
Institut für Theoretische Physik
Leibniz Universität Hannover

Constraint Graph Model Analysis of the
Quantum Alternating Operator Ansatz

Master’s Thesis
Lennart Binkowski

10011560

Supervisor:
Prof. Dr. Tobias J. Osborne

August 20, 2022

Abstract

We study the quantum alternating operator ansatz (QAO) proposed by Hadfield et al.
[Had+19], a class of variational quantum algorithms to find approximate solutions to
constrained combinatorial optimization problems. An essential ingredient of a QAO
instance is the problem-dependent mixer Hamiltonians. We refine the very definition of
the QAO-mixing property based on a rigorous derivation from the quantum adiabatic
algorithm [Far+00] to the quantum approximate optimization algorithm [FGG14] to
the QAO. Thereby, we prove the convergence of all three classes of algorithms under
comparatively few assumptions. Furthermore, we discuss the constraint graph model
originating from the works of Leighton [Lei77] as an approach to studying feasible
solutions to constrained problems. We also derive the connections between abstract
groups acting on classical bit strings and their quantum mechanical operator analogs.
For scheduling-type problems, we investigate bit string position permutations and
characterize their mixing property in terms of transitive group actions on feasible
vertex subsets of the constraint graph. We apply our new apparatus to free and flexible
job-shop scheduling problems and find that the free case always admits suitable mixers.
For the flexible case, we study examples that provide mixers and those that do not.

Contents

1. Introduction . 1

2. Basic Concepts . 5
2.1. Notation . 5
2.2. Expectation Value Calculation . 7
2.3. Combinatorial Optimization Problems 9
2.4. Group Actions on Bit Strings . 11

3. From Adiabatic Evolution to Alternating Operators 14
3.1. Quantum Adiabatic Algorithm . 15
3.2. Quantum Approximate Optimization Algorithm 19
3.3. Quantum Alternating Operator Ansatz 21

4. Constraint Graph Model . 28
4.1. Construction and Properties . 29
4.2. Connection to the QAO . 33
4.3. Applications . 37

5. Other Variational Quantum Algorithms 46
5.1. Variational Quantum Eigensolver . 47
5.2. Variational Quantum Simulation of Imaginary Time Evolution 49
5.3. Filtering Variational Quantum Eigensolver 51

6. Conclusion and Outlook . 55

Appendices . 58
A. Basic Concepts of Graph Theory . 58
B. Convergence Proofs . 64

Bibliography . 70

List of Figures . 74

CHAPTER 1.

Introduction

The field of quantum computing arguably emerged in the eighties mainly due to
Benioff’s [Ben80] and Deutsch’s [Deu85] pioneering work, bringing classical computer
science and quantum mechanics together. In addition to purely theoretical questions,
application attempts appeared early on, not least stimulated by Feynman’s [Fey82]
proposal to simulate quantum systems by other quantum systems because classical
computers seemed and still seem to have pivotal difficulties with this task. His
conjecture that quantum computers can, in principle, simulate any local quantum
system was proven shortly after by Lloyd [Llo96]. These considerations paved the
way for the application area of simulation of quantum systems; this is still one of the
primary uses of quantum computers. However, the search for possible applications of
quantum computers was not limited to this area. Indeed, Shor [Sho94] constructively
showed, i.e. he wrote an algorithm, that quantum computers could efficiently solve
the discrete logarithm problem and the problem of finding the prime factors of any
integer. In contrast, until now, no classical algorithm is known to solve these problems
efficiently. Grover [Gro96] made another groundbreaking discovery with his quantum
algorithm for unstructured search, allowing a gentle speed-up of dozens of search-based
procedures. Since then, countless quantum algorithms with numerous applications have
been developed (cf. [Mon16] for a selection of particularly influential algorithms).

While the superiority of (theoretical) quantum computers over classical computers in
the simulation of quantum systems is considered virtually proven, the extent to which
quantum computers also have the upper hand for purely classical problems is more
often the subject of current research. One particular exciting class of such problems is
combinatorial optimization problems (COPs):

optimize a Boolean function C : {0, 1}N → R w.r.t. some constraints.

These problems are abundant in industrial issues, so they are often of the utmost
interest. At the same time, their treatment with classical computers is challenging.

Page 1 of 74

Chapter 1. Introduction

Many representatives such as knapsack, traveling salesperson, or job shop scheduling
are, in fact, NP-complete when considered as decision problems [Kar72]. Accordingly,
the potential for algorithmic improvement is enormous here, and the quantum compu-
tational approach is considered promising. A massive catalog of classical analysis is
already available for these problems, and the task now is to incorporate it into quantum
algorithm design. This catalog includes, among others, the constraint graph model,
which allows for a graph theoretical treatment of constraint optimization problems.

A limiting factor concerning quantum computing is still the physical realization of
quantum computers. For example, Shor’s algorithm requires millions of noiseless
qubits (or even more noisy qubits using quantum error correction [LB13]) with a long
coherence time to solve relevant problem instances [GE21]; IBM’s latest quantum
processor, however, only has 127 noisy qubits with moderate coherence time [Dia22],
which is nonetheless an impressive achievement. Preskill [Pre18] coined the term
noisy intermediate-scale quantum (NISQ) devices to describe these near-term quantum
computers which do not incorporate quantum error correction.
Not all quantum algorithms developed so far are suitable for NISQ devices, but the so-
called variational quantum algorithms (VQAs) represent a promising class of algorithms
with already possible applications. They trace optimization tasks back to parameter
adaptation. In this process, the parameters are updated on classical computers, and
the quantum computer calculates the quantities required for the classical optimization
rule. Clever implementation can thus significantly reduce the required coherence time
and the number of simultaneously required qubits, making them executable on NISQ
devices.

The prospect of near-term application has made the research field of VQAs flourish in
a short time. The probably best-known VQA, the quantum approximate optimization
algorithm (QAOA) [FGG14], is also a pioneer of its kind; to this day, it provides
the basis for many other VQAs. The QAOA essentially consists of the alternating
application of two parameterized unitaries to an initial state, the problem-independent
“mixer” UM and the problem-dependent “phase separator” UP. Its simplicity makes
it very tangible, and there is a wide range of works, e.g., on its universality [Llo18;
MBZ20], performance on current NISQ devices [Qia+18; Pag+20; Har+21], and
importance in the near future [GM19]. Meanwhile, the quantum alternating operator
ansatz (QAO) [Had+19] has also caught much interest on its own. The QAO can be
viewed as an extension of the QAOA that naturally implements problem constraints
into the mixer unitary and thus may be better suited for optimization problems with
many constraints, such as job shop scheduling. Many heuristic approaches to QAO
mixer design exist for various problems; however, we propose a more rigorous analysis
to extract mixing properties from the classical information about the optimization
problem, mainly utilizing group theory and the constraint graph model.

Page 2 of 74

Chapter 1. Introduction

The second chapter is a collection of basic concepts. Section 2.1 introduces appropriate
notation for the whole thesis. Section 2.2 examines the possibility of calculating
expectation values on quantum computers. As this can be regarded as the primary
purpose of the quantum part of VQAs, this topic is crucial when analyzing VQAs. The
notion of COPs is then formalized in Section 2.3. We also discuss certain transformations
of these problems into each other and sketch the general strategy for implementing them
on quantum computers. The chapter is concluded by the formal introduction to group
actions on bit strings in Section 2.4. First and foremost, we draw the explicit connection
between operators acting on the qubit space and the permutation representation, well-
known in group representation theory. This allows us to characterize transitive group
actions in terms of invariant coordinate subspaces. In addition, we embed the notion
of feasibility preservation into this connection.

The third chapter discusses the motivation behind the QAOA and the QAO. In Sec-
tion 3.1, we introduce the quantum adiabatic algorithm (QAA) [Far+00], a continuous-
time quantum algorithm that utilizes properties of the adiabatic evolution of quantum
systems. The algorithm aims to evolve an extremal eigenstate of an initial Hamiltonian
HI into an extremal eigenstate of a target Hamiltonian C which encodes optimal
solutions to a COP. By invoking a more general adiabatic theorem as in [Far+00],
we prove convergence of the QAA with arbitrary admissible target Hamiltonian C
(Theorem 3.6). We then discuss the QAOA in Section 3.2 and highlight its connection to
the QAA. Due to our results in Section 3.1, we can prove the convergence of the QAOA
more generally and rigorously than in [FGG14] (Theorem 3.8). Finally, we motivate
and introduce the QAO in Section 3.3. Our definitions occasionally differ somewhat
from those in [Had+19]. Of particular importance is the accurate definition of the
mixer property (Definition 3.12). This fine-tuning eventually allows the formulation
of a convergence proof (Theorem 3.17) and a better translation into preceding and
subsequent classical analyses.

In the fourth chapter, we introduce the constraint graph model as an approach to
translating the issue of constructing suitable mixers for the QAO into the group- and
graph-theoretical language. Section 4.1 contains the construction of the constraint
graph for a generic COP. Subsequently, the basic notions are abstracted, allowing an
unperturbed view of the mathematical benefits of this very construction. We discuss
several immediate results and provide counterexamples whenever some properties are
not generally valid. The connection to the QAO mixer construction is then made
rigorous in Section 4.2. This eventually results in an equivalent characterization of
possible mixers expressed in the properties of the constraint graph (Theorem 4.7).
Our result immediately finds application in Section 4.3, where we study the constraint
graphs of particular job-shop scheduling instances: free and flexible job-shop scheduling.
This allows us to construct suitable mixers for some of the problem instances.

Page 3 of 74

Chapter 1. Introduction

In addition to the QAOA and the QAO, we discuss other VQAs in the fifth chapter and
mathematically derive the underlying principles that guarantee convergence. Firstly,
Section 5.1 overviews the variational quantum eigensolver (VQE) [Per+14], another
pioneering VQA. Like the QAOA, the VQE also lays the foundation for many more
specialized algorithms. Section 5.2 then discusses the variational quantum simulation
of imaginary time evolution (Var-QITE) [McA+19]. It is stricter in its specifications
than the VQE and is directly introduced with a suitable variational method. Finally,
the filtering variational quantum eigensolver (F-VQE) [Ama+21b] is introduced in
Section 5.3. It is based upon the ideas of the VQE and the Var-QITE, and we highlight
these connections in our discussion.

In the last chapter, we draw a conclusion and present an outlook on further extensions
and investigations. We address open problems regarding the QAA and the QAOA and
also comment on advanced questions regarding the constraint graph model.

The appendix consists of two parts. Appendix A entails a detailed introduction to
graph theory based on the book by Diestel [Die17]. The content is trimmed to what is
necessary for the analysis of the constraint graph model and the definition of completely
non-diagonal matrices. In Appendix B, we collect the rather technical convergence
proofs of Chapter 3.

Page 4 of 74

CHAPTER 2.

Basic Concepts

2.1. Notation

We begin this chapter by fixing the required notations. The set of natural numbers N
is defined without zero. Furthermore, we set N0 = {0} ∪̇N. For N ∈ N, we abbreviate
[N] := {1, . . . , N}.

If not specified further, Ξ denotes a d-dimensional complex Hilbert space, d ∈ N. Thus
Ξ ∼= Cd and we can choose an orthonormal basis (ONB) of Ξ, which we denote by
BΞ := {|j〉 : j = 0, . . . , d − 1}. Linear operators acting on Ξ may be identified with
complex d×d-matrices by choosing an ONB BΞ. This yields isomorphisms

- linear operators: L(Ξ) ∼= Mat(d,C).

- linear invertible operators: Lis(Ξ) ∼= GL(d,C).

- unitary operators: U(Ξ) ∼= U(d,C).

For a matrix A ∈ Mat(d,C), the set of all invariant coordinate subspaces is

I(A) := {X = span{ei : i ∈ I} : I ⊆ [d], A(X) ⊆ X}. (2.1.1)

These will be of particular interest throughout the thesis.

A single-qubit system is denoted by q ∼= C2 and an N -qubit system accordingly by

q
⊗N =

N⊗
n=1

q ∼=
N⊗
n=1

C2 ∼= C2N

, N ∈ N. (2.1.2)

We abbreviate the set of all N bit strings by Z(N) := {0, 1}N . The computational
basis (CB) of q⊗N is given as

{|z〉 := |z1z2 . . . zN〉 : zn ∈ {0, 1}} = {|z〉 : z ∈ Z(N)}. (2.1.3)

Page 5 of 74

Chapter 2. Basic Concepts

Moreover, we may also number the CB states consecutively with the prior introduced
notation, i.e. writing the CB as {|z〉 : z = 0, . . . , 2N − 1}. Therefore we have, in the
virtue of (2.1.2), identified

|z1z2 . . . zN〉 ∼=
N⊗
n=1

|zn〉 ∼= |z〉 , where z =
N∑
n=1

zn2N−n. (2.1.4)

The Pauli matrices

σ0 := 1 =̂
[
1 0
0 1

]
, σ1 := σx =̂

[
0 1
1 0

]
,

σ2 := σy =̂
[
0 −i
i 0

]
, σ3 := σz =̂

[
1 0
0 −1

]

together form a basis of Mat(2,C) ∼= L(q). Since L(q⊗N) ∼=
⊗N
n=1 L(q), a canonical

basis of L(q⊗N) is given by all possible tensor products of single-qubit Pauli matrices.
That is, every operator A ∈ L(q⊗N) possesses a unique decomposition of the following
form:

A =
3∑

κ1=0
. . .

3∑
κN =0

ηκ1,...,κN

N⊗
n=1

σκn , where ηκ1,...,κN
∈ C . (2.1.5)

It may be useful in time to arrange (2.1.5) by terms corresponding to different M -qubit
operators, M ≤ N . To avoid an overwhelming amount of tensor product symbols, we
set

Bn := 1⊗ · · · ⊗ 1⊗Bx
n-th position

⊗ 1⊗ · · · ⊗ 1 : q⊗N → q
⊗N ,

where B : q → q is a single-qubit operator. Then we may write (2.1.5) as

A = A0
01+

N∑
n=1

3∑
κ=1

Anκ σ
κ
n +

N∑
n1=1

N∑
n2=1

3∑
κ1=1

3∑
κ2=1

An1n2
κ1κ2 σ

κ1
n1σ

κ2
n1 + . . . =:

T∑
t=1

ǍtΣ
t (2.1.6)

with An
κ ∈ C, alternating in the superscript, and κ now running through 1,2, and 3 (or

equivalently x, y, and z).

The CB of q⊗N is of such relevance that we will always consider elements of L(q⊗N)
as matrices w.r.t. the CB. Fixing the basis representation allows us to define matrix
properties such as positivity or complete non-diagonality directly for the corresponding
linear operators.

Page 6 of 74

Chapter 2. Basic Concepts

2.2. Expectation Value Calculation

The following scheme describes the possibility of computing expectation values of
general normal operators/matrices on quantum computers, including Hermitian and
unitary operators as a special case. It is fundamentally based on

Theorem 2.1 (Spectral theorem). Let A ∈ L(Ξ) be normal. Then A is diagonizable,
i.e. there exists an ONB of Ξ consisting of eigenvectors of A.

Interpreting a given normal operator A as matrix w.r.t. a given ONB BΞ, the spectral
theorem guarantees the existence of both a diagonal matrix Λ = diag(λ1, . . . , λd) and
a unitary matrix U such that

A = U∗ΛU (2.2.1)

holds. The identity (2.2.1) is called spectral decomposition.

Consider a normal operator A ∈ L(q⊗N) with known spectral decomposition and a
state |ψ〉 ∈ q

⊗N . In addition, assume that the implementation of U as well as the
preparation of |ψ〉 are known. Since

〈ψ|A|ψ〉 = 〈ψ|U∗ΛU |ψ〉 =
2N∑
j,k=1

〈ψ|U∗|j〉 〈j|Λ|k〉 〈k|U |ψ〉 =
2N∑
j=1

λjPj

with Pj := |〈j|U |ψ〉|2 holds, the expectation value 〈ψ|A|ψ〉 can be approximately
calculated via a repeated measurement of the state U |ψ〉 in the CB.

A more refined calculation method suggested by [Eke+02] is available for unitary
operators. Consider U ∈ U(q⊗N) and a state |ψ〉 ∈ q

⊗N with known implementation.
In order to evaluate 〈ψ|U |ψ〉 one introduces an ancilla qubit, initially set to |0〉, and
implements the quantum circuit shown in Fig. 2.1. Its application yields

|0〉 |ψ〉 7→ 1√
2

(|0〉 + |1〉) |ψ〉 7→ 1√
2

(|0〉 + eiϕ |1〉) |ψ〉 7→ 1√
2

(|0〉 |ψ〉 + eiϕ |1〉U |ψ〉)

7→ 1
2
(
(|0〉 + |1〉) |ψ〉 + eiϕ(|0〉 − |1〉)U |ψ〉

)
= 1

2
(
|0〉 (|ψ〉 + eiϕU |ψ〉) + |1〉 (|ψ〉 − eiϕU |ψ〉)

)
.

Measuring the ancilla qubit for varying relative phase shift ϕ in the |0〉-direction yields
an interference pattern as in Fig. 2.2. From this pattern, one can now read off the

Page 7 of 74

Chapter 2. Basic Concepts

ϕ
|0〉 H H

|ψ〉 U

Figure 2.1.: Circuit encoding the expectation value into an ancilla qubit (compare
[Eke+02, FIG. 1]). The ancilla qubit is initially set to |0〉. After applying a Hadamard
gate and a variable phase gate, a controlled-U operation on the state |ψ〉 is performed.
Another Hadamard gate is then applied to the ancilla qubit and after then it is
measured. The quantum circuit was drawn using the quantikz package [Kay20].

visibility v as well as the phase shift α. As it is shown in [Sjö+00], this yields the
desired expectation value via

〈ψ|U |ψ〉 = veiα. (2.2.2)

Here, the phase shift α is the phase difference between U |ψ〉 and |ψ〉, also known as
the Pancharatnam phase (cf. [Pan56]). Provided that the decomposition (2.1.6) of a
given operator A ∈ L(q⊗N) is known, this approach will also be used to calculate the
expectation value 〈ψ|A|ψ〉.

ϕ
−π −π

2 0 π
2

π

I

0.5

1.0 α

vi
sib

ili
ty
v

Figure 2.2.: Interference pattern from measurement (compare [Eke+02, FIG. 1]). The
ancilla qubit is repeatedly measured in the |0〉-direction for varying relative phase shift
ϕ. The resulting normalized intensity I is plotted on the vertical axis. The distance
between the I-axis and the nearest argmax gives the phase shift α. The difference
between maximum and minimum intensity yields the visibility v.

Page 8 of 74

Chapter 2. Basic Concepts

2.3. Combinatorial Optimization Problems

We give here a general definition of combinatorial optimization problems already
tailored to a (quantum) computational treatment.

Definition 2.2. A combinatorial optimization problem is a quintuple

COP :=
(
N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext

)
(2.3.1)

with N ∈ N, ca ∈ R+, Ca : Z(N) → {0, 1}, Db : Z(N) → {0, 1}, respectively, and
ext ∈ {min,max}. It is called unconstrained, if B = 0, i.e. {Db}Bb=1 = ∅.

The natural number N of bits necessary to formulate the problem gives the problem
size. A bit string is usually denoted z := z1z2 . . . zN . The Boolean functions Ca are
the clauses which are satisfied (by a given bit string z) if Ca(z) = 1 and unsatisfied
otherwise. The real numbers ca are the respective costs or priorities of a clause Ca.
The nomenclature of ca depends on whether the COP is considered as a minimization
problem, i.e. ext = min, or maximization problem, i.e. ext = max. The clauses are
often summarized in a single objective function

C :=
A∑
a=1

caCa. (2.3.2)

Lastly, the Boolean functions Db are the constraints. Analogoulsy to the clauses, they
are satisfied if Db(z) = 1, and unsatisfied otherwise.

Definition 2.3. A bit string z∗ ∈ Z(N) is a feasible solution to a combinatorial
optimization problem COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) if Db(z∗) = 1 holds
for every b = 1, . . . , B. The set of feasible solutions to COP is denoted by COPsol. If
COPsol = ∅, COP is infeasible.
A feasible solution z∗ is further an optimal solution, if it fulfills

z∗ = ext arg
z∈COPsol

A∑
a=1

caCa(z) = ext arg
z∈COPsol

C(z).

The set of optimal solutions to COP is denoted by COPopt.

In applications, it is often the case that constrained COPs are transformed into
unconstrained ones by converting the constraints Db into clauses with sufficiently high
penalties/priorities pb ∈ R+. The procedure goes as follows:

COP 7→ uCOP(p) :=
(
N, {c̃a}Ãa=1, {C̃a}Ãa=1, ∅, ext

)
, (2.3.3)

Page 9 of 74

Chapter 2. Basic Concepts

where p := (p1, . . . , pB), Ã := A+B, and

(c̃a, C̃a) :=

(ca, Ca), if 1 ≤ a ≤ A

(pa−A, Da−A), if A < a ≤ A+B and ext = max
(pa−A, 1 −Da−A), if A < a ≤ A+B and ext = min .

For the unconstrained problem, one has uCOPsol(p) = Z(N). Thus both problems are
generally not equivalent. But for sufficiently high pb, the optimal solution to uCOP(p)
may also lie within COPsol, assuming COPsol 6= ∅. We will refer to the transformation
(2.3.3) also as softcoding the constraints.

Minimization and maximization problems can be further transformed into each other
by the following procedure:

COP 7→ COP :=
(
N, {ca}Aa=1, {1 − Ca}Aa=1, {Db}Bb=1, ext

)
, (2.3.4)

where min = max and max = min. One readily verifies that COP and COP are
equivalent, that is COPsol = COPsol and z∗ is an optimal solution to COP if and only
if z∗ is an optimal solution to COP.

A general approach addressing COPs with quantum computers is considering the
objective function C of a given COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) as a
Hamiltonian, acting on q

⊗N and diagonal in the corresponding CB. That is, the CB
states are identified with the classical bit strings and the objective Hamiltonian is
defined via

C |z〉 := C(z) |z〉 , z ∈ Z(N). (2.3.5)

Due to the implementation (2.3.5), the problem of finding an optimal solution to COP
is now equivalent to the problem of finding an extremal eigenstate of

C|S, S := span{|z〉 : z ∈ COPsol} ⊆ q
⊗N . (2.3.6)

S is the so-called solution space or feasible subspace of COP. The eigenspace of C|S
corresponding to the extremal eigenvalue is therefore given by

Sopt :={|z〉 : z ∈ COPopt} ⊆ S (2.3.7)

and is called the optimal solution space of COP. Note that the decomposition (2.1.6)
takes the form

H = H0
01+

N∑
n=1

Hn
3 σ

z
n +

N∑
n1=1

N∑
n2=1

H
n1n2
33 σzn1σ

z
n2 + . . . (2.3.8)

with Hn
3 ∈ R for a Hamiltonian H diagonal in the CB such as (2.3.5).

Page 10 of 74

Chapter 2. Basic Concepts

2.4. Group Actions on Bit Strings

In the following, we embed basic notions of group representation theory into the
translation between operations on the classical bit strings Z(N) and corresponding
linear operators on q⊗N . Firstly, we cover all relevant abstract definitions and concepts,
mainly following [Sag01]. Throughout this thesis, all groups are assumed to be finite.

Definition 2.4. Let G be a group and let X be a set. A group homomorphism
G → Sym(X) is called a left group action of G on X. G is said to act on X from the
left via the left group action φ : G → Sym(X).

We usually denote actions multiplicatively. That is, if G acts on X from the left via φ,
we write g · x := φ(g)(x) for x ∈ X and g ∈ G. In the following, we will refer to left
group actions simply as actions.

There are countless notions concerning group action; we select those critical for our
analysis. Thereby, let G denote an arbitrary group acting on a non-empty set X.

Definition 2.5. The orbit of an element x ∈ X is

G · x := {g · x : g ∈ G}.

The group action is transitive if there exists an x ∈ X so that X = G · x.

If a group action is transitive, it readily follows that X = G · x holds for all x ∈ X.
Therefore, transitivity is equivalent to the statement that for all x, y ∈ X, there exists
g ∈ G so that g · x = y.

Definition 2.6. For a subset Y ⊆ X, let

G · Y := {g · y : g ∈ G, y ∈ Y } =
⋃
y∈Y

G · y.

Y is G-invariant if G · Y = Y . The G-invariant subsets ∅ and X are called trivial.

If Y is a non-empty G-invariant subset of X, restricting the action of G on X to Y
defines again a group action.

We wish to embed the concept of actions into the theory of group representations. We
first state the necessary definitions.

Page 11 of 74

Chapter 2. Basic Concepts

Definition 2.7. Let V be an C-vector space and let G be a group. Then V is a
G-module if there is a group homomorphism

φ : G → Lis(V).

The map φ is called a representation of G on V over the field C, and deg φ := dimC V
is the degree of φ.

Definition 2.8. Let V be a G-module with corresponding representation φ. A sub-
module of V is a subspace W that is closed under φ(G). The submodules {0} and V
are called trivial.

Definition 2.9. A non-zero G-module V is reducible if it contains a non-trivial
submodule, and irreducible otherwise.

For a set X = {x1, . . . , xn}, we define its formal C-span 〈X〉C consisting of all the
formal linear combinations α1x1 + . . . + αnxn, where αi ∈ C for all i ∈ [n]. We can
turn 〈X〉C into a C-vector space by defining appropriate vector addition and scalar
multiplication:

(α1x1 + . . .+ αnxn) + (β1x1 + . . .+ βnxn) := (α1 + β1)x1 + . . .+ (αn + βn)xn,
α(α1x1 + . . .+ αnxn) := (αα1)x1 + . . .+ (ααn)xn.

Now suppose a group G acts on the set X. We can extend the action to an action on
〈X〉C by linearity:

g · (α1x1 + . . .+ αnxn) := α1(g · x1) + . . .+ αn(g · xn).

Therefore, 〈X〉C becomes a G-module of dimension |X|. The corresponding group
homomorphism ρ : G → Lis(〈X〉C), g 7→ [v 7→ g · v] is called the permutation
representation of G associated with X. By choosing a basis B of 〈X〉C, we further obtain
a group isomorphism ϕB : Lis(〈X〉C) → GL(|X|,C) and thus a group homomorphism
ρB := ϕB ◦ ρ : G → GL(|X|,C). The standard basis of 〈X〉C is given by X.

Corollary 2.10. Let G act on a non-empty set X and let ρ : G → Lis(〈X〉C) denote
its permutation representation. Then the following hold:

(i) Y ⊆ X is G-invariant ⇔ 〈Y 〉C is a submodule of 〈X〉C ⇔ 〈Y 〉C ∈ ⋂
g∈G I(ρX(g)).

(ii) G acts transitively on X ⇔ ⋂
g∈G I(ρX(g)) = {{0}, 〈X〉C}.

In fact, the invariant subsets of a group G are determined by the generators of G.

Page 12 of 74

Chapter 2. Basic Concepts

Proposition 2.11. Let S, 0 < |S| < ∞, be a generating set of a group G, i.e. for
every g ∈ G, there exist powers {rs}s∈S ⊂ N0 so that g = ∏

s∈S s
rs. Furthermore,

let G act on a non-empty set X and let ρ : G → Lis(〈X〉C) denote its permutation
representation. Then the following hold:

(i) Y ⊆ X is G-invariant ⇔ 〈Y 〉C ∈ ⋂
s∈S I(ρX(s)).

(ii) G acts transitively on X ⇔ ⋂
s∈S I(ρX(s)) = {{0}, 〈X〉C}.

Proof. It suffices to show that⋂
g∈G

I(ρX(g)) =
⋂
s∈S

I(ρX(s)). (2.4.1)

Since S ⊆ G, the inclusion “⊆” is trivial. Conversely, let W ∈ ⋂
s∈S I(ρX(s)) and let

g ∈ G be arbitrary. As ρX : G → GL(|X|,C) is a group homomorphism, it follows that

ρX(g)(W) = ρX

(∏
s∈S

srs

)
(W) =

∏
s∈S

ρX(s)rs(W)

= ρX(s1)r1

(
ρX(s2)r2

(
. . .
(
ρX(s|S|)r|S|(W)

)))
⊆ W

That is, also the inclusion “⊇” holds.

Now consider COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) and a group action

φ : G → Sym(Z(N)), π 7→ [z 7→ π · z].

Definition 2.12. A subgroup F is called COP-feasibility-preserving if COPsol is an
F -invariant subset of Z(N). In this case, F also acts on COPsol.

We extend the group action to the formal C-span of COPsol and Z(N), respectively.
However, 〈COPsol〉C and 〈Z(N)〉C just correspond to S and q⊗N , where the respective
standard bases are {|z〉 : z ∈ COPsol} and the full CB. This eventually yields the
permutation representation ρ : F → Lis(q⊗N). Since F is COP-feasibility-preserving,
S is a submodule of q⊗N and composing ρ with the restriction A 7→ A|S yields the
permutation representation ρS : F → Lis(S). Recall that we always consider elements
of Lis(q⊗N) ⊂ L(q⊗N) as matrices w.r.t. the CB. If we continue to do so for all
coordinate subspaces, we eventually obtain canonical group homomorphisms, the
permutation matrix representations

P : F → U(2N ,C) ∼= U
(
q

⊗N
)
, (2.4.2)

PS : F → U(|COPsol|,C) ∼= U(S). (2.4.3)

Page 13 of 74

CHAPTER 3.

From Adiabatic Evolution to
Alternating Operators

The quantum adiabatic algorithm (QAA) proposed by Farhi et al. [Far+00] is a
continuous-time quantum algorithm for solving unconstrained COPs. It is based on
adiabatic evolution of extremal eigenstates of a time-dependent Hamiltonian. We
review the mathematical background in Section 3.1 and provide a convergence proof in
Theorem 3.6 more general as discussed in [Far+00] and [FGG14]. Most importantly,
we highlight the key features of the quantities involved that guarantee convergence.

We then introduce the quantum approximate optimization algorithm (QAOA) proposed
by Farhi et al. [FGG14] in Section 3.2. It is, in contrast, a variational quantum algorithm
(compare Chapter 5). We again provide a convergence proof in Theorem 3.8 that is
heavily based on our result for the convergence of the QAA; that is, we draw a rigorous
derivation of the QAOA from the QAA. We also discuss issues of the QAOA with
(hardcoded) constrained problems.

Section 3.3 concludes this chapter with the introduction of the quantum alternating
operator ansatz (QAO) proposed by Hadfield et al. [Had+19]. We motivate its
introduction by discussing several case studies of the QAOA performance for a variety
of constrained optimization problems. The QAO is more a family of variational
quantum algorithms than a single one; it emphasizes the properties of the building
blocks of the QAOA and generalizes them so that a broader class of problems is
treatable. A detailed description is also given in [Had18]. Due to this “conservation
of concepts”, we can even provide a convergence proof in Theorem 3.17 for this more
abstract setting.

Page 14 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

3.1. Quantum Adiabatic Algorithm

The QAA incoporates the idea of quantum adiabatic evolution, that is, of arbitrarily
slowly evolving a given quantum system. Adiabatic theorems describe how system
properties are preserved during the process. Thereby, Farhi et al. [Far+00] referred to
a particular version of adiabatic theorems: those with a gap condition. This kind of
theorem is, e.g., well-formulated in [Sim17, Theorem 17.2].

Theorem 3.1 (Adiabatic Theorem). Let {H(t) : 0 ≤ t ≤ 1} ⊆ L(Ξ) be a family
of self-adjoint operators such that H(·) ∈ C2([0, 1],L(Ξ)). For T > 0, let ŨT be the
solution of

d
dsŨT (s) = −iH(s/T)ŨT (s), 0 ≤ s ≤ T ; ŨT (0) = 1

and set UT (t) := ŨT (tT), 0 ≤ t ≤ 1. Furthermore, let λ(t) be an eigenvalue of H(t),
respectively, such that

α := inf
0≤t≤1

dist(λ(t), σ(H(t)) \ {λ(t)}) > 0 (3.1.1)

holds. Let P(t) denote the spectral projection for λ(t), respectively. Then

lim
T→∞

(1− P(t))UT (t)P(0) = 0 (3.1.2)

uniformly in t in [0, 1].

The condition (3.1.1) ensures that the spectral gap stays finite; no level-crossing is
allowed. Thus, the adiabatic theorem states that evolving sufficiently slowly with
respect to the time-varying Hamiltonian H(s) preserves the eigenspaces as long as they
do not mutually intersect and the Hamiltonian itself is sufficiently smoothly (C2) varied
with time. We remark that in the infinite-dimensional case, the assignment s 7→ λ(s)
is required to be C2 additionally. However, since we only deal with finite-dimensional
Hilbert spaces, this directly follows from the requirement that H(·) is C2. In the
following, we will always denote with UT the time evolution defined in Theorem 3.1
and call it quasi-adiabatic evolution for finite T > 0.

Now consider an unconstrained COP = (N, {ca}Aa=1, {Ca}Aa=1, ∅, ext). W.l.o.g. we
assume that ext = max. Therefore, we seek to find a highest energy state of the
objective Hamiltonian (2.3.5). The idea is then to consider a second Hamiltonian
HI ∈ L(q⊗N) with at least one known and easy to construct highest energy state
|ι〉. From HI and C, a time-dependent Hamiltonian H(s) is constructed via linear
interpolation:

Hlin(HI,C)(t) := (1 − t)HI + tC, 0 ≤ t ≤ 1. (3.1.3)

Page 15 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

Then Hlin(HI,C)(·) fulfills the C2 criterion. In fact, Hlin(HI,C)(·) is even analytic. If the
curve of instantaneous largest eigenvalues of (3.1.3) also fulfills (3.1.1), starting in |ι〉
and evolving with the unitary UT (1) for sufficiently large T > 0 yields a state close to
a highest energy state of C. That is, the QAA consists of the following steps:

1. Prepare the initial state |ι〉 on the quantum computer.

2. Specify an evolution time T > 0 and apply the quasi-adiabatic evolution UT
w.r.t. (3.1.3).

3. Repeatedly measure the outcome UT (1) |ι〉 in the CB to obtain a distribution of
optimal solution approximations.

However, without any additional information about the minimum spectral gap α, one
cannot quantify how large T has to be taken to approximate a highest energy state of
C within a certain error. See, e.g., [Dua20, Theorem 2] for such quantitative estimates.
Furthermore, a direct consequence of Theorem 3.1 is that the geometric multiplicity of
λ(s) remains invariant throughout the adiabatic evolution. This, in turn, means that
to ensure an adiabatic transition of the highest energy states according to Theorem 3.1,
one necessary condition is that HI must be chosen so that the geometric multiplicity of
its largest eigenvalue is equal to that of the largest eigenvalue of C. Since the latter is
generally unknown, constructing a suitable HI is also not readily possible. Nevertheless,
the operator

B :=
N∑
n=1

σxn (3.1.4)

has prevailed as a popular candidate for the initial Hamiltonian HI. Its lowest and
highest eigenvalue are ±N and non-degenerate, respectively. The uniform superposi-
tion

|+〉 := |+〉N :=
N⊗
n=1

|+〉1 :=
N⊗
n=1

1√
2

(|0〉 + |1〉) = 1√
2N

∑
z∈Z(N)

|z〉 (3.1.5)

is its easy to construct highest energy state while

|−〉 := |−〉N :=
N⊗
n=1

|−〉1 :=
N⊗
n=1

1√
2

(|0〉 − |1〉) = 1√
2N

∑
z∈Z(N)

(−1)]z |z〉 (3.1.6)

is its also easy to construct ground state. Here,]z denotes the number of ones within
the bitstring z modulo 2.

Page 16 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

For COPs with exactly one optimal solution, Theorem 3.1 is sufficient to prove that
the quasi-adiabatic evolution UT w.r.t.

Hlin(B,C)(t) = (1 − t)B + tC, 0 ≤ t ≤ 1 (3.1.7)

yields the optimal solution in the adiabatic limit T → ∞ if the initial state is taken to
be |+〉. The proof is sketched in [FGG14]. However, the same statement also holds true
if COP has more than one optimal solution. In this case, the spectral gap necessarily
approaches 0 for t → 1. Thus, we need a version of the adiabatic theorem without a
gap condition. Precisely this topic was treated by Avron and Elgart [AE99]. However,
we state and use the more refined version of their theorem given by Teufel [Teu01].

Theorem 3.2 (Adiabatic Theorem v2). Let {H(t) : 0 ≤ t ≤ 1} ⊆ L(Ξ) be a family
of self-adjoint operators such that H(·) ∈ C2([0, 1],L(Ξ)). Let λ(t) be an eigenvalue
of H(t), respectively, with corresponding spectral projection P(t). Furthermore, let
P (·) ∈ C2([0, 1],L(Ξ)) such that for every 0 ≤ t ≤ 1, P (t) is a projection with
H(t)P (t) = λ(t)P (t). In addition, P (t) = P(t) should hold for almost all t ∈ [0, 1].
Then

lim
T→∞

(1− P (t))UT (t)P (0) = 0 (3.1.8)

uniformly in t in [0, 1].

Thus, Theorem 3.2 allows to treat the case of level crossings, as long as the spectral
projections can be continued in a C2 way through the crossings. As we will use
in Theorem 3.6, this is indeed the case for the adiabatic evolution w.r.t. the linear
interpolation (3.1.3), since this assignment is analytic in t. However, to remain within
the eigenspace of the largest eigenvalue, we must ensure that the level crossing supports
this. To argue that this is the case for (3.1.7), we recall the notion of positive, non-
negative, and completely non-diagonal matrices and already introduce appropriate
notation.

Definition 3.3. A matrix A = (aij) ∈ Mat(d,C) is…

(i) …positive if aij > 0 holds for all 1 ≤ i, j ≤ d.

(ii) …non-negative if aij ≥ 0 holds for all 1 ≤ i, j ≤ d.

Definition 3.4. A ∈ Mat(d,C) is completely non-diagonal if one of the following
equivalent properties hold:

(i) I(A) = {{0},Cd}.

Page 17 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

(ii) The directed network GA with adjacency matrix A is strongly connected (cf.
Definition A.3 and Definition A.19).

For a proof of equivalency of these two properties, consult, e.g., [HJ12]. These
matrices are usually called irreducible. However, as this term is already used in group
representation theory and has a different meaning, we decided not to use it here. The
second definition immediately gives rise to the following result as the connectivity of a
graph/network is determined by the off-diagonal elements of its adjacency matrix.

Corollary 3.5. Let A ∈ Mat(d,C) be completely non-diagonal and B ∈ Mat(d,C) be
diagonal. Then A+B is completely non-diagonal.

With these preliminaries, we can prove that the QAA with initial Hamiltonian (3.1.4)
converges for an arbitrary objective Hamiltonian C.

Theorem 3.6 (Convergence of QAA). Let COP = (N, {ca}Aa=1, {Ca}Aa=1, ∅, max) with
objective Hamiltonian C. Furthermore, let Sopt denote the subspace spanned by optimal
solution states, i.e. the eigenspace of the largest eigenvalue of C. Then it holds that

lim
T→∞

UT (1) |+〉 ∈ Sopt, (3.1.9)

where UT is the quasi-adiabatic evolution w.r.t. (3.1.7).

The proof of Theorem 3.6 is located at Appendix B. It can be boiled down to three
essential parts:

(i) H(·) ∈ C2
(
[0, 1],L(q⊗N)

)
such that H(t) is symmetric for all 0 ≤ t ≤ 1,

(ii) there is an eigenvalue curve λ : [0, 1] → R such that λ(0) = λmax(0) and
λ(1) = λmax(1), and

(iii) the corresponding spectral projection curve possesses a C2-continuation on [0, 1].

In our proof, the crucial property (ii) is ensured by the fact that B is non-negative and
completely non-diagonal. While the former is not really a restriction, complete non-
diagonality is not that easy to achieve. However, conserving complete non-diagonality
for more complicated (i.e., constrained) COPs will be of utmost importance. Indeed,
the following proposition shows that complete non-diagonality is a necessary property
of the initial Hamiltonian if one wants to ensure convergence in the general case. The
proof is again located at Appendix B.

Page 18 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

Proposition 3.7. Let HI have a proper invariant coordinate subspace R and let
|ι〉 ∈ q

⊗N \{0} be arbitrary. Then there exists a COP = (N, {ca}Aa=1, {Ca}Aa=1, ∅, max)
with objective Hamiltonian C and optimal solution subspace Sopt such that

lim
T→∞

UT (1) |ι〉 /∈ Sopt, (3.1.10)

where UT is the quasi-adiabatic evolution w.r.t. (3.1.3).

Furthermore, we used analyticity of the linear interpolation for (i) as well as for (iii).
However, we want to emphasize that (i) does not, in general, imply (iii). Consider the
following counterexample by Rellich [Rel37] (also see [Kat95, Example 5.3]):

H(0) = 0, H(t) = e−1/t2
cos

(
2
t

)
sin
(

2
t

)
sin
(

2
t

)
− cos

(
2
t

) , for t ∈ R \ {0}.

Then [t 7→ H(t)] ∈ C∞
(
R,C2×2

)
and the eigenvalues are given by

λ±(t) =

0, t = 0,
±e−1/t2 , t 6= 0.

That is, even [t 7→ λ±(t)] ∈ C∞(R,R). However, for t 6= 0, the spectral projections are
given by

P+(t) =
 cos2

(
1
t

)
cos
(

1
t

)
sin
(

1
t

)
cos
(

1
t

)
sin
(

1
t

)
sin2

(
1
t

) and

P−(t) =
 sin2

(
1
t

)
− cos

(
1
t

)
sin
(

1
t

)
− cos

(
1
t

)
sin
(

1
t

)
cos2

(
1
t

) ,
both of which have not even continuous continuations through t = 0.

3.2. Quantum Approximate Optimization
Algorithm

The QAOA is a variational quantum algorithm based on the QAA. In contrast to the
other variational quantum algorithms introduced in Chapter 5, it primarily describes
the parametrization of the unitary gates but is not very restrictive in other aspects.
Assuming an integer-valued objective function C, the parameters may be restricted

Page 19 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

to be angles β = (β1, . . . , βq) ∈ [0, π)q and γ = (γ1, . . . , γq) ∈ [0, 2π)q with q ∈ N.
For general real-valued objective functions, γ has to be taken from whole Rq. The
corresponding trial states |β,γ〉 are built using specific unitaries

UM(β) := e−iβB =
N∏
n=1

e−iβσx
n and (3.2.1)

UP(γ) := e−iγC =
A∏
a=1

e−iγcaCa . (3.2.2)

Note that the indices M for “mixing” and P for “phase separation” already anticipate
the ideas of Hadfield et al. [Had18] for the generalization of the QAOA.
The uniform superposition |+〉 is chosen as the initial state. Further trial states are
constructed via

|β,γ〉 := V (β,γ) |+〉 :=
(q∏
o=1

UM(βo)UP(γo)
)

|+〉 . (3.2.3)

In addition, set

Fq(β,γ) = 〈β,γ|C|β,γ〉 (3.2.4)

and

Mq = max
β,γ

Fq(β,γ). (3.2.5)

For a given q ∈ N and initial parameter guesses β0, γ0, the QAOA iteratively performs
the following steps, starting with i = 0:

1. Prepare the initial state |+〉 on the quantum computer, apply QAOA-gates to
obtain |βi,γi〉, and evaluate Fq(βi,γi) via repeated measurement.

2. Adjust the parameters βi 7→ βi+1, γi 7→ γi+1 using a classical optimization
routine.

3. Repeat 1 and 2 with the adjusted parameters until some termination condition
is satisfied (maximum iterations, vanishing parameter updates, etc.).

4. Repeatedly measure the final outcome |βiend
,γiend

〉 in the CB to obtain a distri-
bution of optimal solution approximations.

From the adiabatic perspective, the unitaries UM and UP approximate the adiabatic
time evolution of |+〉 w.r.t. (3.1.7), where larger q may increase the approximation
quality. Thus, the QAOA can be viewed as a parametrized version of the QAA with
fixed initial Hamiltonian B.

Page 20 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

Theorem 3.8 (Convergence of QAOA). Let COP = (N, {ca}Aa=1, {Ca}Aa=1, ∅, max)
with corresponding objective Hamiltonian C and optimal solution space Sopt. For all
ε > 0, one can choose finitely many angles β and γ such that

dist
(
|β,γ〉 , Sopt

)
< ε. (3.2.6)

The proof can be found in Appendix B. As an immediate consequence of Theorem 3.6,
one obtains the following [FGG14, (10)]:

Corollary 3.9. Let COP = (N, {ca}Aa=1, {Ca}Aa=1, ∅, max) with objective function C.
Then

lim
q→∞

Mq = max
z∈Z(N)

C(z). (3.2.7)

The proof of Theorem 3.8 is constructive in the sense that for any ε > 0, it specifies
angles β and γ so that (3.2.6) holds. However, these do not have to be the angles
chosen in any way optimal.

This concludes the rigorous derivation of the QAOA from the QAA. We emphasize that,
until now, we merely treated unconstrained COPs. However, constrained problems may
also be considered due to the softcoding transformation (2.3.3), but not as hardcoded
instances. In order to argue why the QAOA generally fails to solve hard constrained
COPs, consider COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) with non-trivial solution
space {0} 6= S (q

⊗N and optimal solution space Sopt. Applying the QAOA to this
problem merely approximates an extremal eigenstate of the objective Hamiltonian
C but does not respect the feasibility condition: in contrast to the unconstrained
case, the eigenspace corresponding to the extremal eigenvalue of C need not be Sopt.
In fact, their intersection might be trivial. Since C and thus the phase separator
UP(γ), γ ∈ [0, 2π), is diagonal in the CB, it leaves the coordinate subspace S invariant.
Therefore, the problem occurs in the mixing process. Indeed the mixer UM(β) has
no non-trivial invariant coordinate subspace for β 6= 0, especially not S. That means
that the complete non-diagonality property of B, which, on the one hand, guarantees
convergence in the unconstrained case, is, on the other hand, responsible for the failure
of the QAOA in the constrained case.

3.3. Quantum Alternating Operator Ansatz

The QAO abstracts the basic design of the QAOA to general design specifications for
variational quantum algorithms. This step finally allows us also to treat constrained

Page 21 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

COPs with hardcoded constraints. Several case studies indicate the necessity of
introducing hard constraints (or some other techniques) because softcoding often either
leads to suboptimal optimization landscapes (if the penalties are too high) or issues with
feasibility (if the penalties are too low). Firstly, we mention an extensive performance
discussion of different classical optimizers for the QAOA applied to soft- and hardcoded
portfolio optimization by Baker and Radha [BR22]. While their work focuses on the
quantitative behavior of different classical optimization rules, one can also read off the
trend that many of the classical optimizers considered perform better in hardcoded
instances. We especially refer to Figure S2-S5. Meanwhile, van Dam et al. [Dam+21] as
well as de la Grand’rive and Hullo [GH19] analyzed the performance of the QAOA with
soft constraints applied to certain Knapsack instances. They also propose penalty-free
approaches, which outperform the naive softcoding of constraints, indicating again that
softcoding the constraints is generally not very powerful. However, we shall also remark
that the situation is not always so clear. For example, Radzihovsky et al. [RMS19]
could not find any significant advantage of hardcoding over softcoding the constraints
in their analysis of the QAOA performance on the 4-city traveling salesperson problem.
Nevertheless, we see the prior studies as reason enough to examine the implementation
of hardcoded constraints closely.

The QAO encompasses the problem of finding suitable initial states, mixing operators,
and phase separation operators, especially for COPs with non-trivial solution space. It
contains the QAOA as the particular case when S = q

⊗N . We mainly follow [Had18,
Section 6.2] for the introductory part. However, we directly define our phase separators
and mixers to be (products of) unitary groups, and we use different nomenclature.
We start with the easy concept of phase seperators and proceed with an extensive
discussion of the mixers. The concept of an initial state then is relatively immediate.

In the following, let COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) be arbitrary with
solution space S and optimal solution space Sopt.

Definition 3.10. A non-negative, diagonal H ∈ L(q⊗N) is a COP-phase separator
Hamiltonian if the extremal eigenspace of H|S is Sopt. Then

UP(H, ·) : R → U
(
q

⊗N
)
, γ 7→ e−iγH (3.3.1)

is the corresponding (parametrized) phase separator.

The canonical choice for a COP-phase separator Hamiltonian is the objective Hamil-
tonian C. However, there might be decent approximations of C which are simpler
to implement and still preserve the optimal solution space. Our definition precisely
matches the definition for phase separation unitaries given in [Had18, (6.6)]. Again, if
the objective function C is assumed to be integer-valued, the parameter space may be
restricted to [0, 2π).

Page 22 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

Definition 3.11. T ∈ L(q⊗N) is COP-feasibility-preserving if T (S) ⊆ S.

Recall that I(T) denotes the set of all invariant coordinate subspaces of T ∈ L(q⊗N).

Definition 3.12. A family of operators {Ai}i∈I ⊂ L(q⊗N), 0 < |I| < ∞, is COP-
mixing if it is COP-feasibility-preserving and fulfills

X ∈
⋂
i∈I

I(Ai) ⇒ X1 = {0} or X1 = S, (3.3.2)

whereby X = X1 ⊕X2 ⊆ S ⊕ S⊥.

The essence of Definition 3.12 is that the part X1 of a common invariant coordinate
subspace X lying in the solution space S should be trivial, that is, no proper subspace,
while the part X2 lying in S⊥ could be arbitrary. The condition of being coordinate
subspaces automatically prohibits any mixing between X1 ⊆ S and X2 ⊆ S⊥. Since
every element of a COP-mixing family is COP-feasibility-preserving, its restriction to
S defines an element in L(S). This yields an equivalent characterization.

Corollary 3.13. A COP-feasibility-preserving family {Ai}i∈I ⊂ L(q⊗N) is COP-
mixing if and only if ⋂

i∈I
I
(
Ai|S

)
= {{0}, S}. (3.3.3)

We eventually obtain the following property of COP-mixing families of Hamiltonians.

Proposition 3.14. Let {Hi}i∈I ⊂ L(q⊗N), 0 < |I| < ∞, be a family of non-negative
Hamiltonians. The following two statements are equivalent:

(i) {Hi}i∈I is COP-mixing.

(ii) (∑i∈I Hi)|S ∈ L(S) is completely non-diagonal.

Proof. Let Gi and GI denote the directed networks with adjacency matrix Hi|S, i ∈ I,
and HI |S := (∑i∈I Hi)|S, respectively. Since all matrices are Hermitian, w.l.o.g. consider
Gi, i ∈ I, and GI simply as graphs. In addition, all matrices are non-negative which
implies that

〈z|Hi0 |z′〉 6= 0 ⇒
∑
i∈I

〈z|Hi|z′〉 6= 0 (3.3.4)

Page 23 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

holds for all i0 ∈ I and z, z′ ∈ COPsol. Now (3.3.4) means that GI contains an edge e
whenever there is an i ∈ I so that Gi contains e, i.e.

GI =
⋃
i∈I
Gi.

Naming the vertices V (Gi) = V (GI) = COPsol, i ∈ I, establishes a bijection between
the coordinate subspaces of S and the vertex subsets of V by identifying each coordinate
subspace with its unique basis of COPsol-elements. For A ∈ {Hi|S}i∈I ∪ {HI |S}, it
follows that

〈zk : k ∈ K〉C ∈ I(A) ⇔ nbhdGA

(
{zk : k ∈ K}

)
= ∅.

Therefore, {Hi}i∈I is COP-mixing if and only if any subset of vertices has at least one
neighbor in one of the graphs Gi. This, in turn, is equivalent to GI having no non-trivial
neighborless vertex subset which is an equivalent characterization of connectivity (cf.
Proposition A.23).

Given a COP-mixing family of Hamiltonians, we can enforce non-negativity by taking
the absolute value of each element. Therefore, we will w.l.o.g. assume that each
COP-mixing family of Hamiltonians has said property.

Definition 3.15. For a COP-mixing family of Hamiltonians H = {Hi}i∈I ⊂ L(q⊗N),
the corresponding (parametrized) simultaneous mixer is defined as

UM,0(H, ·) : R → U
(
q

⊗N
)
, β 7→ e−iβ

∑
i∈I

Hi . (3.3.5)

Specifying a permutation σ ∈ Sym(I), the corresponding (parametrized) sequential
mixer is given by

UM,σ(H, ·) : R → U
(
q

⊗N
)
, β 7→

∏
i∈I
e−iβHσ(i) . (3.3.6)

Note that we have defined both simultaneous and sequential mixers in the same manner
as Hadfield et al. By the demands placed on COP-mixing families and Proposition 3.14,
the mixers meet the two criteria established by them:

• preserve the feasible subspace: for all β ∈ R and σ ∈ Sym(I) ∪ {0}, UM,σ(H, β)
is COP-feasibility preserving.

• explore the feasible subspace: for all z, z′ ∈ COPsol, there exists β ∈ R so that
〈z|UM,0(H, β)|z′〉 6= 0.

Page 24 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

The latter also holds true for any sequential mixer as one can derive from Theorem 3.17.
As pointed out by Hadfield et al., one significant advantage of sequential mixers over
simultaneous ones is their implementation costs; implementing single Hamiltonians
Hi and thus unitaries exp(−iβHi) is generally easier than implementing the whole
H-sum. In addition, if two Hamiltonians Hi and Hj act on disjoint qubits, they may
be implemented in parallel. Thus, choosing a suitable permutation σ ∈ Sym(I) may
result in a drastically decreased circuit depth for implementing UM,σ(H, ·) compared
to implementing UM(H, ·). In general, the parameter space can not be restricted any
further since the mixing Hamiltonians may have very complicated spectra.

Definition 3.16. Let {Hi}i∈I ⊂ L(q⊗N) be a COP-mixing family of Hamiltonians.
Any highest energy state of ∑i∈I Hi|S is a COP-initial state.

A QAO instance is defined by the choice of an initial state, a phase separator, a mixing
family, and a mixing procedure (simultaneous or sequential). Thus, we may consider a
given instance as a quadrupel (

|ι〉 , HP, {Hi}i∈I , σ
)

with

- initial state: |ι〉 ∈ q
⊗N ,

- phase separator HP ∈ L(q⊗N),

- mixing family {Hi}i∈I ⊂ L(q⊗N), and

- mixing procedure: σ ∈ Sym(I) ∪ {0}.

It is then called a COP-QAO instance, if initial state, phase separator, and the mixing
family are appropriately chosen. For a given instance and quality q ∈ N, we use the
same notation for the trial states, i.e.

|β,γ〉 := V (β,γ) |ι〉 :=
(q∏
o=1

UM,σ(βo)UP(γo)
)

|ι〉 . (3.3.7)

The algorithmic procedure is then analogous to the QAOA, that is, for a given q ∈ N
and initial parameter guesses β0 and γ0, the QAO iteratively performs the following
steps, starting with i = 0:

1. Prepare the initial state |ι〉 on the quantum computer, apply QAO-gates to
obtain |βi,γi〉, and evaluate Fq(βi,γi) via repeated measurement.

Page 25 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

2. Adjust the parameters βi 7→ βi+1, γi 7→ γi+1 using a classical optimization
routine.

3. Repeat 1 and 2 with the adjusted parameters until some termination condition
is satisfied (maximum iterations, vanishing parameter updates, etc.).

4. Repeatedly measure the final outcome |βiend
,γiend

〉 in the CB to obtain a distri-
bution of feasible optimal solution approximations.

Note that in the case S = q
⊗N , |+〉 is again a valid initial state. Furthermore, {σxn}Nn=1

is a mixing family, yielding the complete non-diagonality of B. Thus, the QAO really
containts the QAOA as a special case. Indeed, we can prove the convergence of any
appropriately designed QAO instance. For the proof, consult Appendix B.

Theorem 3.17 (Convergence of QAO). Let (|ι〉 , HP, {Hi}i∈I , σ) be a COP-QAO
instance for COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1,max) with non-trivial solution space
S and optimal solution space Sopt ⊆ S. For all ε > 0, one can choose finitely many
angles β and γ such that

dist
(
|β,γ〉 , Sopt

)
< ε. (3.3.8)

Furthermore, we wish to discuss the construction of parametrized mixers from a family
of (unparametrized) unitaries {Wi}i∈I ⊂ U(q⊗N). We can trace this back to the
previous considerations utilizing matrix logarithms.

Definition 3.18. Let A = diag(λ1, . . . , λd) ∈ Mat(d,C) with λj 6= 0 for all j ∈ [d]. A
matrix B = diag(µ1, . . . , µd) ∈ Mat(d,C) is a logarithm of A if there exists a branch L
of the complex logarithm so that µj = L(λj) holds for all j ∈ [d]. In this case, write
B = L(A).
Let A ∈ GL(d,C) be normal. By the spectral theorem, there exist U ∈ U(d,C) and
Λ = diag(λ1, . . . , λd) ∈ GL(d,C) so that A = U−1ΛU . A matrix B ∈ Mat(d,C) is a
logarithm of A if B = U∗L(Λ)U for a branch L of the complex logarithm. In this case,
write again B = L(A).

One property of the matrix exponential is that eV
−1
AV = V −1eAV holds for any

A ∈ Mat(d,C) and V ∈ GL(d,C). Therefore, if B is a logarithm of A with U and Λ
as in Definition 3.18, then

eB = eU
−1
L(Λ)U = U−1eL(Λ)U = U−1ΛU = A

because eL(λ) = λ holds for all branches L of the complex logarithm. An invertible
normal matrix A always possesses a (non-unique) logarithm since one can always find

Page 26 of 74

Chapter 3. From Adiabatic Evolution to Alternating Operators

a ray Γα := {reiα : r ≥ 0} ⊂ C, α ∈ [0, 2π), so that no eigenvalue of A lies on Γα; this
allows to define a branch of the complex logarithm on {λj : j ∈ [d]} ⊂ C \ Γα.

An important feature of the matrix exponential and the matrix logarithm is that both
preserve invariant subspaces of invertible normal matrices.

Lemma 3.19. Let A ∈ GL(d,C) be normal. Furthermore, let L(A) be a logarithm of
A. Then W ⊆ Cd is an A-invariant subspace if and only if W is an L(A)-invariant
subspace.

Proof. Let U and Λ be as in Definition 3.18. The partition of its diagonal entries
of a diagonal matrix into mutually distinct ones completely determines its invariant
subspaces. Therefore, Λ and L(Λ) have the same invariant subspaces. Furthermore, it
holds that

A(W) ⊆ W ⇔
(
U−1ΛU

)
(W) ⊆ W ⇔ Λ

(
U(W)

)
⊆ U(W)

⇔ L(Λ)
(
U(W)

)
⊆ U(W) ⇔

(
U−1L(Λ)U

)
(W) ⊆ W

⇔ L(A)(W) ⊆ W.

In particular, taking the logarithm preserves the invariant coordinate subspaces. For a
given family of unitaries {Wj}j∈I ⊂ U(q⊗N) and suitable branches Lj of the complex
logarithm, we consider the family of Hamiltonians {iLj(Wj)}j∈I ⊂ L(q⊗N), which is,
by Lemma 3.19, COP-mixing if and only if {Wj}j∈I is COP-mixing.

Page 27 of 74

CHAPTER 4.

Constraint Graph Model

We introduce the constraint graph model to provide an alternative approach to con-
strained optimization problems. The core idea originates from [Lei77] and is also
well-presented in [FQ85]. In addition, [RBW06, Chapter 5] provides a context for this
model within more general approaches to constrained problems. The constraint graph
model should help better understand the set of feasible solutions of COPs with certain
symmetric constraints. It offers two major advantages: an alternative mathematical
approach and a visualization basis.

We are mainly interested in COPs of scheduling type (cf. Definition 4.1) and discuss the
concrete graph construction process for these problems in Section 4.1. Moreover, we
abstract notions such as feasible solutions (Definition 4.2) and feasibility-preservation
(Definition 4.3) to general graphs. Furthermore, we conceptually place graph automor-
phisms in the context of feasibility-preservation.

We investigate COPs of scheduling type further in Section 4.2 and examine concrete
candidates for mixer Hamiltonians. Their mixing properties are translated into the just
established machinery. More precisely, Theorem 4.7 gives an alternative characterization
of the mixing property in terms of a transitive group action on vertex subsets of the
associated constraint graph corresponding to feasible solutions.

In Section 4.3, we utilize this alternative characterization of mixer properties to verify
that the so-called free job-shop scheduling problems (Definition 4.8) always admit
suitable mixers (Corollary 4.10). In addition, we discuss the more complex flexible
job-shop scheduling problems (Definition 4.11). We do not obtain a universal statement
about mixer properties but rather show that several possibilities exist by considering
two examples.

Page 28 of 74

Chapter 4. Constraint Graph Model

4.1. Construction and Properties

Consider COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext). Each of the N bits is identified
with a vertex. That is, COP induces a set of vertices V with |V | = N . We label the
vertices accordingly as V = {v1, . . . , vN}. That is, vn represents the n-th bit in the bit
string z. Now, any bit string can be represented graphically by coloring each vertex
corresponding to a bit set to one. This indexing mapping is formally expressed as

ι : [N] → V, n 7→ vn. (4.1.1)

We can identify bit strings with subsets of vertices via the identification mapping

κ : Z(N) → 2V , z1 . . . zN 7→ {ι(n) : zn = 1}. (4.1.2)

Meanwhile, the constraints determine the set of edges E, a number J ∈ N of vertices to
be colored, and a possible update of the set of vertices. The main idea is to connect two
vertices with an edge whenever it can be ruled out that both associated bits can be set
to one. The following list contains treatable constraints and their implementation. It
is sorted in the order in which the constraints should be implemented. In the following,
let I ⊆ [N] be arbitrary.

• none: All bits zn, n ∈ I, must take the value zero. The corresponding vertices
are deleted from the graph, yielding a new set of vertices V ′ with |V ′| = N − |I|.

• at-most-one: At most one of the bits zn, n ∈ I, can be set to one. The result
is that all associated vertices are connected to form a clique, i.e. for all m,n ∈ I
with m 6= n, it should apply that vmvn ∈ E.

• one-hot: Assume |I| > 1. Exactly one of the bits zn, n ∈ I, must take the
value one. The result is again that all associated vertices are connected to form
a clique. In addition, the number J is increased by one.

• all: All bits zn, n ∈ I, must take the value one. The corresponding vertices as
well as all vertices connected to them are deleted from the graph. In addition,
the number J is reduced by |I|.

• all-equal: All bits zn, n ∈ I, must take the same value. The corresponding
vertices in VI := {vn : n ∈ I} are joined together to form a new vertex vI ,
yielding a new set of vertices V ′. The vertex is also weigthed by the weight |I|,
which means that coloring vI counts as coloring |I| vertices. The set of edges is
also updated: if for any v ∈ V \ VI , there is an n ∈ I such that vvn ∈ E (in the
original graph), then it should apply that vvI ∈ E ′.

Page 29 of 74

Chapter 4. Constraint Graph Model

Therefore, the number J specified by the constraints indicates how many bits of a
feasible solution must take the value one. We then seek to color J vertices which are
mutually unconnected. In the following, we are mostly interested in COPs of a specific
type.

Definition 4.1. A COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) is of scheduling type if

(i) there exists exactly one partition {I1, . . . , IJ} of [N], Nj := |Ij| > 1 for every
j ∈ [J], so that every Ij is subject to a one-hot constraint.

(ii) all other B − J constraints are at-most-one constraints.

We wish to mathematically concretize the construction of the constraint graph for
scheduling problems. Utilizing the just established mappings ι and κ, we can describe
the translation from one-hots and at-most-ones, regarded as Boolean functions, to
sets of edges of the constraint graph. We begin with a convenient notation for both
constraint types. For two bit strings z, z′ ∈ Z(N), the and operation reads

z ∧ z′ := (z1 ∧ z′
1) . . . (zN ∧ z′

N) ∈ Z(N). (4.1.3)

Furthermore, let

|z| := |{n : zn = 1}| = |κ(z)| (4.1.4)

denote the Hamming weight of z ∈ Z(N). For I ⊆ [N], write

zI := κ−1
(
ι(I)

)
= κ−1({vn}n∈I).

Then, the one-hot constraint and the at-most-one constraint associated with the index
set I are

ζI(z) :=

1, if |z ∧ zI | = 1
0, otherwise

and ηI(z) :=

1, if |z ∧ zI | ≤ 1
0, otherwise

(4.1.5)

Both constraints are incorporated as cliques (complete subgraphs) into the correspond-
ing constraint graph: if ζI ∈ {Db}Bb=1 or ηI ∈ {Db}Bb=1, then

EI := {ι(m)ι(n) : m,n ∈ I,m 6= n} = {vmvn : m,n ∈ I,m 6= n} ∈ E.

This formalism results in a concrete construction rule for the constraint graph of
scheduling problems. Let COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext) be of scheduling
type and let G0 = (V,E0) := ({vn : n ∈ [N]}, ∅) be the initial constraint graph.
Furthermore, set J0 := 0 and b := 1. Then iteratively perform the following steps:

Page 30 of 74

Chapter 4. Constraint Graph Model

1. If Db = ζI , set (Eb, Jb) := (Eb−1 ∪ EI , Jb−1 + 1). Otherwise, if Db = ηI , set
(Eb, Jb) := (Eb−1 ∪ EI , Jb−1).

2. If b < B, increase b 7→ b+ 1 and repeat step 1. Otherwise, end the construction.

In Fig. 4.1, we provide the constraint graph of a T -city traveling salesperson problem
as an example.

· · ·

· · ·

··
·

··
· · · ···
·

··
·

··
·

· · ·

· · ·

time

ci
ty

Figure 4.1.: Traveling salesperson constraint graph. Given T ∈ N cities, the set
of vertices V has a total of N = T 2 elements representing the visit to a specific
city at a specific time, respectively. It is more convenient to label the vertices with
two indices specifying time and city. Then, the coloring of vertex vi,k, i, k ∈ [T],
means that city k is visited at time i. The amount of vertices to be colored is T
(visit each city exactly once). The latter constraint also determines the sets of edges
E = ⋃

i∈[T]{vi,kvi,k′ : k, k′ ∈ [T], k 6= k′} ∪ ⋃k∈[T]{vi,kvi′,k : i, i′ ∈ [T], i 6= i′}.

We now introduce these lines of thought in more abstract terms. To treat the facts
as general as possible, we consider an arbitrary graph G = (V,E) and an arbitrary
number J ∈ N with J ≤ N := |V |. For simplicity, we do not treat weighted vertices.

Definition 4.2. A subset of vertices W ⊆ V is a feasible solution if

1. |W | = J and

2. W is an independent set (cf. Definition A.8).

Page 31 of 74

Chapter 4. Constraint Graph Model

Let S := SJ denote the set of feasible solotions

Definition 4.3. A function ρ : V → V preserves feasibility if ρ(W) ∈ S holds for all
W ∈ S.

It is reasonable to demand surjectivity of ρ to reach every possible feasible solution.
Since V is a finite set, such an ρ is automatically injective, too, hence a permutation.
We obtain the following property.

Proposition 4.4. The family F of all feasibility-preserving permutations is a subgroup
of the symmetric group Sym(V) ∼= Sym([N]).

Proof. The composition of two feasibility-preserving permutations trivially preserves
feasibility again. Clearly, the identity preserves feasibility, hence idV ∈ F . Thus, F is a
subset of the finite group Sym(V) containing the identity and closed under composition
of functions, and hence a subgroup.

Proposition 4.5. Every graph automorphism preserves feasibility, i.e. Aut(G) ⊆ F .
Furthermore, if for all non-adjacent v, w ∈ V , there exists W ∈ S so that v, w ∈ W ,
then Aut(G) = F .

Proof. Let ϕ ∈ Aut(G) and let W ∈ S be arbitrary. Since ϕ : V → V is bijective, it
holds that |ϕ(W)| = |W | = J . Let ϕ(v), ϕ(w) ∈ ϕ(W). Since W is an independent
set, it holds that vw /∈ E. With the isomorphism property of ϕ, it follows that
ϕ(v)ϕ(w) /∈ E; hence ϕ(W) is again an independent set. This shows that Aut(G) ⊆ F .
Now assume that for an arbitrary pair of non-adjacent vertices v, w ∈ V , there exists
W ∈ S so that v, w ∈ W , and let ρ ∈ F . Since ρ : V → V is bijective, Proposition A.12
implies that it suffices to show its homomorphism property:(

vw ∈ E ⇒ ρ(v)ρ(w) ∈ E
)

⇔
(
ρ(v)ρ(w) /∈ E ⇒ vw /∈ E

)
.

Let v, w ∈ V so that ρ(v)ρ(w) /∈ E. Then by assumption, there exists W ∈ S with
ρ(v), ρ(w) ∈ W . Since also ρ−1 is feasibility-preserving by Proposition 4.4, one obtains
that v, w ∈ ρ−1(W) ∈ S. Therefore, also vw /∈ E holds.

Note that the statement F ⊆ Aut(G) is, in general, false. If, e.g., J = 1, we would
always have that F = Sym(V). Another non-trivial counterexample is shown in
Fig. 4.2. Meanwhile, in the particular case of J = 2, Proposition 4.5 already implies
that Aut(G) = F .

Page 32 of 74

Chapter 4. Constraint Graph Model

1 2

6 3

5 4

Figure 4.2.: Graph with feasibility-preserving non-automorphisms. Its automorphism
group is isomorphic to D12, the dihedral group of order 12. For J = 3, the only two
feasible solutions are W1 = {1, 3, 5} and W2 = {2, 4, 6}. Therefore, the transposition
(13) is feasibility-preserving, but is not an element of Aut(G).

Every subgroup of Sym(V) canonically acts on 2V via

Ψ : Sym(V) → Sym
(
2V
)
, ρ 7→ [U 7→ ρ · U]

with

ρ · U := ρ(U). (4.1.6)

As F consists of feasibility-preserving elements, the restricted action Ψ : F → Sym(S)
is well-defined. We say that F connects all feasible solutions if it acts transitively on
S. We can define this more generally for families of feasibility-preserving functions.

Definition 4.6. A family of feasibility-preserving functions {ρi : V → V }i∈I connects
all feasible solutions if for all W,W ′ ∈ S, there exists i ∈ I such that ρi(W) = W ′.

Note that, in general, F does not connect all feasible solotions as the minimal coun-
terexample graph drawn in Fig. 4.3 shows.

4.2. Connection to the QAO

We continue to consider scheduling problems. An immediate consequence of the
scheduling structure is that feasible solutions must have the same Hamming weight

Page 33 of 74

Chapter 4. Constraint Graph Model

1 2

3 4

W1

W2

W3

Figure 4.3.: Graph with unconnected feasbile solutions. For J = 2, the feasible solutions
are S = {W1,W2,W3} drawn in. The subgroup of feasibility-preserving permutations
is given by F = {id, (13)(24)} which does not connect all feasible solutions.

(4.1.4) J . Since leaving the Hamming weight invariant is, in a sense, the fundamental
property of bit value permutations, it is advisable to study the latter in terms of
feasibility preservation and mixing properties. Namely, we consider the group action

Φ : Sym([N]) → Sym(Z(N)), τ 7→ [z 7→ τ · z]

with

τ · z1 . . . zn . . . zN := zτ(1) . . . zτ(n) . . . zτ(N). (4.2.1)

By linear extension

λ : Sym(Z(N)) → U
(
q

⊗N
)
, λ(π) :

∑
z∈Z(N)

αz |z〉 7→
∑

z∈Z(N)
α
π

−1(z) |z〉 , (4.2.2)

we obtain the permutation (matrix) representation P = λ ◦ Φ : Sym([N]) → U(q⊗N).
It is compatible with the tensor product structure of q⊗N :

P(τ)
N⊗
n=1

|ψn〉 =
N⊗
n=1

|ψτ(n)〉 . (4.2.3)

Let G = (V,E) be the constraint graph of a COP = (N, {ca}Aa=1, {Ca}Aa=1, {Db}Bb=1, ext)
of scheduling type. We specify an ordering V = {v1, . . . , vN} of the vertices and thereby
consider the following group action

Π : Sym([N]) → Sym
(
2V
)
, τ 7→ [U 7→ τ · U]

Page 34 of 74

Chapter 4. Constraint Graph Model

with

τ · {vn}n∈I := {vτ(n)}n∈I . (4.2.4)

We now provide a link between (4.2.1) and (4.2.4): recall that Z(N) and 2V are in
bijection via the identification mapping (4.1.2). This induces another bijection

κ̃ : Sym(Z(N)) → Sym
(
2V
)
, π 7→ κ ◦ π ◦ κ−1. (4.2.5)

As in Section 4.1, we write zI = κ−1({vn}n∈I). That is, zn = 1 whenever n ∈ I. For
every I ⊆ [N] and every τ ∈ Sym([N]), it holds that

Π(τ)
(
{vn}n∈I

)
= {vτ(n)}n∈I = κ

(
zτ(I)

)
=
(
κ ◦ Φ(τ)

)
(zI) =

(
κ ◦ Φ(τ) ◦ κ−1

)(
{vn}n∈I

)
.

Therefore, we have shown that Π = κ̃ ◦ Φ. Recall that [N] and V are in bijection via
the indexing mapping (4.1.1). This induces a bijection via conjugation

ι̃ : Sym([N]) → Sym(V), τ 7→ ι ◦ τ ◦ ι−1. (4.2.6)

Let Ψ : Sym(V) → Sym(2V) be as in (4.1.6). Then we obtain that for every n ∈ [N],
I ⊆ [N], and τ ∈ Sym([N]),(

ι ◦ τ ◦ ι−1
)
(vn) =

(
ι ◦ τ

)
(n) = ι

(
τ(n)

)
= vτ(n)

⇒ (Ψ ◦ ι̃)(τ)
(
{vn}n∈I

)
= Ψ(ι ◦ τ ◦ ι−1)

(
{vn}n∈I

)
= {vτ(n)}n∈I = Π(τ)

(
{vn}n∈I

)
.

Thus, also Π = Ψ ◦ ι̃ holds. This allows us to relate the properties of the permutation
representation of subgroups of Sym([N]) to their actions on vertex subsets of the
associated constraint graph, yielding a commutative diagram (see Fig. 4.4).

Let F ⊆ Sym(V) be as in Section 4.1. By construction of the constraint graph model,
κ(z) ∈ S if and only if z ∈ COPsol. Thus, also κ̃ : Sym(COPsol) → Sym(S) is a
bijection. Ψ ◦ ι̃ = κ̃ ◦ Φ now implies that F := ι̃−1(F) ⊆ Sym([N]) is COP-feasibility-
preserving in the sense of Definition 2.12. Therefore, we may also consider the restricted
actions Ψ : F → Sym(S), Π : F → Sym(S), and Φ : F → Sym(COPsol). We also
obtain the restricted permutation (matrix) representation PS = λ ◦ Φ : F → U(S).
The restriction to feasibility-preserving mappings also yields a commutative diagram,
which is displayed in Fig. 4.5.

We eventually combine the graph- and group-theoretical, and the linear algebraic
approach to test P(F) for its mixer properties.

Theorem 4.7. Let COP be of scheduling type, and let G = (V,E) be its associated
constraint graph. Then P(F) is COP-mixing if and only if F connects all feasible
solutions.

Page 35 of 74

Chapter 4. Constraint Graph Model

Sym
(
2V
)

Sym(Z(N)) U
(
q

⊗N
)

Sym(V) Sym([N])

κ̃ λ

Ψ

ι̃

Π
Φ

P

Figure 4.4.: Commutative diagram of bit permutations. Sym([N]) acts on the vertex
subsets of the associated constraint graph via Π. It consists of a vertex indexing and the
group action Ψ. Alternatively, Π can be factorized into Φ : Sym([N]) → Sym(Z(N))
and the identification of vertex subsets with bit strings. The permutation (matrix)
representation P factorizes into Φ and the subsequent linear extension to q⊗N .

Sym(S) Sym(COPsol) U(S) ⊆ U
(
q

⊗N
)

F F

κ̃ λ

Ψ

ι̃

Π
Φ

PS

Figure 4.5.: Commutative diagram of feasibility-preserving bit permutations. F acts
on the feasible solutions of the associated constraint graph via Π. It consists of a
vertex indexing and the group action Ψ of F . Alternatively, Π can be factorized
into Φ : F → Sym(COPsol) and the identification of vertex subsets with bit strings.
This identification preserves feasibility by construction of the constraint graph. The
restricted permutation (matrix) representation PS factorizes into Φ and the subsequent
linear extension to S.

Proof. By Corollary 3.13 and Corollary 2.10, P(F) is COP-mixing if and only if F
acts transitively on COPsol via Φ. Now it holds that

κ̃ ◦ Φ = Π = Ψ ◦ ι̃ ⇔ Φ = κ̃−1 ◦ Ψ ◦ ι̃.

Since κ̃−1 : Sym(S) → Sym(COPsol) and ι̃ : F → F are group isomorphisms, Φ is
transitive if and only if Ψ is transitive.

Therefore, if F connects all feasible solutions, we can construct parametrized mixers
from elements of P(F) by suitably taking logarithms (cf. Lemma 3.19) and taking
their absolute value (cf. Proposition 3.14). Invoking (2.4.1), it then suffices to consider
merely a set of generators of F to construct parametrized mixers.

Page 36 of 74

Chapter 4. Constraint Graph Model

4.3. Applications

We start with the prototypical class of scheduling problems: free job-shop scheduling
problems. One is given a list of J jobs and M machines with T time slots each and is
asked to distribute the jobs to the slots such that

J: every job gets performed precisely once and

S: no slot is filled with more than one job.

The cost function can be manifold: machines may perform different jobs with certain
costs, performing specific jobs in order may reduce or increase costs, etc. In the
subsequent description of these problems, we therefore focus on the constraints rather
than the cost function.

Definition 4.8. Let J,M, T ∈ N. A free job-shop scheduling problem of type (J,M, T)
is a COP

FJSP(J,M, T) :=
(
JMT, {ca}Aa=1, {Ca}Aa=1, J ∪ S, ext

)
with arbitrary costs/priorities ca and clauses Ca, job assignment constraints

J := {ζX(j) : j ∈ [J]} with
X(j) := E

(
{j} × [M] × [T]

)
, j ∈ [J],

(4.3.1)

and slot assignment constraints

S := {ηY(m,t) : (m, t) ∈ [M] × [T]} with
Y(m, t) := E

(
[J] × {m} × {t}

)
, (m, t) ∈ [M] × [T].

(4.3.2)

Here,

E : [J] × [M] × [T] → [JMT]
(j,m, t) 7→ MT (j − 1) + T (m− 1) + t

(4.3.3)

denotes the canonical encoding function for the free job-shop scheduling problem.

The job assignment constraints ensure that any feasible bit string allocates every
job j ∈ [J] exactly once. Furthermore, the slot assignment constraints guarantee
that it also gives any slot at most one job. Thus, the constraints imposed directly
incorporate the problem framework. In addition, we already see that the problem is

Page 37 of 74

Chapter 4. Constraint Graph Model

1,1,1 1,1,2 2,1,1 2,1,2 3,1,1 3,1,2

1,2,1 1,2,2 2,2,1 2,2,2 3,2,1 3,2,2

t

m

1 2 5 6 9 10

3 4 7 8 11 12

X(1) X(2) X(3)

Figure 4.6.: FJSP(3, 2, 2) constraint graph. In the above graph, the vertices are labeled
using the coordinate system (j,m, t), while in the graph below, they are labeled via
the canoncial encoding function E . In addition, the three job blocks X(j), j ∈ [3], are
drawn in.

infeasible if J > MT ; therefore, we will w.l.o.g. assume that J ≤ MT . Note that the
case (J,M, T) = (T, 1, T) precisely gives the traveling salesperson problem (compare
Fig. 4.1). The constraint graph of a FJSP(3, 2, 2) instance is shown in Fig. 4.6.

In the following, we write vj,m,t := ι
(
E(j,m, t)

)
to denote the vertex associated with

the coordinates (j,m, t). The solutions to FJSP := FJSP(J,M, T) (as vertex subsets)
are precisely given by

SFJSP =
⋃{

{vj,mj ,tj
: j ∈ [J]} : (t1,m1), . . . , (tJ ,mJ) ∈ [M] × [T]

}
=:

⋃
([M]×[T])J

{
{v1,m1,t1 , . . . , vJ,mJ ,tJ

}
}
. (4.3.4)

Here, “⋃Xn” means the union over all n-subsets of X, that is, we adopted the falling
factorial notation. Indeed, assigning the first job to a slot (m1, t1) leaves MT − 1 slots
open for further job assignments; the assignment of the second job then reduces the
number of available slots to MT − 2, and so on. Accordingly, the number of solutions
is given by

|SFJSP| = (MT)!
(MT − J)! =: (MT)J . (4.3.5)

Page 38 of 74

Chapter 4. Constraint Graph Model

For J = 1, the slot assignment constraints are meaningless since in this case, |Y(m, t)| =
1 holds. Thus, the only proper constraint is the remaining job assignment constraint;
the constraint graph equals KMT with its autmorphism group Sym([MT]).

Now, let G(J,M, T) = (V,E) denote the constraint graph of FJSP(J,M, T) for 2 ≤
J ≤ MT . Take (j,m, t), (j′,m′, t′) ∈ [J] × [M] × [T] so that vj,m,t vj′

,m
′
,t

′ /∈ E. Then
j 6= j′ and (m, t) 6= (m′, t′) necessarily hold. Since J ≤ MT , we can augment the set
{(m, t), (m′, t′)} to a J-subset

{(m1, t1), . . . , (mJ , tJ)} ⊆ [M] × [T] with (mj , tj) = (m, t) and (mj
′ , tj′) = (m′, t′).

But then {vj,mj ,tj
: j ∈ [J]} ∈ SFJSP holds. Thus, invoking Proposition 4.5, we obtain

the following result.

Corollary 4.9. Let J,M, T ∈ N with J ≤ MT , and let G be the constraint graph of
FJSP(J,M, T). Then F = Aut(G).

In addition, the problem indeed admits suitable mixers. Let S, S ′ ∈ SFJSP. By (4.3.4),
there exist m1, . . . ,mJ ,m

′
1, . . . ,m

′
J ∈ [M] and t1, . . . , tJ , t

′
1, . . . , t

′
J ∈ [T] so that

S =
{
v1,m1,t1

, . . . , vJ,mJ ,tJ

}
and S ′ =

{
v1,m′

1,t
′
1
, . . . , vJ,m′

J ,t
′
J

}
hold. Since Sym([M] × [T]) acts (MT)-transitively on [M] × [T], there exists a
σ = (σ1, σ2) ∈ Sym([M] × [T]) so that

σ(mj, tj) = (σ1(mj), σ2(tj)) = (m′
j, t

′
j) ∀j ∈ [J].

Define

σ̂ : V → V, vj,m,t 7→ vj,σ1(m),σ2(t).

Then σ̂ is bijective and feasibility-preserving, hence σ̂ ∈ F . Furthermore, σ̂ is con-
structed to satisfy σ̂(S) = S ′. This proves the next result.

Corollary 4.10. Let J,M, T ∈ N with J ≤ MT , and let G be the constraint graph of
FJSP(J,M, T). Then F connects all feasible solutions.

In conclusion, the solutions to FJSP admit a nice and simple structure that allows a
complete traversing of all solutions with feasibility-preserving permutations. We have
explicitely constructed an embedding

ˆ : Sym([M] × [T]) → Sym(V), σ 7→ σ̂ (4.3.6)

Page 39 of 74

Chapter 4. Constraint Graph Model

that already yields a mixing subgroup. However, this embedding does generally not
yield the whole group F . For example, a similar embedding

ˇ : Sym([J]) → Sym(V), ρ 7→ ρ̌ := [vj,m,t 7→ vρ(j),m,t] (4.3.7)

produces different feasibility-preserving permutations. As we have already constructed
suitable mixers for FJSP in the form of a proper subgroup of F , we will not investigate
F and thus Aut(G(J,M, T)) further.

Within the framework of FJSP, the machines and the time slots are treated equally
by the constraints. Therefore, we could have replaced the set [M] × [T] simply with
a set of slots [S], and all results would remain valid. Especially, the case where each
machine has an individual amount of time slots is not any more complicated than the
symmetric case discussed. The supposed restriction we have made stems from simple
visualization reasons and the fact that the time slots are given their “correct” meaning
in the following.

One possible step to impede the free job-shop scheduling problem is subdividing the
jobs into operations that must be executed in a non-descending order, thus conceptually
separating the time slots from the machines. The problem is then called a flexible
job-shop scheduling problem. One is given a list of J jobs, each consisting of O ordered
operations, and M machines with T time slots each and is now asked to distribute the
operations to the slots such that

J: every operation of every job gets performed precisely once,

S: no slot is filled with more than one operation, and

P: subsequent operations of the same job are performed in non-descending order.

The cost functions can again be diverse: machines may perform different operations
with certain costs, performing all operations of one job on the same machine may
reduce or increase costs, additional orders may reduce or increase the costs, certain
jobs may be of higher priority than others, etc. We collect all these possibilities by
merely specifying the constraints.

Definition 4.11. Let J,O,M, T ∈ N. A (flexible) job-shop scheduling problem of type
(J,O,M, T) is a COP

JSP(J,O,M, T) :=
(
JOMT, {ca}Aa=1, {Ca}Aa=1, J ∪ S ∪ P, ext

)

Page 40 of 74

Chapter 4. Constraint Graph Model

with arbitrary costs/priorities ca and clauses Ca, job assignment constraints

J := {ζX(j,o) : (j, o) ∈ [J] × [O]} with
X(j, o) := E

(
{j} × {o} × [M] × [T]

)
, j ∈ [J], o ∈ [O],

(4.3.8)

slot assignment constraints

S := {ηY(m,t) : (m, t) ∈ [M] × [T]} with
Y(m, t) := E

(
[J] × [O] × {m} × {t}

)
, (m, t) ∈ [M] × [T],

(4.3.9)

and the precedence constraints

P :=
⋃

(j,o,m,t)
Pj,o,m,t

Pj,o,m,t := {ηZ(j,o;m,m′
,t,t

′) : m ∈ [M], 1 ≤ t′ < t} with

Z(j, o; m,m′, t, t′) :=

E
(
{(j, o,m, t), (j, o+ 1,m′, t′)}

)
, if 1 ≤ o < O

∅, if o = O.

(4.3.10)

Here,

E : [J] × [O] × [M] × [T] → [JOMT]
(j, o,m, t) 7→ OMT (j − 1) +MT (o− 1) + T (m− 1) + t

(4.3.11)

denotes the canonical encoding function for the flexible job-shop scheduling problem.

Similar to the free job-shop case, the job assignment constraints assure that any feasible
bit string allots every operation of every job (j, o) ∈ [J] × [O] exactly once and the slot
assignment constraints make sure that every slot is assigned at most one operation.
Thus, the problem is infeasible if JO > MT . Lastly, the precedence constraints enforce
the execution of the operation of the same job in non-descending order. In the following,
let G(J,O,M, T) denote the constraint graph of JSP(J,O,M, T). We will especially
focus on the case where J = 1. Then the problem is similar to the free job-shop
scheduling problem, with the operations [O] being an ordered substitute for the jobs in
the free case. Namely, we have the following graph splitting into a free job-shop part
and a precedence constraint part:

G(1, O,M, T) = G(O,M, T) ∪GP(O,M, T), (4.3.12)

whereby

V (GP(O,M, T)) = V (G(O,M, T))

Page 41 of 74

Chapter 4. Constraint Graph Model

1 2 5 6

3 4 7 8

t

m

X(1, 1) X(1, 2)

Figure 4.7.: JSP(1, 2, 2, 2) constraint graph. The vertices are labled via the canoncial
encoding function E . In addition, the two operation blocks X(1, o), o ∈ [2], are drawn
in. The black edges correspond to job assignment constraints J and slot assignment
constraints S, while the red ones correspond to the precedence constraints P. Neglecting
the red edges thus reproduces G(2, 2, 2), while ignoring the black ones yields GP(2, 2, 2).

and

E(GP(O,M, T)) =
{
vo,m,t vo+1,m′

,t
′ : o ∈ [O − 1], m,m′ ∈ [M], t, t′ ∈ [T], t′ < t

}
.

Next, we investigate the extent to which analogs of Corollary 4.9 and Corollary 4.10
apply to JSP(1, O,M, T). We start with JSP(1, 2, 2, 2) and its constraint graph shown in
Fig. 4.7. Since its feasible solutions consist of two elements, respectively, Proposition 4.5
implies that in this particular case F = Aut(G(1, 2, 2, 2)) holds. Henceforth we will
directly identify each vertex vi = (ι ◦ E)(j, o,m, t) with its label i = E(j, o,m, t). We
obtain

Aut(G(1, 2, 2, 2)) = {id, (1 3)(5 7), (2 4)(6 8), (1 3)(2 4)(5 7)(6 8), (1 6)(2 5)(3 8)(4 7),
(1 8)(2 7)(3 6)(4 5), (1 6 3 8)(2 7 4 5), (1 8 3 6)(2 5 4 7)}

= 〈(1 6 3 8)(2 7 4 5), (1 3)(2 4)(5 7)(6 8)〉.

Thus, Aut(G(1, 2, 2, 2)) ∼= D8, the dihedral group of order 8. Meanwhile, the feasible
solutions are given by

S =
{
{1, 6}, {1, 7}, {1, 8}, {2, 8}, {3, 5}, {3, 6}, {3, 8}, {4, 6}

}
.

As one can verify, F = Aut(G(1, 2, 2, 2)) does not act transitively on S. For example,
there is no element in F that maps {1, 7} to {1, 8}. The permutation (34)(78), which
is feasibility-preserving in G(2, 2, 2) and would do the transition, does not respect the
precedence constraints as it maps the feasible solution {3, 8} to the non-solution {4, 7}
and is thus not an element of F in G(1, 2, 2, 2). We display the dihedral symmetry of
G(1, 2, 2, 2) by a suitable symmetric graph drawing in Fig. 4.8.

Page 42 of 74

Chapter 4. Constraint Graph Model

1 2 5 6

3 4 7 8

2 5

7 4

6 1

3 8

Figure 4.8.: Dihedral symmetry display of the JSP(1, 2, 2, 2) constraint graph. The
vertices are divided into “inner” vertices {1, 3, 6, 8} and “outer” vertices {2, 4, 5, 7}.
The swap of 1 and 6 as well as of 4 and 7 unravels the graph and displays its full
symmetry.

We proceed with JSP(1, 3, 2, 2) and its constraint graph shown in Fig. 4.9. This time,
the solutions consist of three elements, respectively. Therefore, Proposition 4.5 is not
readily applicable. In fact, we find that F 6= Aut(G(1, 3, 2, 2)).

For the autmorphism group of the constraint graph, we obtain

Aut(G(1, 3, 2, 2)) = {id, (1 3)(5 7)(9 11), (2 4)(6 8)(10 12),
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12),
(1 10)(2 9)(3 12)(4 11)(5 6)(7 8),
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7),
(1 10 3 12)(5 6 7 8)(2 11 4 9),
(1 12 3 10)(5 8 7 6)(2 9 4 11)}

= 〈(1 3)(2 4)(5 7)(6 8)(9 11)(10 12), (1 10 3 12)(5 6 7 8)(2 11 4 9)〉.

The constraint graph again has the square symmetry, that is, Aut(G(1, 3, 2, 2)) ∼= D8.
An appropriate symmetric graph drawing is shown in Fig. 4.10. The feasible solutions
are given by

S =
{
{1, 6, 12}, {1, 7, 10}, {1, 7, 12}, {1, 8, 10}, {3, 5, 10}, {3, 5, 12}, {3, 6, 12}, {3, 8, 10}

}
.

One can verify that Aut(G(1, 3, 2, 2)) already acts transitively on S. However, the whole
group F of feasibility preserving permutations is even larger. As a direct consequence of
the precedence constraints, the vertices 2, 4, 9, and 11 are not contained in any solution:

Page 43 of 74

Chapter 4. Constraint Graph Model

1 2 5 6 9 10

3 4 7 8 11 12

t
m

X(1, 1) X(1, 2) X(1, 3)

Figure 4.9.: JSP(1, 3, 2, 2) constraint graph. The vertices are labeled via the canonical
encoding function E . In addition, the three operation blocks X(1, o), o ∈ [3], are drawn
in. The black edges correspond to job assignment constraints J and slot assignment
constraints S, while the red ones correspond to the precedence constraints P. Neglecting
the red edges thus reproduces G(3, 2, 2), while ignoring the black ones yields GP(3, 2, 2).

performing the first operation on the second time slot would not leave enough space
for the remaining two operations. Analogously, assigning the third operation to the
first time slot would force one of the remaining two operations to be performed on the
second slot and thus after the third operation. Therefore, the property of a permutation
being feasibility-preserving is determined by its action on the proper vertex subset
{1, 3, 5, 6, 7, 8, 10, 12}. In contrast, the “global” automorphism property depends on the
action on all vertices. In this light, any modification of an automorphism on the subset
{2, 4, 9, 11} yields again an element in F but, in general, not an automorphism. Take,
e.g., (2 4)(6 8)(10 12) ∈ Aut(G(1, 3, 2, 2)) ⊂ F . Then the modification (6 8)(10 12) is
again in F but not in Aut(G(1, 3, 2, 2)).

Page 44 of 74

Chapter 4. Constraint Graph Model

1 2 5 6 9 10

3 4 7 8 11 12

5 6

8 7

9 2

4 11

1 10

12 3

Figure 4.10.: Dihedral symmetry display of the JSP(1, 3, 2, 2) constraint graph. The
vertices are divided into “inner”, “middle”, and “outer” vertices. The middle vertices
2, 4, 9, and 11 are not contained in any feasible solutions. The swap of 2 and 9, 3 and
12, and 7 and 8 displays the full symmetry.

Page 45 of 74

CHAPTER 5.

Other Variational Quantum
Algorithms

Besides the QAOA and its generalization to the QAO, there exist countless other
variational quantum algorthims. While QAOA prescribes the parametrized unitaries
quite rigidly for the generic case, many other algorithms rely on more problem-specific
approaches. Bharti et al. [Bha+22] provide an excellent overview of various quantum
algorithms and their applications. They also clearly define the term variational quantum
algorithm (VQA), which we state mutatis mutandis.

A VQA consists of four parts:

- an objective function to be minimized/maximized,

- a parametrized quantum circuit (PQC), i.e. parametrized unitaries,

- a measurement scheme to estimate expectation values, and

- a classical optimizer to obtain optimal circuit parameters.

For COPs, the generic implementation of the Boolean objective function C is given by
the procedure (2.3.5) discussed in Section 2.3. Meanwhile, in quantum chemistry, an-
other primary scope of VQAs, the objective Hamiltonian arises directly from a physical
description of the system and generally contains non-diagonal elements representing
interactions.

In the QAOA, the PQC consists of the p-fold alternation of parametrized mixers UM
and parametrized phase separators UP. While the phase separator directly incorporates
the objective Hamiltonian, the mixer is problem-independent. This rigidity is precisely
what is being removed in the transition from the QAOA to the QAO.

Page 46 of 74

Chapter 5. Other Variational Quantum Algorithms

In Section 5.1, we will briefly introduce the variational quantum eigensolver. In essence,
it merely specifies which quantities are to be computed on the quantum computer; it
does not prescribe a general parameterization rule or a classical optimizer. However, this
flexibility is the reason for numerous generalizations of this algorithm. The variational
quantum simulation of imaginary time evolution as discussed in Section 5.2 is another
(incomplete) VQA but with a more concrete instruction for the interaction of classical
and quantum computing. Both algorithms are eventually generalized by the filtering
variational quantum eigensolver which we discuss in Section 5.3.

We emphasize that our focus entirely lies on quantum algorithmic methods and not
on the classical optimizers. We are well aware that the influence of the classical
optimization rule is everything but negligible and is, as well as the quantum part of a
VQA, highly problem-dependent. However, as we mainly aim to understand future
quantum algorithms better, we must cut the line somewhere. In this sense, performance
studies that compare VQAs with different classical optimizers should also be taken
with care. It cannot be excluded that alleged performance differences are only due to
the different classical optimization rules.

5.1. Variational Quantum Eigensolver

The variational quantum eigensolver (VQE) was first proposed by Peruzzo et al.
[Per+14] as an approach to calculate the eigenvalues of a given Hamiltonian based on
the Rayleigh-Ritz variational method [Str11; Rit09].

Lemma 5.1 (Rayleigh-Ritz inequality). For H ∈ L(Ξ) self-adjoint and |ψ〉 ∈ Ξ \ {0},
it holds that

min σ(H) ≤ 〈ψ|H|ψ〉
〈ψ|ψ〉

. (5.1.1)

Proof. Let H ∈ L(Ξ) be self-adjoint with eigenvalues E1 ≤ E2 ≤ . . . ≤ Ed. Let BΞ
be an ONB consisting of eigenvectors of H, that is, H |j〉 = Ej |j〉 for all j = 1, . . . , d.
Furthermore, let |ψ〉 ∈ Ξ be arbitrary. Then it holds that

〈ψ|H|ψ〉 =
d∑
j=1

〈ψ|H|j〉 〈j|ψ〉 =
d∑
j=1

Ej 〈ψ|j〉 〈j|ψ〉 ≥ E1

d∑
d=1

〈ψ|j〉 〈j|ψ〉 = E1 〈ψ|ψ〉 .

For |ψ〉 6= 0, one obtains (5.1.1) since E1 = min σ(H).

Page 47 of 74

Chapter 5. Other Variational Quantum Algorithms

The quantity on the right-hand side of (5.1.1) is also called the Rayleigh quotient.
One readily verifies from the proof of Lemma 5.1 that (5.1.1) becomes an equality
if |ψ〉 is a ground state of H. This suggests a variational approach: consider a
family of parameterized states |θ〉 with parameters θ = (θ1, . . . , θS), S ≤ d, and
iteratively determine the minimum of Rayleigh quotients for these states to obtain an
approximation of the ground state and its energy E1.

Using the decomposition (2.1.6), the expectation value of H can be calculated by

〈θ|H|θ〉 = H0
0 +

N∑
n=1

3∑
κ=1

Hn
κ 〈θ|σκn|θ〉 +

N∑
n1=1

N∑
n2=1

3∑
κ1=1

3∑
κ2=1

Hn1n2
κ1κ2 〈θ|σκ1

n1σ
κ2
n2 |θ〉 + . . .

=
T∑
t=1

Ȟt 〈θ|Σt|θ〉 .

(5.1.2)

Since H is Hermitian, the coefficients Ȟt have to be real-valued. The trial states |θ〉
are produced in the PQC, that is, by applying parametrized unitary gates:

|θ〉 := V (θ) |0〉 := US(θS) · · ·U1(θ1) |0〉 . (5.1.3)

In practice, only the expectation values of the Pauli terms are calculated on a QPU
while multiplying by the coefficients Ȟt and adding is performed on a CPU. A general
VQE-circuit is sketched in Fig. 5.1. To obtain 〈θ|H|θ〉 it is necessary to derive said
coefficients in advance. However, this is always possible, although often cumbersome.

The procedure can be extended in order to find excited states, following the folded
spectrum method (cf. [Mac34]). One replaces H with Hλ := (H−λ)2 and scans through
different values of λ ∈ R. The variational method then converges to the eigenstate
with eigenvalue closest to the shift parameter λ. Note that this consideration increases
the number of terms T in (5.1.2) only quadratically.

As highlighted by Peruzzo et al., the strength of the VQE lies in two facts: firstly, ex-
pectation values can be efficiently approximated on a quantum computer (cf. [Ort+01]).
Secondly, the state |θ〉 will be measured immediately after its implementation. Thus,
the required coherence time is comparably short. In contrast, the quantum phase
estimation (QPE) proposed by Kitaev [Kit95] requires larger circuit depths and a long
coherence time. However, the amount of measurements in QPE necessary to reach a
certain precision is comparably small. There is an attempt to interpolate between both
VQE und QPE proposed by Wang et al. [WHB19], called the α-VQE.

Page 48 of 74

Chapter 5. Other Variational Quantum Algorithms

QPU CPU
pr

ep
ar

at
io

n
of

st
at

e
|θ

〉 quantum module 1

quantum module 2
..

.

quantum module T

..
.

cl
as

sic
al

ad
de

r

Ȟ1 〈θ|Σ1|θ〉
+

Ȟ2 〈θ|Σ2|θ〉
+

..
.

+
ȞT 〈θ|ΣT |θ〉

cl
as

sic
al

fe
ed

ba
ck

de
ci

sio
n〈θ|Σ1|θ〉

〈θ|Σ2|θ〉

〈θ|ΣT |θ〉

adjust parameter θ for the next input state

Figure 5.1.: Architecture of the VQE (compare [Per+14, FIG. 1]). The initial state
|θ〉 is prepared on the QPU and fed into the quantum modules which compute the
expectation values 〈θ|Σt|θ〉, for t = 1, . . . , T . These are multiplied by Ȟt, respectively,
and added together on the CPU to obtain 〈θ|H|θ〉. This quantity is, in turn, used for
the Ritz optimization method. The new state parameters are eventually fed back to
the QPU.

5.2. Variational Quantum Simulation of Imaginary
Time Evolution

Propagating a wave function in imaginary time is a mathematical trick often used to
determine a Hamiltonian’s ground state. This method, also known as Wick rotation
[Wic54], is justified by

Lemma 5.2. For H ∈ L(Ξ) self-adjoint and |ψ〉 ∈ Ξ \ {0}, it holds that

lim
τ→∞

e−Hτ |ψ〉√
〈ψ|e−2Hτ |ψ〉

= P |ψ〉√
〈ψ|P|ψ〉

, (5.2.1)

where P denotes the projection onto the eigenspace of H corresponding to the smallest
eigenvalue such that |ψ〉 is not in its orthogonal complement.

Proof. This follows as a special case from Lemma 5.3 with f = 1/ exp.

Page 49 of 74

Chapter 5. Other Variational Quantum Algorithms

Starting with an initial state |ψ〉 with non-zero overlap with a ground state of H, one
may approximate the latter by simulating the imaginary time evolution of |ψ〉. Since
e−Hτ is not a unitary operator, it cannot be implemented on a quantum computer and
is thus outsourced to a classical computer. Following [McA+19], it is implemented
as a variational method based on McLachlan’s variational principle (cf. [McL64]),
yielding the variational quantum simulation of imaginary time evolution (Var-QITE).
We consider τ -dependent parameters θ(τ) = (θ1(τ), . . . , θS(τ)) and trial states

|θ(τ)〉 := V (θ(τ)) |0〉 := US(θS(τ)) · · ·U1(θ1(τ)) |0〉 . (5.2.2)

Considering the decomposition (2.1.6) of H, the application of McLachlan’s variational
principle to the trial states (5.2.2) yields a differential equation for the parameters:

S∑
s=1

ηr,sθ̇s(τ) = ξr, (5.2.3)

where

ηr,s(τ) = Re
(
∂ 〈θ(τ)|
∂ θr(τ)

∂ |θ(τ)〉
∂ θs(τ)

)
and ξr(τ) = Re

(
−

T∑
t=1

Ȟt

∂ 〈θ(τ)|
∂ θr(τ) Σ

t |θ(τ)〉
)
.

Assuming that for all s = 1, . . . , S, it holds that

∂Us(θs(τ))
∂θs(τ) =

Is∑
i=1

fi,sUs(θs(τ))Wi,s

with amplitudes fi,s ∈ C and unitaries Wi,s ∈ L(q⊗N), we obtain

∂ |θ(τ)〉
∂ θs(τ) =

Is∑
i=1

fi,sUS(θS(τ)) · · ·Ui(θi(τ))Wi,sUi−1(θi−1(τ)) · · ·U1(θ1(τ)) |0〉

=:
Is∑
i=1

fi,sṼi,s(θ(τ)) |0〉 .

This eventually yields the following form of the coefficients:

ηr,s(τ) = Re
 Ir∑
i=1

Js∑
j=1

f ∗
i,rfj,s 〈0|Ṽ ∗

i,r(θ(τ))Ṽj,s(θ(τ))|0〉

 and

ξr(τ) = Re
−

Ir∑
i=1

T∑
t=1

f ∗
i,rȞt 〈0|Ṽ ∗

i,r(θ(τ))ΣtV (θ(τ))|0〉

.
(5.2.4)

The resulting circuit is sketched in Fig. 5.2.

Page 50 of 74

Chapter 5. Other Variational Quantum Algorithms

QPU CPU

quantum module (1, 1)1

..
.

quantum module (1, 1)K
..

.

quantum module (S, S)1

..
.

quantum module (S, S)K

..
.

quantum module 11

..
.

quantum module 1L

..
.

quantum module S1

..
.

quantum module SL

..
.

..
.

..
.

..
.

..
.

..
.

..
.

cl
as

si
ca

l
ad

de
r

..
.

cl
as

si
ca

l
ad

de
r

..
.

cl
as

si
ca

l
ad

de
r

..
.

cl
as

si
ca

l
ad

de
r

cl
as

sic
al

tim
e

ev
ol

ut
io

n
to

ob
ta

in
θ

(τ
+
δτ

)

〈0|Ṽ ∗
1,1Ṽ1,1|0〉 (θ(τ))

〈0|Ṽ ∗
I,1Ṽ

J,1|0〉 (θ(τ))

〈0|Ṽ ∗
1,S

Ṽ1,S
|0〉 (θ(τ))

〈0|Ṽ ∗
I,S

Ṽ
J,S

|0〉 (θ(τ))

〈0|Ṽ ∗
1,1Σ

1
V |0〉 (θ(τ))

〈0|Ṽ ∗
I,1Σ

T
V |0〉 (θ(τ))

〈0|Ṽ ∗
1,S

Σ
1

V |0〉 (θ(τ))

〈0|Ṽ ∗
I,S

Σ
T

V |0〉 (θ(τ))

η1,1

ηS,S

ξ1

ξS

update θ(τ) 7→ θ(τ + δτ) for the next input state

Figure 5.2.: Architecture of the Var-QITE. The unitary gates are set up in the cor-
responding quantum modules which compute their expectation value in the initial
state |0〉, respectively. From the results, the coefficients ηr,s and ξr are calculated on
the CPU according to (5.2.4). These are then used to simulate the imaginary time
evolution of θ over a small interval δτ . The updated parameters are eventually fed
back to the QPU.

Since the quantum modules respectively calculate expectation values of unitaries, the
quantum circuit shown in Fig. 2.1 could be used to achieve this goal. However, since
the considered unitaries are all of a specific form, a more efficient measurement circuit
is proposed in [LB17, Fig. 2].

5.3. Filtering Variational Quantum Eigensolver

Building on the idea of the Var-QITE, Amaro et al. [Ama+21b] proposed the filtering
variational quantum eigensolver (F-VQE). The core idea is to reduce the imaginary
time evolution to its properties leading to convergence and abstracting them.

Page 51 of 74

Chapter 5. Other Variational Quantum Algorithms

Lemma 5.3. For H ∈ L(Ξ) self-adjoint, |ψ〉 ∈ Ξ \ {0}, and f : σ(H) → R+ strictly
decreasing, it holds that

lim
τ→∞

f τ (H) |ψ〉√
〈ψ|f 2τ (H)|ψ〉

= P |ψ〉√
〈ψ|P|ψ〉

, (5.3.1)

where P denotes the projection onto the eigenspace of H corresponding to the smallest
possible eigenvalue such that |ψ〉 is not in its orthogonal complement.

Proof. Let H ∈ L(Ξ) be self-adjoint with eigenvalues E1 ≤ E2 ≤ . . . ≤ Ed and let BΞ
be an ONB consisting of eigenvectors of H, that is, H |j〉 = Ej |j〉 for all j = 1, . . . , d.
Let |ψ〉 ∈ Ξ \ {0} and consider its decomposition

|ψ〉 =
d∑
j=1

ηj |j〉 , ηj := 〈j|ψ〉 .

Since |ψ〉 6= 0, it holds that {1 ≤ j ≤ d : ηj 6= 0} 6= ∅. Let k denote the minimum of
this set. Then the decomposition simplifies to

|ψ〉 =
d∑
j=k

ηj |j〉 .

Furthermore, let Eig(H,Ek) denote the corresponding eigenspace. W.l.o.g. assume
that it is one dimensional, i.e. Eig(H,Ek) = span{|k〉}. Let f : σ(H) → R+ be strictly
decreasing. For all j > k, it follows that

Ej > Ek ⇒ f(Ej)
f(Ek)

< 1 ⇒ f τ (Ej)
f τ (Ek)

τ→∞−−−→ 0.

Now, the application of F := f τ (H) yields

F |ψ〉 = F
d∑
j=k

ηj |j〉 =
d∑
j=k

ηjf
τ (Ej) |j〉

⇒ f−τ (Ek)F |ψ〉 = ηk |k〉 +
d∑

j=k+1
ηj
f τ (Ej)
f τ (Ek)

|j〉 τ→∞−−−→ ηk |k〉

⇒ f−2τ (Ek) 〈ψ|F 2|ψ〉 = |ηk|2 +
d∑

j=k+1
|ηj|2

(
f τ (Ej)
f τ (Ek)

)2
τ→∞−−−→ |ηk|2

⇒ lim
τ→∞

F |ψ〉√
〈ψ|(F)|ψ〉

= lim
τ→∞

f−τ (Ek)F |ψ〉√
f−2τ (Ej) 〈ψ|F 2|ψ〉

= ηk
|ηk|2

|k〉 = P |ψ〉√
〈ψ|P|ψ〉

as in this case P = |k〉 〈k|.

Page 52 of 74

Chapter 5. Other Variational Quantum Algorithms

As already mentioned in Section 5.2, choosing f = 1/ exp proves Lemma 5.2. Further
examples for positive Hamiltonians H are f = 1/ id and f = − ln. The quantity
F = f τ (H) is called a filtering operator. Note that Amaro et al. demand that f is
defined on the whole energy interval [E1, Ed] of H, and that f 2 should be strictly
decreasing instead of f . However, it suffices to merely specify the function values of
f on σ(H). Furthermore, a non-negative f is strictly decreasing if and only if f 2 is
strictly decreasing.

One can interpret Lemma 5.3 in the following two ways: a good approximation of a
ground state can be conceived either by applying a filtering operator for a sufficiently
long “time” τ or by repeatedly applying it for a moderate τ sufficiently often. As
the filtering operator usually is not unitary, it cannot be implemented directly on a
quantum computer; the F-VQE therefore utilizes a variational approach to approximate
the application of filtering operators. Starting with an initial state |ι〉 which has finite
overlap with a ground state of H, further trial states are constructed by a PQC:

|θ〉 := V (θ) |ι〉 := US(θS) · · ·U1(θ1) |ι〉 . (5.3.2)

Let |ψt−1〉 denote the state obtained after t− 1 iterations. An application of a filtering
operator Ft and appropriate normalization would produce the state

|Ftψt−1〉 := Ft |ψt−1〉√
〈ψt−1|F 2

t |ψt−1〉
= Ft |ψt−1〉√

〈F 2
t 〉ψt−1

.

This state is now approximated by a state |ψt〉 = |θt〉 by minimizing the Euclidean
distance between both states

Ct(θ) := 1
2‖|θ〉 − |Ftψt−1〉‖2

= 1 − Re(〈ψt−1|Ft|θ〉)√
〈F 2

t 〉ψt−1

.
(5.3.3)

Assuming each parameter corresponds to exactly one rotation gate, the partial deriva-
tives of (5.3.3) are given by

∂Ct(θ)
∂θs

= −Re(〈ψt−1|Ft| |θ + πes〉〉)
2
√

〈F 2
t 〉ψt−1

, s ∈ [S]. (5.3.4)

Invoking the parameter shift rule (cf. [Sch+19]), evaluating the partial derivatives at
the old parameters yields

∂Ct(θ)
∂θs

∣∣∣∣
θt−1

= −
〈Ft〉ψs+

t−1
− 〈Ft〉ψs−

t−1

4
√

〈F 2
t 〉ψt−1

(5.3.5)

Page 53 of 74

Chapter 5. Other Variational Quantum Algorithms

with |ψs±t−1〉 := |θt−1 ± π
2 es〉, s ∈ [S]. These quantities are relatively easy to compute

since all three states |ψt−1〉, |ψs±t−1〉 are generated by the same PQC but with different
parameters. (5.3.5) is then used to perform a single gradient-descent update for the
parameters:

θt := θt−1 − η
S∑
s=1

∂Ct(θ)
∂θs

∣∣∣∣
θt−1

es, (5.3.6)

where η > 0 is the so-called learning rate. To prevent the gradient ∇Ct(θ)|θt−1 from
vanishing, the “time” τ may be dynamically adapted. Hence the filtering operator may
change in each iteration step and is thus labeled with a t.

Amaro et al. [Ama+21a] conducted a case study about VQA performances on a
specific job shop scheduling problem instance which is not covered by our discussion in
Chapter 4. They compare the performance of QAOA with quality q = 2, VQE, Var-
QITE, and F-VQE on a 5-qubits instance with softcoded constraints. The convergence
behavior improves drastically in ascending order of the algorithms mentioned: while the
QAOA overall shows very poor performance, the VQE “converges” after 120 iterations,
the Var-QITE after 20 iterations, and the F-VQE after 10-15 iterations.

Page 54 of 74

CHAPTER 6.

Conclusion and Outlook

First and foremost, we have drawn a rigorous connection between the QAA, the QAOA,
and the QAO. An essential part of this derivation is the concrete convergence proofs
for all three algorithms. Utilizing a more general adiabatic theorem without a gap
condition (Theorem 3.2), we could prove the convergence of the QAA with fixed initial
Hamiltonian B and initial state |+〉 even for COPs with multiple optimal solutions
(Theorem 3.6), thus extending the convergence discussion in [FGG14]. Furthermore,
we have highlighted the importance of B being completely non-diagonal by proving its
necessity for convergence in the generic case (Proposition 3.7). By invoking elementary
matrix inequalities (Lemma B.1 and Lemma B.2), we have extended the convergence
of the QAA to the QAOA (Theorem 3.8). Subsequently, we have retraced the general-
ization of the QAOA to the QAO but obtained a refined version of the QAO-mixing
property (Definition 3.12 and Corollary 3.13) that allows for an analogous convergence
proof (Theorem 3.17).

We wish to discuss several possible generalizations and open problems in this regard:
1. We did not address the rate of convergence for the universal QAA. Since this will
highly depend on the usually unknown spectral properties of the objective Hamiltonian
C, there will be nothing like a “universal” rate of convergence. However, the curve
λmax(t), 0 ≤ t ≤ 1, corresponding to the instantaneous largest eigenvalues of the
interpolating Hamiltonian Hlin(B,C)(t) always admits a peculiar behavior: it is non-
degenerate except possibly at the endpoint t = 1. On the one hand, this might actually
reduce the dependency of the convergence speed on C’s spectral properties and, on
the other hand, accelerates the convergence in comparison to cases with multiple level
crossings. A more detailed application of adiabatic theorems to this exceptional case
thus might provide additional insights.
2. We used the non-negativity of B and C as well as the complete non-diagonality
of B to conclude that λmax(t) is non-degenerate for each 0 ≤ t < 1, thereby invoking
the Perron-Frobenius theorem. By Proposition 3.7, complete non-diagonality of B is
necessary for convergence. It now stands to reason whether it is also sufficient, that
is, whether one could drop the assumption B,C ≥ 0 and still show convergence. For
example, an equal spectral shift of both operators resulting in some negative or even

Page 55 of 74

Chapter 6. Conclusion and Outlook

complex matrix elements should produce the same time evolution as the unshifted
case and thus preserve the convergence. In the same spirit, it would be valuable to
reformulate the proof of Theorem 3.6 for minimization problems. Any new insights
could then be directly incorporated into the QAO-mixing property.
3. In the proof of Lemma B.2, we have explicitly constructed finitely many angles
to approximate the quasi-adiabatic time evolution UT(t) with QAOA-gates e−iβB and
e−iγC . A more refined version of the proof respecting explicit error bounds w.r.t. the
properties of B and C as well as the chosen time scale T > 0 would help assess the
QAOA’s ability to approximate the QAA.
4. The matrix properties of B and C are always w.r.t. the CB, simply due to the
encoding of the classical objective function into an operator diagonal in the CB. However,
as discussed in Chapter 5, simulating quantum systems generally leads to objective
Hamiltonians with off-diagonal entries in the CB. Diagonalizing this Hamiltonian then
entails a different orthonormal basis B′ of q⊗N , and all matrix properties of B and C
now must be valid w.r.t. B′. Any knowledge about the structure of B′ can be used to
construct suitable initial/mixer Hamiltonians for those non-classical problems.

Furthermore, we have detailed the translation of group actions on bit strings to
operators acting on the qubit space (Section 2.4). We also provided an additional
perspective on this issue with the constraint graph model. Both approaches allow
for an alternative characterization of the refined QAO-mixing property in terms of
the properties of the problem instance (Theorem 4.7): a family of operators fulfills
the QAO-mixing property if and only if their classical analogs act transitively on the
set of feasible bit strings. In this context, we have studied permutations of bit string
values as possible mixers for scheduling-type problems. For free job-shop scheduling
problems, we have shown that the feasibility-preserving permutations admit the QAO-
mixing property (Corollary 4.10). For the more complex flexible job-shop scheduling
problems, we have provided one counterexample (Fig. 4.8) and one example (Fig. 4.10)
for feasibility-preserving permutations fulfilling the QAO-mixing property.

This new formalism may now be applied to numerous problem instances. Besides,
there are still some open questions regarding the abstract constraint graph model:
5. There are countless notions related to group theory, which could also be transferred
to operators acting on the qubit space. An overview of the quantum mechanical
correspondences of the classical group action concepts, including their interpretation,
would, in any case, be informative.
6. By Proposition 4.5, every automorphism of a given constraint graph is feasibility-
preserving, but the converse is not generally true. For example, we have shown that
Aut(G) (F for the graphs drawn in Fig. 4.2 and Fig. 4.9. A crucial observation is
that Aut(G) already acts transitively on the feasible solutions S in both cases. Thus,
Aut(G) \ F does not “increase the mixing property” of F . The question of whether
Aut(G) acts transitively on S if and only if F does is still unanswered.

Page 56 of 74

Appendix Chapter 6. Conclusion and Outlook

7. With the introduction of the constraint graph model, we have merely scratched the
surface of graph theory. A primary goal would be to characterize further the constraint
graphs of, e.g., free and flexible job-shop scheduling problems, thereby extracting the
actual graph properties necessary and sufficient for transitively acting F .
8. For the general free job-shop scheduling problem, we constructed a proper subgroup
of Aut(G) = F via (4.3.6), which already acts transitively on S. As for this problem,
the whole group F might generally be unnecessarily large. Thus, the task will be to
identify minimal subgroups G ⊆ F that still act transitively on S. Another possible
quality measure is the implementability of the operator analogs of elements of G and,
particularly, of its generators.
9. We have considered JSP(1, 2, 2, 2) and JSP(1, 3, 2, 2), and already found very
different behavior of F in these two cases. The computation of F for a general
JSP(J,O,M, T) instance is undoubtedly indispensable for further investigations of the
underlying structure.

Page 57 of 74

Appendices

A. Basic Concepts of Graph Theory

In this appendix, we present the basic concepts of graph theory necessary to characterize
completely non-diagonal matrices (cf. Definition 3.4) and to analyze the constraint
graph model (Chapter 4). In this regard, we mainly follow [Die17].

For a given set A and natural number k ∈ N, let [A]k denote the set of all k-element
subsets (k-subsets) of A.

Definition A.1. A graph is a pair G = (V,E) such that E ⊆ [V]2 and V ∩ E = ∅.
V (G) := V is the vertex set of G, and E(G) := E is its edge set. Furthermore, set
|G| := |V (G)| (order of G) and ‖G‖ := |E(G)|.

Definition A.2. A directed graph is a pair G = (V,E) such that E ⊆ V × V . All
other notions are identical to those from Definition A.1.

Definition A.3. A (directed) network is a pair G = (H, f) such that H is a (directed)
graph, and f : E(H) 7→ C \ {0} is the weight function. All other notions are identical
to those from Definition A.1.

Note that a graph in the sense of Definition A.1 is often called an undirected graph.
However, since we mainly consider undirected graphs, we call them graphs right away,
even though the concept of directed graphs is more universal since any graph G = (V,E)
can be transformed into a directed graph G̃ = (Ṽ , Ẽ) via

Ṽ := V, Ẽ :=
⋃

{v,w}∈E
{(v, w), (w, v)}. (A.1)

Moreover, any (directed) graph can be conceived as a (directed) network with weight
function f ≡ 1. This distinguishes some directed graphs and networks that are, in a
sense, undirected.

Definition A.4. A directed graph H is symmetric if there exists a graph G so that
H = G̃ in the sense of (A.1). A directed network (H, f) is duplex if H is symmetric. It
is further symmetric if, in addition, f((v, w)) = f((w, v)) for all (v, w) ∈ E(H).

Page 58 of 74

Appendix A. Basic Concepts of Graph Theory

The following definitions have a more general version valid for directed graphs or even
networks, but we will only state them if necessary. In the following, let G = (V,E)
denote an arbitrary graph.

Definition A.5. A vertex v ∈ V is incident with an edge e ∈ E if v ∈ e. The two
vertices incident with an edge are its ends. Moreover, E(v) := {e ∈ E : v ∈ e} denotes
the set of all edges in E the vertex v is incident with.

Since an edge e ∈ E is uniquely determined by its ends, we may also write vw := wv := e
if v, w ∈ V are the ends of e.

Definition A.6. Two vertices v, w ∈ W are adjacent or neighbors if vw ∈ E. Two
edges e, f ∈ E are adjacent if they have exactly one end in common.

The notion of adjacency produces two special cases:

Definition A.7. If all vertices v ∈ V are pairwise adjacent, G is complete and is
denoted by K |G|.

Definition A.8. A subset of vertices U ⊆ V or a subset of edges F ⊆ E is independent
if no two of its elements are adjacent.

Often, the neighbors of a specified vertex are of particular interest.

Definition A.9. nbhd(v) := nbhdG(v) := {w ∈ V : vw ∈ E} is the neighborhood of
the vertex v ∈ V . More generally, the neighborhood of U ⊆ V is given by

nbhd(U) := nbhdG(U) :=
(⋃
v∈U

nbhd(v)
)

\ U.

Mappings between graphs are also of significant importance. Since the structure of
a graph is fully determined by its edges, homomorphisms are defined so that they
preserve adjacency.

Definition A.10. Let G′ = (V ′, E ′) be another graph. A map ϕ : V → V ′ is an
homomorphism from G to G′ if vw ∈ E implies that ϕ(v)ϕ(w) ∈ E ′. If ϕ is also
bijective and its inverse ϕ−1 is also a homomorphism, ϕ is an isomorphism between G
and G′. In this case, G and G′ are isomorphic, G ∼= G′. An isomorphism between G
and G is an automorphism of G, and Aut(G) denotes the set of all automorphisms of
G.

Page 59 of 74

Appendix A. Basic Concepts of Graph Theory

A natural question that arises is how to characterize isomorphisms further. Clearly,
bijectivity is inevitable. However, the following example shows that this does not
imply that the edge sets are also in bijection: consider the graphs G1 = ({1, 2}, ∅) and
G2 = ({1, 2}, {12}). Then the identity is a bijective homomorphism between G1 and
G2, but ‖G1‖ 6= ‖G2‖ holds. In general, we obtain that injective homomorphisms do
not decrease the amount of edges.

Lemma A.11. Let ϕ be an injective homomorphism between two graphs G and G′.
Then ‖G‖ ≤ ‖G′‖.

Proof. Define ϕ̃ : E(G) → E(G′) via ϕ̃(vw) := ϕ(v)ϕ(w). Since ϕ is a homomorphism,
ϕ̃ is well-defined. Let v1w1, v2w2 ∈ E(G) with

ϕ(v1)ϕ(w1) = ϕ̃(v1w1) = ϕ̃(v2w2) = ϕ(v2)ϕ(w2),

Since ϕ is injective, it must hold that v1 = v2 and w1 = w2 or v1 = w2 and w1 = v2.
Since vw = wv ∈ E(G), one obtains that ϕ̃ is injective, hence ‖G‖ ≤ ‖G′‖.

Proposition A.12. A bijective homomorphism ϕ between two graphs G and G′ is an
isomorphism if and only if ‖G‖ = ‖G′‖ holds.

Proof. Assume that ‖G‖ = ‖G′‖. Consider again ϕ̃ : E(G) → E(G′) from Lemma A.11.
Since ϕ̃ is injective and |E(G)| = ‖G‖ = ‖G′‖ = |E(G′)| holds, ϕ̃ is already bijective
with inverse ϕ̃−1 : E(G′) → E(G). Let v′w′ ∈ E(G′). Since ϕ : V (G) → V (G′) is
surjective, there exist v, w ∈ V (G) such that ϕ(v) = v′ and ϕ(w) = w′. Furthermore,
there exist x, y ∈ V (G) such that E(G) 3 ϕ̃−1(v′w′) = xy. But since

ϕ(v)ϕ(w) = v′w′ = ϕ̃(xy) = ϕ(x)ϕ(y)

holds, one concludes, invoking the injectivity of ϕ, that (w.l.o.g.) v = x and w = y.
Therefore, vw = ϕ−1(v′)ϕ−1(w′) ∈ E(G). Hence ϕ−1 is an homomorphism, and ϕ is
thus an isomorphism.
Conversely, if ϕ is an isomorphism, ϕ is an homomorphism from G to G′, and ϕ−1 is
an homomorphism from G′ to G. Thus, by Lemma A.11, ‖G‖ ≤ ‖G′‖ and ‖G′‖ ≤ ‖G‖
hold, i.e. ‖G‖ = ‖G′‖.

In fact, for the bijection ϕ̃ : E(G) → E(G′) induced by an isomorphism ϕ between G
and G′, it holds that

ϕ̃−1
(
ϕ̃(vw)

)
= ϕ̃−1

(
ϕ(v)ϕ(w)

)
= vw and

ϕ̃
(
ϕ̃−1(v′w′)

)
= ϕ̃

(
ϕ−1(v′)ϕ−1(w′)

)
= v′w′

Page 60 of 74

Appendix A. Basic Concepts of Graph Theory

for all vw ∈ E(G) and v′w′ ∈ E(G′), i.e. ϕ̃−1 = ϕ̃−1.

An isomorphism might preserve additional structure. There are two basic notions
describing this effect.

Definition A.13. A class of graphs that is closed under isomorphisms is a graph
property.

Definition A.14. A map taking graphs as arguments is a graph invariant if it is
constant among isomorphic graphs.

The fact that it necessarily holds that |G| = |G′| and ‖G‖ = ‖G′‖ whether G and G′

are isomorphic can be expressed in either way: {G : |G| = m, ‖G‖ = n} is a graph
property for any m,n ∈ N0, or equivalently, [G 7→ (|G|, ‖G‖)] is a graph invariant.

Next, we will discuss obtaining new graphs from given ones. In the following, let
G = (V,E) and G′ = (V ′, E ′) denote two arbitrary graphs.

Definition A.15. The union and intersection of G and G′ are G∪G′ := (V ∪V ′, E∪E ′)
and G ∩G′ := (V ∩ V ′, E ∩ E ′), respectively.

Definition A.16. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of G, G′ ⊆ G. If, in
addition,…

(i) …G′ 6= G, G′ is a proper subgraph of G.

(ii) …v, w ∈ V ′ with vw ∈ E implies that vw ∈ E ′, G′ is an induced subgraph of G.

(iii) …V ′ = V , G′ is a spanning subgraph of G.

Given an arbitrary subset of vertices U ⊆ V , we may also consider certain subgraphs
of G “built” from U .

Definition A.17. The closure of U ⊆ V (in G) is U := U
G := U ∪ nbhdG(U). If

U = U , U is closed or neighborless in G. If U = V , U is dense in G.

Definition A.18. For U ⊆ V , the graph spanned by U in G is

G[U] :=
(
U,
⋃

{vw ∈ E : v, w ∈ U}
)
,

and EG[U] := E(G[U]) is the edges spanned by U in G.

Page 61 of 74

Appendix A. Basic Concepts of Graph Theory

We introduce the following concepts for directed networks to cover the characterization
of completely non-diagonal matrices. Therefore, let G = (V,E, f) denote an arbitrary
directed network.

Definition A.19. For a prespecified ordering V = {v1, . . . , vn}, the adjacency matrix
of G is defined as A = (aij)n×n with

aij :=

f(e), if (vi, vj) = e ∈ E

0, otherwise.
(A.2)

Note that the adjacency matrix A of G depends on the ordering of the vertices.
Therefore, it is merely unique up to permutations of the vertices. Conversely, A
contains all structural information about G. Thus, we say GA := G is the directed
network with adjacency matrix A. An immediate consequence of the definition is that
GA is duplex if and only if (aij 6= 0 ⇔ aji 6= 0). Furthermore, GA is symmetric if and
only if A is symmetric. Furthermore, the adjacency matrix is the door opener into the
field of linear algebraic graph theory, which we do not pursue here.

Next, we examine the connectivity properties of graphs and networks and their relation
to the adjacency matrix. This requires first the notion of (directed) paths.

Definition A.20. A path is a non-empty graph P = (V,E) of the form

V = {x1, . . . , xk+1}, E = {x1x2, x2x3, . . . , xkxk+1}.

The vertices x1 and xk+1 are the ends of the path P , x2, . . . , xk are its inner vertices.
The length of P is given by ‖E‖, and the path of length k ∈ N0 is denoted by P k.

Definition A.21. A directed path is a non-empty directed graph P = (V,E) of the
form

V = {x1, . . . , xk+1}, E = {(x1, x2), (x2, x3), . . . , (xk, xk+1)}.

x1 is the tail of P , while xk+1 is its head, and P is a path from x1 to xk+1.

Definition A.22. A graph G is connected if it is non-empty and for any pair of
vertices v, w ∈ V (G), there exists a path in G with ends v and w.

We can further characterize connectedness of a graph in terms of its closed vertex
subsets, which fits more naturally in our discussion in Section 3.3.

Proposition A.23. A non-empty graph G is connected if and only if it has no
non-trivial closed vertex subsets.

Page 62 of 74

Appendix A. Basic Concepts of Graph Theory

Proof. Let G be connected and let U ⊂ V (G) be a non-trivial subset of vertices. Since
U is non-trivial, there exist v ∈ U and w ∈ V (G) \ U , and connectivity of G implies
the existence of a path P with ends v and w. Then there necessarily exists an edge
e ∈ E(P) \ EG[U]. Espescially, nbhdG(U) 6= ∅ holds, i.e. U is not closed in G.
Conversely, let G have no non-trivial closed vertex subsets, and let v, w ∈ V (G), be
arbitrary. A path between v and w is built inductively: set x1 := v. For i ∈ N, assume a
path Pi = (Ui, Fi) with w /∈ Ui = {x1, . . . , xi} and Fi = {x1x2, . . . , xi−1xi} has already
been constructed. If possible, select a vertex xi+1 ∈ nbhdG(Ui) \ nbhdG(Ui−1) and set
Ui+1 = Ui ∪ {xi}, Fi+1 = Fi ∪ {xixi+1}, and Pi+1 = (Ui+1, Fi+1). Then xi+1 necessarily
is a neighbor of xi, hence Pi+1 is again a path. If xi+1 = w, Pi+1 is thus a path between
v and w. If, on the other hand,

nbhdG(Ui) \ nbhdG(Ui−1) = ∅, (A.3)

reduce i until |nbhdG(Ui) \ nbhdG(Ui−1)| > 1 holds and select a different vertex x′
i+1

to form Ui+1 and Fi+1. This is always possible because w /∈ Ui, i.e. Ui is non-trivial
and therefore nbhdG(Ui) 6= ∅ by assumption; thus (A.3) implies that there exists an
i′ < i with

nbhdG(Ui′) ∩ nbhdG(Ui) 6= ∅. (A.4)

But since nbhdG(Ui) 63 xi′+1 ∈ nbhdG(Ui′), one has that |nbhdG(Ui′)| > 1. Now select
the smallest i′ ∈ N so that (A.4) is fulfilled, then |nbhdG(Ui′) \ nbhdG(Ui′−1)| > 1.
Therefore, the iteration can be repeated until w is reached.

Definition A.22 can be applied to directed graphs as well: for a directed graph
H = (W,F), we define its underlying graph uH = (V,E) via

V := W, E := {{v, w} : (v, w) ∈ F or (w, v) ∈ F}. (A.5)

Now, connectivity properties of H are attributed to the underlying graph.

Definition A.24. A directed network (H, f) is (weakly) connected if uH is connected.

Definition A.25. A directed network (H, f) is strongly connected if it is non-empty
and it contains a directed path from v to w and a directed path from w to v for every
pair of vertices v, w ∈ V (H).

Every strongly connected directed network is weakly connected but not necessarily
vice versa. However, for duplex directed networks, both notions are equivalent.

Page 63 of 74

Appendix B. Convergence Proofs

B. Convergence Proofs

Here, we provide a proof of the convergence of the QAA with initial Hamiltonian (3.1.4)
and an arbitrary objective Hamiltonian C.

Proof of Theorem 3.6. Denote by λmax(t) the largest eigenvalue of Hlin(B,C)(t), for
0 ≤ t ≤ 1, respectively. Let 0 ≤ t0 < 1. Since B is completely non-diagonal, so
is (1 − t0)B. As C is diagonal, also Hlin(B,C)(t0) = (1 − t0)B + t0C is completely
non-diagonal by Corollary 3.5. In addition, B as well as C are non-negative. In
summary, Hlin(B,C)(t0) is non-negative and completely non-diagonal. According to the
Perron-Frobenius theorem (cf. [Fro12]), λmax(t0) is non-degenerate.
Furthermore, the mapping

Hlin(B,C)(·) : R → L(q⊗N), t 7→ Hlin(B,C)(t) = (1 − t)B + tC (B.1)

is analytic and Hlin(B,C)(t) is symmetric for all t ∈ R. Let L denote the discrete set
of level crossings/eigenvalue splittings of H(·). According to [Kat95, Theorem 6.1],
the instantaneous eigenvalues of Hlin(B,C)(t), t ∈ R, can be sorted as {λm(t) : 1 ≤
m ≤ M}, M ≤ 2N , such that [t 7→ λm(t)] ∈ C ω(R,R) and for the corresponding
spectral projections Pm(t), it holds that [t 7→ Pm(t)] ∈ Cω

(
R \ L,L(q⊗N)

)
, for every

1 ≤ m ≤ M . Furthermore, the spectral projections have removable singularities in L,
i.e. there exist analytic continuations Pm, defined on whole R, such that Pm(t) = Pm(t)
for t ∈ R \ L, for all 1 ≤ m ≤ M . By continuity, these continuations are themselves
orthogonal projections with constant rank and fulfill

Hlin(B,C)(t)Pm(t) = λm(t)Pm(t)

for all t ∈ R. W.l.o.g. assume λ1(0) = λmax(0). Since λmax(t0) remains non-degenerate
for 0 ≤ t0 < 1, it follows that λ1 ≡ λmax on [0, 1) and by continuity of λ1 that λ1 ≡ λmax
on [0, 1]. In addition, the corresponding spectral projection P1 is well-defined on [0, 1).
Therefore, its continuation P1 fulfills all properties necessary to apply Theorem 3.2, i.e.
(3.1.8) holds. Since P1(0) = P1(0), one especially obtains that

0 = lim
T→∞

(1− P1(1))UT (1)P1(0) |+〉 = lim
T→∞

(1− P1(1))UT (1) |+〉

⇔ lim
T→∞

UT (1) |+〉 = P1(1) lim
T→∞

UT (1) |+〉 .

Since P1(1) is a projection with Hlin(B,C)(1)P1(1) = λmax(1)P1(1), one concludes
(3.1.9).

In the following, we prove that complete non-diagonality of the initial Hamiltonian is
indeed a necessary property for the convergence in the generic case.

Page 64 of 74

Appendix B. Convergence Proofs

Proof of Proposition 3.7. Let R denote a proper invariant coordinate subspace of HI.
The mutual orthogonality of the CB states yields the decomposition

q
⊗N = R ⊕ R⊥,

where R⊥ is again a coordinate subspace. Accordingly, write |ι〉 = |ι1〉 + |ι2〉 ∈ R ⊕ R⊥.
Consider an objective Hamiltonian C that also leaves R invariant. Since HI and C are
self-adjoint, they also have R⊥ as an invariant subspace. Consequently, R as well as
R⊥ are invariant subspaces of Hlin(HI,C)(t) for all 0 ≤ t ≤ 1. Solving the time evolution
equation

d
dsŨT (s) = −iHlin(HI,C)(s/T)ŨT (s), 0 ≤ s ≤ T ; ŨT (0) = 1

restricted to R and R⊥, respectively, further implies that both R and R⊥ are invariant
subspace of ŨT (s) = ŨT (s)|R + ŨT (s)|R⊥ for all T > 0 and 0 ≤ s ≤ T . This eventually
yields that

lim
T→∞

UT (1) |ι1〉 ∈ R and lim
T→∞

UT (1) |ι2〉 ∈ R⊥.

If |ι1〉 = 0, choose C such that Sopt ⊆ R, then

lim
T→∞

UT (1) |ι〉 = lim
T→∞

UT (1) |ι2〉 /∈ R ⊇ Sopt.

If instead |ι1〉 6= 0, choose C such that Sopt ⊆ R⊥, then

lim
T→∞

UT (1) |ι1〉 ∈ R \ {0} ⇒ lim
T→∞

UT (1) |ι1〉 + lim
T→∞

UT (1) |ι2〉 /∈ R⊥ ⊇ Sopt.

Built on the convergence of QAA, we show in the following that the QAOA also
converges. This requires first a rather technical result.

Lemma B.1. For ε > 0 and m ∈ N, let {Vj}mj=1, {Wj}mj=1,⊂ L(Ξ) be families of
unitary operators so that

‖Vj −Wj‖ < ε (B.2)

holds for all j ∈ [m]. Then the following estimate is valid:∥∥∥∥∥∥
m∏
j=1

Vj −
m∏
j=1

Wj

∥∥∥∥∥∥ < (1 + ε)m − 1. (B.3)

Page 65 of 74

Appendix B. Convergence Proofs

Proof. Since (B.2) holds, one can find linear operators Rj ∈ L(Ξ) with ‖Rj‖ ≤ 1 and
Vj = Wj + εRj for each j ∈ [m], respectively. (B.3) clearly holds for m = 1. Therefore,
it remains to show that if (B.3) holds for an m ∈ N, then it also holds for m+ 1:∥∥∥∥∥∥

m+1∏
j=1

Vj −
m+1∏
j=1

Wj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 m∏
j=1

Vj

Vm+1 −

 m∏
j=1

Wj

Wm+1

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 m∏
j=1

Vj

(Wm+1 + εRm+1) −

 m∏
j=1

Wj

Wm+1

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 m∏
j=1

Vj

(1− εRm+1W
∗
m+1) −

 m∏
j=1

Wj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
m∏
j=1

Vj −
m∏
j=1

Wj

∥∥∥∥∥∥+

∥∥∥∥∥∥
 m∏
j=1

Vj

εRm+1W
∗
m+1

∥∥∥∥∥∥
< (1 + ε)m − 1 + ε

≤ (1 + ε)m − 1 + ε(1 + ε)m = (1 + ε)m+1 − 1.

The next lemma shows that the quasi-adiabatic evolution can be approximated to
arbitrary precision (in matrix norm) by QAOA gates.

Lemma B.2. For all T > 0, t ∈ [0, 1], and δ > 0, there exist finitely many angles β
and γ such that

‖V (β,γ) − UT (t)‖ < δ.

Proof. Fix T > 0, t ∈ [0, 1], and δ > 0. Then there exists an m ∈ N so that∥∥∥∥∥∥
m∏
j=1

e−iHlin(B,C)
(
j tT

m

)
j tT

m − UT (t)

∥∥∥∥∥∥ < δ

2 . (B.4)

In the following, set

Wj := e−iHlin(B,C)
(
j tT

m

)
j tT

m .

The Lie product formula implies that for all j ∈ [m], there exist nj ∈ N such that for
all ñ ≥ nj it holds that∥∥∥∥∥∥∥

e−i 1−j tT
m

ñ
j tT

m
Be−i

(
j tT

m

)2

ñ
C

ñ −Wj

∥∥∥∥∥∥∥ < m

√
δ

2 + 1 − 1, (B.5)

Page 66 of 74

Appendix B. Convergence Proofs

respectively. Taking n := max{nj : j ∈ [m]}, this estimate holds for all j ∈ [m] and
(especially) ñ = n. Now, choose q = nm angles β = (β1, . . . ,βm) and γ = (γ1, . . . ,γm)
as (

βj

)
k

≡
1 − j tT

m

n
j
tT

m
mod π

(
γj
)
k

≡

(
j tT
m

)2

n
mod 2π

for all k ∈ [n] and all j ∈ [m]. Then, by construction, (B.5) translates into∥∥∥V (βj,γj) −Wj

∥∥∥ < m

√
δ

2 + 1 − 1.

Thus, by (B.4) and Lemma B.1, it follows that

‖V (β,γ) − UT (t)‖ =

∥∥∥∥∥∥
m∏
j=1

V (βj,γj) − UT (t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
m∏
j=1

V (βj,γj) −
m∏
j=1

Wj

∥∥∥∥∥∥+

∥∥∥∥∥∥
m∏
j=1

Wj − UT (t)

∥∥∥∥∥∥
<
δ

2 + δ

2 = δ.

This suffices to prove the convergence of QAOA.

Proof of Theorem 3.8. Let ε > 0. According to the proof of Theorem 3.6, there exists
a T > 0 such that

‖(1− P1(1))UT (1) |+〉‖ < ε

2 .

Since dim(q⊗N) > 1 and P1(1) has rank one by continuity, α := ‖1 − P1(1)‖ > 0.
Furthermore, by Lemma B.2, one can choose (for t = 1 and δ = ε/(2α)) finitely many
angles β and γ such that

‖V (β,γ) − UT (1)‖ < ε

2α.

Then it follows that
‖(1− P1(1)) |β,γ〉‖ = ‖(1− P1(1))V (β,γ) |+〉‖

≤ ‖(1− P1(1))(V (β,γ) − UT (1)) |+〉‖ + ‖(1− P1(1))UT (1) |+〉‖

< ‖1− P1(1)‖ ε

2α + ε

2 = ε.

Since im(P1(1)) ⊆ Sopt, one obtains the assertion.

Page 67 of 74

Appendix B. Convergence Proofs

The convergence proof for the QAOA can now be extended to QAO instances.

Proof of Theorem 3.17. Since {Hi}i∈I is COP-mixing, HI ∈ L(S) is non-negative and
completely non-diagonal. In addition, HF := HP|S ∈ L(S) is diagonal and non-negative.
Therefore, the analytic mapping

Hlin(HI,HF)(·) : R → L(S), t 7→ Hlin(HI,HF)(t) := (1 − t)HI + tHF (B.6)

provides symmetric matrices Hlin(HI,HF)(t), t ∈ R, with Hlin(HI,HF)(t0) also being non-
negative and completely non-diagonal for 0 ≤ t0 < 1. For T > 0, let UT denote the
quasi-adiabatic evolution w.r.t. to

Hlin(HI,HF)(t), 0 ≤ t ≤ 1.

Let ε > 0. An analgous reasoning as in the proof of Theorem 3.6 then shows that there
exists a T > 0 so that

‖(1− P1(1))UT (1) |ι〉‖ < ε

2

holds. As in the proof of Theorem 3.6, P1(·) denotes the analytic continuation of the
spectral projection corresponding to the largest eigenvalue curve (on [0, 1]). W.l.o.g.
assume that dim(S) > 1. Otherwise the statement would be trivial as dim(Sopt) 6= 0
then implies that |ι〉 ∈ S = Sopt. Thus, w.l.o.g. α := ‖1− P1(1)‖L(S) > 0 since P1(1)
has rank one be continuity.
Simultaneous mixer: Assume that σ = 0. Invoking Lemma B.1, one can utilize the
definition of the time evolution operator (compare (B.4)) and the Lie product formula
(compare (B.5)) to conclude the existence of fininitely many angles β and γ such that

‖V (β,γ) − UT (1)‖L(S) <
ε

2α

holds.
Sequential mixer: W.l.o.g. assume that σ = idI . By the definition of the time
evolution operator, there exists an m ∈ N so that∥∥∥∥∥∥

m∏
j=1

e−iHlin(HI,HF)
(
j T

m

)
j T

m − UT (1)

∥∥∥∥∥∥
L(S)

<
ε

4α (B.7)

holds. In the following, set

Wj := e−iHlin(HI,HF)
(
j T

m

)
j T

m .

Page 68 of 74

Appendix B. Convergence Proofs

The multivariate Lie product formula [Bha97, Problem IX.8.5] imples that for all
j ∈ [m], there exist nj ∈ N so that for all ñ ≥ nj it holds that∥∥∥∥∥∥∥

∏
i∈I
e−i

(
1−j T

m

)
ñ

j T
m
Hi|S

e−i

(
j T

m

)2

ñ
HF

ñ −Wj

∥∥∥∥∥∥∥
L(S)

< m

√
ε

4α + 1 − 1, (B.8)

respectively. Choosing the same angles as in the proof of Lemma B.2, one eventually
obtains that

‖V (β,γ) − UT (t)‖L(S) <
ε

2α.

Conclusion: Therefore, both cases yield

‖(1− P1(1)) |β,γ〉‖ = ‖(1− P1(1))V (β,γ) |ι〉‖
≤ ‖(1− P1(1))(V (β,γ) − UT (1)) |ι〉‖ + ‖(1− P1(1))UT (1) |ι〉‖

< ‖1− P1(1)‖L(S)
ε

2α + ε

2 = ε.

Then im(P1(1)) ⊆ Sopt proves the assertion.

Page 69 of 74

Bibliography

[AE99] J. E. Avron and A. Elgart. “Adiabatic Theorem without a Gap Condition”.
In: Comm. Math. Phys. 203 (1999), pp. 445–463.

[Ama+21a] D. Amaro et al. A case study of variational quantum algorithms for a
job shop scheduling problem. 2021. arXiv: 2109.03745.

[Ama+21b] D. Amaro et al. Filtering variational quantum algorithms for combinato-
rial optimization. 2021. arXiv: 2106.10055.

[Ben80] P. Benioff. “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines”. In: J. Stat. Phys. 22 (1980), pp. 563–591.

[Bha+22] K. Bharti et al. “Noisy intermediate-scale quantum algorithms”. In: Rev.
Mod. Phys. 94.1 (2022).

[Bha97] R. Bhatia. Matrix Analysis. Springer, New York, NY, 1997.
[BR22] J. S. Baker and S. K. Radha. Wasserstein Solution Quality and the

Quantum Approximate Optimization Algorithm: A Portfolio Optimization
Case Study. 2022. arXiv: 2202.06782.

[Dam+21] W. van Dam et al. “Quantum Optimization Heuristics with an Applica-
tion to Knapsack Problems”. In: 2021 IEEE International Conference on
Quantum Computing and Engineering (QCE). 2021, pp. 160–170.

[Deu85] D. Deutsch. “Quantum theory, the Church-Turing principle and the
universal quantum computer”. In: Proc. R. Soc. Lond. A 400 (1985),
pp. 97–117.

[Dia22] O. Dial. Eagle’s quantum performance. https://research.ibm.com/blog/eagle-
quantum-processor-performance. 2022.

[Die17] R. Diestel. Graph Theory. Springer Berlin, Heidelberg, 2017.
[Dua20] R. Duan. Quantum Adiabatic Theorem Revisited. 2020. arXiv: 2003.

03063.
[Eke+02] A. K. Ekert et al. “Direct Estimations of Linear and Nonlinear Functionals

of a Quantum State”. In: Phys. Rev. Lett. 88 (2002).
[Far+00] E. Farhi et al. Quantum Computation by Adiabatic Evolution. 2000. arXiv:

quant-ph/0001106.

Page 70 of 74

https://arxiv.org/abs/2109.03745
https://arxiv.org/abs/2106.10055
https://arxiv.org/abs/2202.06782
https://arxiv.org/abs/2003.03063
https://arxiv.org/abs/2003.03063
https://arxiv.org/abs/quant-ph/0001106

Bibliography

[Fey82] R. P. Feynman. “Simulating physics with computers”. In: Int. J. Theor.
Phys. 21 (1982), pp. 467–488.

[FGG14] E. Farhi, J. Goldstone, and S. Gutmann. A Quantum Approximate
Optimization Algorithm. 2014. arXiv: 1411.4028.

[FQ85] E. C. Freuder and M. J. Quinn. “Taking advantage of stable sets of
variables in constraint satisfaction problems”. In: In IJCAI’85. 1985,
pp. 1076–1078.

[Fro12] G. Frobenius. “Über Matrizen aus nicht negativen Elementen”. In: Berl.
Ber. (1912), pp. 456–477.

[GE21] C. Gidney and M. Ekerå. “How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits”. In: Quantum 5 (2021), p. 433.

[GH19] P. D. de la Grand’rive and J. Hullo. Knapsack Problem variants of QAOA
for battery revenue optimisation. 2019. arXiv: 1908.02210.

[GM19] G. G. Guerreschi and A. Y. Matsuura. “QAOA for Max-Cut requires
hundreds of qubits for quantum speed-up”. In: Sci. Rep. 9 (2019), p. 6903.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proc. Annu. ACM Symp. Theory Comput. 1996, pp. 212–219.

[Had+19] S. Hadfield et al. “From the Quantum Approximate Optimization Algo-
rithm to a Quantum Alternating Operator Ansatz”. In: Algorithms 12.2
(2019), p. 34.

[Had18] S. Hadfield. Quantum Algorithms for Scientific Computing and Approxi-
mate Optimization. 2018. arXiv: 1805.03265.

[Har+21] M. P. Harrigan et al. “Quantum approximate optimization of non-planar
graph problems on a planar superconducting processor”. In: Nat. Phys.
17 (2021), pp. 332–336.

[HJ12] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 2012.

[Kar72] R. M. Karp. “Reducibility among Combinatorial Problems”. In: ed. by
R. E. Miller, J. W. Thatcher, and J. D. Bohlinger. Springer US, 1972,
pp. 85–103.

[Kat95] T. Kato. Pertubation Theory for Linear Operators. Springer, Berlin,
Heidelberg, 1995.

[Kay20] A. Kay. Tutorial on the Quantikz Package. 2020. arXiv: quant-ph/1809.
03842.

[Kit95] A. Yu. Kitaev. Quantum measurements and the Abelian Stabilizer Problem.
1995. arXiv: quant-ph/9511026.

Page 71 of 74

https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1908.02210
https://arxiv.org/abs/1805.03265
https://arxiv.org/abs/quant-ph/1809.03842
https://arxiv.org/abs/quant-ph/1809.03842
https://arxiv.org/abs/quant-ph/9511026

Bibliography

[LB13] D. A. Lidar and T. A. Brun. Quantum Error Correction. Cambridge
University Press, 2013.

[LB17] Y. Li and S. C. Benjamin. “Efficient Variational Quantum Simulator
Incorporating Active Error Minimization”. In: Phys. Rev. X 7.2 (2017).

[Lei77] F. T. Leighton. “A Graph Coloring Algorithm for Large Scheduling
Problems”. In: J. Res. Natl. Bur. Stand. 84.6 (1977), pp. 489–506.

[Llo18] S. Lloyd. Quantum approximate optimization is computationally universal.
2018. arXiv: 1812.11075.

[Llo96] S. Lloyd. “Universal Quantum Simulators”. In: Science 273 (1996),
pp. 1073–1078.

[Mac34] J. K. L. MacDonald. “On the Modified Ritz Variation Method”. In: Phys.
Rev. 46 (1934), pp. 828–828.

[MBZ20] M. E. S. Morales, J. D. Biamonte, and Z. Zimborás. “On the universality
of the quantum approximate optimization algorithm”. In: Quantum Inf.
Process. 19 (2020).

[McA+19] S. McArdle et al. “Variational ansatz-based quantum simulation of imag-
inary time evolution”. In: npj Quantum Inf. 5.1 (2019), p. 75.

[McL64] A. D. McLachlan. “A variational solution of the time-dependent Schrodinger
equation”. In: Mol. Phys. 8 (1964), pp. 39–44.

[Mon16] A. Montanaro. “Quantum algorithms: an overview”. In: npj Quantum
Inf. 2 (2016), p. 15023.

[Ort+01] G. Ortiz et al. “Quantum algorithms for fermionic simulations”. In: Phys.
Rev. A 64 (2001).

[Pag+20] G. Pagano et al. “Quantum approximate optimization of the long-range
Ising model with a trapped-ion quantum simulator”. In: Proc. Natl. Acad.
Sci. U.S.A. 117 (2020), pp. 25396–25401.

[Pan56] S. Pancharatnam. “Generalized theory of interference, and its applica-
tions”. In: Proc. Indian Acad. Sci 44.5 (1956), pp. 247–262.

[Per+14] A. Peruzzo et al. “A variational eigenvalue solver on a photonic quantum
processor”. In: Nat. Commun. 5.1 (2014).

[Pre18] J. Preskill. “Quantum Computing in the NISQ era and beyond”. In:
Quantum 2 (2018), p. 79.

[Qia+18] Xiaogang Qiang et al. “Large-scale silicon quantum photonics imple-
menting arbitrary two-qubit processing”. In: Nat. Photonics 12 (2018),
pp. 534–539.

[RBW06] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Program-
ming. Elsevier Sicence Inc., 2006.

Page 72 of 74

https://arxiv.org/abs/1812.11075

Bibliography

[Rel37] F. Rellich. “Störungstheorie der Spektralzerlegung. I. Mitteilung. An-
alytische Störung der isolierten Punkteigenwerte eines beschränkten
Operators”. In: Math. Ann. 113 (1937), pp. 600–619.

[Rit09] W. Ritz. “Über eine neue Methode zur Lösung gewisser Variationsprob-
leme der mathematischen Physik.” In: 1909.135 (1909), pp. 1–61.

[RMS19] M. Radzihovsky, J. Murphy, and M. Swofford. A QAOA solution to the
traveling salesman problem using pyQuil. 2019.

[Sag01] B. E. Sagan. The Symmetric Group. Springer, New York, NY, 2001.
[Sch+19] M. Schuld et al. “Evaluating analytic gradients on quantum hardware”.

In: Phys. Rev. A 99 (2019), p. 032331.
[Sho94] P.W. Shor. “Algorithms for quantum computation: discrete logarithms

and factoring”. In: Proceedings 35th Annual Symposium on Foundations
of Computer Science. 1994, pp. 124–134.

[Sim17] B. Simon. Tosio Kato’s Work on Non-Relativistic Quantum Mechanics.
2017. arXiv: 1711.00528v1.

[Sjö+00] E. Sjöqvist et al. “Geometric Phases for Mixed States in Interferometry”.
In: Phys. Rev. Lett. 85.14 (2000), pp. 2845–2849.

[Str11] J. W. Strutt. The Theory of Sound. Vol. 1. Cambridge Library Collection
- Physical Sciences. Cambridge University Press, 2011.

[Teu01] S. Teufel. “A Note on the Adiabatic Theorem Without Gap Condition”.
In: Lett. Math. Phys. 58.3 (2001), pp. 261–266.

[WHB19] D. Wang, O. Higgott, and S. Brierley. “Accelerated Variational Quantum
Eigensolver”. In: Phys. Rev. Lett. 122 (2019).

[Wic54] G. C. Wick. “Properties of Bethe-Salpeter Wave Functions”. In: Phys.
Rev. 96 (1954), pp. 1124–1134.

Page 73 of 74

https://arxiv.org/abs/1711.00528v1

List of Figures

2.1. Circuit encoding the expectation value into an ancilla qubit 8
2.2. Interference pattern from measurement 8

4.1. Traveling salesperson constraint graph 31
4.2. Graph with feasibility-preserving non-automorphisms 33
4.3. Graph with unconnected feasbile solutions 34
4.4. Commutative diagram of bit permutations 36
4.5. Commutative diagram of feasibility-preserving bit permutations 36
4.6. FJSP(3, 2, 2) constraint graph . 38
4.7. JSP(1, 2, 2, 2) constraint graph . 42
4.8. Dihedral symmetry display of the JSP(1, 2, 2, 2) constraint graph 43
4.9. JSP(1, 3, 2, 2) constraint graph . 44
4.10. Dihedral symmetry display of the JSP(1, 3, 2, 2) constraint graph 45

5.1. Architecture of the VQE . 49
5.2. Architecture of the Var-QITE . 51

Page 74 of 74

	Introduction
	Basic Concepts
	Notation
	Expectation Value Calculation
	Combinatorial Optimization Problems
	Group Actions on Bit Strings

	From Adiabatic Evolution to Alternating Operators
	Quantum Adiabatic Algorithm
	Quantum Approximate Optimization Algorithm
	Quantum Alternating Operator Ansatz

	Constraint Graph Model
	Construction and Properties
	Connection to the QAO
	Applications

	Other Variational Quantum Algorithms
	Variational Quantum Eigensolver
	Variational Quantum Simulation of Imaginary Time Evolution
	Filtering Variational Quantum Eigensolver

	Conclusion and Outlook
	Appendices
	Basic Concepts of Graph Theory
	Convergence Proofs

	Bibliography
	List of Figures

