ ψ(x(t)) ∈ M should minimize the distance∥∥∥∥ d

dt
|ψ(x(t))〉 − (−iH) |ψ(x(t))〉

∥∥∥∥ (2.38)

at every given time t under the condition that d
dt |ψ(x(t))〉 ∈ Tψ(x(t))M. This is known as

the McLachlan minimal error principle, which admits a geometrical perspective [58, 63].

For some vector space V and a subset M ⊂ V finding the points y ∈M that minimize the
distance to a given point x ∈ V is known as the problem of finding best approximations
in Functional Analysis. In the case of V being a Hilbert space5 and M being a closed
subspace there is a theorem stating that for each x ∈ H there exists exactly one best

24

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

approximation y =: PM (x) ∈M ⊂ H [64, Theorem V.3.2]. Furthermore, PM (x) must
be the orthogonal projection of x onto M , meaning that [64, Lemma V.3.3]

∀z ∈M : Re(〈x− PM (x)|z〉) = 0. (2.39)

Choose a frame Vj of M by setting Vj(x) = ∂jψ(x) ∈ Tψ(x)M ⊂ H. Observe that the
inner product on H splits into a real and imaginary part,

〈Vj |Vk〉 =
1

2

(
2Re 〈Vj |Vk〉︸ ︷︷ ︸

=:gj,k

+i 2 Im 〈Vj |Vk〉︸ ︷︷ ︸
=ωj,k

)
. (2.40)

We already mentioned that ωj,k gives a symplectic structure to M in Lemma 2.6.
Analogously, its counterpart gj,k := 2Re 〈Vj |Vk〉 gives a Riemannian metric on M as it is
a real inner product on the tangent space.6

Now having M equipped with a metric, we can give an explicit form for the orthogonal
projection PTψM(φ) of φ ∈ H onto TψM ⊂ H following the constructions by Hackl et al.
[58]:

Pψ := PTψM = 2
∑
j,k

|Vj〉 gj,k Re 〈Vk| , (2.41)

where gj,k is the inverse of the metric gj,k, such that

gj,mgm,k =

{
1 if j = k

0 if j 6= k
. (2.42)

A direct computation verifies that indeed Re 〈φ− Pψ(φ)|ξ〉 = 0 for all ξ ∈ TψM.

Other than the action principle leading to Equation (2.37) the McLachlan minimal error
principle is by construction optimal. In some cases both principles are equivalent and
hence the real time evolution defined by Equation (2.37) is optimal, too. This equivalence
is precisely the case, if the variational manifold M has the Kähler property, i.e. when
J := g−1ω satisfies J2 = −id [58]. Another equivalent property is that all tangent spaces
TψM are not only real but also complex subspaces of H [58]. Haegeman, Mariën, Osborne
and Verstraete have shown that the variational manifolds of Matrix Product States, of
which the QAOA-manifold is a special case, are Kähler manifolds [59].

On the one hand, this justifies the definition of time evolution on a variational manifold
by analogy to the TDSE on full Hilbert space as in Section 2.2.1. On the other hand, by
putting the TDVP into a geometrical perspective, we can do the same projection (2.41)

5More generally, it is sufficient for V to be a uniformly convex Banach space, meaning that the
midpoint of two points on the unit sphere has some distance ε > 0 to the unit sphere. M needs to be
closed and convex in the general case.

6As M is just a real manifold, its tangent spaces Tψ(x)M are only real vector spaces in general,
meaning that an inner product needs to be a mapping to the reals. See Appendix B for more details.

25

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

for various objects other than −iH |ψ〉. This comes in especially handy in cases where
no action principle as in Equation (2.35) exists. This is the case for the imaginary time
evolution discussed in the next section [58].

2.2.3 Imaginary time evolution

In this section, we apply the observations about the real time evolution on submanifolds
of the Hilbert space, made in Section 2.2.2, to the imaginary time evolution. In its most
general form, real time evolution is defined as the action of the unitary one-parameter
group

Ut := e−itH (t ∈ R) (2.43)
UtUs = e−itHe−isH = e−i(t+s)H = Ut+s (t, s ∈ R) (2.44)

U0 = e−i0H = I, (2.45)

generated by the Hamiltonian H. The imaginary time evolution is defined very similarly
as a unitary one-parameter group by

Uτ = e−τH (τ ∈ R). (2.46)

In the same way, as the real time evolution Ut applied to pure quantum states results in
the TDSE (2.34), imaginary time evolution Uτ results in

d

dτ
|ψ(τ)〉 = −(H − E(τ)) |ψ(τ)〉 , (2.47)

for ψ(τ) = e−τHψ, where E(τ) = 〈ψ(τ)|H |ψ(τ)〉 ensures normalization.

Although real and imaginary time evolution look very similar, they have important
differences. While real time evolution preserves the energy expectation value, imaginary
time evolution does not. In fact, ψ(τ) has monotonically decreasing energy expectation
converging to the minimal energy state of the system, if the initial state ψ had some
finite overlap with it. This can be directly seen by sorting the spectrum E0 < E1 < . . .
of H increasingly and expanding the exponential

ψ(τ) = e−τH =
∑
j

e−τEj 〈j|ψ〉 |j〉 , (2.48)

in the eigenbasis |j〉 of H. This expression converges to e−τE0 〈0|ψ〉 |0〉 for τ → ∞,
what motivates the usage of imaginary time evolution for finding ground states and
minimization problems.

The naive way to utilize this behavior by just computing the evolution ψ(τ) for large
τ is not applicable in practice, as this would require knowledge about the spectrum of
H which already is the solution to the problem. Somehow implementing the evolution
operator e−τH on a universal quantum device does fail, too. Other than real time

26

2.2. THE TIME-DEPENDENT VARIATIONAL PRINCIPLE

evolution, imaginary time evolution is not unitary and thus cannot be implemented on
a quantum device. However, it is possible to derive a set of ODEs for the parameters
of some parametrized submanifold which approximate the imaginary time evolution on
Hilbert space in an optimal way.

Theorem 2.3. Let M =
{
ψ(x)

∣∣ x ∈ R2p
}

be an embedded submanifold in H. Then the
curve [0,∞) 3 τ 7→ x(τ) satisfying

ẋj = −2gj,k Re 〈∂kψ|H |ψ〉 , (2.49)

minimizes the distance ∥∥∥∥ d

dτ
|ψ(x(τ))〉 − (E −H) |ψ(x(τ))〉

∥∥∥∥ (2.50)

and by the McLachlan minimal error principle gives the optimal approximation

[0,∞) 3 τ 7→ ψ(x(τ)) ∈ M

to the imaginary time evolution

[0,∞) 3 τ 7→ Uτψ ∈ H.

Furthermore, the solution x(τ) to (2.49) monotonically decreases the energy expectation
E(τ) = 〈ψ (x(τ))|H |ψ (x(τ))〉.

Proof. A proof following Hackl et al. [58] is given in Appendix A.

Hence, evaluating the imaginary time evolution of a given initial vector ψ(x(0)) ∈ M
becomes equivalent to solving the ODEs in Equation (2.49) which is potentially more
feasible for practical applications.

Equation (2.49) looks similar to the standard gradient descent (3.17) when noticing
that Re 〈∂kψ|H |ψ〉 is the gradient of the energy expectation 〈ψ|H |ψ〉. In fact, the
standard gradient descent (2.32) looks like a linear approximation to Equation (2.49)
when neglecting the metric gj,k. Then, imaginary time evolution could be thought of as
a non-linear gradient descent weighted by the metric g. However, there is no general
justification for treating x(τ) linearly, so this intuition is to be dealt with carefully. There
is a version of the gradient descent called natural gradient descent where the metric is also
taken into account [65, 66]. However, the natural gradient descent is also linear which
distinguishes it from the TDVP, even if they are both considering the same differential
equations.

For large τ1, the solution x(τ1) yeilds a pure state ψ (x (τ1)) near the best approximation
in M to the eigenspace of the ground state energy of H. This can be directly utilized as
an optimization algorithm. In the remainder of the thesis, we apply the TDVP to find
near-to-optimal parameters β, γ for QAOA.

27

Chapter 3

TDVP-optimization of QAOA

This chapter explains, how the TDVP introduced in Section 2.2 can be used for the
QAOA. If the right-hand-side (RHS) of Equation (2.49) is known, solving the resulting
differential equations gives a path with monotonically decreasing energy in the variational
manifold M. This behavior can be directly used for the parameter optimization of the
QAOA (Section 2.1), by using a classical algorithm for solving Equation (2.49). Let

Mp =
{
ψp(δ)

∣∣∣ δ ∈ (0, 2π)2p
}

(3.1)

for some p ∈ N and |ψp(δ)〉 as in Definition 2.1 be the set of all QAOA-states.
The map ψ(p) : (0, 2π)2p → Mp is injective, hence bijective. Furthermore, it is an
embedding and therefore the set Mp is an embedded submanifold of H called the
QAOA-manifold. Note that for this manifold the general assumption of all states
being normalized holds as unitary operations are norm preserving and ‖ψ0‖ = 1.
After each step of the algorithm that solves the differential equations, the RHS
needs to be computed, i.e. a method to compute the metric and the gradient of
QAOA is needed. The development of such methods builds the main theoretical
content of this thesis. Computing the metric for QAOA is addressed in Section 3.1.
A similar method for computing the gradient of the QAOA is demonstrated in Section 3.2.

3.1 The metric of QAOA
A vital part of the ODEs for the imaginary time evolution derived by the TDVP in
Section 2.2.3 is the metric of the underlying variational manifold M. Although the metric

g(p) := 2Re g(p) (3.2)

of Mp is easily defined as the two times the real part of the Gram matrix

g(p) =
(
g
(p)
j,k

)
1≤j,k≤2p

:=
(〈
∂δjψp(δ)

∣∣∂δkψp(δ)〉)
1≤j,k≤2p

, (3.3)

of the tangent space (2.40), it is not that trivial to compute. If we can compute
g(p), computation of g(p) is trivial. The Gram matrix involves derivatives of the state

28

3.1. THE METRIC OF QAOA

parametrization ψp. One way to compute those would be to calculate finite differential
differences

ψ(x+ ε)− ψ(x)

ε
(ε > 0), (3.4)

but this is not feasible in practice: When measuring the states ψ(x+ ε) and ψ(x) after
preparing them on a quantum device we are only able to obtain partial information about
the quantum state by measuring it periodically and evaluating the resulting probability
distribution. Deducing precise information about the difference between both states is
at least difficult. A more natural possibility to compute the metric is presented in the
following. In the end, the metric is computed similarly to but independently of McArdle
et al. [67]. The idea is very similar to the core idea of the QAOA itself. There, the
expectation value of the cost function is evaluated by a quantum circuit together with
some classical computations.

To see how this concept can be applied to the computation of the metric, recall the
QAOA-gates UB(β) = e−iβB and UP (γ) = e−iγHP as in Definition 2.1. In order to
compute the Gram matrix g(p), we need the partial derivatives of ψp (δ). These have
different forms depending on the kind of parameter differentiated.

∣∣∂δjψp(δ)〉 =

UB(δp)UP (δ2p) . . .

. . . (−iB)UB(δj)UP (δj+p) . . .

. . . UB(δ1)UP (δ1+p) |ψ0〉
(j ≤ p)

UB(δp)UP (δ2p) . . .

. . . UB(δj−p)(−iH)UP (δj) . . .

. . . UB(δ1)UP (δ1+p) |ψ0〉
(p < j ≤ 2p)

(3.5)

Note that in both cases besides a global phase −i, there is just one operator inserted in
the QAOA circuit at a certain position.1 With this, an element of g(p) can be computed
by

g
(p)
j,k = 〈ψ0|UP (−δ1+p)UB(−δ1) . . .

. . . UP (−δj+p)UB(−δj)B . . .

. . . UP (−δ2p)UB(−δp)UB(δp)UP (δ2p) . . . (j ≤ p, p < k ≤ 2p)

. . . UB(δk−p)HPUP (δk) . . .

. . . UB(δ1)UP (δ1+p) |ψ0〉 ,

(3.6)

with j ≤ p, p < k ≤ 2p for example. Other cases can be treated equivalently. Now,
the goal is to bring this into a form, which can be evaluated on quantum computers
just like it was done in Equation (2.19) for the expectation 〈ψp(δ)|HP |ψp(δ)〉. The only
problem is that the Hamiltonians B and HP are not assumed to be unitary and thus the

1There might be confusion about the parameter indices. Recall that if j > p, δj = γj and δj−p = βj .

29

3.1. THE METRIC OF QAOA

expressions in (3.5) are not unitary in general. However, this problem can be fixed when
considering the explicit form of B and H for QUBO problems given in Equation (2.20)
and Equation (2.17).

Using this, we can split (3.6) into multiple circuits. Then, each element of g(p) can be
computed by evaluating each of those circuits and summing the results (compare with
[67]).

Theorem 3.1. Let B be defined as in Equation (2.20) and let HP = Hf for a binary
polynomial f (x) = C+

∑
j Ljxj+

∑
j<kQj,kxjxk of degree at most 2 as in Equation (2.17).

Then, the Gram matrix g(p) (3.3) of the QAOA-manifold Mp (3.1) can be computed by

g
(p)
j,k =

∑
l,m

〈ψ0|Uj(−δ,Xl)Uk(δ,Xm) |ψ0〉 (j, k ≤ p)

− 1
2

∑
l,m

Cm 〈ψ0|Uj(−δ,Xl)Ũk−p(δ, Zm) |ψ0〉

+ 1
4

∑
l,m<n

Qm,n 〈ψ0|Uj(−δ,Xl)Ũk−p(δ, ZmZn) |ψ0〉
(j ≤ p, k > p)

(
g
(p)
k,j

)
(j > p, k ≤ p)

1
4

∑
l,m

ClCm 〈ψ0| Ũj−p(−δ, Zl)Ũk−p(δ, Zm) |ψ0〉

− 1
8

∑
l<m,n

Ql,mCn 〈ψ0| Ũj−p(−δ, ZlZm)Ũk−p(δ, Zn) |ψ0〉

− 1
8

∑
l,m<n

ClQm,n 〈ψ0| Ũj−p(−δ, Zl)Ũk−p(δ, ZmZn) |ψ0〉

+ 1
16

∑
l<m,
n<o

Ql,mQn,o 〈ψ0| Ũj−p(−δ, ZlZm)Ũk−p(δ, ZnZo) |ψ0〉 ,

(j > p, k > p)

(3.7)
where Ck = Lk +Qk and

Uj(δ,A) = UB(δp)UP (δ2p) . . . AUB(δj)UP (δj+p) . . . UB(δ1)UP (δ1+p)

Ũj(δ,A) = UB(δp)UP (δ2p) . . . UB(δj)AUP (δj+p) . . . UB(δ1)UP (δ1+p).
(3.8)

are QAOA-circuits with a gate A inserted after or in between the j-th QAOA-block
UBUP . Computing the Gram matrix g(p) using the above method runs a total of

(p2 + p)

(
1

8
n4 +

1

2
n3 − 5

8
n2

)
(3.9)

quantum circuits and applies a total of

#
(
g(p)

)
= NC1(n)

(
7

3
p2 + 2p+

1

3

)
+ (2C2(n)−NC1(n))

(
1

2
p2 +

3

2
p

)
∈ O

(
n6, p3

) (3.10)

30

3.2. THE GRADIENT OF QAOA

single qubit rotations RX , RZ and CNOT-gates, where C1(n) =
1
2n

4 + 2n3 + 7
2n

2, C2(n) =
n4 + 5

2n
3 + 5

2n
2 and

N = p (2n+ 3#(Q)) . (3.11)

#(Q) is the number of non-zero elements in the QUBO-matrix Q representing f in
upper-triangular form.

Proof. By substituting Equations (2.17), (2.20) and (3.5) into Equation (3.3) and writing
in terms of Uj(δ,A) and Ũj(δ,A). Use that the adjoints of UP and UB are given by
UP (−δ) and UB(−δ) respectively and that the Pauli operators Zj and Zk are self inverse
(Section 1.2). For j > p, k ≤ p use the fact that g(p) is self-adjoint as

g
(p)
j,k =

〈
∂δjψp

∣∣∂δkψp〉 =
〈
∂δkψp

∣∣∂δjψp〉 =
(
g
(p)
j,k

)
. (3.12)

Equation (3.10) is shown in Appendix A.

Note, that when having computed the Gram matrix g(p), computing the metric g(p) =
2Re g(p) is trivial.

The expressions of the form 〈ψ0|Uj(·, ·)Ũk(·, ·) |ψ0〉 in Equation (3.7) can be evaluated on
quantum devices by running the circuit Uj(·, ·)Ũk(·, ·) and measuring the resulting state

Uj(·, ·)Ũk(·, ·) |ψ0〉 (3.13)

in the Hadamard basis. Then, when setting |ψ0〉 = |−〉 as in Section 2.1.3, the measured
amplitude of |−〉⊗n corresponds to the desired overlap.

One thing to notice with regard to computational resources is that "in the middle" of
each circuit a certain number of gates just cancel each other out and are not needed to
be applied. Only when one of the inserted gates is applied, the gates do not cancel. For
details see the proof of Theorem 3.1 on p. 63.

3.2 The gradient of QAOA
Similarly to evaluating the metric of the QAOA-manifold using quantum circuits in the
previous Section 3.1, we can also compute the gradient

∇fp (δ) :=
(
∂jfp (δ)

)
1≤j≤2p

=
(
2Re 〈∂jψp(δ)|HP |ψp(δ)〉︸ ︷︷ ︸

:=E(p)
j

)
1≤j≤2p

(3.14)

of QAOA where again HP = Hf is the QUBO Hamiltonian as in Equation (2.17). The
procedure is the very same as in Theorem 3.1 and leads to the following Theorem.

31

3.2. THE GRADIENT OF QAOA

Theorem 3.2. With B and HP as in Theorem 3.1 the expressions E(p)
j =

〈∂jψp(δ)|H |ψp(δ)〉 in the gradient (3.14) of QAOA can be computed by

E(p)
j =

− i
2

∑
k,l

Cl 〈ψ0|Uj(−δ,Xk)Zl U
(p) (δ) |ψ0〉

+ i
4

∑
k,l<m

Ql,m 〈ψ0|Uj(−δ,Xk)ZlZm U
(p) (δ) |ψ0〉

(j ≤ p)

i
2

∑
k,l

CkCl 〈ψ0| Ũj−p(−δ, Zk)Zl U (p) (δ) |ψ0〉

− i
8

∑
k,l<m

CkQl,m 〈ψ0| Ũj−p(−δ, Zk)ZlZm U (p) (δ) |ψ0〉

− i
8

∑
k<l,m

Qk,lCm 〈ψ0| Ũj−p(−δ, ZkZl)Zm U (p) (δ) |ψ0〉

+ i
16

∑
k<l,
m<n

Qk,lQm,n 〈ψ0| Ũj−p(−δ, ZkZL)ZmZn U (p) (δ) |ψ0〉 ,

(j > p)

(3.15)

where Ck = Lk+Qk and Uj , Ũj are defined as in Equation (3.8). Computing the gradient
∇fp (δ) using the above method and Equation (3.14) runs a total of

p

(
1

4
n4 + n3 − 9

4
n2

)
(3.16)

quantum circuits and uses

#(∇fp (δ)) = 2p2
(
n5 + 4n4 + 3n3 +

3

2
n4#(Q) + 6n3#(Q) +

9

2
n2#(Q)

)
+ p

(
n4 − 2n3 +

5

2
n2

)
≤ 2p2

(
3

2
n6 + 7n5 +

17

2
n4 + 3n3

)
+ p

(
n4 − 2n3 +

5

2
n2

)
∈ O

(
n6, p2

)
(3.17)

single qubit roatations RX , RZ and CNOT-gates, where #(Q) is the number of non-zero
elements in the QUBO-matrix Q representing f in upper-triangular form.

Proof. By substituting Equations (2.17), (2.20) and (3.5) into Equation (3.14) and writing
in terms of Uj and Ũj . Equations (3.16) and (3.17) are proven in Appendix A.

Together with Theorem 3.1, we have enabled a way to utilize the TDVP (Section 2.2)
on a quantum computer. We compute the QAOA-metric and -gradient by running
many quantum circuits with approximately the same depth as QAOA. In this way, for
each step in the optimization of the QAOA-parameters, most of the computation of
the RHS in (2.49) is performed by quantum circuits. Only basic arithmetic calculations

32

3.2. THE GRADIENT OF QAOA

of the sums are done classically. This makes it feasible to fully utilize the TDVP for
optimization of the QAOA-parameters and introduces an optimization algorithm specific
to QAOA.

33

Chapter 4

Numerical simulations

This chapter analyzes the methods introduced in the preceding chapters by numerical
simulations. The goal is to compare the performance of QAOA when optimizing
its parameters by an ordinary optimizer and by the TDVP-optimizer introduced in
Section 2.2.3. Concretely we compare the following three versions of the QAOA.

Definition 4.1 (QAOA variants). The following three versions of the QAOA are
considered.

(A1) The QAOA with optimizing the QAOA-parameters by the Time-dependent vari-
ational principle (TDVP) for imaginary time evolution (Section 2.2.3).

(A2) The QAOA with optimizting the parameters by the standard gradient descent GD
(2.32).

(A3) The QAOA with optimizing the QAOA-parameters by the Constrained Optimiza-
tion BY Linear Approximation (COBYLA) [29–31].

The performance analysis of these algorithms is split into three research questions aiming
at different aspects of algorithmic performance.

Definition 4.2 (Research questions). We define the following three research questions
regarding different aspects of computational performance.

(Q1) How does the quality of results compare for A1 relative to A2 and A3?

(Q2) How does the amount of computational ressources used by A1 compare to A2 and
A3?

(Q3) How does the efficiency of A1 differ to that of A2 and A3?

Section 4.1 introduces the methods that are used for investigating these research questions
by simulation of the three algorithms. Results of such simulations are discussed in
Section 4.2.

34

4.1. METHODS

4.1 Methods
This section explains the methods used for investigating the research questions, defined
above, by simulations.
A number of fixed problem instances of Max-Cut (Section 2.1.4) of two different problem
sizes are chosen for all simulations, such that simulation on ordinary personal computers
is convenient. Concretely, Max-Cutinstances for all mutually distinct connected graphs
of sizes n = 4 (6 graphs in total) and n = 5 (10 graphs in total), that are listed in
the "Atlas of Graphs", are being considered. The "Atlas of Graphs" is accessed via
networkx.graph_atlas_g(). For both problem sizes, a different range of p-values is
chosen to keep the run time of the simulations reasonable. For instances with n = 4 the
range from p = 1 to p = 5 is considered, while for n = 5 only values up to p = 4 are
considered.

For the analysis of the performance, several measures quantifying each performance
aspect of the research questions Q1 – Q3 are computed for each simulation result. These
measures are explained in Section 4.1.1. The notion of effect size from statistics is briefly
introduced in Section 4.1.2. In Section 4.1.3, central aspects of the implementations of
each algorithm are being summarized.

4.1.1 Performance measures

This section explains the methods and measures used for the analysis of research questions
Q1 – Q3. These measures are defined by the author independently of the literature, if
not denoted otherwise. Recall that the QAOA outputs a pure quantum state ψp (δ′),
which may be interpreted as a probability distribution of classical bitstrings. The answer
of the algorithm is the bitstring x1 with the highest probability |〈x|ψp (δ′)〉|. The set of
the optimal solutions to the combinatorial optimization problem is denoted by S∗.

In order to investigate research question Q1, the quality of the output of the algorithm
needs to be measured somehow. In the context of approximate combinatorial optimization,
three different approaches are considered. The first approach regards the single answer
x1 of the algorithm. A value may be assigned to x1 by evaluating the cost function f(x1).
The ratio

f(x1)

f∗
(4.1)

is known as the approximation ratio of the approximate answer x1, where f∗ = min f(S)
is the minimal value of the cost function [12]. It gives a "relative" measure of the quality.
Here, "relative" refers to the fact that an answer that is not optimal but close to optimal
will not be regarded as worthless, but gets a relative quality value assigned to it. Since
Max-Cut is formulated as a minimization problem in Section 2.1.4, we have that f(x)

f∗ ≤ 1
with equality if and only if x ∈ S∗ is an optimal solution [12]. Hence, an approximation
ratio of 1 is regarded as the best possible quality and lower values are considered worse.

The second approach considers the entire probability distribution given by ψp (δ
′) ∈

35

4.1. METHODS

H. Here, several features of the distribution may be relevant [68]. For example, the
expectation of the ground space projector PS∗ =

∑
x∈S∗ |x〉 〈x|, i.e. the probability

E [PS∗] := 〈PS∗〉 := ‖PS∗ψp (δ
∗)‖2 =

∑
x∈S∗

|〈ψp (δ∗)|x〉|2 (4.2)

for the output to be one of the optimal solutions x∗ ∈ S∗ may be considered as the
quality of the algorithm’s result. We call this approach absolute quality since only optimal
answers in S∗ are considered to be correct and the entire output of the algorithm is taken
into account. This measure is constructed independently from the literature. However, for
example Larkin, Jonsson, Justice and Guerreschi [68] follow a similar approach. Moreover,
higher momenta of the distribution may be interesting as a quality measure. The centered
momentum

S [PS∗] :=
(〈
P 2
S∗
〉
ψp(δ∗)

− 〈PS∗〉2ψp(δ∗)
) 1

2
, (4.3)

i.e. the standard deviation gives information about how sharp the output of the algorithm
lies in S∗. A higher value indicates higher uncertainty and is considered worse.

The third approach is a hybrid of the first two approaches. In this last approach, the
entire output of the algorithm is considered, but not only optimal solutions in S∗ are
considered as a solution. Concretely, the expectation

E (f/f∗) = 1/f∗ 〈Hf 〉ψp(δ∗) =
∑
x∈S

f(x)/f∗|〈ψp (δ∗)|x〉|2 (4.4)

of the approximation ratio (4.1) with respect to the probability distribution (2.23) is
considered. Again, a value of E (f/f∗) = 1 is regarded as the best possible quality. This
is precisely the case when all x with non-zero probability are optimal solutions to the
problem. Smaller values are again considered as outputs of lower quality. The following
definition summarizes the considered quality measures.

Definition 4.3 (Quality measures). The following measures are considered for quantifying
the quality of the results of each algorithm.

(M1) The approximation ratio (4.1) of the answer x1 with the highest probability.

(M2) The expectation (4.4) of the approximation ratio (4.1) for the final state ψp (δ∗).

(M3) The ground state overlap (4.2) of the final state ψp (δ∗) with the ground states of
Hf .

(M4) The uncertainty (4.3) of the final state ψp (δ∗) in the ground states of Hf .

With the different approaches above, a wide variety of quality measures is available for
investigating research question Q1. Regarding research question Q2, there are not as
many options for measures. In the end, one is often interested in the resources time or

36

4.1. METHODS

energy. However, for analyzing algorithms such resources are hard to compare as they
rely heavily on hardware and exterior circumstances. Thus, usually other quantities that
are connected to the algorithm more directly are considered for algorithm analysis. In
the case of quantum computing, the number of applied quantum gates is a natural choice
of a computational resource [32]. Here, the number of single qubit RX and RZ rotations
and CNOT-gates is being measured by counting the number of how many times each part
of the optimizers is run and multiplying by the number of gates necessary for this part.
For example, the gate count for A1 is calculated by

K
(
#(g) + # (∇fp (δ))

)
+ pN, (4.5)

where K is the number of optimization steps, p is the number QAOA-blocks, N is the
number of gates of one usual QAOA-circuit (3.11) and #(g) and #(∇fp (δ)) are defined
in Equation (3.10) and Equation (3.17), respectively. The gate count for A3 is being
calculated similarly by

(K + 1)N, (4.6)

where here K is the number of function calls of fp by the optimizer. For A2 the gate
count is computed by

(4K + 1)N, (4.7)

as the implementation of the GD computes one QAOA-circuit four times per step (see
Section 4.1.3).
The number of necessary gates depends on compilation and on the set of gates available
on the hardware. So in addition to the gate count, the total number of quantum circuits
that are run is being considered.

Definition 4.4 (Ressource measures). The following measures are considered for quanti-
fying the resource consumption of each algorithm.

(M1) The gate count (4.5) of gates used by the optimization algorithm in total.

(M2) The circuit count of the algorithm, i.e. the number of quantum circuits run by the
optimization algorithm.

For investigating the third research question Q3, any combination of quality and resource
measures may be considered. Here, the ratio of the expectation of the approximation
ratio M1 and the circuit count M2 is considered as an efficiency measure. Differing from
this, the total pathlength of the path taken in parameter space during the optimization
process may be considered for comparing A2 and A1. When compared to the shortest
connection between the respective endpoints, it quantifies how directly the optimization
algorithm approaches its final parameters. The total pathlength is computed by

L
[(
δ(k)

)
k

]
:=

K∑
k=1

∥∥∥δ(k) − δ(k−1)
∥∥∥, (4.8)

37

4.1. METHODS

where δ(k) denotes the QAOA-parameters after the k-th optimization step and ‖·‖ is the
euklidean norm on R2p. The length L∗ of the shortest connection in flat R2p between
the intial point δ(0) and the final parameters δ(K) = δ∗ is the distance

L∗ :=
∥∥∥δ(0) − δ(K)

∥∥∥ ≤ L
[(
δ(k)

)
k

]
. (4.9)

A shorter path length suggests, that the optimizer took fewer unnecessary steps or that
the steps were taken in a way leading more efficiently towards the final point. Similar to
the approximation ratio, the relative pathlength

L∗

L
[(
δ(k)

)
k

] ≤ 1 (4.10)

indicates the relative optimality of the path taken in parameter space, where a value of 1
is attained to the shortest path.

In the case of the TDVP-optimizer A1, there theoretically is a continuous parameter
path δ(t) for t ∈ [0, T], i.e. the analytic solution to the ODEs (2.49). In order to compare
this with the discrete optimization steps of the GD optimizer in A2, a finite set of sample
points is chosen from the curve. This set is exactly the set of parameter points after each
step of numerically solving Equation (2.49).

Definition 4.5 (Efficiency measures). The following measures are considered for quanti-
fying the efficiency of each algorithm.

(M1) The ratio of the expectation of the approximation ratio M2 and the circuitcount M2.

(M2) The relative pathlength (4.10) of the path taken in parameterspace R2p by the
optimizer.

Together, the measures M1-M2, deliver enough information about the algorithms A2-A1
in order to investigate the considered research questions Q1-Q3.

4.1.2 Effect size

The analysis of these measures is based on their mean values and standard deviations
within each instance class given by (n, p). Besides visually interpreting the graphs of
those results, the so-called effect size is considered for making precise statements about
the differences between the algorithms. In statistics, the effect size is a measure of the
practical relevance of empirical experiments. There are several concretizations of the
effect size in the literature [69–71]. Here, we consider a well-refined measure introduced
by Hedges [70] that is often referred to as "Hedges g∗" in the literature [72]. One class of
standardized effect size measures essentially considers the difference

µ1 − µ2
σ

(4.11)

38

4.1. METHODS

of the mean values µ1, µ2 of two sample groups relative to some uncertainty measure σ
[72].

Hedges [70] considers the pooled standard deviation estimate

(σ∗)2 :=
(n1 − 1)σ21 + (n2 − 1)σ22

n1 + n2 − 2
, (4.12)

where ni is the sample size and σi is the standard deviation of sample group i = 1, 2.
To ensure an unbiased estimator for the effect size, Hedges [70] proposes an additional
scaling factor

J (a) :=
Γ
(
a
2

)√
a
2Γ

(
a−1
2

) . (4.13)

With those definitions,
g∗ := J (n1 + n2 − 2)

µ1 − µ2
s∗

(4.14)

is the best estimator for the effect size [70, Theorem 3]. Based on the absolute value
of the effect size, multiple categories (see Table 4.1) for the practical relevance of the
experiment were proposed by Cohen [69, pp. 24–27].

Table 4.1: Sevaral categories for the effect size are defined based on the
absolute value of g∗.

Category Range of effect size
neglectable |g∗| < 0, 2
small 0, 2 ≤ |g∗| < 0, 5
medium 0, 5 ≤ |g∗| < 0, 8
large 0, 8 ≤ |g∗|

4.1.3 Remarks on the implementation

This section briefly describes how the algorithms are implemented in the programming
language Python (version 3.10.6). Implementation of the quantum mechanical parts of
the algorithms is based on the Quantum Toolbox in Python (QuTiP) library in version
4.7.0 [73, 74]. Classical calculations are done using the Scientific Python (SciPy) library
in version 1.9.1 [75].

The implementation is centered around a class QAOA, which gathers various methods for
QAOA-circuit generation. The optimization algorithms are implemented as functions
acting on an instance of the QAOA class. The entire code can be found in a GitHub
repository of the author [76].

The QAOA class has properties for all essential parameters of QAOA. For example, there
are properties for the p-value, the QUBO-matrix of the given problem in symmetric

39

4.1. METHODS

form and the Hamiltonian of the problem. The most important method of the class is a
constructor of the QAOA-circuit (2.7) for a given parameter vector δ. This is done by
utilizing the qutip.qip.circuit class and concatenating all gates in (2.7). There is
the option to include an arbitrary matrix of correct size at some position as well as the
option to delete blocks in a given range. These options are used in separate methods for
computing the metric and the gradient of QAOA, where the option to delete gates is
utilized to achieve the same gate count when computing the metric as in Theorem 3.2.
Building on that circuit constructor, there are various methods. For example,
there is a method for computing the final state after running the circuit using
qutip.qip.circuit.run or one for the expectation value of the problem Hamiltonian
for this state using qutip.expect(H, final_state). This expectation method is then
passed as a cost function to the ordinary optimizer.

Two additional methods are defined for computing the metric and gradient of QAOA.
Instead of directly implementing the compiled metric (Equation (3.7)) and the compiled
gradient (Equation (3.15)), a trick is used for faster simulation. The reason to expand
the general expressions (3.3) and (3.14) is that HP and B are not necessarily unitary and
hence do not operate as quantum gates. However, the simulation of quantum circuits
is done by simple matrix multiplication, which does not require the matrices to be
unitary. Therefore, implementing Equation (3.3) and (3.14) in a simulation is possible.
Exact simulations will yield the same results as for the implementation of Equation (3.7)
and (3.15) by construction, as no noise is being simulated. This benefits the need of
simulating fewer quantum circuits and enables the simulation on ordinary hardware.
In the implementation of the metric and gradient, the decision of which matrices at
which position to insert in the QAOA-circuit is done by multiple if . . . else statements
checking whether each index lies in {1, . . . , p} or {p+ 1, . . . , 2p}, i.e. whether a β or γ
parameter is being differentiated.
Besides this non-unitary implementation for purposes of exact simulation, the compiled
versions (3.7) and (3.15) are also implemented directly.

The optimization algorithms of the QAOA parameters are implemented as functions
taking objects of the QAOA class and an initial parameter vector as arguments. Each one
of them tracks the parameter vector during the optimization and counts the number of
steps taken. Together with the number of circuits and Pauli gates for one step, this gives
the measures M2 and M1.
The scipy.minimize implementation of the Constrained Optimization BY Linear Approx-
imation (COBYLA) algorithm A3 serves as a commonly considered reference optimizer
[29–31, 75]. Implementation of this algorithm is straightforward by handing the expecta-
tion method of the QAOA class to the scipy.minimize API. All steps compute exactly
one circuit compiled into N gates (Equation (3.11)). A maximal number of iterations is
set to 1000.

40

4.2. RESULTS

The standard gradient descent A2 is implemented by fixing a stepsize ∆ = 0, 1 and
computing the gradient ∇fp(δ) of fp at δ by a finite difference quotient

∇jfp(δ) =
fp(δ + εej)− fp(δ)

ε
, 1 ≤ j ≤ 2p, (4.15)

where ε = 10−10 and ej is the j-th vector of the euclidean standard basis in R2p. The
algorithm terminates when the norm ‖∇fp(δ)‖ of the gradient becomes smaller than
some fixed precision goal (10−2) or a maximal number of steps is reached. This maximal
number of steps is set equal to the average number of steps within the given class of
instances (n,p) it took for the TDVP (A1) to reach its precision goal (see below). This
is done because the simulation of the standard gradient descent exceeds reasonable run
times for p ≥ 3 on the hardware available to the author. Each step of the GD calls the
QAOA-circuit 4p times.

The implementation of the TDVP-optimization A1 is backed by the methods defined in
the QAOA class and by the scipy library. A local function for computing the right-hand
side of Equation (2.49) is defined. This function computes the QAOA metric and
gradient (Chapter 3) using the methods of the QAOA-class, inverts the metric using
scipy.linalg.inv, selects the real parts using numpy.real and finally multiplies the
metric with the gradient. The algorithm counts the number of calls of this function to
track the number of steps taken. The number of circuits and gates can then be computed
by Equation (3.9) and (3.16) or Equation (3.10) and (3.17), respectively. For solving
the ODEs in Equation (2.49) scipy.integrate.solve_ivp is used with the default
method 'RK45' , which is an implementation of the Runge-Kutta algorithm [77]. The
solver is set to terminate whenever

∥∥gj,k Re 〈∂kψp(δ)|H |ψp(δ)〉
∥∥ becomes smaller than

some given precision goal (10−2) or when a maximal number of steps is reached. When
integrating with scipy.integrate.solve_ivp, a finite integration interval must be set.
In the implementation, it is ensured that the algorithm continues in case the end of this
integration interval is reached, without one of the two terminating events occurring.

4.2 Results
This chapter discusses the results of numerical simulations as described above, with a
special focus on the research questions Q1 – Q3. In Section 4.2.1 the results of the quality
measures are discussed and analyzed. Section 4.2.2 continues with the resource measures
before the efficiency measures are discussed in Section 4.2.3.

4.2.1 Quality comparison (Q1)

In this section, the results for the quality measures M1 to M4 are being discussed with
regard to research question Q1.

First, the ratio of successful simulations differs between the three algorithms, in the sense
that the respective algorithm reached its termination goal within the given number of

41

4.2. RESULTS

Table 4.2: The success ratios of each algorithm. A simulation is
counted as a success if the algorithm is terminated due to reaching its
set precision goal. The counts are shown as sucessfull/total = ratio

p TDVP COBYLA GD

1 18/18 = 1 18/18 = 1 0/18 = 0

2 17/18 = 0.94 18/18 = 1 0/18 = 0

3 12/16 = 0.75 16/16 = 1 0/16 = 0

4 10/16 = 0.63 16/16 = 1 0/16 = 0

5 3/6 = 0.5 6/6 = 1 0/6 = 0

steps (Table 4.2, p. 42). Recall that the maximal number of steps for the GD is set to
the average number of steps it took the TDVP to reach its precision goal (the same as
for GD). Hence, the 0 success rate of GD means that it never reached the same precision
as TDVP within a comparable number of steps. For equal convergence speed the same
success rate is expected, so this result already indicates faster convergence of the TDVP.
However, especially in the case p = 5 the TDVP shows a worse success rate compared to
COBYLA. Here, it only terminated successfully for half of the instances. The reason for
these failures is (in some cases) a scipy.LinAlgError during the inversion of the metric,
but in most cases an inbuild ValueError. This could be a bug in the implementation,
but the reason for this could not be found. All such failures due to errors during the
simulation are ignored in the following results. In the case of GD all failures are due to
not reaching a gradient with length below the set precision goal (10−2) and hence are
considered in the following results.

Some particular instances show significantly slower convergence speed with the TDVP
(A1) and therefore fail to reach the precision goal within reasonable computation time.

TDVP vs. GD. The results for the approximation ratio (M1) (Figure 4.1, p. 48)
clearly show a benefit of TDVP (A1) and COBYLA (A3) over the GD (A2) in all
considered cases. Not only the mean values for GD are significantly lower, but also the
standard deviation is much higher. The effect size (Table 4.3) indicates an overall large
effect of the approximation ratio when comparing the GD and the TDVP. This means
that the answer of GD (the highest probability bitstring) is way less reliable than the
answer of the other algorithms.

The same tendency continues, when considering the expectation of the approximation
ratio (M2) (Figure 4.2, p. 49). Although the standard deviation of GD is not as extreme
as in the approximation ratio, the mean values are even worse. The effect size shows
in all cases a large value, with especially high values in the cases (n = 4, p = 2) and
(n = 5, p = 3). Another point, only noticeable when considering the expectation of the

42

4.2. RESULTS

Table 4.3: The effect sizes of the quality measures. We compare the
categorical magnitudes (Table 4.1) of the effect sizes and Hedges g∗
(4.14) [70]. The sign of the effect size indicates whether the TDVP
(positive) or the respective comparison algorithm (negative) has a higher
mean value.

Approximation ratio M1 Expected approx. ratio M2
COBYLA GD COBYLA GD

n p
4 1 none (−0.07) large (1.21) none (−0.08) large (1.79)

2 none (0.00) large (4.62) medium (0.58) large (6.59)
3 none (0.00) medium (0.66) medium (0.73) large (3.03)
4 small (0.47) large (1.17) large (0.86) large (4.55)
5 none (0.00) large (1.18) small (0.38) large (4.62)

5 1 medium (−0.69) large (1.53) small (−0.49) large (1.54)
2 none (0.20) large (1.19) large (1.02) large (4.13)
3 medium (0.57) large (1.89) large (0.87) large (6.16)
4 medium (0.56) large (1.09) none (−0.01) large (4.48)

Groundstate overlap M3 Groundstate sharpness M4
COBYLA GD COBYLA GD

n p
4 1 small (0.21) large (1.18) none (−0.08) none (0.17)

2 medium (0.60) large (18.44) small (−0.46) large (1.32)
3 medium (0.57) large (5.38) small (−0.40) none (−0.17)
4 medium (0.78) large (4.53) medium (−0.57) small (−0.38)
5 small (0.43) large (6.40) small (−0.35) medium (−0.60)

5 1 none (−0.16) medium (0.75) medium (−0.56) medium (0.59)
2 large (1.09) large (3.50) none (0.01) large (0.87)
3 large (0.81) large (6.08) none (0.11) large (1.35)
4 none (0.12) large (3.86) medium (0.53) large (1.53)

43

4.2. RESULTS

approximation ratio (M2), especially in Figure 4.2a, is that in contrast to (A1) and (A3)
the GD (A2) tends to a slightly decreasing expectation of the approximation ratio with
growing p. This indicates that the GD is more vulnerable to the increasing dimension of
the search space.

As expected, the bad performance of the GD (A2) is also reflected in the results for
the overlap with the ground states (Figure 4.3, p. 50). It is worth mentioning, that the
performance of GD in the instance class (n = 4, p = 2) and (n = 5, p = 1) with almost
no overlap with the ground states is especially bad compared to the other algorithms.
While the first case shows an extremely high effect size (g∗ ≥ 18), the latter only shows a
medium effect size (g∗ = 0, 75).

Regarding M4 the TDVP shows higher uncertainty of the state to lie in the ground
states in the cases (n = 4, p = 2) and (n = 5, p ≥ 2) with large effect size. In all other
cases, only differences with none to medium effect size can be observed.

TDVP vs. COBYLA. Differences between the TDVP (A1) and the COBYLA
(A3) are more subtle. First, both algorihtms show worst perfomance in the case p = 1
with respect to the approximation ratio (M1) (Figure 4.1, p. 48), the expectation of the
approximation ratio (M2) (Figure 4.2, p. 49) and the overlap with the ground states (M3)
(Figure 4.3, p. 50). Here, both algorithms are not as reliable as in the other cases, since
the standard deviation is relatively high. For n = 4 the TDVP (A1) finds the optimal
answer every time for each p ≥ 2, while the COBYLA (A3) sometimes failes to do so for
p = 4 (Figure 4.1a, p. 48). However, the effect size indicates a low practical relevance of
these differences. Other for n = 5, where the TDVP shows higher approximation ratios
than the COBYLA for p ≥ 2 with medium effect size in the cases p > 2. The TDVP
finds the optimal answer every time when p = 3 or p = 4 are simulated. Only for p = 1
does the COBYLA show a better approximation ratio.

When taking the entire final QAOA-state into account, the TDVP (A1) shows slightly
better results compared to the COBYLA (A3) (Figure 4.2, p. 49). The effect sizes
(Table 4.3) indicate better results in the cases (n = 4, p = 4), (n = 5, p = 2, 3) with
large relevance, but only none to medium relevant differences in the other cases. Overall,
the TDVP shows a higher expectation of the approximation ratio for most cases with
medium to large relevance.

Similarly, the overlap with the ground states (Figure 4.3, p. 50) generally shows higher
values for the TDVP with medium to large effect sizes in most cases. For n = 4, the
effect sizes are lower than for n = 5. However, the uncertainty of the results is higher for
both algorithms.

The uncertainty (M4) of the final state to lie in the ground states is almost the same in
every case for all algorithms (Figure 4.4, p. 51). Differences only arise with mostly none
to medium effect size. Overall, the uncertainty of the state in the ground states is not

44

4.2. RESULTS

Table 4.4: The effect sizes of the resource measures. This table shows
the categorical magnitude (Table 4.1) of the effect sizes and Hedges
g∗ (4.14) [70]. The sign of the effect size indicates whether the TDVP
(positive) or the respective comparison algorithm (negative) has a higher
mean value.

Gatecount M1 Circuit count M2
COBYLA GD COBYLA GD

n p
4 1 large (6.27) large (6.02) large (13.47) large (13.14)

2 large (1.10) large (1.09) large (1.32) large (1.29)
3 large (0.90) large (0.90) large (0.85) large (0.84)
4 large (4.32) large (4.32) large (5.06) large (5.02)
5 large (1.92) large (1.92) large (1.71) large (1.70)

5 1 large (2.75) large (2.67) large (4.10) large (4.06)
2 large (1.62) large (1.61) large (2.06) large (2.04)
3 large (3.25) large (3.24) large (4.46) large (4.44)
4 large (1.06) large (1.06) large (1.06) large (1.06)

that high.

Regarding a final answer to research question Q1, a benefit of the TDVP (A1) (and the
COBYLA (A3)) over the standard gradient descent (A2) can be observed with overall
large effect size. A slight tendency of the TDVP delivering results with better quality
compared to those of COBYLA becomes visible however, this tendency shows lower
effect sizes. Depending on the parameters (n, p), TDVP (A1) proves to deliver higher
quality results compared to COBYLA (A3).

4.2.2 Computational resources (Q2)

This section presents the results for the resource measures M1 (Figure 4.5, p. 52) and
M2 (Figure 4.6, p. 53) addressing question Q2. For (n = 4, p = 2), (n = 4, p = 3)
(Figure 4.5a, p. 52) and (n = 5, p = 4)(Figure 4.5b, p. 52) for the gate count and
(n = 4, p = 3) (Figure 4.6a, p. 53) and (n = 5, p = 4) (Figure 4.6b, p. 53) for the circuit
count, the standard deviation of the results of the TDVP higher than their mean value,
so those results must be treated with caution. In all cases, the number of gates as well
as the number of circuits increases with growing p for each algorithm. In addition, the
TDVP has the highest values and COBYLA the lowest among the three algorithms
in every case. The difference between the GD and the COBYLA seems to have a
constant factor, while the factor between TDVP and the other two algorithms seems
to be increasing in p. The lowest factor in the number of gates between the GD and
TDVP is around 100, while the highest factor is around 1000. All effect sizes show large
relevance to the results.

45

4.2. RESULTS

Table 4.5: The effect sizes of the efficiency measures. The categorical
magnitude (Table 4.1) of the effect sizes and Hedges g∗ (4.14) are shown
[70]. The sign of the effect size indicates whether the TDVP (positive)
or the respective comparison algorithm (negative) has a higher mean
value.

Expected approx. ratio per circuit M1 Relative path length M2
COBYLA GD GD

n p
4 1 large (−5.96) large (−0.91) large (1.59)

2 large (−4.80) none (0.17) large (7.13)
3 large (−2.67) none (−0.04) large (4.05)
4 large (−21.16) small (0.34) large (7.58)
5 large (−2.09) small (0.36) large (4.16)

5 1 large (−5.45) large (−1.01) large (2.14)
2 large (−14.12) small (−0.44) large (3.77)
3 large (−30.04) small (0.30) large (5.46)
4 large (−5.82) none (0.02) large (7.05)

Answering Q2 it can be said that the TDVP (A1) needs extensively more quantum
circuits and gates compared to both, the GD A2 and COBYLA (A3).

4.2.3 Analysis of efficiency (Q3)

Referring to the algorithms’ efficiency (Q3), this section discusses the results of the
efficiency measures M1 (Figure 4.7, p. 54) and M2 (Figure 4.8, p. 55). The expected
approximation ratio per circuit (M1) shows immediately that the COBYLA (A3) is the
most efficient algorithm from the practical perspective (Figure 4.7, p. 54). Here, the
comparison with the TDVP shows overall large effect sizes up to 30. The results for the
TDVP (A1) and GD (A2) suggest that they are both less efficient than COBYLA, even
if some cases show standard deviation higher than the mean value for the GD. For p = 1
the TDVP shows worse values compared to the GD with a large effect size. In all other
cases, both algorithms have differences with only none to small effect size indicating that
they offer similar quality of the results per circuit.

The relative path length (M2) only makes sense for the TDVP (A1) and GD (A2) and is
the highest for the TDVP (A1) (Figure 4.8, p. 55). This indicates that the TDVP takes
routes closer to the shortest path, compared to the GD, which takes far less efficient
paths in the parameter space. The effect sizes are all large in this comparison.

The reason for the different path lengths of the TDVP and GD becomes visible when
comparing the paths taken in the energy landscape (Figure 4.9, p. 56 and Figure 4.10, p.
57). The GD is more vulnerable to overshoot local minima, especially when the energy

46

4.2. RESULTS

gradient is high as in the case shown in Figure 4.9. Although the initial point is close to a
local minimum, the GD jumps out of its valley, while the TDVP manages to consistently
decrease towards the local minimum. Another faulty behavior of the GD can be observed
at the instance discussed previously in Section 2.1.4 (Figure 2.1, p. 20). Here, the GD
takes the steepest direction ending up in a shallow valley, while the TDVP starts in a
different direction leading to a lower local minimum (Figure 4.10, p. 57).

47

4.2. RESULTS

1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Algorithm

TDVP
COBYLA
GD

p

A
pp

ro
xi

m
at

io
n

ra
tio

(a) Problem size n = 4

1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Algorithm

TDVP
COBYLA
GD

p

A
pp

ro
xi

m
at

io
n

ra
tio

(b) problem size n = 5

Figure 4.1: Results of the approximation ratio M1 for different problem
sizes. The different colors and symbols correspond to the three different
algorithms A2 to A1. The figures show the mean values over all
simulations together with their standard deviation.

48

4.2. RESULTS

1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Algorithm

TDVP
COBYLA
GD

p

Ex
pe

ct
at

io
n

of
 th

e
ap

pr
ox

im
at

io
n

ra
tio

(a) Problem size n = 4

1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Algorithm

TDVP
COBYLA
GD

p

Ex
pe

ct
at

io
n

of
 th

e
ap

pr
ox

im
at

io
n

ra
tio

(b) Problem size n = 5

Figure 4.2: Results of the expected approximation ratio M2 for different
problem sizes. The different colors and symbols correspond to the three
different algorithms A2 to A1. The mean values over all simulations
together with their standard deviation are presented.

49

4.2. RESULTS

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 Algorithm
TDVP
COBYLA
GD

p

G
ro

un
ds

pa
ce

 o
ve

rla
p

(a) Problem size n = 4

1 2 3 4
0

0.2

0.4

0.6

0.8

1 Algorithm
TDVP
COBYLA
GD

p

G
ro

un
ds

pa
ce

 o
ve

rla
p

(b) Problem size n = 5

Figure 4.3: Results of the ground state-overlap M3 for different problem
sizes. The different colors and symbols correspond to the three different
algorithms A2 to A1. The figures show the mean values over all
simulations together with their standard deviation.

50

4.2. RESULTS

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 Algorithm
TDVP
COBYLA
GD

p

G
ro

un
ds

pa
ce

 sh
ar

pn
es

s

(a) Problem size n = 4

1 2 3 4
0

0.2

0.4

0.6

0.8

1 Algorithm
TDVP
COBYLA
GD

p

G
ro

un
ds

pa
ce

 sh
ar

pn
es

s

(b) Problem size n = 5

Figure 4.4: Results of the sharpness in the ground states M4 for different
problem sizes. The different colors and symbols correspond to the three
different algorithms A2 to A1. The figures show the mean values over
all simulations together with their standard deviation.

51

4.2. RESULTS

1 2 3 4 5

1

100

10k

1M

100M

10B
Algorithm

TDVP
COBYLA
GD

p

N
um

be
r o

f g
at

es

(a) Problem size n = 4

1 2 3 4

1

100

10k

1M

100M

10B
Algorithm

TDVP
COBYLA
GD

p

N
um

be
r o

f g
at

es

(b) Problem size n = 5

Figure 4.5: Results of the gate count M1 for different problem sizes. The
different colors and symbols correspond to the three different algorithms
A2 to A1. The figures show the mean values over all simulations together
with their standard deviation in a logarithmic scale.

52

4.2. RESULTS

1 2 3 4 5
0.1

1

10

100

1000

10k

100k

1M

10M
Algorithm

TDVP
COBYLA
GD

p

N
um

be
r o

f c
irc

ui
ts

(a) Problem size n = 4

1 2 3 4
0.1

1

10

100

1000

10k

100k

1M

10M
Algorithm

TDVP
COBYLA
GD

p

N
um

be
r o

f c
irc

ui
ts

(b) Problem size n = 5

Figure 4.6: Results of the circuit count M2 for different problem sizes.
The different colors and symbols correspond to the three different
algorithms A2 to A1. The figures show the mean values over all
simulations together with their standard deviation in a logarithmic
scale.

53

4.2. RESULTS

1 2 3 4 5
10n

2

5
100n

2

5
1μ

2

5
10μ

2

5
100μ

2

5
0.001

2

5
0.01

2

5
0.1

Algorithm
TDVP
COBYLA
GD

p

Ex
pe

ct
at

io
n

of
 th

e
ap

pr
ox

im
at

io
n

ra
tio

 p
er

 c
irc

ui
t

(a) Problem size n = 4

1 2 3 4
10n

2

5
100n

2

5
1μ

2

5
10μ

2

5
100μ

2

5
0.001

2

5
0.01

2

5
0.1

Algorithm
TDVP
COBYLA
GD

p

Ex
pe

ct
at

io
n

of
 th

e
ap

pr
ox

im
at

io
n

ra
tio

 p
er

 c
irc

ui
t

(b) Problem size n = 5

Figure 4.7: Results of the expected approximation ratio per circuit M1
for different problem sizes. The different colors and symbols correspond
to the three different algorithms A2 to A1. The figures show the mean
values over all simulations together with their standard deviation on
a logarithmic scale. For GD, some values are negative and hence not
visible on the logarithmic y-axis.

54

4.2. RESULTS

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 Algorithm
TDVP
GD

p

Pa
th

 le
ng

th

(a) Problem size n = 4

1 2 3 4
0

0.2

0.4

0.6

0.8

1 Algorithm
TDVP
GD

p

Pa
th

 le
ng

th

(b) Problem size n = 5

Figure 4.8: Results of the path length M2 for different problem sizes.
The different colors and symbols correspond to the three different
algorithms A2 to A1. The figures show the mean values over all
simulations together with their standard deviation on a logarithmic
scale.

55

4.2. RESULTS

TDVP
GD
Initial point = (1,1)

Figure 4.9: A surface plot of the energy landscape illustrating one of the
benefits of the TDVP over the standard gradient descent. Shown is the
energy landscape of the expectation value of the problem Hamiltonian
HP of one particular Max-Cut instance (Section 2.1.4) of size n = 5
with p = 1. The instance is chosen such that the difference in path
length between the GD and TDVP out of all the considered instances
is the highest. The size of the points decreases as the paths continue.

56

4.2. RESULTS

TDVP
GD
Initial point = (1,1)

Figure 4.10: A surface plot of the energy landscape illustrating one of the
benefits of the TDVP over the standard gradient descent. Shown is the
energy landscape of the expectation value of the problem Hamiltonian
HP of the Max-Cut-instance corresponding to the graph in Figure 2.1
(p. 20). The size of the points decreases as the paths continue.

57

Chapter 5

Conclusion and outlook

In this thesis, the Time-Dependent Variational Principle is considered for optimizing
the parameters of the Quantum Approximate Optimization Algorihtm. The metric is
calculated by quantum circuits very similar to the idea of QAOA and independently of
McArdle et al. [67]. The performance of the QAOA with the parameters optimized by
the TDVP is compared to the performance with the established COBYLA optimizer
and the standard gradient descent GD.

As discussed in the preceding sections, there are differences in the quality and efficiency
of all three algorithms. As may be expected, the QAOA with the well-established
COBYLA algorithm (A3) is by far the most efficient one. This might be due to a more
sophisticated and polished implementation in the scipy library. But more importantly,
the main drawback of the TDVP is the need for computing the metric (3.7) in every
single step. The size of the metric grows of order O

(
p2
)

and thus quickly leads to a
number of quantum circuit evaluations per step that is relatively large compared to the
single quantum circuit evaluation per step in the COBYLA. On the other hand, the
quality of the results of the TDVP reflects the more specialized nature of the algorithm.
While COBYLA only takes the parameter space into account and handles the QAOA
only as a function, the TDVP also recognizes the geometric structure of the QAOA-state
space. This may be suspected to be the reason for the slightly better quality of the
results.

Moreover, the convergence behavior of the TDVP is significantly better than the con-
vergence of the GD. This convergence behavior shows the benefits of recognizing the
geometry of the state space and taking higher orders during the solving of the ODEs
into account. However, while the quality of the results is way better for the TDVP, the
resource consumption is also significantly higher. This results in better gate efficiency of
the GD compared to the TDVP. Recall that in the simulation of the GD the number
of steps is limited to the average number of steps it took for the TDVP to terminate,
so both algorithms were allowed to take the same number of steps on average. In this
sense, the better quality of the results of the TDVP compared to the results of the GD
indicates that the TDVP converges faster.

As discussed in Section 2.2, the main differences between the algorithms are the appearance
of the metric and the higher order algorithm for solving the differential equation in the

58

TDVP. These differences are suspected to result in the shorter path length of the TDVP
confirming the optimality of the curve taken. This becomes visible when we compare
the paths taken in the energy landscape (Figure 4.9, p. 56 and Figure 4.10, p. 57).
In addition, the observation that the TDVP is less vulnerable to increasing parameter
space dimension compared to the GD is justified by this interpretation. The information
about the global geometry of the state space could help to prevent walking in the wrong
direction. The GD is exclusively local and becomes increasingly blind to its surroundings
when increasing the dimension. Future simulations of larger problem instances could
show that the TDVP converges faster than the GD.

As a side effect, another conclusion is that the expectation of the approximation ratio
M2 seems to be a better performance indicator compared to the approximation ratio. By
not only considering the answer to the problem but taking the entire final state of the
algorithm into account, more differences between different parameter optimizations could
be observed.

In summary, the TDVP proved to be beneficial over the GD only in some perspectives.
Compared to the well-established COBYLA the quality of the results is surprisingly
better, but with less practical relevance of the results indicated by the effect size. However,
this slight benefit in quality comes with the cost of a huge increase in the computational
resources needed. In the end, the decision of which algorithm is suited better may depend
on the situation, but the slight increase in quality does not justify the additional resource
consumption in most situations. Further research considering the performance of the
algorithm on real quantum hardware might yield additional insights into this trade-off.

An aspect to highlight in the present work is that the simulation results are interpreted
not only by mean values but also by the effect size from statistics. Proper statistical
analysis of simulations may give more reliable results, also in future work. However, this
statistical analysis can be improved by adapting the common practices from behavioral
and medical sciences to the needs and circumstances of quantum algorithms. For example,
the categories of the effect size for rating the relevance of results introduced by Cohen
[69] might be chosen as suboptimal in this context. As highlighted by Cohen [69], the
interpretation of effect sizes depends on the circumstances and assumptions of each
particular statistical experiment. Future research could establish common interpretation
guidelines for the statistical analysis of quantum algorithms in this context.

A downside is the implementation of the TDVP-optimization algorithm used for sim-
ulations, which might be far from optimized. For example, the implementation checks
whether to continue by computing the gradient separately from the main algorithm during
run time, which needs computation of the metric. This leads to an unnecessary increase
in the circuit and gate count. More optimized implementations may avoid this problem
by checking the norm of the gradient in each step at the same time it is computed for the
optimization step. The failed simulations of the TDVP (Table 4.2) may be caused by
another bug or by some intrinsic problem of the algorithm with these particular instances.

59

Using the pseudoinverse of the metric rather than the inverse may solve this problem.
A detailed analysis of affected instances and also of the generally hard instances of the
Max-Cut problem might give insights into the convergence behavior of the TDVP.

A deep differential geometric analysis of the QAOA state space following Haegeman,
Mariën, Osborne and Verstraete [59] might give interesting explanations for the behavior
of the QAOA. Additionally, being able to compute the metric not only enables algorithms
like the TDVP to be applied but may also give access to the numerical analysis of many
geometric properties of the QAOA-state space. This might prove as an interesting
research direction in the future.

Most importantly, only exact simulations of the quantum circuits are considered and
only pure quantum states are considered in the derivation of the TDVP. However, on
real quantum devices noise resulting in mixed states is unavoidable in the current state
of technology. In future research, the behavior of the TDVP under noise and on mixed
quantum states needs to be analyzed by simulations as well as by rigorous mathematical
analysis. For this purpose, the mathematical formulation should cover mixed quantum
states, rather than restricting it to pure states. Does the TDVP still converge to a state
in a local minimum of the energy landscape when starting in a mixed state or when
the metric entries are given by probability distributions? Which conditions may lead to
convergence under noise?

60

Appendix A

Proofs

This appendix presents proofs that are skipped in the main text.

Proof of Lemma 2.4 (p. 21). We give an explicit construction of a QUBO matrix.
Let an arbitray instance of Max-Cut be given by a graph G = (V,E) and
{wj,k | j, k ∈ V, wj,k = 0, for jk /∈ E}. Define the function C : P(V) → R; C(U) =∑

j,k∈V , j∈U, k/∈U wj,k. Encrypt which vertices lie in a given subset U by a binary string
x(U) ∈ {0, 1}|V |, s.t.

x(U) := x := x1 . . . xn, xj =

{
1 (j ∈ U)

0 (j /∈ U)
.

xj ∧ (¬xk) = 1 being equivalent to xj 6= xk, allows us to rewrite C as a function on
binary strings.

C(U) =
∑
j,k∈V
xj 6=xk

wj,k =
∑
j,k∈V

wj,k
(
(xj ∧ (¬xk)) ∨ ((¬xj) ∧ xk)

)
=: C(x(U))

⇒ arg max
U∈P(V)

C(U) = arg max
x∈{0,1}|V |

C(x)

This already shows that Max-Cut can be formulated as a binary combinatorial optimiz-
ation problem.

It remains to be shown that C(x) is quadratic. Note that ¬x = 1 − x, x ∧ y = xy,
x ∨ y = x+ y − xy and either x = 0 or 1− x = 0, for x, y ∈ {0, 1}. With this we have

C(x) =
∑
j,k∈V

wj,k
(
(xj ∧ (¬xk)) ∨ ((¬xj) ∧ xk)

)
=

∑
j,k∈V

wj,k
(
xj(1− xk) + (1− xj)xk − xjxk(1− xk)(1− xj)︸ ︷︷ ︸

=0

)
= −2

∑
j,k∈V

wj,kxjxk + 2
∑
j,k∈V

wj,kxj

= xTQx,

61

where

Qj,k =

{
wj,k (j 6= k)∑|V |

l=1wj,l (j = k)
. (A.1)

Proof of Lemma 2.5 (p. 23). Assume ψ(t) to be a curve for which S
[
ψ̄(t), ψ(t), t

]
is

being extremalized. Consider ψ̄ and ψ as independent variables and let ψ̄ε be an arbitrary
variation of ψ̄ s.t. d

dεψε
∣∣
ε=0

and ψ0 = ψ. We omit all t dependencies for the sake of
brevity. Now, as S is stationary for ψ̄ we have:

0 =
d

dε
S[ψ̄ε, ψ]

∣∣∣∣
ε=0

=

∫ t2

t1

i

2

d

dε
〈ψ̇ε|ψ〉 −

i

2

d

dε
〈ψε|ψ̇〉 −

d

dε
〈ψ̄|H |ψ〉

∣∣∣∣
ε=0

=

[
d

dε
〈ψε|ψ〉

∣∣∣∣
ε=0

]t2
t1

−
∫ t2

t1

i

2

d

dε
〈ψε|ψ̇〉

+
i

2

d

dε
〈ψε|ψ̇〉+

d

dε
〈ψ|H |ψ〉

= −
∫ t2

t1

d

dε
〈ψε|

∣∣∣∣
ε=0

(
i
d

dt
|ψ〉 −H |ψ〉

)
d
dε 〈ψψ|

∣∣
ε=0

is arbitrary as so is the variation ψ̄ε. Therefore, ψ must satisfy the TDSE.

Proof of Lemma 2.6 (p. 24). Assume ψ (x(t)) extremalizes the action functional (2.35).
Consider a variation x(t) 7→ xε(t) = x(t) + εx′(t), with x′ arbitrary except x′(t1,2) =
0. We omit all time dependencies. Then, together with the chain rule, this gives
d
dε 〈ψ(x+ εx′)|

∣∣
ε=0

= x
′j
〈
∂j̄ψ(x)

∣∣ and ψ̇(x) = ẋk∂kψ(x), so we can compute the variation
to

0 =
d

dε
S (xε)

∣∣∣∣
ε=0

=

∫ t2

t1

i

2

(〈
x

′j∂jψ
∣∣∣ψ̇〉+

〈
ψ

∣∣∣∣ ddtx′j∂jψ

〉)
− i

2

(〈
d

dt
x

′j∂jψ

∣∣∣∣ψ〉+
〈
ψ̇
∣∣∣x′j∂jψ

〉)
− i

2

(〈
x

′j∂jψ
∣∣∣H |ψ〉+ 〈ψ|H

∣∣∣x′j∂jψ
〉)

dt

=

∫ t2

t1

i

2

(
x

′j
〈
∂jψ

∣∣∣ψ̇〉− x
′j
〈
ψ̇
∣∣∣∂jψ〉+ x

′j
〈
∂jψ

∣∣∣ψ̇〉− x
′j
〈
ψ̇
∣∣∣∂jψ〉)

− x
′j
(
〈∂jψ|H |ψ〉+ 〈ψ|H |∂jψ〉

)
dt

=

∫ t2

t1

x
′j
[
i
(〈
∂jψ

∣∣∣ψ̇〉 −
〈
ψ̇
∣∣∣∂jψ〉)

−
(
〈∂jψ|H |ψ〉+ 〈ψ|H |∂jψ〉

)]
dt

62

= −2

∫ t2

t1

x
′j
(
Im

(
〈∂jψ|∂kψ〉 ẋk

)
+Re (〈∂jψ|H |ψ〉)

)
dt .

Since x′ is arbitrary, this implies Equation (2.37).

Proof of Theorem 2.3 (p. 27). We follow the proof given by Hackl et al. [58]. As described
in Section 2.2.2, the proximum of (E −H) |ψ〉 to the tangent plane TψM is given by the
orthogonal projection

Pψ((E −H) |ψ〉) = 2 |∂jψ〉 gj,k Re 〈∂kψ| (E −H) |ψ〉
= −2 |∂jψ〉 gj,k Re 〈∂kψ|H |ψ〉 ,

where we used that ∂kψ ∈ TψM ' H⊥
ψ is in the orthogonal complement

H⊥
ψ := {φ ∈ H | 〈φ|ψp(δ)〉 = 0}

of ψ. As the unique proximum in TψM to (E −H) |ψ〉 is given by Pψ ((E −H) |ψ〉) and
as we have

d

dτ
|ψ(x(τ))〉 =

∑
j

ẋj |∂jψ(x(τ))〉 , (A.2)

a comparison of coordinates in the frame {|∂jψ〉} implies Equation (2.49).

To see that the energy monotonically decreases notice that the metric gj,k is positive
semidefinite as so is the inner product. This means gj,k has only positive eigenvalues and
so has gj,k. Therefore, the inverse gj,k is positive semidefinite, too. With this, we can
estimate the differential of the energy by:

dE

dτ
= (∂jE)ẋk = −(∂jE)gj,k(2Re 〈∂kψ|H |ψ〉)

= −(∂jE)gj,k∂j(〈ψ|H |ψ〉)
= −(∂jE)gj,k(∂kE) ≤ 0

Proof of Theorem 3.1 (p. 30) and 3.2 (p. 32). Only the proofs of Equations (3.10)
and (3.17) are left open in the main text. Denote the number of single qubit RX
and RZ rotations and CNOT-gates that a unitary circuit U consists of by #(U).
Extend this notation for expectation values 〈U〉, by setting #(〈U〉) := # (U). Then
#(UU ′) = # (U)+# (U ′) and #(〈UU ′〉) = # (〈U〉)+# (〈U ′〉). We use that the number
of the first n integers is

n∑
k=1

k =
n(n+ 1)

2
(A.3)

63

and the sum of the first n squares is
n∑
k=0

k2 =
n(n+ 1)(n+ 2)

6
=

1

6
n3 +

1

2
n2 +

1

3
n. (A.4)

The number of gates in the QAOA-gates UB and UP as in (2.20) and (2.17) are #(UB) =
n and #(UP) = n + 3#(Q), where #(Q) ≤ n2 is the number of non-zero elements in
the qubo-matrix Q. Therefore, each QAOA-block consists of N := #

(
U (p) (δ)

)
=

p (2n+ 3#(Q)) gates. Due to UB (−δj)UB (δj) = I = UP (−δj)UP (δj) for all j, a total
of p − k < p QAOA-blocks annihilate themselve in the middle of U (p)

j U
(p)
k , Ũ (p)

j U
(p)
k ,

U
(p)
j Ũ

(p)
k and Ũ

(p)
j Ũ

(p)
k (3.8) under the assumption that j < k.

Consider the expression for the QAOA-metric in (3.7). The annihilation of gates as
described above means that in the expectations the initial number of gates for the
adjusted QAOA-blocks U (p)

j and Ũ
(p)
j is reduced from N to

N(k) :=

{
(p− (p− k)) (2n+ 3#(Q)) = k

pN (k ≤ p)

(p− (p− (k − p))) (2n+ 3#(Q)) = k−p
p N (k > p),

when neglecting the inserted gates Xl, Zl and ZlZm. Taking the inserted gates into
account and counting the gates in g

(p)
j,k (3.3) using (A.3) yields a total of

#
(
g
(p)
j,k

)
= 3n2 (N(k) + 1 +N(k) + 1) + 3n

n(n− 1)

2
(N(k) + 1 +N(k) + 2)

+

(
n(n− 1)

2

)2

(N(k) + 2 +N(k) + 2)

= N(k)C1(n) + C2(n), (A.5)

where C1(n) =
1
2n

4 + 2n3 + 7
2n

2 and C2(n) = n4 + 5
2n

3 + 5
2n

2, and we used that

∑
l≤m

1 =

n∑
m=1

m∑
l=1

1 =

n∑
m=1

m =

n∑
m=1

m
(A.3)
=

n(n+ 1)

2
. (A.6)

As g is self-adjoint, only the upper-triangular half of g need to be computed directly. For
this we have∑
j≤k

#
(
g
(p)
j,k

) (A.5),(A.6)
=

p∑
k=1

k∑
j=1

(
k

p
NC1(n) + C2(n)

)

+

2p∑
k=p+1

k∑
j=1

(
k − p

p
NC1(n) + C2(n)

)

=
N

p
C1(n)

p∑
k=1

k∑
j=1

k + C2(n)

p∑
k=1

k∑
j=1

1

64

+
N

p
C1(n)

2p∑
k=p+1

k∑
j=1

k + (C2(n)−NC1(n))

2p∑
k=p+1

k∑
j=1

1

(A.3),(A.4)
=

N

p
C1(n)

(
7

3
p3 + 2p2 +

1

3
p

)
+ (2C2(n)−NC1(n))

(
1

2
p2 +

3

2
p

)
which yields (3.10).
Inserting N , C1 (n), C2 (n) and #(Q) ≤ n2 directly implies the asymptotic behavior.
Counting the gates for computing the gradient by (3.15) is analagous to the above by
first computing #(∂jfp) and then summing #(∇fp) =

∑p
j #(∂jfp).

65

Appendix B

Differential geometry

The discussion of the Time-Dependent Variational Principle in Section 2.2 covers some
notions of differential geometry and functional analysis. In this appendix definitions and
explanations for some of those notions are collected. These explanations are simplified and
do not claim completeness. For example, we neglect the complex structure or projective
character of quantum states and focus on the intuition behind the discussed notions. One
of the main points is to justify the orthogonal projection from a Hilbert space onto the
tangent space of some submanifold used in Section 2.2.2. For more details, refer to the
literature [59, 78–81].

The most important definition in differential geometry is that of a smooth manifold.
Manifolds are sets that look locally like the euclidean space Rn. This structure allows
differentiating and has countless implications. In this thesis, we only consider manifolds
that are subsets of finite-dimensional Banach spaces. Here, completeness ensures things
behave nicely. In particular, we can differentiate on such vector spaces.

Definition B.1 (Completeness). Let (V, ‖·‖) be a normed vectorspace over C.

(a) A sequence (xn)n∈N ⊂ V is called a Cauchy sequence, if for all ε > 0 there is
N ∈ N, s.t.

‖xn − xm‖ < ε, ∀n,m ≥ N. (B.1)

(b) We call V complete or a Banach space, if every Cauchy sequence converges in V .

(c) We call a subset U ∈ V open, if for every x ∈ U , there is ε > 0 s.t. Bε(x) := {y ∈
V | ‖x− y‖ < 1} ⊆ U .

For example, every Hilbert space is a Banach space by definition.

Let (V, ‖·‖) be an n-dimensional Banach space over C. Given V , we may define a special
kind of manifold, namely the notion of submanifolds embedded into V .

Definition B.2 (Manifolds). Let Ω ⊆ Rm with m ≤ n, be some open domain.

(a) An immersion from Ω ⊆ Rm to V is a smooth map ψ : Ω → V with rankψ = m,

66

i.e. with an injective differential.

(b) An embedding from Ω ⊆ Rm into V , is an immersion ψ : Ω → V , for which
ψ : Ω → ψ (Ω) is a homeomorphism, i.e. it is a continuous bijective map with
continuous inverse.

(c) Let ψ : Ω → V be an embedding for open Ω ⊆ Rm. Then the image M = f (Ω) is
called an m-dimensional embedded submanifold of V .

An example of an embedded submanifold is the unit circle (see Figure B.1) S1 in C ∼= R2,
parametrized by

ψ : Ω = (0, 2π) → C, ψ(θ) = eiθ. (B.2)

In the following, let M be an m-dimensional embedded submanifold of V , embedded by
ψ : Ω → V for open Ω ⊆ Rm. As M is embedded into a Banach space V , the notion
for functions on M to be smooth can be inherited from the corresponding notion on V .
We call a function f : M → R smooth, if f ◦ ψ : Rm ⊇ Ω → R is smooth. The partial
derivatives are defined in the same way by setting

∂jf (p) :=
∂

∂xj
f ◦ ψ

∣∣∣∣
ψ−1(p)

, (j ≤ m) (B.3)

as for the usual partial derivatives on Rm.

The notion of derivatives, i.e. "directional changes" in M, leads to the notion of the
tangent space of M.

Definition B.3 (Tangentspace and frames). Let M be an m-dimensional submanifold
embedded by ψ : Rm ⊇ Ω → V and p ∈ M be a point in the manifold.

(a) The tangentspace TpM is the m-dimensional vectorspace of all "directions", i.e.

TpM = spanR{[f : M → R] 7→ ∂jf (p) | j ≤ m}, (B.4)

where f are smooth functions on M.

(b) A frame of M is a set of smooth maps Ej : M 3 p 7→ TpM, j ≤ m, such that
{Ej(p) | j ≤ m} is a basis of TpM for each p ∈ M.

For example, the partial derivatives ∂j form a frame, when regarded as maps ∂j(p) =
∂j (·)|p. We can identify the tangent space with Rm as linear spaces. Even further we can
embedd it into V by considering it as the image TpM = dψψ−1(p)(R

m) of the jacobian
dψψ−1(p) of the embedding ψ. Then p+ TpM is the best linear approximation to M in
V at the point p. This justifies the construction of the TDVP for the imaginary time
evolution in Section 2.2.3 by projecting from the Hilbert space onto the tangent space
orthogonally.

67

The embedding of the tangent space can be visualized on the unit sphere. The tangent
space of the unit circle at p = eiθ0 ∈ S1 is given by TpS1 =

{
λ ∂
∂θ

∣∣ λ ∈ R
}

. Then, the
jacobian is a 1× 1 matrix given by

dψθ0 = ieiθ0 = ei
(
θ0+

π
2

)
. (B.5)

As suggested by the visual intuition the image dψθ0 (R) =
{
λei

(
θ0+

π
2

) ∣∣∣ λ ∈ R
}

is per-
pendicular to p in C. The space p+ TpM is the tangent line of S1 at p.

p

S1
TpS1

R

R

Figure B.1: The unit circle in S1 ⊂ C ∼= R2 with its tangent space TpM
to p = eiπ/4.

Tangent spaces at different points of a manifold are a priori completely unrelated vector
spaces. In order to find a natural connection between them, additional structure is
necessary. This structure is given by a Riemannian metric, which characterizes the
Riemannian geometry of M.

Definition B.4 (Riemannian metric). Let M be a manifold (for example an embedded
submanifold of V) and K ∈ {R,C} a field. A Riemannian metric g, is a family of maps
gp : TpM⊗ TpM → K for every p ∈ M, where each gp is an inner product on TpM that
depends smoothly on p.

A Riemmanian metric gp on an m-dimensional manifold M can be represented by an
m×m matrix g with gj,k = gp (Ej(p), Ek(p)), where {Ej | j ≤ m} is some frame of M.
This representation is used in the main text. With that matrix representation, we have

gp (X,Y) =

m∑
j,k=1

Xjgj,kY
k, (B.6)

for X,Y ∈ TpM with X =
∑m

j=1X
jEj and Y =

∑m
k=1X

kEk.

68

A natural way to transport tangent vectors from one tangent space to another is given
by a Riemannian metric called the Levi-Civita connection. Also, a notion of distance
between points in M is defined by the structure of a Riemannian metric. The locally
shortest paths connecting two points are given by so-called geodesics. Geodesics are
special curves in M that are "as straight as possible", where "straight" is again defined by
the Riemannian metric. Without going into detail about how these geometric properties
arise from g, this outlook should give an idea of the importance of the Riemannian metric
and its appearance in the TDVP (Section 2.2). It should also hint, that by evaluating the
Riemannian metric of the QAOA-manifold in Section 3.1 not only the TDVP becomes
accessible, but also many other geometric properties of the QAOA may be derived from
the Riemannian metric.

69

References

[1] R. P. Feynman, ‘Simulating physics with computers’, International Journal of
Theoretical Physics 21, 467–488 (1982) 10.1007/BF02650179.

[2] P. Benioff, ‘The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines’, Journal of
Statistical Physics 22, 563–591 (1980) 10.1007/BF01011339.

[3] P. Benioff, ‘Quantum Mechanical Models of Turing Machines That Dissipate No
Energy’, Physical Review Letters 48, 1581–1585 (1982) 10.1103/PhysRevLett.48.
1581.

[4] M. Brooks, ‘Beyond quantum supremacy: the hunt for useful quantum computers’,
Nature 574, 19–21 (2019) 10.1038/d41586-019-02936-3.

[5] S. Ebadi et al., ‘Quantum optimization of maximum independent set using Rydberg
atom arrays’, Science 376, 1209–1215 (2022) 10.1126/science.abo6587.

[6] C. Grange, M. Poss and E. Bourreau, An introduction to variational quantum al-
gorithms on gate-based quantum computing for combinatorial optimization problems,
(22 December 2022) arXiv:2212.11734 [quant-ph], http://arxiv.org/abs/
2212.11734 (visited on 03/01/2023), pre-published.

[7] D. Amaro, M. Rosenkranz, N. Fitzpatrick, K. Hirano and M. Fiorentini, ‘A case
study of variational quantum algorithms for a job shop scheduling problem’, EPJ
Quantum Technology 9, 5 (2022) 10.1140/epjqt/s40507-022-00123-4.

[8] E. Farhi, J. Goldstone and S. Gutmann, ‘A Quantum Approximate Optimization
Algorithm’, 14 November 2014, arXiv:1411.4028 [quant-ph].

[9] R. Shaydulin, S. Hadfield, T. Hogg and I. Safro, ‘Classical symmetries and the
Quantum Approximate Optimization Algorithm’, Quantum Information Processing
20, 359 (2021) 10.1007/s11128-021-03298-4, arXiv:2012.04713 [quant-ph].

[10] F. G. S. L. Brandao, M. Broughton, E. Farhi, S. Gutmann and H. Neven, For
Fixed Control Parameters the Quantum Approximate Optimization Algorithm’s
Objective Function Value Concentrates for Typical Instances, (10 December 2018)
arXiv:1812.04170 [quant-ph], http://arxiv.org/abs/1812.04170 (visited on
05/10/2022), pre-published.

[11] G. E. Crooks, Performance of the Quantum Approximate Optimization Algorithm
on the Maximum Cut Problem, (20 November 2018) arXiv:1811.08419 [quant-ph],
http://arxiv.org/abs/1811.08419 (visited on 05/10/2022), pre-published.

[12] S. Hadfield, Quantum Algorithms for Scientific Computing and Approximate Optim-
ization, (8 May 2018) arXiv:1805.03265 [quant-ph], http://arxiv.org/abs/
1805.03265 (visited on 15/07/2022), pre-published.

70

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1103/PhysRevLett.48.1581
https://doi.org/10.1103/PhysRevLett.48.1581
https://doi.org/10.1103/PhysRevLett.48.1581
https://doi.org/10.1038/d41586-019-02936-3
https://doi.org/10.1038/d41586-019-02936-3
https://doi.org/10.1126/science.abo6587
https://doi.org/10.1126/science.abo6587
https://arxiv.org/abs/2212.11734
http://arxiv.org/abs/2212.11734
http://arxiv.org/abs/2212.11734
https://doi.org/10.1140/epjqt/s40507-022-00123-4
https://doi.org/10.1140/epjqt/s40507-022-00123-4
https://doi.org/10.1140/epjqt/s40507-022-00123-4
https://arxiv.org/abs/1411.4028
https://doi.org/10.1007/s11128-021-03298-4
https://doi.org/10.1007/s11128-021-03298-4
https://doi.org/10.1007/s11128-021-03298-4
https://arxiv.org/abs/2012.04713
https://arxiv.org/abs/1812.04170
http://arxiv.org/abs/1812.04170
https://arxiv.org/abs/1811.08419
http://arxiv.org/abs/1811.08419
https://arxiv.org/abs/1805.03265
http://arxiv.org/abs/1805.03265
http://arxiv.org/abs/1805.03265

REFERENCES

[13] R. Herrman et al., ‘Impact of graph structures for QAOA on MaxCut’, Quantum
Information Processing 20, 289 (2021) 10.1007/s11128-021-03232-8.

[14] R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble and G. Siopsis, Multi-angle
Quantum Approximate Optimization Algorithm, (23 September 2021) arXiv:2109.
11455 [quant-ph], http://arxiv.org/abs/2109.11455 (visited on 05/10/2022),
pre-published.

[15] M. Medvidovi and G. Carleo, ‘Classical variational simulation of the Quantum
Approximate Optimization Algorithm’, npj Quantum Information 7, 1–7 (2021)
10.1038/s41534-021-00440-z.

[16] J. Ostrowski, R. Herrman, T. S. Humble and G. Siopsis, Lower Bounds on Circuit
Depth of the Quantum Approximate Optimization Algorithm, (12 August 2020)
arXiv:2008.01820 [quant-ph], http://arxiv.org/abs/2008.01820 (visited on
05/10/2022), pre-published.

[17] G. Pagano et al., ‘Quantum approximate optimization of the long-range Ising model
with a trapped-ion quantum simulator’, Proceedings of the National Academy of
Sciences 117, 25396–25401 (2020) 10.1073/pnas.2006373117.

[18] Phys. Rev. Lett. 124, 090504 (2020) - Reachability Deficits in Quantum Approx-
imate Optimization, https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.124.090504 (visited on 05/10/2022).

[19] G. G. Guerreschi and A. Y. Matsuura, ‘QAOA for Max-Cut requires hundreds of
qubits for quantum speed-up’, Scientific Reports 9, 6903 (2019) 10.1038/s41598-
019-43176-9.

[20] R. Shaydulin and Y. Alexeev, ‘Evaluating Quantum Approximate Optimization
Algorithm: A Case Study’, in 2019 Tenth International Green and Sustainable
Computing Conference (IGSC) (October 2019), pp. 1–6, 10.1109/IGSC48788.
2019.8957201, arXiv:1910.04881 [quant-ph].

[21] M. Szegedy, What do QAOA energies reveal about graphs?, (31 December 2019)
arXiv:1912.12277 [quant-ph], http://arxiv.org/abs/1912.12277 (visited on
05/10/2022), pre-published.

[22] R. Tate, M. Farhadi, C. Herold, G. Mohler and S. Gupta, Bridging Classical and
Quantum with SDP initialized warm-starts for QAOA, (6 June 2022) arXiv:2010.
14021 [quant-ph], http://arxiv.org/abs/2010.14021 (visited on 05/10/2022),
pre-published.

[23] Z. Wang, S. Hadfield, Z. Jiang and E. G. Rieffel, ‘Quantum approximate optimization
algorithm for MaxCut: A fermionic view’, Physical Review A 97, 022304 (2018)
10.1103/PhysRevA.97.022304.

[24] Z. Wang, N. C. Rubin, J. M. Dominy and E. G. Rieffel, ‘XY mixers: Analytical
and numerical results for the quantum alternating operator ansatz’, Physical Review
A 101, 012320 (2020) 10.1103/PhysRevA.101.012320.

71

https://doi.org/10.1007/s11128-021-03232-8
https://doi.org/10.1007/s11128-021-03232-8
https://doi.org/10.1007/s11128-021-03232-8
https://arxiv.org/abs/2109.11455
https://arxiv.org/abs/2109.11455
http://arxiv.org/abs/2109.11455
https://doi.org/10.1038/s41534-021-00440-z
https://doi.org/10.1038/s41534-021-00440-z
https://arxiv.org/abs/2008.01820
http://arxiv.org/abs/2008.01820
https://doi.org/10.1073/pnas.2006373117
https://doi.org/10.1073/pnas.2006373117
https://doi.org/10.1073/pnas.2006373117
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.090504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.090504
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1109/IGSC48788.2019.8957201
https://doi.org/10.1109/IGSC48788.2019.8957201
https://doi.org/10.1109/IGSC48788.2019.8957201
https://doi.org/10.1109/IGSC48788.2019.8957201
https://arxiv.org/abs/1910.04881
https://arxiv.org/abs/1912.12277
http://arxiv.org/abs/1912.12277
https://arxiv.org/abs/2010.14021
https://arxiv.org/abs/2010.14021
http://arxiv.org/abs/2010.14021
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.101.012320
https://doi.org/10.1103/PhysRevA.101.012320
https://doi.org/10.1103/PhysRevA.101.012320

REFERENCES

[25] J. Wurtz and P. J. Love, MAXCUT QAOA performance guarantees for p >1,
(2 February 2021) 10.1103/PhysRevA.103.042612, arXiv:2010.11209 [quant-
ph], http://arxiv.org/abs/2010.11209 (visited on 05/10/2022), pre-published.

[26] L. Zhou, S.-T. Wang, S. Choi, H. Pichler and M. D. Lukin, ‘Quantum Approximate
Optimization Algorithm: Performance, Mechanism, and Implementation on Near-
Term Devices’, Physical Review X 10, 021067 (2020) 10.1103/PhysRevX.10.
021067.

[27] L. Zhu et al., An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer, (7 July 2022) arXiv:2005.10258
[quant-ph], http://arxiv.org/abs/2005.10258 (visited on 05/10/2022), pre-
published.

[28] J. Haegeman et al., ‘Time-dependent variational principle for quantum lattices’,
Physical Review Letters 107, 070601 (2011) 10.1103/PhysRevLett.107.070601,
arXiv:1103.0936.

[29] M. J. D. Powell, ‘Direct search algorithms for optimization calculations’, Acta
Numerica 7, 287–336 (1998) 10.1017/S0962492900002841.

[30] M. Powell, ‘A View of Algorithms for Optimization Without Derivatives’, Mathem-
atics TODAY 43 (2007).

[31] D. J. Moore and N. Ikromov, ‘A Real Options Approach to Distressed Property
Borrower-Lender Reconciliation’, Journal of Mathematical Finance 05, 73–81 (2015)
10.4236/jmf.2015.51007.

[32] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information
(Cambridge University Press, Cambridge, 2010).

[33] R. de Wolf, ‘Quantum Computing: Lecture Notes’, 2 August 2022, arXiv:1907.
09415 [quant-ph].

[34] P. A. M. Dirac, ‘A new notation for quantum mechanics’, Mathematical Pro-
ceedings of the Cambridge Philosophical Society 35, 416–418 (1939) 10.1017/
S0305004100021162.

[35] J. W. Z. Lau, K. H. Lim, H. Shrotriya and L. C. Kwek, ‘NISQ computing: where
are we and where do we go?’, AAPPS Bulletin 32, 27 (2022) 10.1007/s43673-
022-00058-z.

[36] T. Toffoli, ‘Reversible computing’, in Automata, Languages and Programming,
Vol. 85, edited by J. Bakker and J. Leeuwen, red. by G. Goos et al. (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1980), pp. 632–644, 10.1007/3-540-10003-2_104.

[37] D. P. Divincenzo, ‘Two-Bit Gates are Universal for Quantum Computation’, Physical
Review A 51, 1015–1022 (1995) 10.1103/PhysRevA.51.1015, arXiv:cond-mat/
9407022.

[38] S. Jansen, M.-B. Ruskai and R. Seiler, ‘Bounds for the adiabatic approximation
with applications to quantum computation’, version 3, Journal of Mathematical
Physics 48, 102111 (2007) 10.1063/1.2798382, arXiv:quant-ph/0603175.

72

https://doi.org/10.1103/PhysRevA.103.042612
https://arxiv.org/abs/2010.11209
https://arxiv.org/abs/2010.11209
http://arxiv.org/abs/2010.11209
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://arxiv.org/abs/2005.10258
https://arxiv.org/abs/2005.10258
http://arxiv.org/abs/2005.10258
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevLett.107.070601
https://arxiv.org/abs/1103.0936
https://doi.org/10.1017/S0962492900002841
https://doi.org/10.1017/S0962492900002841
https://doi.org/10.1017/S0962492900002841
https://doi.org/10.4236/jmf.2015.51007
https://doi.org/10.4236/jmf.2015.51007
https://arxiv.org/abs/1907.09415
https://arxiv.org/abs/1907.09415
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.51.1015
https://arxiv.org/abs/cond-mat/9407022
https://arxiv.org/abs/cond-mat/9407022
https://doi.org/10.1063/1.2798382
https://doi.org/10.1063/1.2798382
https://doi.org/10.1063/1.2798382
https://arxiv.org/abs/quant-ph/0603175

REFERENCES

[39] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser, Quantum Computation by
Adiabatic Evolution, version 1, (28 January 2000) 10.48550/arXiv.quant-ph/
0001106, arXiv:quant-ph/0001106, http://arxiv.org/abs/quant-ph/0001106
(visited on 30/09/2022), pre-published.

[40] T. Kadowaki and H. Nishimori, ‘Quantum Annealing in the Transverse Ising
Model’, Physical Review E 58, 5355–5363 (1998) 10.1103/PhysRevE.58.5355,
arXiv:cond-mat/9804280.

[41] T. Albash and D. A. Lidar, ‘Adiabatic Quantum Computing’, Reviews of Modern
Physics 90, 015002 (2018) 10.1103/RevModPhys.90.015002, arXiv:1611.04471
[quant-ph].

[42] A. Botea, A. Kishimoto and R. Marinescu, ‘On the complexity of quantum circuit
compilation’, in SOCS (2018).

[43] H. F. Trotter, ‘On the product of semi-groups of operators’, Proceedings of the
American Mathematical Society 10, 545–551 (1959) 10.1090/S0002-9939-1959-
0108732-6.

[44] S. Yarkoni, E. Raponi, T. Bäck and S. Schmitt, ‘Quantum Annealing for Industry
Applications: Introduction and Review’, Reports on Progress in Physics 85, 104001
(2022) 10.1088/1361-6633/ac8c54, arXiv:2112.07491 [quant-ph].

[45] M. W. Johnson et al., ‘A scalable control system for a superconducting adiabatic
quantum optimization processor’, Superconductor Science and Technology 23,
065004 (2010) 10.1088/0953-2048/23/6/065004, arXiv:0907.3757 [cond-mat,
physics:physics, physics:quant-ph].

[46] Solving combinatorial optimization problems using QAOA, https://community.
qiskit.org/textbook/ch-applications/qaoa.html (visited on 07/01/2023).

[47] S. Hadfield et al., ‘From the Quantum Approximate Optimization Algorithm to
a Quantum Alternating Operator Ansatz’, Algorithms 12, 34 (2019) 10.3390/
a12020034, arXiv:1709.03489 [quant-ph].

[48] S. Hadfield, ‘On the representation of Boolean and real functions as Hamiltonians
for quantum computing’, ACM Transactions on Quantum Computing 2, 1–21 (2021)
10.1145/3478519, arXiv:1804.09130 [quant-ph].

[49] R. M. Karp, ‘Reducibility among Combinatorial Problems’, in Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer
Computations, held March 2022, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM Research Math-
ematical Sciences Department, edited by R. E. Miller, J. W. Thatcher and J. D.
Bohlinger, The IBM Research Symposia Series (Springer US, Boston, MA, 1972),
pp. 85–103, 10.1007/978-1-4684-2001-2_9.

73

https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://arxiv.org/abs/cond-mat/9804280
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://arxiv.org/abs/1611.04471
https://arxiv.org/abs/1611.04471
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1088/1361-6633/ac8c54
https://arxiv.org/abs/2112.07491
https://doi.org/10.1088/0953-2048/23/6/065004
https://doi.org/10.1088/0953-2048/23/6/065004
https://doi.org/10.1088/0953-2048/23/6/065004
https://arxiv.org/abs/0907.3757
https://arxiv.org/abs/0907.3757
https://community.qiskit.org/textbook/ch-applications/qaoa.html
https://community.qiskit.org/textbook/ch-applications/qaoa.html
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
https://arxiv.org/abs/1709.03489
https://doi.org/10.1145/3478519
https://doi.org/10.1145/3478519
https://arxiv.org/abs/1804.09130
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

REFERENCES

[50] M. J. D. Powell, ‘A Direct Search Optimization Method That Models the Objective
and Constraint Functions by Linear Interpolation’, in Advances in Optimization
and Numerical Analysis, edited by S. Gomez and J.-P. Hennart, Mathematics and
Its Applications (Springer Netherlands, Dordrecht, 1994), pp. 51–67, 10.1007/978-
94-015-8330-5_4.

[51] D. Kraft, A software package for sequential quadratic programming, ein software-
paket zur sequentiellen quadratischen optimierung, forschungsbericht. Deutsche
forschungs- und versuchsanstalt für luft- und raumfahrt, DFVLR (Institut für
Dynamik der Flugsysteme, Deutsche Forschungs- und Versuchsanstalt für Luft-
und Raumfahrt (DFVLR), Oberpfaffenhofen, Köln, 1988).

[52] ‘ANALYSE MATHÉMATIQUE. Méthodc générale pour la résolution des systèmes
d’équations simultanées’, in Oeuvres complètes: Series 1 , Vol. 10, edited by A.-L.
Cauchy, Cambridge Library Collection - Mathematics (Cambridge University Press,
Cambridge, 2009), pp. 399–402, 10.1017/CBO9780511702396.063.

[53] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques
élastiques encastrées, Mémoires Présentés Par Divers Savants à l’Académie Des
Sciences de l’Institut de France, Éxtrait Du Tome XXXIII (Imprimerie nationale,
Paris, 1908), 128 pp.

[54] C. Lemarechal, ‘Cauchy and the Gradient Method’, Documenta Mathematica
(2012).

[55] H. B. Curry, ‘The method of steepest descent for non-linear minimization problems’,
Quarterly of Applied Mathematics 2, 258–261 (1944) 10.1090/qam/10667.

[56] P. a. M. Dirac, ‘Note on Exchange Phenomena in the Thomas Atom’, Mathematical
Proceedings of the Cambridge Philosophical Society 26, 376–385 (1930) 10.1017/
S0305004100016108.

[57] P. W. LANGHOFF, S. T. EPSTEIN and M. KARPLUS, ‘Aspects of Time-
Dependent Perturbation Theory’, Reviews of Modern Physics 44, 602–644 (1972)
10.1103/RevModPhys.44.602.

[58] L. Hackl et al., ‘Geometry of variational methods: dynamics of closed quantum sys-
tems’, SciPost Physics 9, 048 (2020) 10.21468/SciPostPhys.9.4.048, arXiv:2004.
01015 [cond-mat, physics:quant-ph].

[59] J. Haegeman, M. Mariën, T. J. Osborne and F. Verstraete, ‘Geometry of Matrix
Product States: metric, parallel transport and curvature’, Journal of Mathematical
Physics 55, 021902 (2014) 10.1063/1.4862851, arXiv:1210.7710.

[60] P. Kramer and M. Saraceno, eds., Geometry of the Time-Dependent Variational
Principle in Quantum Mechanics, Vol. 140, Lecture Notes in Physics (Springer
Berlin Heidelberg, Berlin, Heidelberg, 1981), 10.1007/3-540-10579-4.

[61] D. H. Kobe, ‘Lagrangian Densities and Principle of Least Action in Nonrelativistic
Quantum Mechanics’, 10 December 2007, arXiv:0712.1608 [quant-ph].

74

https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1017/CBO9780511702396.063
https://doi.org/10.1017/CBO9780511702396.063
https://doi.org/10.1090/qam/10667
https://doi.org/10.1090/qam/10667
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1103/RevModPhys.44.602
https://doi.org/10.1103/RevModPhys.44.602
https://doi.org/10.21468/SciPostPhys.9.4.048
https://doi.org/10.21468/SciPostPhys.9.4.048
https://arxiv.org/abs/2004.01015
https://arxiv.org/abs/2004.01015
https://doi.org/10.1063/1.4862851
https://doi.org/10.1063/1.4862851
https://doi.org/10.1063/1.4862851
https://arxiv.org/abs/1210.7710
https://doi.org/10.1007/3-540-10579-4
https://arxiv.org/abs/0712.1608

REFERENCES

[62] V. I. Arnold, Mathematical Methods of Classical Mechanics, red. by C. C. Moore,
Vol. 60, Graduate Texts in Mathematics (Springer New York, New York, NY, 1978),
10.1007/978-1-4757-1693-1.

[63] A. McLachlan, ‘A variational solution of the time-dependent Schrodinger equation’,
Molecular Physics 8, 39–44 (1964) 10.1080/00268976400100041.

[64] D. Werner, Funktionalanalysis, Springer-Lehrbuch (Springer, Berlin, Heidelberg,
2018), 10.1007/978-3-662-55407-4.

[65] S.-i. Amari, ‘Natural Gradient Works Efficiently in Learning’, Neural Computation
10, 251–276 (1998) 10.1162/089976698300017746.

[66] J. Stokes, J. Izaac, N. Killoran and G. Carleo, ‘Quantum Natural Gradient’,
Quantum 4, 269 (2020) 10 . 22331 / q - 2020 - 05 - 25 - 269, arXiv:1909 . 02108
[quant-ph, stat].

[67] S. McArdle et al., ‘Variational ansatz-based quantum simulation of imaginary time
evolution’, npj Quantum Information 5, 75 (2019) 10.1038/s41534-019-0187-2,
arXiv:1804.03023 [quant-ph].

[68] J. Larkin, M. Jonsson, D. Justice and G. G. Guerreschi, ‘Evaluation of QAOA
based on the approximation ratio of individual samples’, Quantum Science and
Technology 7, 045014 (2022) 10.1088/2058-9565/ac6973.

[69] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed (L. Erlbaum
Associates, Hillsdale, N.J, 1988), 567 pp.

[70] L. V. Hedges, ‘Distribution Theory for Glass’s Estimator of Effect size and Re-
lated Estimators’, Journal of Educational Statistics 6, 107–128 (1981) 10.3102/
10769986006002107.

[71] ‘Effect Size and Precision’, in Introduction to Meta-Analysis (John Wiley & Sons,
Ltd, 2009), pp. 21–32, 10.1002/9780470743386.

[72] ‘Effect Sizes Based on Means’, in Introduction to Meta-Analysis (John Wiley &
Sons, Ltd, 2009), pp. 21–32, 10.1002/9780470743386.ch4.

[73] J. Johansson, P. Nation and F. Nori, ‘QuTiP: An open-source Python framework
for the dynamics of open quantum systems’, Computer Physics Communications
183, 1760–1772 (2012) 10.1016/j.cpc.2012.02.021.

[74] J. Johansson, P. Nation and F. Nori, ‘QuTiP 2: A Python framework for the
dynamics of open quantum systems’, Computer Physics Communications 184,
1234–1240 (2013) 10.1016/j.cpc.2012.11.019.

[75] P. Virtanen et al., ‘SciPy 1.0: fundamental algorithms for scientific computing in
Python’, Nature Methods 17, 261–272 (2020) 10.1038/s41592-019-0686-2.

[76] L. F. Richter, Implemenation of the Quantum Approximate Optimization Algorithm
and the Time-Dependent Variational Principle, (January 2023) https://github.
com/LeonhardRichter/TDVP_and_QAOA/releases/tag/v0.1.0-alpha (visited
on 25/01/2023).

75

https://doi.org/10.1007/978-1-4757-1693-1
https://doi.org/10.1080/00268976400100041
https://doi.org/10.1080/00268976400100041
https://doi.org/10.1007/978-3-662-55407-4
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.22331/q-2020-05-25-269
https://arxiv.org/abs/1909.02108
https://arxiv.org/abs/1909.02108
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://arxiv.org/abs/1804.03023
https://doi.org/10.1088/2058-9565/ac6973
https://doi.org/10.1088/2058-9565/ac6973
https://doi.org/10.1088/2058-9565/ac6973
https://doi.org/10.3102/10769986006002107
https://doi.org/10.3102/10769986006002107
https://doi.org/10.3102/10769986006002107
https://doi.org/10.1002/9780470743386
https://doi.org/10.1002/9780470743386
https://doi.org/10.1002/9780470743386.ch4
https://doi.org/10.1002/9780470743386.ch4
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/LeonhardRichter/TDVP_and_QAOA/releases/tag/v0.1.0-alpha
https://github.com/LeonhardRichter/TDVP_and_QAOA/releases/tag/v0.1.0-alpha

REFERENCES

[77] J. Dormand and P. Prince, ‘A family of embedded Runge-Kutta formulae’, Journal
of Computational and Applied Mathematics 6, 19–26 (1980) 10 . 1016 / 0771 -
050X(80)90013-3.

[78] J. M. Lee, Introduction to Smooth Manifolds, Vol. 218, Graduate Texts in Mathem-
atics (Springer New York, New York, NY, 2012), 10.1007/978-1-4419-9982-5.

[79] J. M. Lee, Introduction to Riemannian Manifolds, Vol. 176, Graduate Texts in
Mathematics (Springer International Publishing, Cham, 2018), 10.1007/978-3-
319-91755-9.

[80] K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds,
Vol. 213, Graduate Texts in Mathematics (Springer New York, New York, NY,
2002), 10.1007/978-1-4684-9273-6.

[81] A. Moroianu, Lectures on Kähler Geometry, 1st ed. (Cambridge University Press,
29 March 2007), 10.1017/CBO9780511618666.

76

https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1007/978-3-319-91755-9
https://doi.org/10.1007/978-3-319-91755-9
https://doi.org/10.1007/978-1-4684-9273-6
https://doi.org/10.1017/CBO9780511618666

	Contents
	List of Illustrations
	Summary
	1 Introduction to quantum algorithms
	1.1 The Qubit
	1.2 Quantum gates
	1.3 Single qubit gates
	1.4 Multi-qubit gates and circuits

	2 Key concepts
	2.1 The Quantum Approximate Optimization Algorithm (QAOA)
	2.1.1 Underlying theorems
	2.1.2 The general principle
	2.1.3 QAOA for combinatorial optimization problems
	2.1.4 Example: Maximum Cut Problem (Max-Cut)

	2.2 The Time-Dependent Variational Principle (TDVP)
	2.2.1 Real time evolution
	2.2.2 McLachlan minimal error principle
	2.2.3 Imaginary time evolution

	3 TDVP-optimization of QAOA
	3.1 The metric of QAOA
	3.2 The gradient of QAOA

	4 Numerical simulations
	4.1 Methods
	4.1.1 Performance measures
	4.1.2 Effect size
	4.1.3 Remarks on the implementation

	4.2 Results
	4.2.1 Quality comparison (Q1)
	4.2.2 Computational resources (Q2)
	4.2.3 Analysis of efficiency (Q3)

	5 Conclusion and outlook
	A Proofs
	B Differential geometry
	References

