
Training Quantum Neural
Networks with

Graph-Structured Quantum
Data

Masterthesis
by

Christian Struckmann

written at
Institut für Theoretische Physik

supervised by
Prof. Dr. Tobias J. Osborne

September 15, 2021

Training Quantum Neural Networks with Graph-Structured
Quantum Data

Masterarbeit

vorgelegt der Fakultät für Mathematik und Physik
der Leibniz Universität Hannover

Referent: Prof. Dr. Tobias J. Osborne
Koreferent: Prof. Dr. Reinhard F. Werner

15. September 2021

Abstract

Quantum computation provides a tool for efficiently simulating quantum systems
and thus offers classically unattainable computational possibilities. Machine learn-
ing models and, especially artificial neural networks, can learn and generalise pro-
vided information in a way not possible with generic algorithms. Combining these
two groundbreaking techniques leads to quantum machine learning, whose quan-
tum neural networks (QNNs) executed on quantum computers allow the efficient
training and generalisation of quantum data unachievable by classical algorithms.
The capability to generalise the provided quantum data is of particular interest as
quantum data, in general, is limited. Defining the quantum perceptron (the build-
ing block of quantum neural networks) as a completely positive map leads to a dis-
sipative QNN (DQNNU). The advent of noisy intermediate-scale quantum (NISQ)
devices offers crucial opportunities to develop quantum algorithms. This quantum
perceptron is defined in terms of parameterised gates to match the constraints of
NISQ devices, leading to the DQNNCAN. Another important quantum algorithm
in the field of quantum machine learning is the quantum approximate optimisation
algorithm (QAOA) which features a sequence of alternating parameterised unitary
operators. Here, the two different QNN architectures of the DQNNCAN and the
QAOA are compared to learn an unknown unitary operator. The analysis mainly
focuses on their generalisation capabilities, especially under current NISQ device
noise levels. It turns out that both networks succeed in learning and generalising
the unitary transformation despite the noise. However, the DQNNCAN is found to
be less susceptible to gate noise and is thus outperforming the QAOA in the region
of high noise levels. In addition to learning input-output relations of the training
states, the training using graph-structured quantum data is analysed. The train-
ing states considered here can be associated with the vertices of a graph where
the edges represent correlations between the vertices. By exploiting this graph
information, the generalisation of the respective network can be significantly im-
proved. The DQNNU, the DQNNCAN, and the QAOA are trained with and without
the graph information to certify this claim. In fact, the exploration of the graph
information notably improves every network’s generalisation for a specific config-
uration of supervised states. This analysis is repeated for arbitrary supervised
states to prove the generality of this success, and, indeed, there is an improvement
in most cases. With the help of these results, the graph learning method can be
further improved, resulting in a remarkable enhancement of the network’s overall
generalisation.

Contents

1 Introduction 1

2 Quantum Computation 5

2.1 Introduction . 5
2.2 Quantum Bits . 6

2.2.1 Multiple qubits . 7
2.2.2 Mixed qubit states . 8

2.3 Quantum Computation . 9
2.3.1 Quantum gates . 9
2.3.2 Quantum circuits . 12
2.3.3 Physical realisation of a quantum computer 14

2.4 Quantum Algorithms . 15
2.4.1 Quantum parallelism . 15
2.4.2 The Deutsch-Jozsa algorithm 16

3 Classical Machine Learning 21

3.1 Introduction . 21
3.2 Neural Networks . 22

3.2.1 Perceptrons . 22
3.2.2 The neural network architecture 23

3.3 Optimisation . 24
3.3.1 The learning task . 24
3.3.2 The cost function . 25
3.3.3 Gradient descent . 26
3.3.4 The backpropagation algorithm 28
3.3.5 Improving the learning . 30

4 Quantum Machine Learning 33

4.1 Introduction . 33
4.2 Quantum Neural Networks . 33

iii

iv CONTENTS

4.2.1 The quantum perceptron . 34
4.2.2 The quantum neural network architecture 34

4.3 Variational Quantum Algorithms . 35
4.3.1 Introduction . 35
4.3.2 The training algorithm . 36
4.3.3 The general dissipative quantum neural network 39
4.3.4 The CAN-based dissipative quantum neural network 40
4.3.5 The quantum approximate optimisation algorithm 42

5 Learning Unitaries on NISQ devices 45

5.1 Introduction . 45
5.2 The Learning Task . 46

5.2.1 The cost function . 46
5.3 Results . 47

5.3.1 Setup . 47
5.3.2 Generalisation analysis . 48
5.3.3 NISQ device execution . 49
5.3.4 Conclusion . 49

6 Training QNNs with Graph-Structured Quantum Data 53

6.1 Introduction . 53
6.2 The Learning Task . 54

6.2.1 Cost functions . 54
6.2.2 Example A: connected clusters 56
6.2.3 Example B: connected line . 56

6.3 Results . 57
6.3.1 Setup . 57
6.3.2 Learning graph-structured quantum data 58
6.3.3 Generalisation analysis . 62
6.3.4 Improving the generalisation 63
6.3.5 Conclusion . 66

7 Conclusion 69

A Supplementary Materials to Chapter 3 i

A.1 Improving the learning . i
A.1.1 Different activation functions i
A.1.2 The cross-entropy cost function ii

B The IBM Quantum Experience v

C Supplementary Materials to Chapter 4 vii

C.1 Quantum backpropagation . vii

CONTENTS v

C.1.1 Graph-structured quantum data viii
C.2 The CAN-based dissipative quantum neural network viii
C.3 The quantum approximate optimisation algorithm ix

C.3.1 The quantum alternating operator ansatz x
C.4 Learning non-unitary transformations x

D Supplementary Materials to Chapter 5 xiii

D.1 Gate noise analysis . xiii

E Supplementary Materials to Chapter 6 xv

E.1 Alternating cost functions . xv

Chapter 1

Introduction

Since the 1980s, it has been known that simulating quantum mechanics is one of the
most challenging problems in computational physics [1, 2]. As the computational
complexity scales exponentially with the system size, a quantum many-body prob-
lem cannot be simulated efficiently using a classical computer. It was Feynman
who first understood that the efficient simulation of quantum mechanics is only
possible by exploiting quantum systems themselves [2]. Only a few years after-
wards, Deutsch proposed the first universal fully quantum model for computation
[3]. He then proceeded to show that a quantum computer could efficiently solve
computational problems which have no efficient solution on a classical computer.
The Deutsch-Jozsa algorithm is the first known quantum algorithm designed to
outperform any classical algorithm [4]. Since then, various other efficient quantum
algorithms have been developed, e.g., Shor’s algorithm for integer factorisation [5],
or Grover’s algorithm for unstructured search problems [6].

In parallel to the rapid development of quantum algorithms, quantum machine
learning (QML) gained much interest. Classically, machine learning models feature
artificial neural networks composed of layers of single parameterised artificial neu-
rons, called perceptrons [7]. The perceptron’s parameters commonly are trained by
exploiting gradient-based optimisation methods such as gradient descent [8]. Their
ability to learn and generalise information have been unattainable for generic algo-
rithms. The field of QML explores quantum algorithms that could speed up certain
machine learning problems [9]. A famous QML architecture is the quantum neural
network [10–19] which can be defined analogously to its classical counterpart as the
composition of quantum perceptrons [10, 13, 20–34] and trained using quantum
backpropagation [10, 35–37]. QML machine learning models are especially useful
when combined with quantum computation to compute the layer-to-layer transi-
tion maps efficiently. Such models are implemented as parameterised quantum
circuits and trained using classical optimisation methods [38–41]. They are com-
monly referred to as hybrid quantum-classical algorithms or variational quantum

1

2 Chapter 1. Introduction

algorithms [41–44]. This work focuses on the QNN model of [10], who define the
quantum perceptron to be a completely positive map. This definition represents a
dissipative QNN as the quantum perceptron acts on two different layers of qubits.
Here, it is called DQNNU.

The current state of research in the field of quantum computation is referred
to as the noisy intermediate-scale quantum (NISQ) era [45]. The early stage only
allows quantum circuits which consist of a few qubits and short depth. To train
a variational quantum algorithm using quantum computers, the quantum circuit
representation of the QNN has to have only a few gates and parameters. The
dissipative QNN model of [10] can be reinterpreted using parameterised gates to
fulfil these conditions. In the following, this representation is called DQNNCAN.
Another famous variational quantum algorithm that gained significant interest in
the past years is the quantum approximate optimisation algorithm (QAOA), which
features a sequence of alternating unitary operators applied to one fixed set of
qubits [46–48]. It has been applied to learning unitaries [49] and is famous for
solving combinatorial optimisation problems [50–58]. [48] introduced the term
quantum alternating operator ansatz and described it as a standalone ansatz.

Successfully executing QNNs and the QAOA on today’s NISQ devices remains
extremely challenging as the high noise levels hinder the accurate computation of
costs and gradients [45, 53, 59, 60]. It is crucial to evaluate and optimise quantum
algorithms with respect to this noise.

This thesis explores and compares the generalisation capabilities of the
DQNNCAN and the QAOA on current quantum hardware. For this, the DQNNCAN
and the QAOA are trained to learn an unknown unitary operator from a set of
training state pairs. Both networks are implemented as parameterised quantum
circuits and optimised to mitigate the effect of noise. The quantum circuits are
implemented using Qiskit [61] and executed on real and simulated IBM quantum
computers [62].

Besides learning the relations from a set of state pairs {��in,k� , ��out,k�}, it is
of particular interest to extend this analysis to the interrelations of the states
{��in,k�} or {��out,k�}. These interrelations are associated by a graph G = (V,E)
with vertices V and edges E. Here the focus is on the work of [63], who could
significantly improve the network’s generalisation by exploiting the graph informa-
tion. The challenge remains to train the QNN using graph-structured quantum
data by utilising hybrid quantum-classical algorithms.

This thesis explores the training of the DQNNU, the DQNNCAN, and the
QAOA using graph-structured quantum data. It is studied whether the success
of [63] can be employed to improve the QNNs’ generalisation capabilities. The
networks are trained using two training data examples that feature particularly
interesting graph structures.

This thesis is structured as follows. First, in chapter 2, the main principles of

3

quantum computation are explained. It includes the description of the quantum
bit (section 2.2), quantum gates, and quantum circuits (section 2.3). Additionally,
the Deutsch-Jozsa algorithm is presented, which is the first known quantum algo-
rithm that solves a specific computational problem more efficiently than the best
classical algorithm (section 2.4). Chapter 3 features the basics of machine learning.
Here, the artificial neuron (section 3.2.1) and the feed-forward neural network are
defined (section 3.2). The optimisation of neural networks using backpropagation
and gradient descent is described in section 3.3. Chapter 4 introduces quantum
machine learning. It includes the presentation of the quantum perceptron from
[10] and its composition to quantum neural networks (section 4.2). The quantum
algorithm representation of the QNN and its training using classical optimisation
methods are described in section 4.3. The generalisation analysis of the DQNNCAN
and the QAOA under the influence of noise is presented in chapter 5. It features the
description of the learning task, the main quantities, and the results of the analysis.
Chapter 6 deals with the analysis of training a QNN using graph-structured quan-
tum data. The learning task, the particular graph-structured training data, and
the results of exploiting the graph information are included. Concluding remarks
are found in chapter 7.

Chapter 2

Quantum Computation

2.1 Introduction

In 1936, Alan Turing theoretically described the realisation of a computing device
[64] which was only years later physically realised. With the further development
of the transistor [65], the potential of computers has continuously improved since
then. This rise was quantified by Gordon Moore in 1965, who stated that the
computational power would double for a constant cost every two years. In other
words, he predicted that technology advances so fast that every year a chip can
fit twice as many transistors as the last year. Moore’s Law held true for decades
afterwards but is expected to break as manufacturers reach fundamental size diffi-
culties. As transistors shrink, they reach the realm of quantum mechanical effects
which interfere with their functionality.

A possible solution is to switch to a computer whose processing units utilise
these quantum mechanical effects. These so-called quantum computers offer an
essential speed advantage over classical computers. This advantage is reinforced
considering the simulation of many-body quantum systems. The classical sim-
ulation of such systems is fundamentally limited as the required computational
resources grow exponentially with the system size. This growth is only linear with
a quantum computer. Feynman first understood that quantum systems could only
be efficiently simulated using a quantum device [2]. The first quantum algorithm,
which solves a computational problem better than any classical algorithm could,
was developed by David Deutsch in 1992 [4]. Various other quantum algorithms
have been developed afterwards, claiming to accomplish this quantum supremacy
[5, 6].

This chapter is structured as follows. In section 2.2, the quantum bit and
its description are presented. Section 2.3 features the possible manipulations of

5

6 Chapter 2. Quantum Computation

quantum bits, the so-called quantum gates. Section 2.4 features the presentation
of the Deutsch-Jozsa algorithm, which was one of the first quantum algorithms
designed to beat any classical algorithm.

This chapter is based on the famous book Quantum Computation and Quantum
Information by Michael A. Nielsen and Issac L. Cuang [66]. Interested readers are
therefore referred to this book.

2.2 Quantum Bits

The binary information digit {0,1} (short: bit) is the fundamental information unit
of classical computing [67]. From punched cards in the 18th century to transistors
in modern computers, this concept of information storage has been further devel-
oped to today’s supercomputers. However, when it comes to simulating quantum
mechanics, the classical supercomputers quickly reach their limits as the number
of required bits scales exponentially with the quantum system’s size.

The quantum bit (qubit) is the fundamental unit of quantum information. It
is a two-state quantum system {�0� , �1�} whose states corresponds to the states 0

and 1 of the classical bit. A general qubit state can be written as the superposition
of the computational basis states �0� = (1,0)T and �1� = (0,1)T in the Hilbert space
H = C2:

� � = ↵ �0� + � �1� = �↵
�
� , ↵,� ∈ C. (2.1)

In contrast to a classical computer, the state of a qubit cannot be read simply
by observation. During a measurement in the computational basis, the state will
collapse into either state �0� or �1� with probability:

p0 = � �0� � �2 = �↵�2 (2.2a)

p1 = � �1� � �2 = ���2 (2.2b)

where �↵�2 + ���2 = 1. Thus, a qubit’s state can generally be represented by a unit
vector in a two-dimensional complex vector space.

A useful geometric representation of the qubit state (2.1) is given by

� � = ei� �cos ✓
2
�0� + ei� sin ✓

2
�1�� , (2.3)

where ✓,�,� ∈ R. The term ei� can be neglected as it does not make an observable
difference:

� � = cos ✓
2
�0� + ei� sin ✓

2
�1� . (2.4)

Note that this representation is only sufficient for pure quantum states. See sec-
tion 2.2.2 for the mixed state representation.

2.2. Quantum Bits 7

�

✓

x

y

z = �0�

−z = �1�

� �

Figure 2.1: The Bloch sphere representation of a qubit.

2.2.1 Multiple qubits
Combining two classical bits results in four possible bit strings: 00, 01, 10,
and 11. Analogously, two-qubit states have four computational basis states:
�00� , �01� , �10� , �11� ∈ C4. Note that �jk� = �j� ⊗ �k� for j,k ∈ {0,1}. Any two-qubit
state can be written as the linear combination of these basis states:

� � = ↵00 �00� + ↵01 �01� + ↵10 �10� + ↵11 �11� , {↵jk}j,k∈{0,1} ∈ C (2.5)

where �↵jk�2 is the probability of measuring the state �jk� for j,k ∈ {0,1}. Note
that the amplitudes have to fulfil the normalisation condition ∑j,k∈{0,1} �↵jk�2 = 1.

In quantum information theory, four very important two-qubit states are the
so-called Bell states (or EPR pairs):

��±� = �00� ± �11�√
2

, (2.6a)

� ±� = �01� ± �10�√
2

. (2.6b)

They are maximally entangled states in the superposition of �0� and �1�. Measuring
one qubit would also collapse the other qubit, meaning the measurement outcomes
are correlated.

The representation of the two-qubit state can be easily generalised to n qubits.
A bit string of length n has 2n different configurations of bits. Similarly, the state of
n quantum bits can be represented by a linear combination of the 2n computational
basis states in the Hilbert space H = C2n :

� � = �
j1,j2,...,jn∈{0,1}

↵j1,j2,...,jn �j1j2 . . . jn� ∈ C2n
, {↵j1,...,jn}j1,...,jn∈{0,1} ∈ C. (2.7)

As the Hilbert space grows exponentially with the number of qubits, it is very
cost-efficient to simulate such systems classically. However, it also reveals the
remarkable computational potential of computers based on such quantum systems.

8 Chapter 2. Quantum Computation

2.2.2 Mixed qubit states
So far, the qubit’s state was assumed to be pure. However, with interactions and
decoherence, the qubit can be put into a mixed state. A mixed state is represented
by a density operator ⇢ where Tr⇢ = 1 and ⇢ ≥ 0 (all eigenvalues are positive).

Consider a system where � i� , j = 1, . . . ,n have been prepared with probability
pi. Then, the system state can be described by the density operator

⇢ =
n

�
j=1

pj � j� � j � . (2.8)

The evolution of the density matrix with unitary operator U is described by

⇢ =�
j

pj � j� � j �
U��→�

j

pjU � j� � j �U † = U⇢U †
. (2.9)

Consider the measurement of the qubit’s state ⇢. The probability of obtaining
results 0 and 1, respectively, is

p0 =
n

�
j=1

pj� �0� i� �2 =
n

�
j=1

pj Tr (�0� �0� j� � j �) = Tr (�0� �0�⇢) = �0�⇢ �0� , (2.10a)

p1 = Tr (�1� �1�⇢) = �1�⇢ �1� . (2.10b)

Bloch sphere representation

Compared to a pure state, the Bloch sphere representation of a mixed state has an
additional degree of freedom. A pure state lies on the surface of the Bloch sphere
and can be fully represented by (✓,�). A mixed state, in general, lies inside the
Bloch sphere, and thus, its representation also requires the radius r. The Bloch
sphere representation for an arbitrary mixed state is given by

⇢ = 1 + r ⋅�
2

, r ∈ R3
, � = (�x,�y,�z)T , (2.11)

where �x, �y, and �z are the Pauli matrices (see table 2.1) and r is called the Bloch
vector with �r� ≤ 1. Note that �r� < 1 for mixed states and �r� = 1 for pure states.

Reduced density operator

Consider two systems A and B with Hilbert spaces HA and HB. Let � � ∈HA⊗HB

be the state of the composite system. This can be used to define a density matrix

2.3. Quantum Computation 9

on this system: ⇢ = � � � �. To obtain the state of system A from the density
operator ⇢, one has to trace over the other subspace, namely system B:

⇢A = TrB ⇢ =
nB

�
j=1
(1A ⊗ �j�B) � � � � (1A ⊗ �j�B) (2.12)

where 1A is the identity operator in HA and {�j�
B
}nB
j=1 are the basis states of HB.

⇢A is called the reduced density operator of ⇢ on subsystem A.

2.3 Quantum Computation

This section features the basic principles of quantum computation. First, in
section 2.3.1, the most important quantum gates are presented. Section 2.3.2
shows the composition of quantum gates to create quantum circuits.

2.3.1 Quantum gates
In general, quantum gates are unitary operators acting on one or multiple qubit
systems. This unitarity constraint is the only constraint on a quantum gate but a
very important one as it conserves the state’s normalisation:

Tr �U⇢U †� = Tr �U †
U⇢� = Tr (⇢) = 1 (2.13)

where U is a unitary operator (U † = U−1) and ⇢ is a density matrix in the Hilbert
space where the unitary acts.

Single-qubit gates

Single-qubit gates are two-dimensional unitary operators acting on a single qubit
state (see table 2.1).

Some quantum gates have a classical counterpart. Consider, e.g., the NOT
gate. Classically, it simply flips the bit from 0 to 1 or from 1 to 0. An analogous
quantum NOT gate should map �0� to �1� and �1� to �0�:

� � = ↵ �0� + � �1� NOT���→ � ′� = NOT � � = � �0� + ↵ �1� . (2.14)

Thus, the NOT gate is defined as

NOT = �0� �1� + �1� �0� = �0 1

1 0
� = �x. (2.15)

As the NOT gate is equal to the Pauli-X gate, it can also be viewed as a rotation
by p around the x-axis (see Fig. 2.1). The Pauli-Y and Pauli-Z gates rotate by p

10 Chapter 2. Quantum Computation

180°

90°

x

y

z = �0�

−z = �1�

(a) H �0� = �0� + �1�√
2

and H �1� = �0� − �1�√
2

.

180°

90°

x

y

z = �0�

−z = �1�
(b) H(H �0�) = �0� and H(H �1�) = �1�.

Figure 2.2: Visual representation of the Hadamard gate acting on (a) �0� and �1� and (b) H �0�
and H �1�. First, the vector is rotated by 90° around y. Afterwards, it is rotated by 180° around
x. The arrows mark the path of the state as it is rotated.

around the y and z-axis. A continuous rotation by an angle ✓ around a certain
axis a ∈ {x,y,z} can be achieved by applying e−i✓�a . Such gates are called RX(✓),
RY(✓), and RZ(✓).

Another crucial single-qubit gate is the Hadamard gate H which creates a
superposition of �0� and �1�:

H �0� = �0� + �1�√
2
= �+� (2.16a)

H �1� = �0� − �1�√
2
= �−� (2.16b)

where H itself is defined as

H = 1√
2
(�0� �0� + �0� �1� + �1� �0� − �1� �1�) = 1√

2
�1 1

1 −1� . (2.17)

Like every other quantum gate, the Hadamard gate can be represented by a se-
quence of rotations (see Fig. 2.2).

Another very important quantum gate is the u gate, as it is the most general
of all single-qubit gates. It is parameterised by three angles ✓,�,� ∈ [0,2p):

u(✓,�,�) = � cos � ✓2� −ei� sin � ✓2�
ei� sin � ✓2� ei(�+�) cos � ✓2�

� . (2.18)

Every single-qubit gate can be represented by adjusting these angles.

2.3. Quantum Computation 11

Multi-qubit gates

Apart from quantum gates acting on single qubits, there exist multi-qubit gates
that can create entangled qubit systems. Here, the focus is on two-qubit gates as
every other multi-qubit gate can be constructed from single and two-qubit gates.
In fact, the only two-qubit gate needed is the controlled-NOT (CNOT) gate. It is
defined as

CNOT = �0� �0�⊗ 1 + �1� �1�⊗NOT

= �00� �00� + �01� �01� + �10� �11� + �11� �10� =
�
���
�

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

�
���
�
.

(2.19)

Applying it to a two-qubit state (2.5) swaps the amplitudes ↵10 and ↵11:

� � = (2.5) CNOT����→ � ′� = CNOT � � = ↵00 �00�+↵01 �01�+↵11 �10�+↵10 �11� . (2.20)

� C� � C�

� T � � T ⊕ C�

Figure 2.3: The CNOT gate applied to � C�⊗� T � where � C,T � ∈ {�0� , �1�}. Here, ⊕ denotes
the addition modulo 2, which is analogous to ap-
plying the classical XOR gate.

Suppose, the qubits’ states � C� and
� T � are initially either in the state �0�
or �1�. Swapping the amplitudes ↵10

and ↵11 of the two-qubit state � C� ⊗
� T � only changes the state if � C� = �1�.
Commonly, the two qubits on which the
CNOT gate acts are called control and
target qubits as the target qubit’s state � T � is flipped (�0�� �1� or �1�� �0�) if and
only if the control qubit � C� is in the state �1�.

The CNOT gate creates entanglement between both qubits. The target qubit’s
state is conditioned on the control qubit’s state and thus, carries the information
of both qubits. If the initial states are known, it suffices to measure one of the
two qubits to get both of their output states.

Another crucial two-qubit gate is the SWAP gate which swaps the states of two
qubits. It is defined as

SWAP = �00� �00� + �01� �10� + �10� �01� + �11� �11� =
�
���
�

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

�
���
�
. (2.21)

The SWAP gate can be expressed using three CNOT gates (see Fig. 2.4).

Universal set of gates

Classically, it can be shown that the AND, OR, and NOT gates are sufficient to
compute any given function as this set of gates is universal for classical computa-
tion.

12 Chapter 2. Quantum Computation

=

�
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

� = �
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� �
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

� �
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

�

Figure 2.4: The SWAP gate written in terms of CNOT gates.

In quantum computation, there exist several combinations of such universal
gates. As mentioned previously, any quantum gate can be composed of single-
qubit and CNOT gates. Various possible single-qubit gates come into question
here. The most famous is called the standard set of universal gates and consists of

Gstandard = {CNOT,H,S,T}. (2.22)

Any given single-qubit gate can be approximated to an accuracy ✏ using O(logc(1
✏
))

gates where c ≈ 2 is a constant (Solovay-Kitaev theorem) [68].
The newer IBM quantum systems mostly use [62]

GIBM = {CNOT, ID,RZ,SX,X}. (2.23)

Before execution, every gate of the quantum circuit is decomposed into these so-
called basis gates as these are the actual gates being executed on the IBM quantum
systems (see appendix B).

2.3.2 Quantum circuits
Quantum circuits can be illustrated similarly to classical circuit diagrams. A hori-
zontal line represents a distinguishable qubit system that evolves from left to right.
Gates onto these lines represent the evolution of the qubit system according to their
unitary representation.

�0� H

��+� = (2.6)
�0�

Figure 2.5: The quantum circuit to construct the bell state ��+�.
A simple circuit is depicted in Fig. 2.5. The total quantum circuit consists of

two qubits which are initially in the state �0�. First, a Hadamard gate is applied
to the first qubit, producing the state 1√

2
(�0� + �1�) (see (2.16a)). Afterwards, a

CNOT gate is applied where the first qubit is the control qubit and the second
qubit is the target qubit. The target qubit is flipped if and only if the control

2.3. Quantum Computation 13

qubit is in the state �1�. However, after the H gate application, the first qubit is
in a superposition of states �0� and �1�. The output of the circuit is the maximally
entangled state:

CNOT(H⊗ 1) �00� (2.16a)= CNOT� 1√
2
(�0� + �1�)⊗ �0��

(2.19)= 1√
2
(�0� �0� (�0� + �1�)⊗ �0� + �1� �1� (�0� + �1�)⊗NOT �0�)

(2.15)= 1√
2
(�0�⊗ �0� + �1�⊗ �1�) = 1√

2
(�00� + �11�) (2.6)= ��+� .

(2.24)
If the qubits would be initialised in �01�, applying the quantum circuit in Fig. 2.5
would result in � +�. Analogously, it maps �10� to ��−� and �11� to � −�.

Measurements in other bases

Measurements are crucial to receive information about the quantum circuit’s result.
The outcome of a measurement in the computational basis {�0� , �1�} is described
by (2.10). However, it is also possible to measure the qubit in a different basis
even though the measurement operation itself is unchanged. Suppose, the new
basis in which the measurement should be performed is {�+� = 1√

2
(�0� + �1�) =

H �0� , �−� = 1√
2
(�0�− �1�) = H �1�}. Then, it follows that the probability of obtaining

measurement outcome "+" and "−" after measuring an arbitrary state ⇢ with
respect to �+� and �−� is given by

Tr (⇢ �+� �+�) = Tr �⇢H �0� �0�H†� = Tr �H†
⇢H �0� �0�� = Tr �H⇢H† �0� �0�� (2.25a)

Tr (⇢ �−� �−�) = Tr �H⇢H† �1� �1�� (2.25b)

where it was used that H† = H. The measurement in the new basis {�+� , �−�} is
equivalent to the measurement in the computational basis {�0� , �1�} after applying
a Hadamard gate to the qubit.

Another useful basis is the Bell basis {��±� , � ±�} (see (2.6)). Equation (2.24)
shows that the Bell states can be written in terms of a CNOT and an H gate.
Thus, the measurement outcome of a measurement in the Bell basis is given by

Tr (⇢ ��+� ��+�) = Tr �⇢CNOT(H⊗ 1) �00� �00� (CNOT(H⊗ 1))†�
= Tr �(H⊗ 1)CNOT⇢CNOT†(H⊗ 1)† �00� �00��

(2.26)

where, it was used that CNOT† = CNOT and H† = H. Analogously for the other
Bell states. A measurement in the Bell basis can be achieved by applying the
circuit in Fig. 2.6. This measurement method will come in handy when computing
the fidelity between two quantum states (see section 4.3.2).

In general, a measurement in the basis {U �0� ,U �1�} is obtained by simply
applying U † before measuring in {�0� , �1�}.

14 Chapter 2. Quantum Computation

�0� H

(2.26)
�0�

Figure 2.6: The quantum circuit for performing a measurement in the basis of the Bell states.
Here, the qubits are initialised in �00� resulting in the measurement outcome (2.26).

2.3.3 Physical realisation of a quantum computer

The physical implementation of a quantum computer is hard as various require-
ments have to be taken into account. Here, the five main requirements are
depicted. The interested reader is referred to the source [66, 69].

A scalable physical system with well-characterised qubits

As discussed previously, a quantum computer is a collection of qubits. A qubit
is simply a quantum two-level system (see section 2.2). It can have many
representations, e.g., the two spin states of a spin-1/2 particle, the ground and
excited states of an atom, or the vertical and horizontal polarisation of a photon.
To implement an ideal quantum computer, it is crucial to know the qubit’s
physical properties like its internal Hamiltonian (i.e., how it evolves over time)
or the coupling to other qubits or external fields (to allow the definition of
quantum gates). The qubits in today’s quantum computers are mainly based on
superconducting electrical circuits (superconducting quantum computers) [70, 71]
or charged atoms in electromagnetic traps (ion trap quantum computers) [72–74].

Prepare the qubits in a fiducial state

This requirement is self-explanatory, as this is a fundamental requirement of
computation itself. The initial state before the start of computation should be
known; otherwise, the result of the computation cannot be interpreted. It suffices
to produce one state with high fidelity as a sequence of gates can produce any
desired input state.

Decoherence times much longer than the gate operation time

Decoherence times quantify the qubit’s interactions with its environment. It
is the time for a generic qubit state (2.1) to be transformed into the mixture
⇢ = �↵�2 �0� �0�+ ���2 �1� �1�. It is also referred to as leakage in quantum computing
[75]. The decoherence time sets the main limitation to the quantum circuit’s
length, as each gate has its own operation time. The qubits in a quantum
computer should be well isolated to have long decoherence times but also have to
be accessible for measurements. A good balance has to be found.

A universal set of quantum gates

2.4. Quantum Algorithms 15

Of course, to have a universal quantum computer, i.e., a quantum computer that
can express any quantum algorithm, the qubits should allow operations that
together form a universal set, e.g., (2.22) or (2.23).

Measuring the qubit

To obtain information about the output of the quantum circuits, the qubits have
to be measured (see (2.2)). The quality of the measurement can be quantified by
the signal to noise ratio. It gives the signal strength with respect to the underlying
noise. Commonly, the measurement of a qubit after applying the quantum circuit
is repeated several times to average out most of the noise.

The current state of quantum computation is described as the NISQ (Noisy
Intermediate-Scale Quantum) era [45]. "Intermediate-Scale" refers to the size of
quantum computers or, more precisely, the number of qubits. The qubit number is
currently limited to a few hundred, but upcoming quantum computers are already
pushing the boundaries of classical simulations [76]. "Noisy" refers to the noise
of these qubits. The imperfect conditions and limited control of qubits restrict
the number of operations. A quantum circuit with more than a thousand gates is
currently not practical as the noise will overwhelm the signal.

2.4 Quantum Algorithms

Since the development of quantum computing, various quantum algorithms have
been proposed that, if realised, would outperform any classical algorithm. A very
well known quantum algorithm that accomplishes this quantum supremacy is the
Deutsch-Jozsa algorithm, first introduced in 1992 [4]. The fundamentals for it and
the algorithm itself are described in sections 2.4.1 and 2.4.2.

2.4.1 Quantum parallelism
Suppose a function f(x) should be evaluated for x ∈ {0,1} (see Fig. 2.7). Classi-

x

Uf

x

y y ⊕ f(x)

Figure 2.7: Exemplary circuit that computes f(x) for x ∈ {0,1}. ⊕ denotes addition modulo
two.

cally, the circuit of this function has to be evaluated twice, for each case x = 0 and
x = 1. A quantum computer, however, is capable of evaluating both cases simul-
taneously. This is called quantum parallelism. By applying a Hadamard gate, a
quantum bit can be put into a superposition of �0� and �1�. The application of Uf

16 Chapter 2. Quantum Computation

onto this superposition is evaluating f(x) for x = 0 and x = 1 simultaneously (see
Fig. 2.8).

�0� H
Uf � � = �0,f(0)�+�1,f(1)�√

2

�0�

Figure 2.8: Exemplary quantum circuit that computes f(x) for x ∈ {0,1}.
The parallel application of Hadamard gates to each qubit is called the

Hadamard transform. The output of a Hadamard transformed two-qubit circuit is
given by

H⊗2 �00� = H �0�⊗H �0� = �0� + �1�√
2
⊗ �0� + �1�√

2
= �00� + �01� + �10� + �11�

2
. (2.27)

This can be easily generalised to more qubits. The output of the Hadamard trans-
form for n qubits is given by 1√

2n
∑x �x� where the sum is over all 2n possible values

of x = x1 . . . xn with x1, . . . , xn ∈ {0,1}. Thus, the Hadamard transform produces a
superposition of all computational basis states.

The Hadamard transform makes it possible to evaluate the given function for
all possible input values simultaneously. However, measuring the qubits will only
give the result of precisely one x. This computational complexity is also achieved
classically. The following section will feature a particular problem where quantum
parallelism is exploited so that the quantum algorithm outperforms its classical
counterpart.

2.4.2 The Deutsch-Jozsa algorithm
Consider the following problem. Alice produces a bit string x ∈ {0, . . . ,2n − 1} and
sends it to Bob. Bob chooses to either act a constant (f(x) = y = const∀x) or a
balanced function (f(x) = 0 for one half of possible x values and f(x) = 1 for the
other half) on the given bit string. The return value is passed to Alice, who now
should decide whether Bob has chosen a constant or a balanced function. This is
called Deutsch’s problem.

Suppose the evaluation of the function is done classically. Each iteration, Alice
sends one of the 2n possible values of x to Bob. In the worst case, Alice would
have to send 2n−1 + 1 bit strings to Bob to make the decision (if she received 2n−1
times the 0, the (2n−1 + 1)th return value would classify the function: 0: constant,
1: balanced).

In the case of quantum bits, Alice only needs to query Bob a single time to
decide whether he uses a constant or balanced function. The quantum algorithm
making this possible is depicted in Fig. 2.9. It consists of n + 1 qubits where the
first n qubits are initialised in �0� and the (n + 1)th in �1�. First, the Hadamard

2.4. Quantum Algorithms 17

n�0�⊗n H⊗n
Uf

H⊗n

�1� H

� 1� � 2� � 3�

Figure 2.9: The quantum circuit implementing the Deutsch-Jozsa algorithm.

transform is applied, creating a superposition of all computational basis states

� 1� = H⊗n �0�⊗n ⊗H �1� = ��0� + �1�√
2
�⊗�⊗ ��0� + �1�√

2
�⊗ ��0� − �1�√

2
�

= �
x∈{0,1}n

�x�√
2n
⊗ ��0� − �1�√

2
�

(2.28)

which is then send to Bob. He applies the unitary representation of the function
Uf ∶ �x,y�� �x,y ⊕ f(x)� of his choice to all the n + 1 qubits, creating the state

� 2� = Uf � 1� = �
x∈{0,1}n

�x,0⊕ f(x)� − �x,1⊕ f(x)�√
2n+1 . (2.29)

where ⊕ denotes addition modulo two. For a given x, f(x) can take values 0 and
1. The expression (2.29) can be rewritten using

�x,0⊕ f(x)� − �x,1⊕ f(x)� =
�������

+ �x�⊗ (�0� − �1�) , if f(x) = 0
− �x�⊗ (�0� − �1�) , if f(x) = 1

= (−1)f(x) �x�⊗ (�0� − �1�) .
(2.30)

Thus, it follows that

� 2� = �
x∈{0,1}n

(−1)f(x) �x�√
2n

⊗ ��0� − �1�√
2
� . (2.31)

The amplitudes of this state carry the information of the function evaluation f(x)
and are returned to Alice. Similarly to (2.31), the action of the Hadamard gate on
a single qubit can be written as

H �x� = 1√
2
�

z∈{0,1}
(−1)z⋅x �z� . (2.32)

For n qubits this can be generalised to

H⊗n �x� = H⊗n �x1 . . . xn� = 1√
2n

�
z1,...,zn∈{0,1}

(−1)z1⋅x1+�+zn⋅xn �z1 . . . zn�

= 1√
2n
�

z∈{0,1}n
(−1)z⋅x �z� (2.33)

18 Chapter 2. Quantum Computation

where x ⋅ z is the bitwise product of x = x1 . . . xn and z = z1 . . . zn, modulo two.
Thus, the output state of the quantum circuit can be written as

� 3� = �H⊗n ⊗ 1� � 2� = �
x∈{0,1}n �

z∈{0,1}n
(−1)z⋅x+f(x) �z�

2n
⊗ ��0� − �1�√

2
�

= � 3�1,...,n ⊗ � 3�n+1 .
(2.34)

Measuring the first n qubits in the computational basis state �0� results in the
probability

p0 = ��0 . . .0� 3�1,...,n�
2 =
�����������
�

x∈{0,1}n
(−1)f(x)

2n

�����������

2

. (2.35)

Based on this measurement outcome, Alice can fully classify Bob’s function. If Bob
chose a constant function, i.e., either f(x) = 0 or f(x) = 1 for all values of x, the
probability would be in both cases p0 = 1 and thus, the measurement outcome is
always 0 for all qubits. If Bob chose a balanced function, i.e., f(x) = 0 for one half
of possible values x and f(x) = 1 for the other half, the probability would be p0 = 0
as both halves would cancel each other out. Consequently, the measurement result
of at least one qubit is not equal to 0. In summary, the probability of measuring
0 . . .0 is

p0 =
�������

0, if f(x) is constant
1, if f(x) is balanced

. (2.36)

If Alice’s measurement results in only 0s for all qubits, Bob’s function is constant;
otherwise, it is balanced. Thus, Alice can classify Bob’s function by only querying
him once, whereas many more iterations are required classically.

It has to be noted that the Deutsch-Jozsa algorithm has no practical applica-
tion but is only formulated to demonstrate the uniqueness of quantum algorithms.
Besides the Deutsch-Jozsa algorithm, various other quantum algorithms claim to
beat any classical algorithm. Shor’s algorithm is one of the most famous quan-
tum algorithms, which is based on the Quantum Fourier Transformation and can
factor integers in polynomial time [5]. Grover’s algorithm claims to speed up an
unstructured search problem quadratically [6].

2.4. Quantum Algorithms 19

Table 2.1: Single-qubit gates and their matrix representations.

Operator Gate Matrix

Identity 1 1 = �1 0

0 1
�

Pauli-X / NOT
X

�x = �
0 1

1 0
�

Pauli-Y
Y

�y = �
0 −i
i 0

�

Pauli-Z
Z

�z = �
1 0

0 −1�

Hadamard
H

1√
2
�1 1

1 −1�

Z rotation RZ(✓) e
−i ✓2�z = �

�
e
−i ✓2 0

0 e
i
✓

2

�
�

p�8
T

�
1 0

0 e
i

p
4
�

Sqrt(X)
SX

√
X

√
�x =

1

2
�1 + i 1 − i
1 − i 1 + i�

Phase
S

√
�z = �

1 0

0 i
�

Chapter 3

Classical Machine Learning

3.1 Introduction

Biological brains process information entirely different from conventional comput-
ing systems. The ability to learn and generalise information have been unattainable
for generic algorithms. In 1943, the first idea of an artificial brain was published
[77, 78]. Since then, the idea has been further developed into an indispensable part
of computer science named machine learning.

Artificial neural networks, as the name implies, are computing systems that
mimic the processes of their biological counterpart. They are composed of artificial
neurons which produce a real-valued activation from multiple binary inputs. The
composition and linking of neurons make it possible to compute any given function
[79]. This network of neurons can be trained to act as a specific function by utilising
special optimisation techniques. Neural networks have been successfully applied
to various tasks, e.g., image recognition or natural language processing [80].

There are various methods of composing these neurons in a way that suits
the problem at hand. Commonly, one divides these structures into interconnected
layers of neurons. The most straightforward way of applying these neurons is
simply through the layers from first to last. Such a network is called feed-forward
neural network. There exist many other neural network architectures that are
fundamentally different from this approach. Exemplary, recurrent neural networks
consist of layers of neurons whose output is inserted again in previous layers,
resulting in a recursive operation. Such networks are commonly used for temporal
problems such as speech recognition [81] or video analysis [82]. An overview of the
most popular neural network architectures can be found in [83].

This chapter will focus on feed-forward neural networks as the goal is to
explain the basic notions. First, in section 3.2, the neural network with its
fundamental building block are presented. Section 3.3 features the optimisation

21

22 Chapter 3. Classical Machine Learning

of the neural network. It includes the description of general machine learning
optimisation techniques such as gradient descent and backpropagation.

The content of this chapter is based on Neural networks and deep learning by
Michael A. Nielsen [79]. It explains the main concepts of training artificial neural
networks, including its extension to deep learning. The interested reader is referred
to this book.

3.2 Neural Networks

3.2.1 Perceptrons
Just like the human brain, a neural network consists of the interconnection between
multiple neurons. Every single neuron takes an input signal from adjacent neurons
and produces an output signal used as an input for the next neuron. The artificial
neuron is called the perceptron and was developed in 1961 by Frank Rosenblatt [7].
Mathematically speaking, a perceptron takes binary inputs x1, x2, . . . , xn ∈ {0,1}
and produces a single binary output a ∈ {0,1}, called the neuron’s activation.

x1

x2

. . .

xn

a =
�������

0, if ∑n

j=1wjxj ≤ threshold
1, if ∑n

j=1wjxj > threshold

w1

w2

wn

Figure 3.1: The Rosenblatt perceptron.

Rosenblatt defined the output a as the binary value which turns 1 if the
weighted sum of all the inputs xj with weights wj is greater than a certain thresh-
old and 0 otherwise (see Fig. 3.1). The weights and the threshold are parameters
of the perceptron itself. By adjusting the weight wj, the importance of the specific
input xj can be scaled. The threshold is scaling the overall acceptance rate of the
perceptron (how likely it will accept its inputs).

Normally, the expression in Fig. 3.1 is rewritten such that

astep(x;w, b) =
�������

0, if w ⋅x + b ≤ 0
1, if w ⋅x + b > 0

(3.1)

where w = (w1, w2, . . . , wn)T and x = (x1, x2, . . . , xn)T . Note that the threshold has
been exchanged with the bias b, which serves the same purpose but b = −threshold.
This function a(x;w, b) is called the activation function of the neuron.

It turns out that the perceptron is universal for computation as it represents
a NAND gate by adjusting its weights and bias. Thus, neural networks can be
as powerful as any other computing device. However, there is even more to it.

3.2. Neural Networks 23

Improving the perceptron even further makes it possible to invent powerful learn-
ing algorithms that automatically update the neuron’s parameters such that the
network itself acts like the desired function. The most famous improved version of
a perceptron is called the sigmoid neuron.

Sigmoid neuron

−5 0 5

0

0.5

1

z
a

st
ep

,a
si

gm
oi

d

Figure 3.2: The step and sigmoid
activation functions. z =w ⋅x + b.

A crucial constraint on the activation function
is the continuity in the weights and biases.
Small changes in the weights and biases should
only result in small changes in the output. Only
then, the change of the network’s output is lin-
ear in the change of the weights and biases.
This linearity makes it easy to choose the small
changes in the neuron’s parameters that achieve
the desired small change in the output (see sec-
tion 3.3). The activation function of the per-
ceptron (3.1) does not fulfil this requirement.
Instead, this gives rise to the definition of the
sigmoid neuron. Similar to the perceptron, it takes some inputs x and produces
some output a(x;w, b) according to its weights w and bias b. The key difference
is that the sigmoid neuron’s inputs and output can take any values between 0 and
1. The output is computed using the sigmoid function:

�(z) = 1

1 + exp(−z) . (3.2)

The activation of the sigmoid neuron is given by:

asigmoid(x;w, b) ∶= �(w ⋅x + b) = 1

1 + exp(−w ⋅x − b) . (3.3)

It is plotted together with the step function (3.1) in Fig. 3.2. The shape of the
sigmoid function resembles a smooth step function.

3.2.2 The neural network architecture
The composition of neurons is called a neural network. The output of each neuron
is linked to the input of other neurons. In general, these types of structures are
divided into layers of neurons (see section 3.2.2). The first layer is called the input
layer. The input information of the network is initialised in the neurons of this
layer. The last layer is called the output layer, as these neurons store the output
data of the network. All the layers in between are called the hidden layers.

24 Chapter 3. Classical Machine Learning

xin
1

xin
2

↵1
1

↵1
2

↵1
3

↵2
1

↵2
2

↵2
3

↵2
4

↵L

1

↵L

2

↵out
1

w1
1

wL

2

input layer hidden layers output layer

Figure 3.3: The feed-forward neural network architecture. It consists of one input layer, L

hidden layers, and one output layer.

The size of the input and output layer generally is defined by the problem at
hand (see section 3.3.1). The size of the hidden layer, however, should be set
according to the problem complexity. Usually, more complex problems require a
higher depth network as the network’s computational power scales with the number
of neurons.

The neural network depicted in section 3.2.2 is called feed-forward neural net-
work as the information advances from left to right through the network. The
activation of the jth neuron in layer l is given by:

↵
l

j
= a(↵l−1

;wl

j
, b

l

j
), l = 1, . . . ,L,out, j = 1, . . . , nl (3.4)

where ↵in = xin and ↵l = (↵l

1, . . . ,↵
l
nl
)T . nl denotes the number of neurons in layer

l. wl

j
is the weight vector connecting all neurons in layer l−1 to the jth neuron of

layer l. Thus, the network’s output can be written as:

↵out = ↵out(xin
;{w},{b}) =

nout

�
j=1

a(↵L
;wout

j
, b

out
j
)ej (3.5)

where ej has components [ej]k = �j,k. {w} and {b} denote the weights and biases
of every neuron.

3.3 Optimisation

3.3.1 The learning task
The goal of machine learning is to find a set of optimal parameters {w,b} for each
neuron such that the network acts like a desired function. Suppose the learning task

3.3. Optimisation 25

is the classification of handwritten digits taken from the MNISTa dataset, which
consists of thousands of grayscale images (28 × 28 pixels) of handwritten digits
[84]. Then, the network’s input layer should contain 28× 28 = 784 neurons as each
neuron should inherit the grayscale value of one pixel. The output layer includes
ten neurons where the value of neuron d = 0, . . . ,9 represents the probability that
the desired digit is d. The neurons’ parameters are optimised such that the network
correctly classifies the handwritten digit, i.e., the output neuron corresponding to
digit d has the highest value when the input image shows a d.

The classification of handwritten digits belongs to the class of supervised learn-
ing tasks. The network is trained to produce a desired output from a given input
(labeled training data). There exist, as well, unsupervised learning tasks where the
entire training data is unlabeled. Such tasks mainly include clustering [85] or as-
sociation [86]. However, in the following, the learning is assumed to be supervised.

The raison d’être of neural networks is their capability to generalise their knowl-
edge gained by learning the features of the provided data to previously unknown
data. In the task of image classification, the network is trained using example
images (labeled data) such that the trained network can generalise this knowledge
to new images (unlabeled data). For this, two sets of data pairs are constructed.
Each pair consists of a handwritten image xin (the grayscale value of each pixel)
and the digit that is drawn xout (the desired network output, e.g., (1,0, . . . ,0)T
if the image shows a zero). The first set is used to train the network and thus
is called the training set. After injecting the grayscale value of each pixel into
the network and processing each neuron, the network’s output is compared to the
corresponding desired output. Then, the network’s parameters are updated such
that the network’s classification of the training set is improved. The other set is
used to measure the network’s generalisation capabilities. It is called the test set,
as it is used to test whether the network can generalise its knowledge to previously
unknown images. Sometimes it is also called validation set.

The training Strain and the test Stest set can be written as:

St = {(xin,k
,xout,k)}nt

k=1, t ∈ {train,test} (3.6)

where nt specifies the number of data pairs in the respective set.

3.3.2 The cost function
To evaluate the network’s success in, e.g., classifying the input image, a quantity is
needed, which compares the network’s output ↵out for input xin to the correspond-
ing desired output xout. A common choice is the quadratic cost function, which is
the sum of the squared differences of all network outputs and desired outputs:

Ct({w},{b};St) =
1

2nt

nt

�
k=1
�↵out,k −xout,k�2, t ∈ {train, test} (3.7)

a MNIST stands for Modified data from National Institute of Standards and Technology.

26 Chapter 3. Classical Machine Learning

where the sum is over all training/test inputs xin,k and ↵out,k =
↵out(xin,k;{w},{b}). Note that the cost function is non-negative. It becomes
small if the network’s output ↵out,k is close to the desired output xout,k and larger
the more they differ. The cost function evaluated on the training set is called the
training cost. Analogously for the test cost.

To train the network, e.g., to classify handwritten digits, the parameters {w, b}
need to be optimised such that the training cost (3.7) is reduced. In different words,
the task is to find the global minimum of the cost landscape spanned by (3.7).

3.3.3 Gradient descent
The most famous optimisation algorithm to find the global minimum of a given
cost function C(w, b) is called gradient descent. It is an iterative algorithm that
optimises the parameters {w, b} according to the gradient of the cost function∇{w,b}C(w, b).

In the following, the subscript train is dropped (C = Ctrain, n = ntrain, S = Strain)
as the test cost is not involved in the upcoming derivations.

The parameters {w} and {b} are initialised randomly. Suppose the parameters
are changed according to

[wl

j
]q � [wl

j
]q + [dwl

j
]q, (3.8a)

b
l

j
� b

l

j
+ dbl

j
. (3.8b)

This induces the following change in the cost function:

dC =
out

�
l=1

nl

�
j=1
�@C
@bl

j

dbl
j
+

nl−1
�
q=1

@C

@[wl

j
]q
[dwl

j
]q� (3.9)

dC should be negative such that the cost for the new parameters is closer to the
minimum. Thus, the parameter shifts should be

dbl
j
= −⌘@C

@bl
j

(3.10a)

[dwl

j
]q = −⌘

@C

@[wl

j
]q

(3.10b)

where ⌘ > 0 such that dC = −⌘�∇C�2 < 0. ⌘ is called the learning rate as it scales
the size of the learning step. This defines the parameter update rule of gradient
descent:

b� b − ⌘∇bC, (3.11a)

w �w − ⌘∇wC. (3.11b)

The whole gradient descent algorithm is depicted in algorithm 1.

3.3. Optimisation 27

Algorithm 1: Gradient descent.
1 Initialise parameters ✓ = {w, b};
2 while C(✓) not converged do

3 ✓ = ✓ − ⌘∇✓C;
4 end

Stochastic gradient descent

The cost function C is defined as the average over costs La of individual training
data:

C(S) = 1

n

n

�
k=1

L([S]k), (3.12a)

L(xin
,xout) = 1

2
�↵out −xout�2. (3.12b)

Generally, the size of the training set is very large and, thus, makes the computation
of the cost function and its gradient very slow. The training set is divided into
smaller so-called mini-batches Sm ⊂ S to speed up the training. Sm contains nbatch
randomly picked training pairs of S. The average of individual costs L([Sm]k) gives
an estimate of the total cost C(S). Since the gradient is linear, these mini-batches
can be used to approximate the gradient:

∇C(S) = 1

n

n

�
k=1
∇L([S]k) ≈ 1

nbatch

nbatch

�
k=1
∇L([Sm]k) = ∇C(Sm). (3.13)

With this, the parameter update rule yields

b� b − ⌘

nbatch

nbatch

�
k=1
∇bC([Sm]k), (3.14a)

w �w − ⌘

nbatch

nbatch

�
k=1
∇wC([Sm]k). (3.14b)

The mini-batches Sm are chosen at random during training. In one training epoch,
each training pair is used once. Note that for each epoch S = ∪n�nbatch

m=1 Sm must
be fulfilled. Exemplary, if n = 1000 and nbatch = 50, then there are 20 iterations
needed to complete one training epoch.

a L is usually called the loss function. However, cost and loss are sometimes used interchange-
ably.

28 Chapter 3. Classical Machine Learning

3.3.4 The backpropagation algorithm
To be fully able to put these equations into code the computation of the cost
function’s gradient (3.14) has to be defined. Backpropagation is an algorithm
that computes the gradient of the cost function with respect to the network’s
weights and biases for a single training pair. In order for it to work, there are two
requirements the cost function needs to fulfil:

1. The cost function C(S = {(xin,j,xout,j)}n
j=1) can be written as an average

over cost functions for individual training data (xout,j,xout,j).

2. The cost function can be written as a function of the neural network’s output:
C = C(↵out).

Both of these requirements are satisfied by the quadratic cost function (3.7).
For simplicity, the argument of the activation function is summarised as

z
l

j
= ↵l−1 ⋅wl

j
+ bl

j
(3.15)

such that a(↵l−1;wl

j
, bl

j
) = a(zl

j
). The partial derivatives of the cost function with

respect to the weights and biases can be expressed by the partial derivative with
respect to (3.15):

@C

@bl
j

=
nl

�
k=1

@C

@zl
k

@zl
k

@bl
j

=
nl

�
k=1

@C

@zl
k

�
j

k
= @C
@zl

j

= cl
j

(3.16a)

@C

@wl

j

=
nl

�
k=1

@C

@zl
k

@zl
k

@wl

j

= @C
@zl

j

↵l−1 = cl
j
↵l−1 (3.16b)

where cl
j
= @C�@zl

j
.

Only the computation of cl
j

is left. It can be rewritten as

c
l

j
= @C
@zl

j

=
nl+1
�
k=1

@C

@zl+1
k

@zl+1
k

@zl
j

=
nl+1
�
k=1

c
l+1
k

@zl+1
k

@zl
j

. (3.17)

With

@zl+1
k

@zl
j

= @

@zl
j

(wl+1
k
⋅↵l + bl+1

k
) = @

@zl
j

(�
m

[wl+1
k
]ma(zlm) + bl+1k

)

=�
m

[wl+1
k
]m
@a(zl

m
)

@zl
j

= [wl+1
k
]j a′(zlj)

(3.18)

it follows that

c
l

j
=

nl+1
�
k=1

c
l+1
k
[wl+1

k
]j a′(zlj). (3.19)

3.3. Optimisation 29

This gives rise to an iterative algorithm as cl
j

is determined by all {cl+1
k
}nk
k=1 of the

following layer. The algorithm is initialised with

c
out
j
= @C

@zout
j

= @C

@↵out ⋅
@↵out

@zout
j

= 1

n

n

�
i=1
(↵out −xout) ⋅ eja

′(zout
j
) (3.20)

which then can be used to calculate the values of previous layers. Hence the name
backpropagation. The complete training algorithm using gradient descent and
backpropagation is depicted in algorithm 2.

Algorithm 2: Training algorithm using backpropagation and gradient
descent.

/* Note: ⊙ indicates the elementwise (Hadamard) product:
a⊙ b = ∑k[a]k[b]kek */

1 Initialise W l (weight matrix with components [W l]jk = [wl

j
]k) and bl (bias

vector with components [bl]j = blj) for every layer l randomly;
2 while C(✓) not converged do

/* Iterate through nbatch mini-batches */
3 for j = 1, . . . , nbatch do

/* Iterate trough training data in mini-batch */
4 for {xin,xout} in Sj do

/* Feedforward */
5 ↵in = xin;
6 for l = 1, . . .out do

7 zl =W l ⋅↵l−1 + bl;
8 ↵l = a(zl);
9 end

/* Backpropagation */
10 cout = ∇↵outCj (↵out;xout)⊙ a′(zout);
11 for l = L, . . . ,1 do

12 cl = (W l+1)T ⋅ cl+1 ⊙ a′(zl);
13 @

@bl
C (↵out;xout) = cl;

14 @

@WlC (↵out;xout) = cl ⋅ (↵l−1)T ;
15 end

16 end

/* Gradient descent */
17 bl = bl − ⌘

nbatch
∑{xin,xout}∈Sj @

@bl
C (↵out;xout);

18 W l =W l − ⌘

nbatch
∑{xin,xout}∈Sj @

@WlC (↵out;xout);
19 end

20 end

30 Chapter 3. Classical Machine Learning

3.3.5 Improving the learning
The methods presented previously correspond to the basic techniques of machine
learning and have been further improved ever since. Here, the focus is on advanced
machine learning techniques, which turn out useful in later chapters. However,
other techniques can be found in appendix A.

Adam

Besides optimisation via vanilla gradient descent, there are also different variations,
which have shown a faster convergence of the cost function. One such variation
is the Adaptive Momentum Estimation (Adam) [87]. Its principle is similar to
gradient descent. The key concept is utilising the information of past gradients
to get a better estimation of the present gradient. The algorithm is sketched in
algorithm 3.

Algorithm 3: Adam [87].
1 Initialise parameters ✓ = {w, b};
2 Initialise default values: ↵ = 0.001, �1 = 0.9, �2 = 0.999, ✏ = 10−8;
3 m0 = 0 (First momentum vector);
4 v0 = 0 (Second momentum vector);
5 t = 0 (Timestep);
6 while C(✓) not converged do

7 t = t + 1;
8 g

t
= ∇✓C;

9 mt = �1 ⋅mt−1 + (1 −�1) ⋅ gt
;

10 vt = �2 ⋅ vt−1 + (1 −�2) ⋅ g⊙2t ;
11 m̂t =mt�(1 − (�1)t);
12 v̂t = vt�(1 − (�2)t);
13 ✓ = ✓ − ⌘ m̂t�(

√
v̂t + ✏);

14 end

Other notable gradient-based optimisation algorithms that are known to im-
prove the convergence of the cost function are AdaGrad [88] and RmsProp [89]. A
great overview can be found in [8].

Overfitting

When the training set is small, or the learning is performed too long, the network
tends to concentrate too much on the training data, resulting in a poor general-
isation. It optimises its parameters to classify the training data well but fails to
generalise it to unseen data. The network learns specific features of the training
data that the underlying model does not represent. This effect is called overfitting.
The most apparent consequence of overfitting during training is a decreasing (or

3.3. Optimisation 31

low) test cost while the training cost is increasing. A prevalent technique to reduce
overfitting is to add a regularisation term to the cost function [90]. The new cost
function then is given by:

C = C0 +
�

2n
�
l,j

�wl

j
�2 (3.21)

where C0 is the unregularised cost function (e.g. (3.7)) and � > 0 the regularisation
parameter. This regularisation term is punishing neurons with large weights �wl

j
�.

With this, the neurons are prevented from concentrating too much on specific
features/inputs.

Other improvements have been made using early stopping (stopping the train-
ing before the test cost drops) or dropout (randomly ignoring neurons in the net-
work) [91].

Chapter 4

Quantum Machine Learning

4.1 Introduction

Machine learning models are used to learn patterns from given data to apply this
knowledge to previously unknown data. Quantum machine learning (QML) mod-
els seek the same goal but with quantum data. This is of high interest as quantum
data, in general, is limited. A famous QML model is the so-called quantum neu-
ral network (QNN) constructed in analogy to its classical counterpart [10]. It is
composed of quantum perceptrons, which are defined as unitary operators that
propagate the information from layer to layer through the QNN [10, 13, 20–34].
Such models are especially suited for the operation using quantum computers as
quantum data cannot be simulated efficiently using classical computers [66] (see
chapter 2). QNNs on quantum computers are primarily implemented as hybrid
quantum-classical algorithms (also called variational quantum algorithms) [41–44].
These are parameterised quantum circuits, which are trained using classical opti-
misation methods [38–41]. The QNNs described in this chapter are implemented
and trained using quantum computers and different learning tasks in chapters 5
and 6.

This chapter is structured as follows. Section 4.2 features the definition of quan-
tum neural networks and their fundamental building block, the quantum percep-
tron. In section 4.3, the hybrid quantum-classical training of a QNN is described.
Additionally, the quantum algorithms of important QNNs are presented.

4.2 Quantum Neural Networks

Quantum neural networks are the most famous quantum machine learning models.
Here, the "quantum" denotes that the neural network acts on quantum states

33

34 Chapter 4. Quantum Machine Learning

of some bounded Hilbert space H = C2nq of an nq-qubit system. Note that its
classical counterpart acts on nc floating values xin ∈ Rnc (see section 3.2.2). These
fundamentally different training data require a redefinition of the network itself.
The following definition of a QNN is based on [10]. It is described as a sequence
of completely positive layer transition maps, so-called quantum perceptrons.

4.2.1 The quantum perceptron
The quantum perceptron is the fundamental building block of QNNs. Classically, it
is defined as a function acting on some input x that produces an output a(x;w, b)
dependent on its weights w and bias b (see section 3.2.1). Various proposals suggest
a quantum version of this perceptron [10, 13, 20–34]. The quantum perceptron
described in [10] is defined as a general unitary operator acting on all nin input
qubits ⇢in and one output qubit ⇢out. In general, there could be multiple output
qubits. However, here it will be restricted to a single qubit. The difference between
the classical and quantum perceptron is depicted in Fig. 4.1.

nin
↵in

a(⋅ ;wout
j

, bout
j
)

↵out
j

(a) A circuit representation of the classical percep-
tron. The neuron’s activation is given by ↵

out
j =

a(↵in;wout
j ,b

out
j) (see section 3.2.1).

nin nin
⇢in

Uout

�0� Eout(⇢in)

(b) A quantum circuit representation of the quantum
perceptron. U

out acts on the input state ⇢in and the
output state initialised in �0�. The first nin qubits are
traced out, leaving Eout(⇢in) = (4.1).

Figure 4.1: A comparison of the classical and quantum perceptron.

Mathematically, the output of the quantum perceptron can be written as

⇢
out = Eout(⇢in) = Trin �Uout �⇢in ⊗ �0� �0��Uout†� (4.1)

where Uout is the unitary representation of the quantum perceptron acting on all
the input qubits and the output qubit. Note that the trace is over the input space
leaving only the output qubit after the application of Uout.

4.2.2 The quantum neural network architecture
Similar to its classical counterpart, a QNN is built by composing and linking
quantum perceptrons. The structure and notation of the classical architecture can
be recycled from section 3.2.2. The QNN works in a similar feed-forward fashion
(see Fig. 4.2). The input state ⇢in is initialised in the input qubits. Then, the
state’s information is propagated through the network by applying each quantum
perceptron. The state after applying the jth quantum perceptron of layer l is given
by

⇢
l

j
= E l

j
(⇢l−1) = Trl−1 �U l

j
�⇢l−1 ⊗ �0� �0��U l

j

†� (4.2)

4.3. Variational Quantum Algorithms 35

⇢in
1

⇢in
2

⇢11

⇢12

⇢13

⇢21

⇢22

⇢23

⇢24

⇢L1

⇢L2

⇢L3

⇢out
1

⇢out
2

U1 = U1
3U

1
2U

1
1

input layer L hidden layers output layer

Figure 4.2: The feed-forward quantum neural network architecture. It consists of one input
layer, L hidden layers, and one output layer. The perceptron unitaries are applied from top to
bottom.

where ⇢l =�nl
j=1 ⇢lj. U l

j
is the quantum perceptron acting on all nl−1 qubits of layer

l − 1 and the jth qubit of layer l. The full state of layer l can be written as

⇢
l = E l �⇢l−1� = Trl−1 �U l �⇢l−1 ⊗ �0 . . .0�

l
�0 . . .0��U l†� (4.3)

where �0 . . .0�
l
= �0�⊗nl and U l =∏1

j=nl
U l

j
is the layer unitary. The network’s output

is obtained by recursively applying (4.3) to the network’s input state ⇢in:

⇢
out = �Eout ○ EL ○ � ○ E1� �⇢in� = E �⇢in� . (4.4)

This implements a quantum feed-forward neural network that can be optimised
using a quantum analogous of the backpropagation algorithm (see appendix C.1).

4.3 Variational Quantum Algorithms

4.3.1 Introduction
The QNN described in section 4.2 using the quantum backpropagation algorithm
(appendix C.1) can be fully simulated classically. However, as the Hilbert space
dimension scales exponentially with the number of qubits, this simulation is re-
stricted to a few qubits, even with today’s supercomputers. Thus, training a QNN
for a larger number of qubits can only be done using quantum computation (see
chapter 2). The qubits of the quantum computer serve as the qubits for the QNN.
The quantum perceptrons can be decomposed into basis gates, i.e., unitary trans-
formations of the quantum computer’s qubits. However, although a QNN can be

36 Chapter 4. Quantum Machine Learning

implemented on a quantum computer, the quantum backpropagation algorithm
cannot be applied as information about the qubits’ states can only be obtained via
measurements. The actual state of a qubit cannot be read, and thus, the param-
eter matrix (C.3) cannot be computed. The solution to this problem is replacing
the quantum backpropagation algorithm with a classical optimisation method, e.g.,
gradient descent. Such hybrid quantum-classical algorithms or variational quantum
algorithms feature the classical optimisation of a parameterised quantum circuit
[92].

Thus, training a QNN on a quantum computer in a hybrid-classical manner
requires a parameterised quantum circuit representation of the QNN and a quan-
tum algorithm that computes the cost function These are defined in section 4.3.2.
A straightforward quantum circuit implementation of the QNN described in sec-
tion 4.2 is described in section 4.3.3. The number of parameters and, thus, the
computational cost can be reduced by composing the unitary operator in terms of
parameterised quantum gates. This approach is presented in section 4.3.4. Both of
these networks are composed of dissipative quantum perceptrons. Another impor-
tant QNN architecture is represented by the quantum approximate optimisation
algorithm (QAOA). It is defined in section 4.3.5.

4.3.2 The training algorithm
In general, the goal of training a QNN is to learn correlations between some input
states {⇢in,k

train}
ntrain
k=1 and output states {⇢out,k

train }
ntrain
k=1 such that this information can

be generalised to input states {⇢in,k
test}ntest

k=1 with unknowna output states {⇢out,k
test }ntest

k=1 .
To optimise a QNN such that the network acts in the desired way: E(⇢in,k) =
⇢out,k, a quantity is needed that measures the closeness between E(⇢in,k) and the
corresponding desired output state ⇢out,k. This quantity is called the cost function.
The closeness between two states ⇢ and � is quantified by the fidelity

F (⇢,�) = Tr �
�√

⇢�
√
⇢�

2 ⇢=� ⇢�� ⇢�= � ⇢�� � ⇢�
�=� ��� � �= � � ⇢� �� �2. (4.5)

Thus, a possible cost function for the training states is given by:

Ctrain =
1

ntrain

ntrain

�
k=1

F (E(⇢in,k
train),⇢

out,k
train) (4.6)

which ranges from 0 (worst) to 1 (best). Of course, this cost function can also
be used to calculate the test cost Ctest. In the rest of this chapter, the subscripts
train and test are dropped as the computation of the training and test cost is
analogous.

a The output states {⇢out,k
test }ntest

k=1 are unknown to the QNN as they are not used to train it.

4.3. Variational Quantum Algorithms 37

In general, the network’s output E(⇢in) is a mixed state. Therefore, the fidelity
(4.5) can only be efficiently calculated on a quantum computer if the desired output
state ⇢out is pure.

Pure output states

First, suppose the desired output states are pure: ⇢out = ��out� ��out�. Then, the
fidelity is given by F (E(⇢in), ��out� ��out�) and can be computed using the destruc-
tive swap test (see Fig. 4.3) [93, 94]. It consists of Bell basis measurements of
��out� ��out� ⊗ E(⇢in) and classical post-processing of its result m = (m1, . . .mn)T
where the fidelity is obtained by ∑n�2

j=1mjmj+n�2 modulo two.
n

n

⇢ m⇢

Tr(⇢�) =m⇢ ⋅m� mod 2, m⇢,� ∈ {0,1}n

� H m�

Figure 4.3: The quantum circuit implementing the destructive swap test. If either ⇢, �, or both
are pure, this quantum algorithm can be used to calculate their fidelity (4.5).

The complete algorithm of computing F (E(⇢in), ��out� ��out�) is depicted in
Fig. 4.4.

n

n m

m n

��out�

⇢in

E
�0�⊗m H

Figure 4.4: The quantum circuit implementing the QNN training. n denotes the number of
qubits needed to initialise ⇢in and ��out�. m denotes the number of qubits the QNN additionally
requires. m = n for the dissipative QNNs (see sections 4.3.3 and 4.3.4). m = 0 for the QAOA (see
section 4.3.5).

Mixed output states

There does not exist an efficient quantum algorithm for the computation of the
fidelity (4.5) between two mixed states. In this case, an alternative measure has
to be defined. Commonly, the Hilbert-Schmidt distance is chosen:

dHS(⇢,�) = Tr �(⇢ − �)2� = Tr(⇢2) − 2Tr(⇢�) +Tr(�2) (4.7)

which is equivalent to the fidelity when ⇢ and � are pure states. The computation
of dHS(E(⇢in),⇢out) requires three evaluations of the destructive swap test shown
in Fig. 4.3:

1. ⇢ = E(⇢in),� = E(⇢in) → Tr(E(⇢in)E(⇢in)).

38 Chapter 4. Quantum Machine Learning

2. ⇢ = E(⇢in),� = ⇢out → Tr(E(⇢in)⇢out).

3. ⇢ = ⇢out,� = ⇢out → Tr(⇢out⇢out).

Of course, E(⇢in) is not computed classically but as shown in Fig. 4.4.
In a superconducting quantum computer [70, 71], the qubit states cannot

be reset to the �0� state. Thus, each qubit of the QNN has to be represented
by exactly one qubit of the quantum computer. As a result, the QNN requires
additional m = ∑out

l=1 nl qubits. An ion trap quantum computer [72–74], however,
would allow the reset of qubits and thus would only need max{nl +nl+1}Ll=in qubits
in total [95]. In the following, the quantum computer is assumed to consist
of superconducting qubits as these are provided by IBM [96] and utilised in
chapters 5 and 6.

Optimisation

The knowledge from optimising classical neural networks can be reinterpreted to
train QNNs. Suppose the unitary representation of the quantum perceptron is
parameterised by some np parameters ✓ = (✓1, . . . , ✓np). These parameters are
equivalent to the weights and biases of classical perceptrons. By applying classical
optimisers (see section 3.3.3) to the cost function (4.6), the parameters can be
iteratively updated such that the QNN’s output converges to the desired output
states.

The algorithm for optimising a QNN is depicted in algorithm 4. It is very
similar to the classical optimisation algorithm (see section 3.3.3). As the states
of a certain neuron cannot be observed, the backpropagation algorithm is not
applicable. The gradient of the cost function has to be computed by a numerical

Algorithm 4: Optimising QNNs using gradient descent.
1 Initialise the parameters ✓ randomly.;
2 while C(✓) = (4.11) not converged do

/* Make trial parameters */
3 ✓± = {✓ ± ep✏}np

p=1, [ep]k = �pk;
/* Compute the cost gradient via (4.8) (or (4.10)) */

4 ∇✓C(✓) = ∑✓±p∈✓±
C(✓+p)−C(✓−p)

2✏ ep;
/* Update the parameters, here: via Gradient Descent (see

algorithm 1) */
5 ✓ = ✓ − ⌘∇✓C;
6 end

4.3. Variational Quantum Algorithms 39

approximation:

∇✓C(✓) =
np

�
p=1

C(✓ + ep✏) −C(✓ − ep✏)
2✏

+O(✏2) (4.8)

where ep has components [ep]k = �p,k. A special case arises if the QNN’s quantum
circuit representation can be written as

U(✓) = VmUm(✓m) . . . V2U2(✓2)V1U1(✓1) (4.9)

where Vj are constant arbitrary circuits and Uj(✓j) = e
− i2Hj✓j are parameterised

gates generated from a hermitian operator Hj. Then the gradient can be computed
using the so-called parameter-shift rule [39, 39, 41, 97, 98]:

∇✓C(✓) =
np

�
p=1

C(✓ + ep✏) −C(✓ − ep✏)
2 sin(✏) . (4.10)

Note that this rule can be used to exactly compute the cost’s gradient. For ✏→ 0,
this expression is approximately equal to the finite-difference approximation (4.8).

The parameterised cost function can be written as

C(✓) = 1

ntrain

ntrain

�
k=1

F (E(✓; ⇢in,k),⇢out,k). (4.11)

Note that the gradient descent update rule (line 5 in algorithm 4) can be exchanged
by any other optimiser, e.g. Adam.

Training a QNN in the NISQ era

Today’s NISQ devices are characterised by limited qubits and high noise levels
restricting the quantum circuit size (see section 2.3.3). The noise is the central
obstacle as it hinders the QNN’s training by making the measurement results
inaccurate and thus limiting the accuracy of the update steps. Thus, the cost
function will be bounded to a specific value. This value can be determined by the
so-called identity cost C(✓1) (4.11), where ✓1 are network parameters such that
E(✓1) = 1 [99]. Each gate is still applied and adds noise to the quantum circuit.
This feature is crucial to quantify the overall noise level.

An analysis of training QNNs on NISQ devices can be found in chapter 5.

4.3.3 The general dissipative quantum neural network
The dissipative QNN presented here implements the QNN ansatz described in
section 4.2. Its definition is taken from the supplementary information of [10]. In
the following, it is referred to as DQNNU.

40 Chapter 4. Quantum Machine Learning

The QNN is composed of quantum perceptrons which are defined as general
unitary operators U l

j
acting on all qubits of layer l − 1 and the jth qubit of layer l.

The network architecture and the corresponding quantum algorithm are depicted
in Fig. 4.5. In order to train such a QNN on a quantum computer using a classical

q1

q2

q3

q4

q5

q6

q7

(a) The QNN architecture of the DQNNU.

2

3

2

��in�
U1

�0�⊗3
Uout

�0�⊗2 E(��in� ��in�)

(b) The quantum circuit implementing the DQNNU.
The gates are colored similarly to the quantum percep-
tron in (a).

��in�
U1
1 U1

2 U1
3

�0�⊗3
Uout
1 Uout

2

�0�⊗2 E(��in� ��in�)

(c) The decomposed quantum circuit of (b). The gates are styled according to (a).

Figure 4.5: The general dissipative quantum neural network.

optimisation method, the quantum perceptron has to be parameterised. Here, the
quantum perceptron U l

j
is defined as a 2nl−1+1×2nl−1+1 parameterised unitary matrix

defined by

U
l

j
= eiKl

j , K
l

j
= �
↵1,...,↵nl−1+1

k
l,j

↵1,...,↵nl−1+1�
↵1⊗�⊗�↵nl−1+1 , {↵j}nl−1+1

j=1 ∈ {0,1,2,3}

(4.12)

where kl,j = (kl,j

0...0, . . . , k
l,j

3...3) ∈ R4nl−1+1 are the parameters and �↵, ↵ ∈ {0,1,2,3}
are the Pauli matrices. Note that each unitary U l

j
(kl,j) has as many parameters

as components, namely 4nl−1+1. This enables the quantum perceptron to represent
any unitary operator.

4.3.4 The CAN-based dissipative quantum neural network
Suppose the goal is to train a DQNNU, as shown in Fig. 4.5a. The whole network
would have np = ∑out

l=1 nl4
nl−1+1 = 704 parameters. Thus, in each epoch, the cost has

to be computed ntrain × ntest × 2 × np ∼ 105 times to get an approximation of its

4.3. Variational Quantum Algorithms 41

2

3

2

��in� u⊗2
U1

�0�⊗3 u⊗3
U2

�0�⊗2 u⊗2 ⇢out

(a) The quantum circuit implementing the DQNNCAN with the architecture from Fig. 4.5a. The gates colors
are chosen according to Fig. 4.5a.

U1 =

U1
1 U1

2 U1
3

(b) The quantum circuit implementing the DQNNCAN quantum perceptron. The empty gates on the right hand
site are canonical gates (4.14). The colors refer to (a) and Fig. 4.5a.

Figure 4.6: The CAN-based dissipative quantum neural network.

gradient. This is very costly, considering that one of these executions should be
performed with about 212 shots. Thus, the number of parameters of the quantum
perceptron has to be reduced to efficiently train the QNN.

Here, the quantum perceptron U l

j
comprises general parameterised two-qubit

gates Gl

k,j
(✓)

U
l

j
=

1

�
k=nl−1

G
l

k,j
(4.13)

where Gl

k,j
acts on the kth and jth qubit of layer l. Gl

j,k
is chosen to be the

canonical gate [100] which is defined as

CAN(✓1, ✓2, ✓3) = e−
p
2 ✓1X⊗X

e
− p
2 ✓2Y⊗Y

e
− p
2 ✓3Z⊗Z

= RXX(✓1p)RYY(✓2p)RZZ(✓3p).
(4.14)

The qubits which are not affected by the gate have been neglected in the defi-
nition (4.13). The precise definition of the quantum perceptron can be found in
appendix C. In the following, this QNN is referred to as the DQNNCAN.

Fig. 4.6 features the implementation of the DQNNCAN’s quantum circuit with
respect to the architecture depicted in Fig. 4.5a. Note that the quantum circuit
features additional u gates. These are universal single-qubit gates needed to secure
the generality of the quantum perceptron. Any two-qubit unitary transformation
can be decomposed into u⊗2CANu⊗2 [101–106].

42 Chapter 4. Quantum Machine Learning

The quantum circuit shown in Fig. 4.6 is constructed as follows. For each
layer l = 1, . . . ,out, first, single-qubit u gates are applied to every nl−1 input qubit.
Afterwards, the layer unitary U l is applied to all nl−1+nl qubits. It is composed of
quantum perceptrons U l

j
acting on all nl−1 input qubits and the jth output qubit:

U l =∏1
j=nl

U l

j
. Each U l

j
consists of canonical gates as defined in (4.13) and (4.14).

The canonical gate is applied to each input qubit and the jth output qubit. In the
end, single-qubit u gates are applied to every output qubit.

The u gate and the CAN gate are parameterised by three parameters. Thus, the
total number of parameters of this network is given by np = 3nout+3∑out

l=1 nl−1(1+nl).
A DQNNCAN of the form shown in Fig. 4.5a only requires np = 57 parameters and
thus, is perfectly suitable for the execution on NISQ devices.

4.3.5 The quantum approximate optimisation algorithm
An alternative parameterised quantum circuit class that has attracted considerable
interest in the field of QML is the quantum approximate optimisation algorithm
(QAOA) [46–48]. It features a sequence of alternating parameterised unitary op-
erators e−itjA,e−i⌧jB ∈ U(d), where tj,⌧j ∈ R and A and B are hermitian matrices
randomly generated from the Gaussian unitary ensemble (GUE). The total action
of the QAOA with 2N parameters can be written as

U = e−i⌧NB
e
−itNA�e−i⌧1Be−it1A. (4.15)

This sequence of parameterised unitary operators can be interpreted as an N -layer
QNN where the quantum perceptron is defined layer-wise:

U
l = e−i⌧lBe−itlA. (4.16)

Note that every quantum perceptron of the QAOA acts on the same qubits. This
reveals the main difference to the QNNs discussed before. The QNN has no dissipa-
tive nature but instead consists of layers of constant width. The QNN architecture
and the quantum algorithm are depicted in Fig. 4.7.

The number of layers is determined by the dimension of the Hilbert space d.
It has been shown that the number of parameters has to be at least d2 such that
the QNN converges to an optimal solution [49]. Optimal here means finding the
global maximum of the cost function. Thus, a QNN of the form shown in Fig. 4.7a
(two qubits) has to have d2 = 16 parameters or eight layers.

So far, the architecture of the QNN has been assumed to be of constant width to
match the quantum perceptron’s definition. In fact, this is sufficient considering
the task of learning a unitary transformation (see chapter 5). However, to suit
more general learning tasks, the QNN representation has to be extended to QNNs
with layers of variable width. The straightforward way of doing this is to apply
U ∈ U(2n) to n =max{nl}out

l=in qubits and to ignore the n−nl overlapping qubits. The

4.3. Variational Quantum Algorithms 43

total number of layers and parameters is determined by the number of components
of the desired transformation. Here, the number of parameters is set equal to the
number of components. This choice is validated in appendix C.4.

44 Chapter 4. Quantum Machine Learning

q1

q2

q1

q2

. . .

q1

q2

q1

q2

(a) The quantum neural network architecture representation of a two-qubit QAOA.

. . .

. . .

��in� e−iAt1 e−iB⌧1 e−iAt8 e−iB⌧8 ⇢out

(b) The quantum circuit implementing a two-qubit QAOA.

Figure 4.7: The quantum approximate optimisation algorithm.

Chapter 5

Learning Unitaries on NISQ
devices

5.1 Introduction

Quantum machine learning models executed on quantum computers are expected
to outperform their classical counterparts in numerous tasks (see chapter 4) [107,
108]. However, today’s NISQ devices (see section 4.3.2) limit the choice of QNNs as
it sets constraints on the number of qubits and gates of the QNN’s quantum circuit
[9, 45]. The high noise levels pose a challenge for the training of QNNs as they
make it difficult to accurately calculate costs and gradients [45, 53, 59, 60]. Any
approach implementing QNNs on currently available quantum computers must be
evaluated and optimised for their noise tolerance.

Sections 4.3.4 and 4.3.5 include the definitions of two promising QNN architec-
tures suitable for the execution on NISQ devices as their quantum circuits feature
few gates and few parameters. On the one hand, there is the CAN-based dissipa-
tive quantum neural network (DQNNCAN), whose quantum perceptron is defined
as a completely positive map. On the other hand, the quantum approximate opti-
misation algorithm (QAOA) features a sequence of alternating unitary operations.
In this chapter, the subscript of DQNNCAN is dropped because the DQNNU will
not be featured here (DQNN=DQNNCAN).

This chapter presents the comparison of training both networks under NISQ de-
vice noise circumstances. The task of both networks is the learning of an unknown
unitary transformation and the application of this knowledge to unknown states.
This learning task is described in section 5.2. The networks are implemented via
the open-source SDK Qiskit [61] and executed on simulated and real quantum
devices hosted by IBM [62]. The results of this analysis are presented in section 5.3.

45

46 Chapter 5. Learning Unitaries on NISQ devices

The findings of this chapter have been published in [99]. It includes an analysis
of the DQNN’s and the QAOA’s generalisation capabilities under the influence of
different gate noise strengths. For the completeness of this thesis, these results can
be found in appendix D.1.

5.2 The Learning Task

The application fields of quantum neural networks and classical neural networks
overlap. However, QNNs are the most efficient when operated on quantum data
as the encoding of classical information is very costly [107]. A very general learn-
ing task of the QNN is to learn a unitary transformation from a set of states
{��in� , ��out� = V ��in�} where the unitary V itself is unknown to the network. The
dimension of these states should be 2nin as they are initialised on qubits. The
Hilbert space is given by H = C2nin .

Analogous to classical machine learning, a training and test set can be defined
(see section 3.3.1):

St = {(��in,k� , ��out,k� = V ��in,k�)}nt
k=1, t ∈ {train,test}. (5.1)

The states of the training set are used to train the QNN; the test set is used to
quantify the QNN’s generalisation capability. To guarantee the network’s success
the number of training pairs should be larger or equal the dimension of the states’
Hilbert space dim(H) = 2nin [109]. For an analysis of the network’s generalisation
capabilities, it is convenient to choose ntrain ≤ dim(H) (see section 5.3.2).

5.2.1 The cost function

The cost function is a quantity that measures the network’s success in producing
states E(��in,k� ��in,k�) that are close to the desired output states ��out,k�. The
closeness of two states can be quantified using the fidelity (4.5). The normalised
sum of all fidelities between the network’s output state and the desired output
state defines the cost function of the QNN:

Ct =
1

nt

nt

�
k=1
��out,k�E(��in,k� ��in,k�) ��out,k� , t ∈ {train, test}. (5.2)

It becomes 1 if the network’s output precisely matches each of the desired output
states and goes to 0 the more they differ. The quantum algorithm to compute the
fidelity between two states is described in section 4.3.2.

5.3. Results 47

��in�
u

CAN CAN
u

CAN CAN

�0�⊗2
u

E(��in� ��in�)
u

Figure 5.1: The quantum circuit implementing a DQNN with input state ��in�.

5.3 Results

5.3.1 Setup

This analysis aims to compare two different QNN architectures, the DQNN (see
section 4.3.4) and the QAOA (see section 4.3.5), under the influence of noise.
The task of both networks is to learn a unitary transformation of dimension four:
V ∈ U(4) from the four-dimensional states in the training set (5.1). The training
and the test set contain ntrain = ntest = 4 states that are initialised using two
qubits. Thus, the networks are constrained to nin = nout = 2 input and output
qubits. A one-layer DQNN suffices as this shallow network already features the
characteristics of the quantum perceptron and allows the generalisation to a more
extensive network. Therefore, the DQNN considered here has the shape and
requires nin + nout = 4 qubits (see Fig. 5.1). It incorporates np = 3nout + 3nin(1 +
nout) = 24 parameters which are initialised randomly in the range (0,2p]. The
hyperparameters ⌘ = 0.5 and ✏ = 0.25 turned out to be optimal. The QAOA acting
on two qubits has to have np = d2 = 16 parameters or eight layers and requires two
qubits. Its parameters are initialised in the range [−1,1]. The hyperparameters
⌘ = 0.075 and ✏ = 0.05 turned out to be optimal. Adding the number of qubits
required for the fidelity computation results in an overall circuit that requires six
qubits when using the DQNN and four qubits when using the QAOA.

The implementation and execution of the quantum algorithms are carried out
using the open-source SDK Qiskit [61] and the quantum devices of IBM [62].
The quantum circuits of both networks are implemented as described in sec-
tions 4.3.4 and 4.3.5. These quantum circuits are then transpiled to quantum
circuits consisting of basis gates (2.23) to allow their execution using IBM’s quan-
tum computers (see appendix B). Mapping the quantum circuit to the H-topology
of ibmq_casablanca results in 57 (97) single-qubit gates and 63 (57) CNOT gates
for the DQNN (QAOA).

48 Chapter 5. Learning Unitaries on NISQ devices

1 2 3 4

0.2

0.3

0.4

0.5

0.6

Training pairs

C
os

t
DQNN

Identity cost
Test cost

QAOA
Identity cost
Test cost

Figure 5.2: Generalisation analysis. The DQNN (two-qubit QAOA) using the simulated
ibmq_casablanca for ✏ = 0.5, ⌘ = 1.0 (✏ = 0.15, ⌘ = 0.1).

5.3.2 Generalisation analysis

The most important capability of a QNN is its ability to generalise the training
data to the test data as quantum data, in general, is limited. Generalisation
describes the network’s ability to learn the correlation between the input and
output states of the training set and transfer this knowledge to input states with
unknown output. The test cost Ctest (5.2) quantifies this ability. Each QNN is
trained using nSV = 1, . . . ,4 states of the training set Strain and at each epoch
tested using the ntrain = 4 states in Stest. Note that the states in Stest are not
used to update the network’s parameters. Both QNNs are executed using the
simulated ibmq_casablanca, i.e., a simulator incorporating the real-time noise of
ibmq_casablanca. Each training is repeated several times to average over different
initial network parameters, input states, target unitaries, and noise snapshots.

The results of the analysis are shown in Fig. 5.2. The test and identity costs
(see section 4.3.2) are plotted versus the number of training pairs nSV. It can
be seen that both networks are capable of generalising the information from the
training pairs to the test states. The identity cost is an approximation for the cost
of an ideally trained network. The results show that the DQNN’s identity cost
is higher than the QAOA’s. This gives rise to the assumption that the DQNN is
less susceptible to gate noise (see appendix D.1). The high identity cost of the
DQNN also explains its higher test cost. In general, the test cost of the QNN
with a higher identity cost is also higher if their test costs are similar in the
noiseless case. The DQNN features only a few low-valued outliers, which make the
main contribution to the standard deviation. The QAOA’s test cost, however, is

5.3. Results 49

uniformly distributed around the mean value. Thus, it can be said that the DQNN
generalises the training data with higher reliability.

5.3.3 NISQ device execution

0 1 2

3

4 5 6

Figure 5.3: The qubit coupling map
of ibmq_casablanca. It consists of
seven qubits and has a quantum vol-
ume of 32 [62, 110].

So far, all the executions of the QNNs have
been done using simulators. However, to val-
idate our previous results and show the current
state of research, this section features the execu-
tion of both QNNs using a real quantum com-
puter. Both networks are trained and tested
using ntrain = ntest = 4 states on the seven-qubit
device ibmq_casablanca (see Fig. 5.3) for 100

epochs.
The training, test, and identity costs while

training the DQNN and the QAOA using a real quantum computer are shown
in Fig. 5.4. In the noiseless case, the training and test cost would increase
monotonously. Here, however, both costs seem to follow the identity cost during
learning. The path of the identity cost indicates not only statistical fluctuations
due to the gate noise but also a noise drift of the quantum device itself. For every
epoch, the quantum algorithm has to join the queue of the device. Training one
of the QNNs for a hundred epochs took about a month, where one execution of
the quantum algorithm took only seconds. Thus, the noise drift of the device can
be explained by recalibrations of the devicea. After midway through the training,
both QNNs’ training costs exceed their identity costs. This shows their great ca-
pability to factor in the quantum computer’s noise. Remarkably, both networks
can learn the unitary transformation from the training states and generalise the
information to the test states despite the high noise levels. This conclusion arises
from the high test to identity cost ratio.

5.3.4 Conclusion
This analysis featured the comparison of two very different QNNs, the DQNN and
the QAOA. Both QNNs have been implemented as quantum circuits and executed
using IBM’s simulated and real quantum devices.

Comparing the results of both QNNs reveals that the DQNN can generalise
the unitary transformation from the training data better than the QAOA under
the influence of noise. Increasing the noise levels also increases this difference
because the DQNN’s quantum algorithm design is less susceptible to gate noise (see
appendix D.1). Both networks have been successfully trained on a real quantum

a The ibmq_casablanca has been recalibrated at least every week [62].

50 Chapter 5. Learning Unitaries on NISQ devices

computer despite its high noise level. However, noise is still the main limiting
factor that hinders the QNN from reaching high fidelities.

Besides the reduction of noise, the further development of quantum computers
holds potential in providing resettable qubits [111]. This would reduce the number
of qubits the dissipative QNN requires and thus allow the exploration of deeper
networks.

This analysis can be further extended to higher-dimensional unitaries and non-
unitary transformations. In chapter 6 the QNNs are trained to learn the graph
structure of quantum data where the state pairs themselves are not correlated.

The code is available at https://github.com/qigitphannover/DeepQuantu
mNeuralNetworks.

https://github.com/qigitphannover/DeepQuantumNeuralNetworks
https://github.com/qigitphannover/DeepQuantumNeuralNetworks

5.3. Results 51

0 20 40 60 80 100

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Epoch

C
os

t

Identity cost
Test cost
Training cost

(a) The DQNN on ibmq_casablanca for ✏ = 0.5 and ⌘ = 1.0.

0 20 40 60 80 100

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Epoch

C
os

t

Identity cost
Test cost
Training cost

(b) The two-qubit QAOA on ibmq_casablanca for ✏ = 0.15 and ⌘ = 0.1.
Figure 5.4: Training the DQNN (a) and the QAOA (b) on a real quantum computer. Both
networks have been trained for 100 epochs. Each epoch, the training cost is calculated using four
training pairs. Every fifth epoch, the test cost is measured using four test pairs, as well as the
identity cost

Chapter 6

Training QNNs with
Graph-Structured Quantum

Data

6.1 Introduction

In the previous analysis (chapter 5), the focus was on teaching two different QNNs
the unitary transformation V encoded in the input-output relation of the training
states {��in,k� , ��out,k� = V ��in�}. In this analysis, however, the task is to teach the
QNNs not only the input-output relation of training states {⇢in,k,⇢out,k} but also
the correlation between the states ⇢out,k, which is encoded into a graph.

Naturally, quantum data will always have structure because of the generally
structured quantum device. Consider a distributed set of quantum information
processors p, which produce an output ⇢out

p
from input ⇢in

p
. The output of these

processors can be associated with a graph G(V,E) where the vertices are labeled p,
and the edges denote the correlations between the processors (e.g., caused by spa-
cial vicinity). These correlations can be measured by their information-theoretical
closeness (see section 6.2.1). The QNN’s goal is to optimally learn the input-output
relations for this distributed set of processors by exploiting the graph structure of
the output states.

The learning task, including the quantities that measure the QNNs success,
are described in section 6.2. The results of training QNNs using graph-structured
quantum data are presented in section 6.3.

The results of this chapter are based on the work of [63].

53

54 Chapter 6. Training QNNs with Graph-Structured Quantum Data

6.2 The Learning Task

For simplicity reasons, it is assumed that the training and test sets consist of only
pure states. The complete set of states is given by

S = ����in,k� , ��out,k���n
k=1 . (6.1)

The training set consists of nSV supervised (labeled) vertices and nUSV = n − nSV
unsupervised (unlabeled) vertices:

Strain = ����in,1� , ��out,1�� , . . . , ���in,nSV� , ��out,nSV�� , ��in,nSV+1� , . . . , ��in,n�� . (6.2)

The nSV supervised states are used to teach the QNN their input-output rela-
tions, while the additional nUSV unsupervised states are used to exploit the graph
structure (see section 6.2.1). The nUSV unsupervised (unlabeled) input states and
their corresponding output states are used to measure the network’s generalisation
capability and form the test set:

Stest = ����in,nSV+1� , ��out,nSV+1�� , . . . , ���in,n� , ��out,n��� . (6.3)

Note that there is a significant difference in the definition of the training (6.2)
and test sets (6.3) compared to the previous analysis (see section 5.2). Here, the
training and test set emerges from a single set (6.1), whereas previously, they were
independent (see section 5.2).

6.2.1 Cost functions
The supervised cost function

The supervised cost function measures the information distance between the net-
work’s output E(��in,k� ��in,k�) and the corresponding desired output ��out,k�. The
information distance is measured by the fidelity (4.5). The supervised cost func-
tion is the average fidelity of all network outputs and supervised training states:

CSV =
1

nSV

nSV

�
k=1
��out,k�E(��in,k� ��in,k�) ��out,k� . (6.4)

The graph-based cost function

The graph structure G = (V,E) with vertices V and edges E of the output states
is encoded in the adjacency matrix A, with components

[A]ij =
�������

1, if (i,j) ∈ E
0, otherwise

. (6.5)

6.2. The Learning Task 55

A pair of adjacent vertices (i,j) ∈ E should be mapped close to each other. Two
pairs of states ��out,i� and ��out,j� are defined to have adjacent vertices (i,j) if
their fidelity � ��out,i��out,j� �2 is above a certain threshold. The fidelity (4.5) could
also be used to measure the information distance between two network outputs
E(��in,k� ��in,k�) and E(��in,l� ��in,l�). However, the network’s output states are not
generally pure. Calculating the fidelity of two mixed states is too computationally
complex, especially in terms of quantum algorithms. Thus, the Hilbert-Schmidt
distance (4.7) is exploited (see section 4.3.2 for the quantum algorithm). The
graph-based cost function measures the network’s success in reproducing the graph
structure with adjacency matrix A. It is defined as the sum of Hilbert-Schmidt
distances of all adjacent vertices:

CG = �
k,l∈V,k≠l

[A]kldHS �E(��in,k� ��in,k�),E(��in,l� ��in,l�)� (6.6)

where V = {1, . . . ,n}. This function is minimised when the network maps states of
adjacent vertices to information-theoretically close density matrices.

The training cost

The training cost, which is exploited to train the QNN, is given by the combination
of the supervised and graph-based cost functions:

CSV+G = CSV + �CG (6.7)

where the graph-based cost is scaled using a Lagrange multiplier � ≤ 0. Thus,
the training cost is maximised when the network not only maps the supervised
input states {��in,k�}nSV

k=1 to the desired output states {��out,k�}nSV
k=1 , but also cap-

tures the graph structure of the vertices {��out,k�}n
k=1. In the case of 1 ≤ nSV < n

(semi-supervised learning), the graph-based cost function serves as an interpolation
between supervised vertices.

The test cost

The test cost is defined similarly to the supervised cost function:

CUSV =
1

nUSV

n

�
k=nSV+1

��out,k�E(��in,k� ��in,k�) ��out,k� . (6.8)

It averages the fidelities of the network’s outputs E(��in,k� ��in,k�) and the desired
unsupervised outputs ��out,k�. The testing cost provides a measure of the network’s
generalisation capabilities as the states of the test set are unknown to the network.

56 Chapter 6. Training QNNs with Graph-Structured Quantum Data

6.2.2 Example A: connected clusters
One important property of the training cost function is that adjacent states are
mapped close together. This makes it especially applicable to clustered training
data. Thus, this example features two clusters that are connected by a single
vertex. The set of states is given by

SCC = ����in,k� , ��out,k� = ([m]k − 1) �1� + (2n − 1 − [m]k) �0��([m]k − 1) �1� + (2n − 1 − [m]k) �0� �
��

n

k=1
(6.9)

where [m]k denotes the kth component of m = (1, . . . ,n2 ,n + 1,
3n
2 + 1, . . . ,2n − 1)

and ��in,k� are randomly generated log2(n)-qubit states. Note that this definition
is only valid if n ≥ 4 and n is even. In the following analysis, the case of n = 8

is considered. The input states are initialised on three qubits. The output states
are assumed to be of dimension two and thus are initialised on one qubit. The
graph of the output states is constructed from the adjacency matrix (6.5), where
the threshold is chosen to be 0.65. The graph and the Bloch sphere representation
of the output states are shown in Fig. 6.1.

��out,2���out,1� = �0�

��out,3���out,4�

��out,5�

��out,6���out,7�

��out,8� = �1�

(a) The graph for the adjacency matrix with threshold
0.65.

x y

�0�

�1�
(b) The Bloch sphere representation of {��out,k�}8k=1.

Figure 6.1: The connected clusters output states (6.9) for n = 8 and nSV = 3. Supervised states
are colored in blue. Unsupervised states are purple.

6.2.3 Example B: connected line
Another interesting example is the connected line training set

SCL = ����in,k� , ��out,k� = (k − 1) �1� + (n − k) �0��(k − 1) �1� + (n − k) �0� ���
n

k=1
(6.10)

6.3. Results 57

where ��in,k� are randomly generated log2(n)-qubit states, n ≥ 2, and ��out,k� are
one-qubit states. The graph-based cost function maps adjacent states close to-
gether. Suppose the training set contains multiple supervised output states. Then,
the graph-based cost function is able to interpolate between the supervised out-
put states as it favors unsupervised states which are "in-between" their adjacent
neighbors. As in section 6.2.2, the case n = 8 is considered. The input states are
randomly generated three-qubit states. The adjacency matrix is computed using
a threshold of 0.9. The graph and the Bloch sphere representation of the output
states are shown in Fig. 6.2.

��out,1� = �0�
��out,2�

��out,3�
��out,4�

��out,5�
��out,6�

��out,7�
��out,8� = �1�

(a) The graph for the adjacency matrix with threshold
0.9.

x y

�0�

�1�
(b) The Bloch sphere representation of {��out,k�}8k=1.

Figure 6.2: The connected line output states (6.10) for n = 8 and nSV = 3. Supervised states
are colored in blue. Unsupervised states are purple.

6.3 Results

6.3.1 Setup
This analysis features the training of QNNs using graph-structured quantum data.
The focus here is mainly on the unique learning task and, thus, will only feature
noiseless simulationsa. However, this enables the consideration of the DQNNU

b.
a The simulations are performed using the statevector simulator. This is a unique simulator

which is directly computing the fidelity of the output states using (4.5). In the previous
chapter, this fidelity computation has been approximated using the destructive swap test (see
section 4.3.2).

b Chapter 5 focuses on the comparison of two networks under the influence of noise. Here the
DQNNU was not considered because its decomposition into basis gates results in a large circuit
depth. Additionally, the large number of parameters is making the training of the DQNNU
very slow. The efficient execution of noise simulations and real quantum computers require a
network with low circuit depth and few parameters (see section 4.3.2).

58 Chapter 6. Training QNNs with Graph-Structured Quantum Data

The training data from sections 6.2.2 and 6.2.3 are exploited. These sets of n = 8
states contain pairs of three-qubit input states and one-qubit output states. Here,
one-layer QNNs are chosen with nin = 3 input qubits and nout = 1 output qubit. The
DQNNU has the shape and requires nin+nout = 4 qubits. It has np = nout4

nin+1 =
265 parameters initialised randomly in (0,2p]. The same applies to the DQNNCAN,
except that it has only np = 3nout + 3nin(1 + nout) = 21 parameters. The QAOA
has eight layers and 16 parameters randomly initialised in [−1,1]. It only acts on
max{nl}out

l=in = 3 qubits (see section 4.3.5). The calculation of the Hilbert-Schmidt
distance (4.7) requires the parallel execution of the same QNN for two different
input states. Therefore the total number of qubits required for the training with
the graph-based cost function (6.6) is twice the number of qubits required for one
QNN evaluation. Training the DQNNU and the DQNNCAN requires eight qubits.
Training the QAOA requires six qubits. The training without the graph-based cost
function can be done using only five qubits for the DQNNU and the DQNNCAN and
four qubits for the QAOA. The QNNs are trained using the Adam optimiser (see
section 3.3.5) with ⌘ = 0.05 and ✏ = 0.05. It has shown improvements in training
classical and quantum machine learning models [38, 87].

6.3.2 Learning graph-structured quantum data
This analysis features the training of the DQNNU, DQNNCAN, and the QAOA
with the connected cluster (section 6.2.2) and connected line (section 6.2.3)
training data to show the impact of the graph-based cost function and to validate
its definition.

Example A: connected clusters

The connected clusters training data is defined in section 6.2.2. Here, the number
of supervised training pairs is fixed to nSV = 3. The one-qubit output training
states are shown in Fig. 6.1. The three-qubit input training states are randomly
generated via a Gaussian distribution. The DQNNU, DQNNCAN, and QAOA are
trained using � = 0 (training using only the supervised cost function) and � = −0.5
(training using the supervised and graph-based cost function).

The training and test cost while training the DQNNU using � = 0 and � = −0.5
are shown in Fig. 6.3. At epoch zero, the training cost for � = −0.5 is very small be-
cause the graph-based cost function is very large due to the randomly distributed
network output states (the input states and the network parameters are initialised
randomly). Thus, during the first few epochs, the graph-based cost function dom-
inates the network’s training. In this phase, the test cost of � = −0.5 grows higher
than the test cost of � = 0. This shows the remarkable property of the graph-based
cost function to utilise the graph information for a better generalisation. The gen-
eralisation of the QNN, which is trained with only the supervised cost function, is

6.3. Results 59

improving only slightly during the training. In fact, after some epochs, the test
cost shows symptoms of overfitting because the test cost starts shrinking while the
training cost is growing (see section 3.3.5). The test cost of � = −0.5, however,
shows no such signs.

The test costs while training the DQNNU, DQNNCAN, and QAOA with (� =
−0.5) and without (� = 0) graph-based cost function is plotted in Fig. 6.4. The
QNNs trained using � = −0.5 reach higher test costs than those trained with � = 0.
The graph-based cost function improves the generalisation of all QNNs. There
are, however, differences in the test costs of the different QNNs. The DQNNU
outperforms both QNNs in terms of generalisation. The DQNNCAN’s test cost is
lower than the DQNNU’s but higher than the QAOA’s. In the case of � = 0, the
test costs of all QNNs converge to about 0.5.

Example B: connected line

The results of training the QNNs using the connected line training data (sec-
tion 6.2.3) is similar to the previous one. Again, nSV = 3 supervised training pairs
are chosen. The exact supervised and unsupervised states are shown in Fig. 6.2.
The input states are randomly generated three-qubits states. The one-qubit out-
put states are computed using (6.10). The connected line training data is used to
test the QNNs’ ability to interpolate between supervised states. Again, all three
QNNs (the DQNNU, DQNNCAN, and QAOA) are trained using only the supervised
cost function (� = 0) and using the entire training cost function (� = −1).

The training and test cost while training the DQNNU are shown in Fig. 6.5. The
results of this analysis are very similar to the training using the connected cluster
training data. Training the DQNNU � = 0 results in a perfect training cost but
shows symptoms of overfitting as the test cost decreases during the last epochs. As
expected, the training using � = −1 results in a better test cost and thus also proves
the ability of the graph-based cost function to interpolate between the supervised
output states. The increase of the test cost is the fastest at the beginning of the
training, where the parameter update steps are mainly in directions that reduce the
graph-based cost function. The training using � = −1 shows no signs of overfitting.

The test costs of all three different networks while training them using � = 0
and � = −1 for 500 epochs are plotted in Fig. 6.6. Again, the training using the
graph-based cost function improves the generalisation of all QNNs. The DQNNU
and the DQNNCAN perform significantly better than the QAOA.

The comparison of training the three different QNNs using the graph-based
cost function shows a very big difference in the resulting test cost (see Figs. 6.4
and 6.6). This difference can be explained by the networks’ implementation. A

DQNNU consists simply of one universal unitary operator (see section 4.3.3).
This universality helps the QNN to generalise as it can represent every possible

60 Chapter 6. Training QNNs with Graph-Structured Quantum Data

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

C
os

t
DQNNU
� = 0

Training cost
Test cost

� = −0.5
Training cost
Test cost

Figure 6.3: The training and test cost while training the DQNNU for 500 epochs using the
connected clusters training data shown in Fig. 6.1. It consists of nSV = 3 supervised states and
randomly generated input states. The training and test costs for � = 0 and � = −0.5 are averaged
for five different runs.

0 100 200 300 400 500

0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62

Epoch

Te
st

co
st

DQNNU
� = 0
� = −0.5

DQNNCAN
� = 0
� = −0.5

QAOA
� = 0
� = −0.5

Figure 6.4: The test cost while training the DQNNU, the DQNNCAN, and the QAOA for
500 epochs using the connected clusters training data shown in Fig. 6.1. It consists of nSV = 3
supervised states and randomly generated input states. The training and test costs for � = 0 and
� = −0.5 are averaged for five different runs for the DQNNU and for ten different runs for the
DQNNCAN and the QAOA.

6.3. Results 61

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

C
os

t
DQNNU
� = 0

Training cost
Test cost

� = −1
Training cost
Test cost

Figure 6.5: The training and test cost while training the DQNNU for 500 epochs using the
connected line training data shown in Fig. 6.2. It consists of nSV = 3 supervised states and
randomly generated input states. The training and test costs for � = 0 and � = −1 are averaged
for five different runs.

0 100 200 300 400 500

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Epoch

Te
st

co
st

DQNNU
� = 0
� = −1

DQNNCAN
� = 0
� = −1

QAOA
� = 0
� = −1

Figure 6.6: The test cost while training the DQNNU, the DQNNCAN, and the QAOA for 500
epochs using the connected line training data shown in Fig. 6.2. It consists of nSV = 3 supervised
states and randomly generated input states. The training and test costs for � = 0 and � = −1 are
averaged for five different runs for the DQNNU and for ten different runs for the DQNNCAN and
the QAOA.

62 Chapter 6. Training QNNs with Graph-Structured Quantum Data

unitary transformation. The DQNNCAN is composed of single-qubit u gates and
two-qubit CAN gates (see section 4.3.4). The parameterised gates allow the re-
duction of the network parameters and, thus, the operation on a real quantum
computer (see chapter 5). However, the composition of these gates is, in general,
not universal. Therefore, the DQNNCAN’s generalisation is slightly worse than
the DQNNU’s. The architecture of the QAOA is not well defined for learning
non-unitary transformations. The number of layers is chosen such that the total
number of parameters matches the number of components of the desired trans-
formation (see appendix C.4). Here, the 23 × 21 matrix transformation leads to
16 parameters. A universality analysis has shown that the eight-layer QAOA is
slightly worse in learning random state pairs than the DQNNCAN. Thus, the
QAOA is slightly worse in generalising the supervised states.

6.3.3 Generalisation analysis
Besides training the QNNs using specific pairs of supervised and unsupervised
training states, it is of particular interest to analyse the QNNs’ generalisation
capabilities using arbitrarily supervised and unsupervised training states. With
this, the universality of the improvements catalysed by the graph-based cost func-
tion can be tested. This analysis features the training of the DQNNCAN using
nSV = 1, . . . ,7 supervised training states randomly selected from the training set.
Note that the DQNNU and the QAOA are not considered herea. This iteration is
repeated ten times to average over different supervised output states, input states,
and initial parameters.

The results of training the DQNNCAN for nSV = 1, . . . ,7 are shown in Fig. 6.7
for the connected clusters and connected line training data, respectively. In the
case of the connected line training data, the graph-based cost function improves
the network’s generalisation for every number of supervised states. This finding
shows the graph-based cost function’s remarkable capability to improve the
generalisation no matter which states are supervised or unsupervised. In the case
of the connected clusters training data, the graph-based cost function does not
continuously improve the network’s generalisation for all numbers of supervised
states. However, the individual results reveal that the test costs of � = −0.5 have a
few significant outliers for nSV = 3,4,5,7. These outliers can partly be explained by
looking at the particular supervised and unsupervised states. The poor test costs
of training the QNN using the connected cluster training data and � = −0.5 occurs
mainly when only one cluster contains supervised states. Then, the graph-based
cost function hinders the generalisation as the network is trained to map all the
states to this one cluster.

a The DQNNU does not allow such an iterative analysis as its execution is too costly. The
results of the QAOA are not shown due to its small test cost (see Figs. 6.4 and 6.6).

6.3. Results 63

1 2 3 4 5 6 7

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Number of supervised pairs

C
os

t
� = 0: Training cost Test cost
� = −1

2 : Training cost Test cost

(a) The connected clusters training data (see sec-
tion 6.2.2).

1 2 3 4 5 6 7

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Number of supervised pairs
C

os
t

� = 0: Training cost Test cost
� = −1: Training cost Test cost

(b) The connected line training data (see sec-
tion 6.2.3).

Figure 6.7: The training and test cost after training the DQNNCAN for 500 epochs, nSV = 1, . . . ,7
randomly chosen supervised states, and randomly generated input states. Each data point is
averaged over ten runs.

There are additional reasons why the difference between the test costs for � = 0
and � < 0 are so small. These will be discussed in the following section.

6.3.4 Improving the generalisation
Comparing the results of the previous sections 6.3.2 and 6.3.3 with the results of [63]
(training the QNN using quantum backpropagation (see appendix C.1.1)), reveals
that the QNNs trained on a quantum computer do not reach as high test costs as
when trained via quantum backpropagation. This raises the question of whether
the QNNs themselves are not universal enough or whether the classical optimiser
is not suitable for training graph-structured quantum data. This question can
be answered by looking at the QNN’s output states after and, more importantly,
during the training via the classical optimiser and quantum backpropagation.

The network’s output states after training a DQNNCAN for 500 epochs using
the connected clusters training data from Fig. 6.1 are shown in Fig. 6.8. The
individual states can hardly be distinguished as they are all mapped closely
together on the Bloch sphere. Analysing the evolution of the network’s output
states while training a DQNNCAN using the connected clusters training data and
� = −0.5 reveals that the states, which are initially widely spread apart on the
Bloch sphere, are mapped closely together just after a few training epochs. During
these first training epochs, the graph-based cost function dominates the cost
function’s gradient as its value outweighs the supervised cost function. Therefore,

64 Chapter 6. Training QNNs with Graph-Structured Quantum Data

x y

�0�

�1�

Figure 6.8: The DQNNCAN’s output states (supervised states, unsupervised states) after train-
ing for 500 epochs using the connected clusters training data (supervised states, unsupervised
states) from Fig. 6.1 and randomly generated three-qubit input states.

the parameters are updated such that mainly the graph-based cost function
is decreased. The graph-based function is small if the information-theoretical
distance between adjacent output states is small. Thus, in the first training
epochs, the network maps stats of adjacent vertices onto a single point on the
Bloch sphere. The point is chosen to result in an optimal supervised training
cost (to increase the overall training cost) and thus, is located in-between the
supervised output states. In summary, the graph-based cost function outweighs
the supervised cost function as it is not normalised. Thus, the network parameters
run into a local minimum right at the beginning of training. Normalising the
graph-based cost function is not trivial as the individual Hilbert-Schmidt distances
are not normalised in contrast to the fidelity.

Two possible workarounds help to avoid these local minima at the beginning
of training. The method which came out best is presented here. Another method
can be found in appendix E.1.

The delayed normalised graph-based cost function

One way to improve the networks’ generalisation is by introducing a delayed nor-
malised graph-based cost function. For the first few epochs, the network is only
trained using the supervised cost function. During this phase, the network learns
to correctly map the supervised input states to the corresponding output states.
Note that before, the graph-based cost function was dominant during the first
epochs. Swapping this importance helps to avoid local minima at the start of
training. Afterwards, the graph-based cost function is added to the supervised
cost function where the � is chosen such that �CG ∈ [0,12]. This is achieved by

6.3. Results 65

adjusting the �’s definition:

� � �̃(xG) = −
CG(epoch = xG)

2
(6.11)

where xG is the epoch where the graph-based cost function is activated. � is set
constant for all epochs greater than xG. This way, the normalisation of the graph-
based cost function is achieved. Of course, this is linked to the assumption that
the graph-based cost function stays below its initial value CG(epoch = xG) with
increasing training epochs.

The results of training the DQNNU, the DQNNCAN, and the QAOA for 500

epochs with � = 0 (Ctrain = CSV), � = −0.5 and � = −1 (Ctrain = CSV + �CG),
and � = �̃(250) (Ctrain = CSV + �̃(250)CG) are shown in Fig. 6.9. Note that ex-
cept for the latter, the results are taken from the previous analysis (see Figs. 6.4
and 6.6) to compare the constant � with �̃(250). After training the QNNs using
only the supervised cost for 250 epochs, the graph-based cost function is added
with � = �̃(250). The transition from � = 0 to �(̃250) at the 250th training epoch
is visible in the plot of the test cost as it significantly grows after the 250th train-
ing epoch. This again shows the remarkable capability of the graph-based cost
function to improve the QNNs’ generalisation. Both plots, Figs. 6.9a and 6.9b,
show that the delayed normalised graph-based cost function improves the QNNs’
generalisation even further than for constant �. For the connected clusters training
data, the DQNNCAN and the QAOA trained using �̃(250) reach higher test costs
than the DQNNU trained with a constant �. The DQNNU’s test cost for �̃(250)
even surpasses the test cost of the QNN trained with quantum backpropagation.
The training using the connected line training data shows similar results. The test
cost of the DQNNU and the QAOA is significantly improved for �̃(250).

To test the universality of the previous results, the DQNNCAN is trained for
nSV = 1, . . . ,7 randomly selected supervised states in the same manner as for con-
stant � (see Fig. 6.7). For each nSV, the DQNNCAN is trained for 500 epochs using
� = �̃(250) and the connected clusters and connected line training data. This is
repeated ten times to average over different supervised output states, input states,
and initial parameters.

The resulting test costs after training the DQNNCAN with nSV = 1, . . . ,7 using
�̃(250) are plotted alongside with � = 0 and � = −0.5 (� = −1) for the connected
clusters (connected line) training data in Fig. 6.10. The test costs for the constant
�s are taken from the previous analysis to compare them to �̃(250). Both plots,
Figs. 6.10a and 6.10b, show a significant improvement of the test cost resulting
from training the DQNNCAN using �̃(250) instead of � ≤ 0 for almost all numbers
of supervised states. For the connected clusters training data, the graph-based
cost function improved the generalisation of the QNN only for a few numbers of
supervised states (see Fig. 6.7a). The �̃(250), however, shows an improvement for

66 Chapter 6. Training QNNs with Graph-Structured Quantum Data

almost every nSV (see Fig. 6.10a). Training the DQNNCAN using the connected line
training data and � = −1 improved the generalisation for arbitrary supervised states
(see Fig. 6.7b). The training using the �̃(250) further enhances this improvement
resulting in an even better generalisation (see Fig. 6.10b).

6.3.5 Conclusion
This analysis featured the training of the DQNNU, the DQNNCAN, and the QAOA
using graph-structured quantum data. All QNNs have been trained using the
connected cluster and connected line training data and utilising the supervised
cost function (� = 0) and the training cost function including the graph-based
cost function (� < 0). Additionally, the DQNNCAN has been trained for arbitrary
supervised states.

The comparison of training the QNNs with � = 0 and � < 0 has shown that
the graph-based cost function generally improves the generalisation of the QNN
for the specific training data shown in Figs. 6.1 and 6.2. Iterating through ran-
domly chosen supervised states revealed that the graph-based cost function is also
practical for arbitrary supervised states. This shows its remarkable capability of
utilising the training state’s graph structure to enhance the QNN’s generalisation
capability. This improvement is further increased by adjusting the scaling factor
of the graph-based cost function to avoid local minima and equalising the influence
of the competing cost functions.

Comparing the results of this analysis with the results of training a QNN using
backpropagation [63] shows that classically training the QNN’s quantum algorithm
using graph-structured quantum data can compete with the initially defined QNN.
Training the variational algorithms for specifically chosen supervised states resulted
in a comparable test cost. However, it has to be noted that the analysis for
arbitrary supervised states did not result in similar test costs [63].

Further analyses could feature different optimisation methods, cost functions,
or quantum algorithms to close the cap to the findings of [63]. Additionally, this
analysis can be extended to different graph-structured quantum data.

The code is available at https://github.com/qigitphannover/DeepQuantu
mNeuralNetworks.

https://github.com/qigitphannover/DeepQuantumNeuralNetworks
https://github.com/qigitphannover/DeepQuantumNeuralNetworks

6.3. Results 67

0 100 200 300 400 500
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Epoch

Te
st

co
st

DQNNU
� = 0
� = −0.5
� = �̃(250)

DQNNCAN
� = 0
� = −0.5
� = �̃(250)

QAOA
� = 0
� = −0.5
� = �̃(250)

(a) The connected clusters training data (see section 6.2.2).

0 100 200 300 400 500
0.45

0.50

0.55

0.60

0.65

0.70

Epoch

Te
st

co
st

DQNNU
� = 0
� = −1
� = �̃(250)

DQNNCAN
� = 0
� = −1
� = �̃(250)

QAOA
� = 0
� = −1
� = �̃(250)

(b) The connected line training data (see section 6.2.3).

Figure 6.9: The test cost while training the DQNNU, the DQNNCAN, and the QAOA for 500
epochs using the supervised cost function (� = 0), the untouched training cost (� = −0.5 and
� = −1), and the training cost including the delayed normalised graph-based cost function (� =
�̃(250)). Additionally the test cost after training the QNN using the quantum backpropagation
algorithm (see [63]) is marked as .

68 Chapter 6. Training QNNs with Graph-Structured Quantum Data

1 2 3 4 5 6 7

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Number of supervised pairs

Te
st

co
st

� = 0 � = −0.5 � = �̃(250)

(a) The connected clusters training data (see sec-
tion 6.2.2).

1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

Number of supervised pairs

Te
st

co
st

� = 0 � = −1 � = �̃(250)

(b) The connected line training data (see sec-
tion 6.2.3).

Figure 6.10: Training the DQNNCAN using the delayed normalised graph-based cost function
for different number of supervised states.

Chapter 7

Conclusion

This thesis features the analysis of training different QNN architectures on quan-
tum computers and using graph-structured quantum data.

In order to exploit the advantages of quantum computation, the quantum cir-
cuit representations of the quantum neural network from [10] have been defined.
The DQNNU defined in [10] has been optimised to the DQNNCAN, which features
fewer gates and fewer parameters to satisfy the conditions of today’s NISQ devices.
Additionally, the QNN representation of the QAOA has been defined to compare
the noise robustness of the DQNNCAN’s and the QAOA’s different architectures.

The DQNNCAN and the QAOA have been successfully implemented and exe-
cuted using simulated and real quantum computers and trained to learn an un-
known unitary operator using classical optimisation methods to analyse their gen-
eralisation capability under the influence of noise. The generalisation analysis was
performed by training the QNNs for different numbers of training states while the
number of test states remained constant. The noise of ibmq_casablanca has been
added to simulate the training on a real quantum computer. This analysis has
shown that both networks are capable of generalising the provided training states
to the test states despite the high noise levels. Comparing both QNNs reveals
that the DQNNCAN performs slightly better and more reliable than the QAOA.
This can be attributed to the fewer gates of the DQNNCAN’s transpiled quantum
circuit. Furthermore, both QNNs have shown the ability to withstand the noise of
today’s NISQ devices.

Besides learning an unknown unitary operator, the training using graph-
structured quantum data was studied based on the work of [63]. Here, the focus
is on the special task to learn the interrelations of the training states to improve
the QNNs’ generalisations. After defining the framework for training a QNN the
graph structure of the training states, the DQNNU, the DQNNCAN, and the QAOA
have been trained using only a supervised cost function and using the supervised

69

70 Chapter 7. Conclusion

and a graph-based cost function. Two very interesting training examples have
been constructed. One example features output states arranged in two connected
clusters. In the other example, the output states are positioned in a connected
line [63]. With this, the influence of the graph-based cost function can be studied.
The analysis using three supervised states has shown that the graph-based cost
function significantly improves the generalisation of the QNNs. In order to prove
the universality of this result, the DQNNCAN has been trained for arbitrary super-
vised states. Here, the graph-based cost function shows only a slight improvement.
One reason for this is unfavorable supervised states, e.g., where only one cluster
was supervised. Then the interpolation of the graph-based cost function hinders
the learning. Additionally, it was discovered that local minima occur right after
the start of the training due to a comparatively high graph-based cost function.
The delayed normalised graph-based cost function poses a possible solution. The
local minima could be avoided by training the QNN using only the supervised cost
function for the first half of training epochs and by normalising the graph-based
cost function with its initial value. It has been shown that the delayed normalised
graph-based cost function significantly improves the QNNs’ generalisation even fur-
ther. Additionally, the DQNNCAN’s generalisation could be improved for arbitrary
supervised states.

The analyses of this thesis have shown the excellent noise robustness and vari-
ability of the dissipative QNN architectures. The work can be easily extended
by studying higher-dimensional or non-unitary operators and different graph-
structured quantum data. Of course, the QNNs presented here can be applied
to different learning tasks and trained using other optimisation methods.

The codes for both analyses can be found here: https://github.com/qigit
phannover/DeepQuantumNeuralNetworks.

https://github.com/qigitphannover/DeepQuantumNeuralNetworks
https://github.com/qigitphannover/DeepQuantumNeuralNetworks

Bibliography

[1] Yuri Manin.
Computable and uncomputable.
Sovetskoye Radio, Moscow, 128, 1980.
1

[2] Richard P Feynman.
Simulating physics with computers.
Int. J. Theor. Phys, 21(6/7), 1982.
1, 5

[3] David Deutsch and Roger Penrose.
Quantum theory, the Church–Turing principle and the universal quantum

computer.
Proceedings of the Royal Society of London. A. Mathematical and Physical

Sciences, 400(1818):97–117, 1985.
doi: 10.1098/rspa.1985.0070.
1

[4] David Deutsch and Richard Jozsa.
Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and

Physical Sciences, 439(1907):553–558, 1992.
doi: 10.1098/rspa.1992.0167.
1, 5, 15

[5] Peter W Shor.
Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer.
SIAM review, 41(2):303–332, 1999.
doi: 10.1137/S0036144598347011.
1, 5, 18

[6] Lov K Grover.
Quantum mechanics helps in searching for a needle in a haystack.
Physical review letters, 79(2):325, 1997.
doi: 10.1103/PhysRevLett.79.325.
1, 5, 18

[7] Frank Rosenblatt.
Principles of neurodynamics. perceptrons and the theory of brain mecha-

nisms.
Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.
1, 22

71

http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1103/PhysRevLett.79.325

72 BIBLIOGRAPHY

[8] Sebastian Ruder.
An overview of gradient descent optimization algorithms.
arXiv:1609.04747, 2017.
1, 30

[9] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan
Wiebe, and Seth Lloyd.

Quantum machine learning.
Nature, 549(7671):195–202, 2017.
doi: 10.1038/nature23474.
1, 45

[10] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert
Salzmann, Daniel Scheiermann, and Ramona Wolf.

Training deep quantum neural networks.
Nature communications, 11(1):1–6, 2020.
doi: 10.1038/s41467-020-14454-2.
1, 2, 3, 33, 34, 39, 69, vii

[11] Alexandr A. Ezhov and Dan Ventura.
Quantum Neural Networks.
Physica-Verlag HD, Heidelberg, 2000.

[12] M Andrecut and MK Ali.
A quantum neural network model.
International Journal of Modern Physics C, 13(01):75–88, 2002.
doi: 10.1142/S0129183102002948.

[13] MV Altaisky.
Quantum neural network.
arXiv:quant-ph/0107012, 2001.
1, 33, 34

[14] Sanjay Gupta and R.K.P. Zia.
Quantum neural networks.
Journal of Computer and System Sciences, 63(3):355–383, 2001.
doi: 10.1006/jcss.2001.1769.

[15] EC Behrman, V Chandrashekar, Z Wang, CK Belur, JE Steck, and SR Skin-
ner.

A quantum neural network computes entanglement.
arXiv:quant-ph/0202131, 2002.

[16] Li Fei and Zheng Baoyu.
A study of quantum neural networks.
In International Conference on Neural Networks and Signal Processing, 2003.

Proceedings of the 2003, volume 1, pages 539–542 Vol.1, 2003.
doi: 10.1109/ICNNSP.2003.1279330.

[17] Rigui Zhou, Huian Wang, Qian Wu, and Yang Shi.
Quantum Associative Neural Network with Nonlinear Search Algorithm.
International Journal of Theoretical Physics, 51(3):705–723, 2012.
doi: 10.1007/s10773-011-0950-4.

http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/s41467-020-14454-2
http://dx.doi.org/10.1142/S0129183102002948
http://arxiv.org/abs/quant-ph/0107012
http://dx.doi.org/10.1006/jcss.2001.1769
http://arxiv.org/abs/quant-ph/0202131
http://dx.doi.org/10.1109/ICNNSP.2003.1279330
http://dx.doi.org/10.1007/s10773-011-0950-4

BIBLIOGRAPHY 73

[18] Wilson R. de Oliveira, Adenilton J. Silva, Teresa B. Ludermir, Amanda
Leonel, Wilson R. Galindo, and Jefferson C.C. Pereira.

Quantum Logical Neural Networks.
In 2008 10th Brazilian Symposium on Neural Networks, pages 147–152, 2008.
doi: 10.1109/SBRN.2008.9.

[19] Geza Toth, Craig S. Lent, P.Douglas Tougaw, Yuriy Brazhnik, Weiwen Weng,
Wolfgang Porod, Ruey-Wen Liu, and Yih-Fang Huang.

Quantum cellular neural networks.
Superlattices and Microstructures, 20(4):473–478, Dec 1996.
doi: 10.1006/spmi.1996.0104.
1

[20] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe.
Circuit-centric quantum classifiers.
Phys. Rev. A, 101(3):032308, 2020.
doi: 10.1103/PhysRevA.101.032308.
1, 33, 34

[21] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, and Dacheng Tao.
Toward Trainability of Quantum Neural Networks.
arXiv:2011.06258, 2020.

[22] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tav-
ernelli, Dario Gerace, and Daniele Bajoni.

Quantum implementation of an artificial feed-forward neural network.
Quantum Sci. Technol., 5(4):044010, 2020.
doi: 10.1088/2058-9565/abb8e4.

[23] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles.
Trainability of Dissipative Perceptron-Based Quantum Neural Networks.
arXiv:2005.12458, 2020.

[24] Andrea Skolik, Jarrod R. McClean, Masoud Mohseni, Patrick van der Smagt,
and Martin Leib.

Layerwise learning for quantum neural networks.
arXiv:2006.14904, 2020.

[25] Erik Torrontegui and Juan José García-Ripoll.
Unitary quantum perceptron as efficient universal approximator.
EPL, 125(3):30004, 2019.
doi: 10.1209/0295-5075/125/30004.

[26] Nathan Killoran, Thomas R Bromley, Juan Miguel Arrazola, Maria Schuld,
Nicolás Quesada, and Seth Lloyd.

Continuous-variable quantum neural networks.
Phys. Rev. Research, 1(3):033063, 2019.
doi: 10.1103/PhysRevResearch.1.033063.

[27] Gregory R Steinbrecher, Jonathan P Olson, Dirk Englund, and Jacques Car-
olan.

Quantum optical neural networks.

http://dx.doi.org/10.1109/SBRN.2008.9
http://dx.doi.org/10.1006/spmi.1996.0104
http://dx.doi.org/10.1103/PhysRevA.101.032308
http://arxiv.org/abs/2011.06258
http://dx.doi.org/10.1088/2058-9565/abb8e4
http://arxiv.org/abs/2005.12458
http://arxiv.org/abs/2006.14904
http://dx.doi.org/10.1209/0295-5075/125/30004
http://dx.doi.org/10.1103/PhysRevResearch.1.033063

74 BIBLIOGRAPHY

npj Quantum Inf, 5(1):1–9, 2019.
doi: 10.1038/s41534-019-0174-7.

[28] Edward Farhi and Hartmut Neven.
Classification with Quantum Neural Networks on Near Term Processors.
arXiv:1802.06002, 2018.

[29] Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik.
Quantum Neuron: an elementary building block for machine learning on

quantum computers.
arXiv:1711.11240, 2017.

[30] Kwok Ho Wan, Oscar Dahlsten, Hlér Kristjánsson, Robert Gardner, and
MS Kim.

Quantum generalisation of feedforward neural networks.
npj Quantum Inf, 3(1):1–8, 2017.
doi: 10.1038/s41534-017-0032-4.

[31] Adenilton José da Silva, Teresa Bernarda Ludermir, and Wilson Rosa
de Oliveira.

Quantum perceptron over a field and neural network architecture selection
in a quantum computer.

Neural Networks, 76:55–64, 2016.
doi: 10.1016/j.neunet.2016.01.002.

[32] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione.
Simulating a perceptron on a quantum computer.
Physics Letters A, 379(7):660–663, 2015.
doi: 10.1016/j.physleta.2014.11.061.

[33] Maciej Lewenstein.
Quantum perceptrons.
Journal of Modern Optics, 41(12):2491–2501, 1994.
doi: 10.1080/09500349414552331.

[34] Yao Zhang and Qiang Ni.
Design of Quantum Neuron Model for Quantum Neural Networks.
Quantum Engineering, page e75, 2021.
doi: 10.1002/que2.75.
1, 33, 34

[35] Carlos Pedro Gonçalves.
Quantum Neural Machine Learning - Backpropagation and Dynamics.
arXiv:1609.06935, 2016.
1

[36] Masaya Watabe, Kodai Shiba, Masaru Sogabe, Katsuyoshi Sakamoto, and
Tomah Sogabe.

Quantum Circuit Parameters Learning with Gradient Descent Using Back-
propagation.

arXiv:1910.14266, 2019.

http://dx.doi.org/10.1038/s41534-019-0174-7
http://arxiv.org/abs/1802.06002
http://arxiv.org/abs/1711.11240
http://dx.doi.org/10.1038/s41534-017-0032-4
http://dx.doi.org/10.1016/j.neunet.2016.01.002
http://dx.doi.org/10.1016/j.physleta.2014.11.061.
http://dx.doi.org/10.1080/09500349414552331
http://dx.doi.org/10.1002/que2.75
http://arxiv.org/abs/1609.06935
http://arxiv.org/abs/1910.14266

BIBLIOGRAPHY 75

[37] Guillaume Verdon, Jason Pye, and Michael Broughton.
A Universal Training Algorithm for Quantum Deep Learning.
arXiv:1806.09729, 2018.
1

[38] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo.
Quantum natural gradient.
Quantum, 4:269, 2020.
doi: 10.22331/q-2020-05-25-269.
1, 33, 58

[39] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran.

Evaluating analytic gradients on quantum hardware.
Phys. Rev. A, 99:032331, Mar 2019.
doi: 10.1103/PhysRevA.99.032331.
39

[40] Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti.
Structure optimization for parameterized quantum circuits.
Quantum, 5:391, Jan 2021.
doi: 10.22331/q-2021-01-28-391.

[41] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii.
Quantum circuit learning.
Phys. Rev. A, 98:032309, Sep 2018.
doi: 10.1103/PhysRevA.98.032309.
1, 2, 33, 39

[42] Kaifeng Bu, Dax Enshan Koh, Lu Li, Qingxian Luo, and Yaobo Zhang.
On the statistical complexity of quantum circuits.
arXiv:2101.06154, 2021.

[43] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini.
Parameterized quantum circuits as machine learning models.
Quantum Sci. Technol., 4(4):043001, 2019.
doi: 10.1088/2058-9565/ab5944.

[44] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao.
Expressive power of parametrized quantum circuits.
Physical Review Research, 2(3), Jul 2020.
doi: 10.1103/physrevresearch.2.033125.
2, 33

[45] John Preskill.
Quantum Computing in the NISQ era and beyond.
Quantum, 2:79, Aug 2018.
doi: 10.22331/q-2018-08-06-79.
2, 15, 45

[46] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann.
A Quantum Approximate Optimization Algorithm.
arXiv:1411.4028, 2014.
2, 42

http://arxiv.org/abs/1806.09729
http://dx.doi.org/10.22331/q-2020-05-25-269
http://dx.doi.org/10.1103/PhysRevA.99.032331
http://dx.doi.org/10.22331/q-2021-01-28-391
http://dx.doi.org/10.1103/PhysRevA.98.032309
http://arxiv.org/abs/2101.06154
http://dx.doi.org/10.1088/2058-9565/ab5944
http://dx.doi.org/10.1103/physrevresearch.2.033125
http://dx.doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1411.4028

76 BIBLIOGRAPHY

[47] Edward Farhi and Aram W Harrow.
Quantum Supremacy through the Quantum Approximate Optimization Al-

gorithm.
arXiv:1602.07674, 2019.

[48] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide
Venturelli, and Rupak Biswas.

From the quantum approximate optimization algorithm to a quantum alter-
nating operator ansatz.

Algorithms, 12(2):34, 2019.
doi: 10.3390/a12020034.
2, 42

[49] Bobak Toussi Kiani, Seth Lloyd, and Reevu Maity.
Learning Unitaries by Gradient Descent.
arXiv:2001.11897, 2020.
2, 42, xi

[50] Michael Streif and Martin Leib.
Comparison of QAOA with Quantum and Simulated Annealing.
arXiv:1901.01903, 2019.
2

[51] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel.
Quantum approximate optimization algorithm for MaxCut: A fermionic

view.
Phys. Rev. A, 97:022304, Feb 2018.
doi: 10.1103/PhysRevA.97.022304.

[52] Dave Wecker, Matthew B. Hastings, and Matthias Troyer.
Training a quantum optimizer.
Phys. Rev. A, 94:022309, Aug 2016.
doi: 10.1103/PhysRevA.94.022309.

[53] Filip B Maciejewski, Flavio Baccari, Zoltán Zimborás, and Michał Osz-
maniec.

Modeling and mitigation of cross-talk effects in readout noise with applica-
tions to the Quantum Approximate Optimization Algorithm.

Quantum, 5:464, Jun 2021.
doi: 10.22331/q-2021-06-01-464.
2, 45

[54] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom,
S. Caldwell, N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C. B.
Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Ru-
bin, Colm A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah,
Robert S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, Blake R.
Johnson, M. Reagor, M. P. da Silva, and C. Rigetti.

Unsupervised Machine Learning on a Hybrid Quantum Computer.
arXiv:1712.05771, 2017.

[55] Wolfgang Lechner.
Quantum Approximate Optimization With Parallelizable Gates.

http://arxiv.org/abs/1602.07674
http://dx.doi.org/10.3390/a12020034
http://arxiv.org/abs/2001.11897
http://arxiv.org/abs/1901.01903
http://dx.doi.org/10.1103/PhysRevA.97.022304
http://dx.doi.org/10.1103/PhysRevA.94.022309
http://dx.doi.org/10.22331/q-2021-06-01-464
http://arxiv.org/abs/1712.05771

BIBLIOGRAPHY 77

IEEE Transactions on Quantum Engineering, 1:1–6, 2020.
doi: 10.1109/TQE.2020.3034798.

[56] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann.
A Quantum Approximate Optimization Algorithm Applied to a Bounded

Occurrence Constraint Problem.
arXiv:1412.6062, 2015.

[57] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven.
Quantum Algorithms for Fixed Qubit Architectures.
arXiv:1703.06199, 2017.

[58] Cedric Yen-Yu Lin and Yechao Zhu.
Performance of QAOA on Typical Instances of Constraint Satisfaction Prob-

lems with Bounded Degree.
arXiv:1601.01744, 2016.
2

[59] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh.
Analysis of Quantum Approximate Optimization Algorithm under Realistic

Noise in Superconducting Qubits.
arXiv:1907.09631, 2019.
2, 45

[60] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo.
Effects of Quantum Noise on Quantum Approximate Optimization Algo-

rithm.
arXiv:1909.02196, 2019.
2, 45

[61] Héctor Abraham et al.
Qiskit: An Open-source Framework for Quantum Computing.
2019.
2, 45, 47, v

[62] IBM Quantum team.
IBM Quantum Experience.
https://quantum-computing.ibm.com.
2021.
2, 12, 45, 47, 49, v, xiii

[63] Kerstin Beer, Megha Khosla, Julius Köhler, and Tobias J. Osborne.
Quantum machine learning of graph-structured data.
arXiv:2103.10837, 2021.
2, 53, 63, 66, 67, 69, 70, viii, xvii

[64] Alan Mathison Turing.
On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London mathematical society, 2(1):230–265, 1937.
doi: 10.1112/plms/s2-42.1.230.
5

http://dx.doi.org/10.1109/TQE.2020.3034798
http://arxiv.org/abs/1412.6062
http://arxiv.org/abs/1703.06199
http://arxiv.org/abs/1601.01744
http://arxiv.org/abs/1907.09631
http://arxiv.org/abs/1909.02196
https://quantum-computing.ibm.com
http://arxiv.org/abs/2103.10837
http://dx.doi.org/10.1112/plms/s2-42.1.230

78 BIBLIOGRAPHY

[65] John Bardeen and Walter Hauser Brattain.
The transistor, a semi-conductor triode.
Physical Review, 74(2):230, 1948.
doi: 10.1103/PhysRev.74.230.
5

[66] Michael A Nielsen and Isaac Chuang.
Quantum computation and quantum information.
2002.
6, 14, 33, xiii

[67] Claude Elwood Shannon.
A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.
6

[68] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi.
Classical and quantum computation.
Number 47. American Mathematical Society, 2002.
doi: 10.1090/gsm/047.
12

[69] David P. DiVincenzo.
The Physical Implementation of Quantum Computation.
Fortschritte der Physik, 48(9-11):771–783, 2000.
doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
14

[70] John Clarke and Frank K Wilhelm.
Superconducting quantum bits.
Nature, 453(7198):1031–1042, 2008.
doi: 10.1038/nature07128.
14, 38

[71] JQ You and Franco Nori.
Atomic physics and quantum optics using superconducting circuits.
Nature, 474(7353):589–597, 2011.
doi: 10.1038/nature10122.
14, 38

[72] J. I. Cirac and P. Zoller.
Quantum Computations with Cold Trapped Ions.
Phys. Rev. Lett., 74:4091–4094, May 1995.
doi: 10.1103/PhysRevLett.74.4091.
14, 38

[73] Dietrich Leibfried, Rainer Blatt, Christopher Monroe, and David Wineland.
Quantum dynamics of single trapped ions.
Reviews of Modern Physics, 75(1):281, 2003.
doi: 10.1103/RevModPhys.75.281.

[74] Rainer Blatt and Christian F Roos.
Quantum simulations with trapped ions.

http://dx.doi.org/10.1103/PhysRev.74.230
http://dx.doi.org/10.1090/gsm/047
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/RevModPhys.75.281

BIBLIOGRAPHY 79

Nature Physics, 8(4):277–284, 2012.
doi: 10.1038/nphys2252.
14, 38

[75] M. B. Plenio and P. L. Knight.
Decoherence limits to quantum computation using trapped ions.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical

and Engineering Sciences, 453(1965):2017–2041, 1997.
doi: 10.1098/rspa.1997.0109.
14

[76] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al.

Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, 2019.
doi: 10.1038/s41586-019-1666-5.
15

[77] Warren S McCulloch and Walter Pitts.
A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.
doi: 10.1007/BF02478259.
21

[78] Stephen Cole Kleene.
Representation of events in nerve nets and finite automata.
Princeton University Press, 2016.
doi: 10.1515/9781400882618-002.
21

[79] Michael A Nielsen.
Neural networks and deep learning, volume 25.
Determination press San Francisco, CA, 2015.
21, 22

[80] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-
toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad.

State-of-the-art in artificial neural network applications: A survey.
Heliyon, 4(11):e00938, 2018.
doi: 10.1016/j.heliyon.2018.e00938.
21

[81] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton.
Speech recognition with deep recurrent neural networks.
In 2013 IEEE international conference on acoustics, speech and signal pro-

cessing, pages 6645–6649. Ieee, 2013.
doi: 10.1109/ICASSP.2013.6638947.
21

[82] Samira Ebrahimi Kahou, Vincent Michalski, Kishore Konda, Roland Memi-
sevic, and Christopher Pal.

Recurrent neural networks for emotion recognition in video.

http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1098/rspa.1997.0109
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1515/9781400882618-002
http://dx.doi.org/10.1016/j.heliyon.2018.e00938
http://dx.doi.org/10.1109/ICASSP.2013.6638947

80 BIBLIOGRAPHY

In Proceedings of the 2015 ACM on international conference on multimodal
interaction, pages 467–474, 2015.

doi: 10.1145/2818346.2830596.
21

[83] Stefan Leijnen and Fjodor van Veen.
The neural network zoo.
In Multidisciplinary Digital Publishing Institute Proceedings, volume 47,

page 9, 2020.
doi: 10.3390/proceedings2020047009.
21

[84] Yann LeCun.
The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.
1998.
25

[85] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
Deep clustering for unsupervised learning of visual features.
In Proceedings of the European Conference on Computer Vision (ECCV),

pages 132–149, 2018.
25

[86] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
Unsupervised learning.
In The elements of statistical learning, pages 485–585. Springer, 2009.
25

[87] Diederik P. Kingma and Jimmy Ba.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980, 2017.
30, 58

[88] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic optimiza-

tion.
Journal of machine learning research, 12(7), 2011.
30

[89] Tijmen Tieleman, Geoffrey Hinton, et al.
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude.
COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.
30

[90] Steven J Nowlan and Geoffrey E Hinton.
Simplifying neural networks by soft weight-sharing.
Neural computation, 4(4):473–493, 1992.
doi: 10.1162/neco.1992.4.4.473.
31

[91] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting.

http://dx.doi.org/10.1145/2818346.2830596
http://dx.doi.org/10.3390/proceedings2020047009
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1162/neco.1992.4.4.473

BIBLIOGRAPHY 81

The journal of machine learning research, 15(1):1929–1958, 2014.
31

[92] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru
Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan,
Lukasz Cincio, and Patrick J. Coles.

Variational Quantum Algorithms.
arXiv:2012.09265, 2020.
36

[93] Lukasz Cincio, Yiğit Subaşi, Andrew T Sornborger, and Patrick J Coles.
Learning the quantum algorithm for state overlap.
New Journal of Physics, 20(11):113022, 2018.
doi: 10.1088/1367-2630/aae94a.
37

[94] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada.
Swap test and Hong-Ou-Mandel effect are equivalent.
Phys. Rev. A, 87:052330, May 2013.
doi: 10.1103/PhysRevA.87.052330.
37

[95] D. Mc Hugh and J. Twamley.
Quantum computer using a trapped-ion spin molecule and microwave radi-

ation.
Phys. Rev. A, 71:012315, Jan 2005.
doi: 10.1103/PhysRevA.71.012315.
38

[96] M. Steffen, D. P. DiVincenzo, J. M. Chow, T. N. Theis, and M. B. Ketchen.
Quantum computing: An IBM perspective.
IBM Journal of Research and Development, 55(5):13:1–13:11, 2011.
doi: 10.1147/JRD.2011.2165678.
38

[97] Andrea Mari, Thomas R. Bromley, and Nathan Killoran.
Estimating the gradient and higher-order derivatives on quantum hardware.
Physical Review A, 103(1), Jan 2021.
doi: 10.1103/physreva.103.012405.
39

[98] Jun Li, Xiaodong Yang, Xinhua Peng, and Chang-Pu Sun.
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Phys. Rev. Lett., 118:150503, Apr 2017.
doi: 10.1103/PhysRevLett.118.150503.
39

[99] Kerstin Beer, Daniel List, Gabriel Müller, Tobias J. Osborne, and Christian
Struckmann.

Training Quantum Neural Networks on NISQ Devices.
arXiv:2104.06081, 2021.
39, 46

http://arxiv.org/abs/2012.09265
http://dx.doi.org/10.1088/1367-2630/aae94a
http://dx.doi.org/10.1103/PhysRevA.87.052330
http://dx.doi.org/10.1103/PhysRevA.71.012315
http://dx.doi.org/10.1147/JRD.2011.2165678
http://dx.doi.org/10.1103/physreva.103.012405
http://dx.doi.org/10.1103/PhysRevLett.118.150503
http://arxiv.org/abs/2104.06081

82 BIBLIOGRAPHY

[100] Gavin E. Crooks.
Gradients of parameterized quantum gates using the parameter-shift rule

and gate decomposition.
arXiv:1905.13311, 2019.
41

[101] Jun Zhang, Jiri Vala, Shankar Sastry, and K. Birgitta Whaley.
Geometric theory of nonlocal two-qubit operations.
Physical Review A, 67(4), Apr 2003.
doi: 10.1103/physreva.67.042313.
41

[102] Jun Zhang, Jiri Vala, Shankar Sastry, and K. Birgitta Whaley.
Optimal quantum circuit synthesis from controlled-unitary gates.
Physical Review A, 69(4), Apr 2004.
doi: 10.1103/physreva.69.042309.

[103] M Blaauboer and RL De Visser.
An analytical decomposition protocol for optimal implementation of two-

qubit entangling gates.
Journal of Physics A: Mathematical and Theoretical, 41(39):395307, sep

2008.
doi: 10.1088/1751-8113/41/39/395307.

[104] Byron Drury and Peter Love.
Constructive quantum Shannon decomposition from Cartan involutions.
Journal of Physics A: Mathematical and Theoretical, 41(39):395305, Sep

2008.
doi: 10.1088/1751-8113/41/39/395305.

[105] Paul Watts, Maurice O’Connor, and Jiří Vala.
Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and

Quantum Control.
Entropy, 15(6):1963–1984, 2013.
doi: 10.3390/e15061963.

[106] Eric C. Peterson, Gavin E. Crooks, and Robert S. Smith.
Two-Qubit Circuit Depth and the Monodromy Polytope.
Quantum, 4:247, Mar 2020.
doi: 10.22331/q-2020-03-26-247.
41

[107] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano
Pontil, Andrea Rocchetto, Simone Severini, and Leonard Wossnig.

Quantum machine learning: a classical perspective.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 474(2209):20170551, 2018.
doi: 10.1098/rspa.2017.0551.
45, 46

[108] Noriaki Kouda, Nobuyuki Matsui, Haruhiko Nishimura, and Ferdinand
Peper.

Qubit neural network and its learning efficiency.

http://arxiv.org/abs/1905.13311
http://dx.doi.org/10.1103/physreva.67.042313
http://dx.doi.org/10.1103/physreva.69.042309
http://dx.doi.org/10.1088/1751-8113/41/39/395307
http://dx.doi.org/10.1088/1751-8113/41/39/395305
http://dx.doi.org/10.3390/e15061963
http://dx.doi.org/10.22331/q-2020-03-26-247
http://dx.doi.org/10.1098/rspa.2017.0551

BIBLIOGRAPHY 83

Neural Computing & Applications, 14(2):114–121, 2005.
doi: 10.1007/s00521-004-0446-8.
45

[109] Kyle Poland, Kerstin Beer, and Tobias J. Osborne.
No Free Lunch for Quantum Machine Learning.
arXiv:2003.14103, 2020.
46

[110] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.
Gambetta.

Validating quantum computers using randomized model circuits.
Phys. Rev. A, 100:032328, Sep 2019.
doi: 10.1103/PhysRevA.100.032328.
49

[111] Piotr Czarnik, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles.
Qubit-efficient exponential suppression of errors.
arXiv:2102.06056, 2021.
50

[112] Sagar Sharma and Simone Sharma.
Activation functions in neural networks.
Towards Data Science, 6(12):310–316, 2017.
i

[113] Abraham Asfaw, Antonio Corcoles, Luciano Bello, Yael Ben-Haim, Mehdi
Bozzo-Rey, Sergey Bravyi, Nicholas Bronn, Lauren Capelluto, Almu-
dena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay
Gambetta, Shelly Garion, Leron Gil, Salvador De La Puente Gonzalez,
Francis Harkins, Takashi Imamichi, Hwajung Kang, Amir h. Karamlou,
Robert Loredo, David McKay, Antonio Mezzacapo, Zlatko Minev, Ramis
Movassagh, Giacomo Nannicini, Paul Nation, Anna Phan, Marco Pis-
toia, Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin,
John Stenger, Kristan Temme, Madeleine Tod, Stephen Wood, and James
Wootton.

Learn Quantum Computation Using Qiskit.
http://community.qiskit.org/textbook.
2020.v

[114] Benjamin Nachman, Miroslav Urbanek, Wibe A de Jong, and Christian W
Bauer.

Unfolding quantum computer readout noise.
npj Quantum Information, 6(1):1–7, 2020.
xiii

http://dx.doi.org/10.1007/s00521-004-0446-8
http://arxiv.org/abs/2003.14103
http://dx.doi.org/10.1103/PhysRevA.100.032328
http://arxiv.org/abs/2102.06056
http://community.qiskit.org/textbook

Appendix A

Supplementary Materials to
Chapter 3

A.1 Improving the learning

A.1.1 Different activation functions
In chapter 3, the neural network was assumed to consist of only sigmoid neurons.
An important property of this neuron is that it can represent any given func-
tion. There are, in fact, neurons based on different activation functions with this
property, which sometimes outperform the sigmoid neuron [112].

−5 0 5

−1

0

1

z

a
ta

nh
,a

si
gm

oi
d

(a) The tanh and sigmoid activation
function.

−5 0 5

0

0.5

1

1.5

2

z

a
re

lu
,a

si
gm

oi
d

(b) The ReLu and sigmoid activation
function.

Figure A.1: Alternative activation functions. Note that z =w ⋅x + b.
One popular alternative to the sigmoid neuron is the tanh neuron. Its activation

function is given by the hyperbolic tangent:

atanh(x;w, b) = tanh(w ⋅x + b) (A.1)

i

ii Appendix A. Supplementary Materials to Chapter 3

where tanh(z) = e
z−e−z
ez+e−z . It is closely related to the sigmoid function:

�(z) = 1 + tanh(z�2)
2

. (A.2)

The tanh and sigmoid activation functions are plotted in Fig. A.1a. One key
difference between both activation functions is the output range. The sigmoid
neuron only allows positive activations. However, the activation of the tanh neuron
ranges from −1 to +1 and thus, allows positive and negative activations.

Another important neuron is the rectified linear neuron/unit (ReLu). Its ac-
tivation function is a linear function except that it maps negative values to 0:

arelu(w ⋅x + b) ∶=max(0,w ⋅x + b). (A.3)

It is plotted in Fig. A.1b alongside the sigmoid function. As it is zero for all
negative values, the ReLu activation function allows the neuron to neglect some of
its inputs.

A.1.2 The cross-entropy cost function
The most crucial step in training a neural network is finding the cost function as
its form defines the landscape of the minimisation problem. For gradient-based
optimisers, it is crucial to have a cost gradient that scales with the error/cost of
the network. Like its biological counterpart, the neural network should learn the
most after being the wrongest.

The gradient of the quadratic cost function is given by:

@C

@bl
j

= 1

n

n

�
k=1

a
′(zl

j
)(↵out,k −xout,k), (A.4a)

@C

@wl

j

= 1

n

n

�
k=1
[↵l−1]ja′(zlj)(↵out,k −xout,k). (A.4b)

The step size scales linearly with the derivative of the activation function. Usually,
the activation function’s slope decreases with increasing distance from the origin
(see Fig. A.1b). If the absolute of the neuron’s output is large, it scales down the
cost gradient (see (A.4)). Thus, the gradient of the quadratic cost can be small
even though if the error is not.

This problem is solved by introducing the cross-entropy cost function:

C = − 1
n

n

�
k=1

nout

�
j=1
�[xout,k]j ln �[↵out,k]j� + �1 − [xout,k]j� ln �1 − [↵out,k]j�� . (A.5)

A.1. Improving the learning iii

This cost function is defined such that its gradient does not depend on the activa-
tion function’s derivation:

@C

@bl
j

= 1

n

n

�
k=1

nout

�
j=1
(↵out,k −xout,k), (A.6a)

@C

@wl

j

= 1

n

n

�
k=1

nout

�
j=1
[↵l−1]j(↵out,k −xout,k). (A.6b)

The cross-entropy cost function’s gradient only scales with the network’s error
↵out,k −xout,k.

Appendix B

The IBM Quantum Experience

The IBM Quantum Experience (IBMQE) is a website providing public and pre-
mium access to the IBM quantum computers [62]. It can be accessed via Qiskit,
an open-source quantum information software development kit written in Python
[61]. It allows the building, compiling, running, and analysing of quantum circuits.
The interested reader is referred to [113].

Building a quantum circuit

Building a quantum circuit using Qiskit is straightforward. First, the quantum
circuit has to be defined by specifying the number of quantum and classical bits.
Then, predefined but also arbitrary unitary operators can be applied to the qubit
register. Finally, a measurement provides information about the qubits’ state.

Compiling a quantum circuit

The compilation of a quantum circuit can be divided into two main steps. First,
the quantum circuit is transpiled into a different quantum circuit consisting of
basis gates. These basis gates, of course, depend on the quantum device itself.
This step is crucial for the operation using real quantum computers. The transpile
function takes many arguments that can be used to optimise the quantum circuit
with respect to the quantum device. Second, the quantum circuit is assembled to
a so-called Qobj. This is an executable for the quantum device.

Running a quantum circuit

Executing a quantum circuit can be done either using a simulator or a real quantum
computer. The IBMQE and Qiskit provide various methods for each method.
Additionally, Qiskit also allows the combination of both, the simulated quantum

v

vi Appendix B. The IBM Quantum Experience

computer. It is possible to create a specific quantum device with customisable
properties, including its noise. The IBMQE features quantum computers that are
free for public use and quantum computers of more qubits for premium access
only. To run the transpiled quantum circuit on the quantum device, it has to be
submitted to the IBMQE, where it first joins a queue. The queue is processed
one after the other. After running the quantum circuit, IBMQE returns a report
including the measurement results.

Analysing a quantum circuit

The IBMQE and Qiskit provide various tools for analysing quantum circuits. The
IBMQE website features a quantum circuit composer where the quantum circuit
can be constructed by dragging and dropping quantum gates. The result is com-
puted directly and visible in the console. Qiskit includes many predefined plotting
routines to visualise the measurement outcomes or the quantum states (if executed
using a simulator).

Appendix C

Supplementary Materials to
Chapter 4

C.1 Quantum backpropagation

The presentation of the quantum backpropagation algorithm is based on [10]. The
interested reader is referred to this work.

Classically, the neural network is trained by updating the weights and biases of
each neuron in a way, such that the cost function is minimised. A QNN’s neuron,
has no weights and bias, but instead, a unitary operator. All the processing infor-
mation of the weights and bias are stored as components of the unitary operator.
The update rule of the unitary operator of the jth neuron in layer l is given by

U
l

j
� e

i✏K
l
jU

l

j
(C.1)

where ✏ is the step size and K l

j
is a hermitian operator defined to maximise the

training cost function (4.6). The change in the cost function after updating the
quantum perceptrons according to (C.1) is given by

�C = ✏

N

ntrain

�
k=1

out

�
l=1

Tr ��l,k
�E(⇢l−1,k)� . (C.2)

This change is maximised by setting

K
l

j
= ⌘2

nl−1i
ntrain

ntrain

�
k=1

Trrest �M l,k

j
� (C.3)

where ⌘ is the learning rate and the trace is over all qubits on which U l

j
does not

act on. M
l,k

j
is defined as the commutator of a forward and backward application

vii

viii Appendix C. Supplementary Materials to Chapter 4

of quantum perceptrons:

M
l,k

j
= �

1

�
↵=j

U
l

↵
�⇢l−1,k ⊗ �0 . . .0�

l
�0 . . .0��

j

�
↵=1

U
l

↵

†
,

nl

�
↵=j+1

U
l

↵

† �1l−1 ⊗ �l,k�
j+1
�
↵=nl

U
l

↵
� (C.4)

where

�
l = �F l+1 ○ � ○Fout� (⇢out). (C.5)

F l is the adjoint channel of E l and is defined as

F l(�l) = Trl �1l−1 ⊗ �0 . . .0�l �0 . . .0�U l† �1l−1 ⊗ �l�U l� = �l−1
. (C.6)

This channel incorporates the backpropagation of the classical optimisation al-
gorithm as the state �out = ⇢out is propagated backwards through the QNN by
reversing the transformations/actions (U l)† = (U l)−1. The parameter matrix K l

j

can be fully calculated by computing ⇢l−1 (see (4.3)) and �l (see (C.5)). Thus, the
parameter matrices K l

j
can be computed layerwise, meaning its computation does

not require the evaluation of the whole QNN.

C.1.1 Graph-structured quantum data
Similar to training a unitary transformation, the quantum perceptrons are updated
using a hermitian matrix K l

j
(see (C.1)) [63]. It is composed of the update matrix

of the supervised states (C.3) and of the matrix for the graph structure

K
l

j
= ⌘2

nl−1i
nSV

�
u

Tr �M l,u

j
� + ⌘2nl−1+1i�

v∼w[A]vwTrrest �M l,{v,w}
j

� (C.7)

where v ∼ w denotes all adjacent vertices v,w ∈ V and

M
l,{v,w}
j

= �U l

j
�U l

1 �(��in,v� ��in,v � − ��in,w� ��in,w�)⊗ �0 . . .0�
l
�0 . . .0��U l

1
†�U l

j

†
,

U
l

j+1†�Uout
nout

† (1in,...,L ⊗ (��out,v� ��out,v � − ��out,w� ��out,w�))Uout
nout�U

l

j+1�
(C.8)

Again, the update matrices K l

j
allow a layer-wise computation.

C.2 The CAN-based dissipative quantum neural

network

The qubits which are not affected by the gate have been neglected in the definition
(4.13). The precise definition of the quantum perceptron is given by

U
l

j
= SWAPl

j
�
nl−1
�
i=1

G
l(✓3∗(i−1)+1,✓3∗(i−1)+2,✓3∗(i−1)+3) SWAPl−1

j
�SWAPl

j
(C.9)

C.3. The quantum approximate optimisation algorithm ix

where

G
l(✓1,✓2,✓3) = 11,...,nl−1−1 ⊗G

l

nl−1,nl−1+1(✓1,✓2,✓3)⊗ 1nl−1+2,...,nl+nl−1 (C.10a)

11,...,n =
n

�
k=1 1, 1 = �1 0

0 1
� (C.10b)

SWAPl−1 =
1

�
k=nl−1−1

SWAPk,k+1 (C.10c)

SWAPl

j
=

nl−1+j−1
�

k=nl−1+1
SWAPk,k+1 (C.10d)

and U l

j
acts on nl−1 + nl qubits. The swaps are needed such that Gl

k,j
acts on

adjacent qubits: j = k + 1.

C.3 The quantum approximate optimisation algo-

rithm

The quantum approximate optimisation algorithm (QAOA) was first introduced in
2014 by Edward Farhi and Jeffrey Goldstein to approximately solve combinatorial
optimisation problems. Such problems are specified by n bits and m clauses, where
each of these clauses is a constraint on the n bit strings. The challenge is to find
the best solution out of the set of possible solutions. The quality of a solution is
determined by the number of satisfied constraints and is given by the objective
function:

C(z) =
m

�
↵=1

C↵(z) (C.11)

where z = z1 . . . zn is the bit string and C↵(z) is the binary function that is 1 if
z satisfies clause ↵ and 0 otherwise. This objective function can be viewed as a
diagonal operator in the computational basis:

HC =�
z

C(z) �z� �z� (C.12)

where z ∈ {0,1}n labels the computational basis states �z� ∈ C2n. HC is called the
cost hamiltonian. From this the unitary time evolution can be defined:

U(C,�) = e−i�HC =
m

�
↵=1

e
−i�HC↵ (C.13)

x Appendix C. Supplementary Materials to Chapter 4

which is parameterised by an angle �. Note that each element of the product acts
according to a specific clause ↵ and, in general, commutes with the others.

Consider the sum of single bit operators �x:

B =
n

�
j=1

�
x

j
(C.14)

and the parameterised unitary

U(B,�) = e−i�B =
n

�
j=1

e
−i��x

j (C.15)

where �x

j
is the NOT-gate acting on qubit j. B is called the mixer hamiltonian.

The QAOA is defined as an alternating sequence of unitary operators acting
on some initial state �s�:

��,�� = U(B,�p)U(C,�p) . . . U(B,�1)U(C,�1) �s� (C.16)

where �s� is chosen to be the uniform superposition of the computational basis
states. The optimal solution can be found by maximising the expectation value of
the cost hamiltonian:

��,��HC ��,�� =�
z

C(z)� �z��,�� �2. (C.17)

This expectation value can be easily evaluated using a quantum computer. After
the state ��,�� is prepared it can be measured in the computational basis to get
� �z��,�� �2. Classical optimisation of � and � with respect to C.17 then gives an
approximation for an optimal bit string z.

C.3.1 The quantum alternating operator ansatz
The quantum approximate optimisation algorithm described above features the
time evolution under fixed local Hamiltonians. This framework has been extended
to the quantum alternating operator ansatz, which is the alternating application
of general parameterised unitaries:

U = e−i↵nAe
−i�nB � e

−i↵2Ae
−i�2B e

−i↵1Ae
−i�1B (C.18)

where A and B are hermitian matrices. Both definitions of the acronym QAOA
are used interchangeable for both algorithm.

C.4 Learning non-unitary transformations

Applying the QAOA to a problem that requires non-unitary transformations, e.g.,
training a QNN, is not trivial since the QAOA is defined as a sequence of unitary

C.4. Learning non-unitary transformations xi

operators. The most natural way of redefining the QAOA for such problems is to
apply the QAOA to all the qubits and trace out the superfluous qubits. For a
QNN, this would mean applying the QAOA to the three input qubits and, in the
end, ignore the first two qubits such that the third qubit serves as the output of
the QNN. The only question that remains is concerning the number of layers. For
a QNN of constant width, the number of layers is chosen according to the Hilbert
space dimension [49]. If the number of layers equals d2�2, the QNN trained using
gradient descent always converges to the optimal solution. In other words, the
number of parameters of the QAOA should match the number of components of
the desired matrix transformation. For example, the matrix representation of a
QNN has 22×22 = 16 components resulting in a QAOA of 16 parameters. Thus, the
natural guess would be that the QAOA of a QNN should also have 23 × 21 = 16
parameters. In order to validate this guess, QAOAs of different lengths are trained
to map eight random input states to the eight output states of the connected line
training data (see section 6.2.3). This analysis quantifies the QAOA’s capability
to produce the desired output states from a given input. This ability sets the limit
for the network’s generalisation. Both networks are trained using the supervised
cost function (6.4) for 500 epochs. The training is repeated four times to average
over different start parameters, input states, and A and B matrices.

The resulting training costs after training the DQNN (np = 21) and the QAOA
with np = 14,16,20,24,26,32 parameters are shown in Fig. C.1. As expected, the
training cost of the QAOA increases with increasing numbers of parameters. The
results validate the initial guess that the QAOA with np = 23 × 21 = 16 parameters
shows a similar training cost as the DQNNCAN. Thus, the analysis in chapter 6
features a QAOA with np = 16 parameters or eight layers.

xii Appendix C. Supplementary Materials to Chapter 4

14 16 20 24 28 32

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Number of parameters

Tr
ai

ni
ng

co
st

QAOA
DQNNCAN

Figure C.1: Comparing the DQNNCAN with QAOAs of different lengths. Both networks are
trained for 500 epochs using the connected line training data (see section 6.2.3) and the supervised
cost function (6.4). The training costs averaged over four trainings are plotted versus the number
of parameters. The QAOA is defined to act on three qubits where the last qubit serves as the
output. The number of layers equals half the number of parameters. The DQNNCAN has 21
parameters.

Appendix D

Supplementary Materials to
Chapter 5

D.1 Gate noise analysis

The success of training a QNN on a real quantum computer is highly dependent
on the device’s noise, as this is the main limiting factor of today’s quantum algo-
rithms. Readout noise and gate noise are the dominant noise sources [114]. This
analysis focuses on the training of the DQNN and the QAOA under different noise
levels. As both networks experience the influence of readout noise equally (they
are measured and updated using the same methods), this noise source is neglected
in this analysis. The influence of gate noise, however, differs as both networks
feature different gates. To analyse this influence, the DQNN and the QAOA are
trained for ntrain = ntest = 4 states using different gate noise levels. Here, the gate
noise is approximated by a depolarising error channel [66]. The state of the qubit
after applying a noisy gate Ũ is given by

Ũ⇢Ũ
† = pU 1

2
+ (1 − pU)U⇢U † (D.1)

where U is the noiseless gate, ⇢ the qubit’s initial state, and p the depolarisation
probability. With probability pU the qubits are replaced by a completely mixed
state 1�2. With probability (1 − pU), the gate is applied to the qubit. The depo-
larisation probability of a gate g ∈ GIBM (2.23) is parameterised by a scaling factor
k: pg = kp

g

0. p
g

0 is the initial depolarisation probability chosen to match current
NISQ device noise levels. Here, pCNOT

0 = 3.14 × 10−2, pSX
0 = 1.18 × 10−3, pRZ

0 = 0

are chosen, which is an approximation for ibmq_16_melbourne [62]. Additionally,
ibmq_16_melbourne’s coupling map is chosen for the transpilation.

The results of this analysis are shown in Fig. D.1. The training, test, and
identity cost is plotted versus the error probability factor k. k ranges from 0 to 4.

xiii

xiv Appendix D. Supplementary Materials to Chapter 5

k = 0 simply corresponds to the noiseless training. Both networks reach a training
and test cost of nearly 1. The identity cost is 1 since there is no noise involved.
The identity cost is decreasing with increasing noise scaling k. The case k = 1

corresponds to current NISQ device noise levels. It can be compared to the results
of section 5.3.2 for ntest = 4. The range k ∈ [0,1] greatly visualises the opportunities
of future improved quantum computers. As k is growing bigger, so is the influence
of the noise. Remarkably, both networks can achieve training and test costs close
to the identity cost, no matter the noise level. The DQNN’s costs are generally
higher than the QAOA’s. This proves the assumption of section 5.3.2 that the
DQNN is less susceptible to gate noise. In general, this can be explained by the
fact that the DQNN’s transpiled quantum circuit has a smaller width than the
QAOA’s. The noise level is smaller due to the fewer gates that are involved in
the QNN evaluation. The difference between both networks is growing bigger with
increasing k. At some point, however, the difference converges to zero. At this
point, the noise level is completely dominating the signal. Thus, the network’s
different parameters do not have a significant influence on the resulting fidelities.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Error probability factor

C
os

t

DQNN
Identity cost
Test cost
Training cost

QAOA
Identity cost
Test cost
Training cost

Figure D.1: Gate noise analysis. The DQNN (two-qubit QAOA) using the qubit coupling
map of ibmq_16_melbourne for ✏ = 0.25, ⌘ = 0.5 (✏ = 0.05, ⌘ = 0.05).

Appendix E

Supplementary Materials to
Chapter 6

E.1 Alternating cost functions

Another way of improving the generalisation can be defined very similar to the
delayed normalised graph-based cost function. Here, the training with alternating
cost functions is considered. Every epoch x = 0, . . . ,nepoch, the training cost func-
tion switches between the supervised cost function C = CSV and the cost function
including the normalised graph-based cost function C = CSV+ �̃(0)CG (see (6.11)).
In summary, the new training cost function is controlled by the current training
epoch:

C(x;xalt) =
�������

CSV(x), if xmod 2xalt < xalt

CSV(x) + �̃(0)CG(x), if xmod 2xalt ≥ xalt

= CSV(x) + �alt(xalt)CG(x), �alt(xalt) =
�������

0, if xmod 2xalt < xalt

�̃(0), if xmod 2xalt ≥ xalt

(E.1)

where xalt specifies the number of epochs after which the cost function is changed.
In different words, if xmod xalt = 0, then change � to 0 if it previously was �̃(0),
otherwise change it to �̃(0).

The test costs while training the DQNNU, DQNNCAN, and the QAOA for 500

epochs using the supervised cost function (� = 0), the training cost (� = −0.5
and � = −1), and alternating cost functions (� = �alt(5)) are shown in Fig. E.1.
It features a plot for the connected clusters training data (Fig. E.1a) and the
connected line training data (Fig. E.1b). The alternation of the cost functions

xv

xvi Appendix E. Supplementary Materials to Chapter 6

is clearly visible in the test costs of � = �alt(5) in Figs. E.1a and E.1b as the
supervised and graph-based cost functions have different objectives. For both
examples, alternating the cost functions improves the generalisation of every QNN.
The resulting test costs are comparable to the ones obtained via the training using
the delayed normalised graph-based cost function.

Proving the universality of this improvement can be done analogously to sec-
tion 6.3.4. The DQNNCAN is trained for 500 epochs using alternating cost functions
for nSV = 1, . . . ,7 randomly selected supervised states from the connected clusters
and connected line training data. This is repeated ten times to average over dif-
ferent start parameters, input states, and supervised training states.

The test costs after training the DQNNCAN using the supervised cost function
(� = 0), the cost function (� = −0.5 and � = −1), and alternating cost functions (� =
�alt(5)) for nSV = 1, . . . ,7 supervised states is shown in Fig. E.2. Surprisingly, the
improvement of the DQNNCAN’s generalisation for the selected supervised states
(see Fig. E.1) cannot be generalised for arbitrary supervised states. The test costs
after training the DQNNCAN using alternating cost functions show no consistent
increase compared to � < 0. A significant improvement can only be found for a few
numbers of supervised states. For comparison, the delayed normalised graph-based
cost function shows a more reliable improvement (see Fig. 6.10).

E.1. Alternating cost functions xvii

0 100 200 300 400 500
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Epoch

Te
st

co
st

DQNNU
� = 0
� = −0.5
� = �alt(5)

DQNNCAN
� = 0
� = −0.5
� = �alt(5)

QAOA
� = 0
� = −0.5
� = �alt(5)

(a) The connected clusters training data (see section 6.2.2).

0 100 200 300 400 500

0.50

0.55

0.60

0.65

0.70

Epoch

Te
st

co
st

DQNNU
� = 0
� = −1
� = �alt(5)

DQNNCAN
� = 0
� = −1
� = �alt(5)

QAOA
� = 0
� = −1
� = �alt(5)

(b) The connected line training data (see section 6.2.3).

Figure E.1: The test cost while training the DQNNU, the DQNNCAN, and the QAOA for 500
epochs using the supervised cost function (� = 0), the untouched training cost (� = −0.5 and
� = −1), and alternating cost functions (� = �alt(5)). Additionally the test cost after training the
QNN described in [63] is marked as .

xviii Appendix E. Supplementary Materials to Chapter 6

1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

Number of supervised pairs

Te
st

co
st

� = 0 � = −0.5 � = �alt(5)

(a) The connected clusters training data (see sec-
tion 6.2.2).

1 2 3 4 5 6 7

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Number of supervised pairs

Te
st

co
st

� = 0 � = −1 � = �alt(5)

(b) The connected line training data (see sec-
tion 6.2.3).

Figure E.2: Training the DQNNCAN using alternating cost functions for different number of
supervised states.

List of Figures

2.1 The Bloch sphere representation of a qubit. 7
2.2 Visual representation of the Hadamard gate. 10
2.3 The CNOT gate applied to � C�⊗ � T �. 11
2.4 The SWAP gate written in terms of CNOT gates. 12
2.5 The quantum circuit to construct the bell state ��+�. 12
2.6 The quantum circuit for performing a Bell basis measurement. . . . 14
2.7 Quantum parallelism: exemplary circuit. 15
2.8 Quantum parallelism: exemplary quantum circuit. 16
2.9 The quantum circuit implementing the Deutsch-Jozsa algorithm. . . 17

3.1 The Rosenblatt perceptron. 22
3.2 The step and sigmoid activation functions. 23
3.3 The feed-forward neural network architecture. 24

4.1 A comparison of the classical and quantum perceptron. 34
4.2 The feed-forward quantum neural network architecture. 35
4.3 The quantum circuit implementing the destructive swap test. 37
4.4 The quantum circuit implementing the QNN training. 37
4.5 The general dissipative quantum neural network. 40
4.6 The CAN-based dissipative quantum neural network. 41
4.7 The quantum approximate optimisation algorithm. 44

5.1 The quantum circuit implementing a 2-2 DQNN. 47
5.2 Generalisation analysis of the DQNNCAN and the QAOA. 48
5.3 The qubit coupling map of ibmq_casablanca. 49
5.4 Training the DQNN and the QAOA on a real quantum computer. . 51

6.1 The connected clusters output states. 56
6.2 The connected line output states. 57
6.3 Training the DQNNU using the connected clusters training data. . . 60
6.4 Training the DQNNU, the DQNNCAN, and the QAOA using the

connected clusters training data. 60

xix

xx LIST OF FIGURES

6.5 Training the DQNNU using the connected line training data. 61
6.6 Training the DQNNU, the DQNNCAN, and the QAOA using the

connected line training data. 61
6.7 Generalisation analysis of the DQNNCAN. 63
6.8 The DQNNCAN’s output states after 500 training epochs. 64
6.9 Training the DQNNU, the DQNNCAN, and the QAOA using the

delayed normalised graph-based cost function. 67
6.10 Generalisation analysis of the DQNNCAN using the delayed nor-

malised graph-based cost function. 68

A.1 Alternative activation functions. i

C.1 Comparison of the DQNNCAN with QAOAs of different lengths. . . . xii

D.1 Gate noise analysis of the DQNNCAN and the QAOA. xiv

E.1 Training the DQNNU, the DQNNCAN, and the QAOA using the
graph-based cost function. xvii

E.2 Training the DQNNCAN using alternating cost functions for different
number of supervised states. xviii

List of Tables

2.1 Single-qubit gates and their matrix representations. 19

xxi

Acknowledgements

First of all, I would like to thank my supervisor Tobias Osborne for the count-
less instructive discussions, helpful teachings, and guidance throughout the entire
project. He never failed to amaze me with his immense knowledge and intuition.

Also, I want to thank Kerstin Beer. Without her work, this thesis would not
have been possible. She was a great help along the way, and I highly appreciate
the time she invested in aiding me.

I do not want to miss thanking my co-supervisor Reinhard Werner and the
group members of the QIG. I gratefully acknowledge the many seminars and meet-
ings we had.

Of course, I have to thank Gabriel Müller for being my friend and colleague in
these past years. I greatly enjoyed our countless Zoom sessions, endless discussions,
and chess games. I also want to thank Simon Bittner for the fun distractions.

Lastly, I would like to thank my family and my girlfriend, who were always on
my side and have supported me ever since.

I acknowledge the use of IBM Quantum services for this work. The views
expressed are those of the author, and do not reflect the official policy or position
of IBM or the IBM Quantum team.

	1 Introduction
	2 Quantum Computation
	2.1 Introduction
	2.2 Quantum Bits
	2.2.1 Multiple qubits
	2.2.2 Mixed qubit states

	2.3 Quantum Computation
	2.3.1 Quantum gates
	2.3.2 Quantum circuits
	2.3.3 Physical realisation of a quantum computer

	2.4 Quantum Algorithms
	2.4.1 Quantum parallelism
	2.4.2 The Deutsch-Jozsa algorithm

	3 Classical Machine Learning
	3.1 Introduction
	3.2 Neural Networks
	3.2.1 Perceptrons
	3.2.2 The neural network architecture

	3.3 Optimisation
	3.3.1 The learning task
	3.3.2 The cost function
	3.3.3 Gradient descent
	3.3.4 The backpropagation algorithm
	3.3.5 Improving the learning

	4 Quantum Machine Learning
	4.1 Introduction
	4.2 Quantum Neural Networks
	4.2.1 The quantum perceptron
	4.2.2 The quantum neural network architecture

	4.3 Variational Quantum Algorithms
	4.3.1 Introduction
	4.3.2 The training algorithm
	4.3.3 The general dissipative quantum neural network
	4.3.4 The CAN-based dissipative quantum neural network
	4.3.5 The quantum approximate optimisation algorithm

	5 Learning Unitaries on NISQ devices
	5.1 Introduction
	5.2 The Learning Task
	5.2.1 The cost function

	5.3 Results
	5.3.1 Setup
	5.3.2 Generalisation analysis
	5.3.3 NISQ device execution
	5.3.4 Conclusion

	6 Training QNNs with Graph-Structured Quantum Data
	6.1 Introduction
	6.2 The Learning Task
	6.2.1 Cost functions
	6.2.2 Example A: connected clusters
	6.2.3 Example B: connected line

	6.3 Results
	6.3.1 Setup
	6.3.2 Learning graph-structured quantum data
	6.3.3 Generalisation analysis
	6.3.4 Improving the generalisation
	6.3.5 Conclusion

	7 Conclusion
	A Supplementary Materials to chap:classical-machine-learning
	A.1 Improving the learning
	A.1.1 Different activation functions
	A.1.2 The cross-entropy cost function

	B The IBM Quantum Experience
	C Supplementary Materials to chap:quantum-machine-learning
	C.1 Quantum backpropagation
	C.1.1 Graph-structured quantum data

	C.2 The CAN-based dissipative quantum neural network
	C.3 The quantum approximate optimisation algorithm
	C.3.1 The quantum alternating operator ansatz

	C.4 Learning non-unitary transformations

	D Supplementary Materials to chap:results-unitary
	D.1 Gate noise analysis

	E Supplementary Materials to chap:results-graph
	E.1 Alternating cost functions

