

Leibniz Universität Hannover

Institut für Theoretische Physik

Near-Term Quantum-Algorithmic Approaches to

the Facility Location Problem

Master’s Thesis

Nico Buß

10025147

First Supervisor
Prof. Dr. Tobias Osborne

Second Supervisor
Prof. Dr. Thomas Wick

Contents

1 Introduction 1

2 Facility Location Problem 4
2.1 Mathematical Modelling of Location Problems 5
2.2 Relationship to Other Problems . 12

3 Classical Observations of the FLP 14
3.1 Types of Solutions . 14
3.2 Constraint Analysis . 16
3.3 P and NP . 21
3.4 Approximations for the FLP . 24

4 Basics of Quantum Computing 28
4.1 Single Qubit Operations . 28
4.2 Controlled Operations . 37

5 Quantum Approximation Algorithms 50
5.1 Quantisation of the FLP . 50
5.2 Quantum Approximate Optimisation Algorithm 55
5.3 Mixer for the Opening Constraint . 59
5.4 Mixer for the Assignment Constraint 64
5.5 Mixer for the Facility Location Problem 71

6 Testing of the FLP Quantum Algorithms 76
6.1 Theoretical Analysis of the Algorithms 76
6.2 Implementation of the FLP for n = m = 2 81
6.3 Approximation Quality as a Dependency of the Size of the FLP . . . 85
6.4 Customisation of the Algorithms . 89
6.5 Distribution of the Approximations 95

7 Conclusion and Outlook 97

i

1 Introduction

In this thesis, we discuss the Facility Location Problem (FLP), a combinatorial
optimisation problem where a company must supply a set of customers D. To achieve
this, a predetermined set of potential facilities F is available. The objective is to select
a subset S ⇢ F of facilities to be opened. Each customer j 2 D must be connected
to exactly one open facility i 2 S, incurring a cost cij . Additionally, the opening cost
for a facility i is fi. The goal is to minimise the total costs while adhering to these
constraints.
Chapter 2 explores social applications and various formulations of the FLP, including
special cases like the Metric Uncapacitated FLP and generalisations such as the
Capacitated FLP. For the remainder of this thesis, we will primarily focus on the
Uncapacitated FLP, abbreviated as UCFLP or simply FLP. This implies that an
organisation can supply any number of customers. Subsequently, other combinatorial
optimisation problems are introduced, which will be referenced in later chapters.
The number of customers is usually denoted by m, and the number of facilities is
denoted by n. In Chapter 3, we consider the FLP classically.
First, we define the terms solution space and optimal solution space. It is then
demonstrated that the FLP is NP-hard, meaning it cannot be solved in polynomial
time if P 6= NP. We then introduce a greedy algorithm and a local search algorithm
for solving the FLP classically. When minimising the objective function of the FLP,
two main constraints must be satisfied. The assignment constraint requires that each
customer is connected to exactly one facility, while the opening constraint stipulates
that a customer can only be connected to an open facility. Additionally, there are
equivalent constraints that do not alter the minimum of the objective function.
The main focus of this thesis is to present di↵erent quantum algorithms for the FLP.
The necessary fundamentals are introduced in Chapter 4, drawing from the book
”Quantum Computation and Quantum Information” [1] and the paper ”Elementary
gates for quantum computing” [2]. We begin with the Pauli matrices and other single-
qubit operators. Next, we discuss some properties of unitary operators, especially
their decomposition into rotation operators. After introducing operators for a single
qubit, we will particularly consider controlled operations, which are crucial for our
quantum algorithms.

1

CHAPTER 1. INTRODUCTION 2

In Chapter 5 on quantum approximation algorithms, we present a total of four
di↵erent hybrid quantum algorithms. There are two di↵erent ways to create a hybrid
quantum algorithm: softcoding and hardcoding. The main focus here is on how
constraints are handled. In softcoding, constraints are replaced by a penalty, which
is an additional term appended to the objective function which ensuring that states
which do not fulfil the constraint receive very large function values. If both constraints
are replaced by a penalty, the unconstrained FLP (UFLP) is obtained. There are
no constraints for the UFLP, so the Quantum Approximate Optimisation Algorithm
(QAOA) [3] can be applied to this problem. In this algorithm, a phase separator
is combined with a universal QAOA mixer. Both operators depend on an angle,
according to which classical optimisation is performed. When the two operators are
applied consecutively p times to an initial state, the approximation improves with a
larger p. This algorithm is abbreviated as UFLP from Chapter 5 onwards. QAOA is
universally applicable to all unconstrained combinatorial optimisation problems.
The three other algorithms are specialised for the FLP. The first algorithm is the
tailored variational algorithm presented in [4]. It is abbreviated as TV in the following.
The TV algorithm is based on constructing a quantum circuit that satisfies the
opening constraint. The assignment constraint is included via a penalty, resulting
in the TV algorithm having both hardcoded and softcoded components. Another
approach is the reverse, based on the UFLP algorithm, a new algorithm is developed
which hardcodes the assignment constraint and softcodes the opening constraint.
This approach is inspired by a quantum algorithm for the travelling salesperson
problem presented in [5]. The idea is based on so-called SWAP gates, which exchange
the values of two qubits. The adaptation is based on the fact that the SWAP gates
are only used for an explicit customer j. For this customer, we swap the facility
associated with them. A phase separator and a QAOA mixer are then applied to the
state. As with the UFLP algorithm, these three operators can be applied to a state
a total of p times, with the approximation improving with a larger p. This algorithm
is referred to as SWAP due to the use of SWAP gates.
The SWAP algorithm requires a state as input that fulfils the assignment constraint.
To achieve this, a quantum circuit is constructed to generate a superposition of all
possible states that fulfil the assignment constraint. The opening constraint is also
always fulfilled. This superposition can serve as the input for the SWAP algorithm.

This superposition can also be used to define a purely hardcoded algorithm for the
FLP. For this, a decision is made for each individual customer. For each facility, an
angle-dependent operator is used to determine whether they are connected or not. If
they are connected, the algorithm moves on to the next customer; if not, an angle-
dependent operator is applied to the connection to the next facility. This ensures
that the customer is connected to the last facility at latest. Subsequently, a facility

CHAPTER 1. INTRODUCTION 3

is opened if it is connected to at least one customer. No softcoding is required for
this algorithm, which is why it is referred to as constraint FLP (CFLP).
The algorithms are compared in the Chapter 6. The algorithms are first analysed
with regard to the number of gates required. This is followed by an explicit example
for two customers and two facilities, which is first analysed, then the algorithms are
applied to it. To better compare the algorithms, we generated random instances and
calculated the average approximation for di↵erent instance sizes. When comparing
the algorithms, the dependency on p is shown for the SWAP and UFLP algorithms.
For larger instances, the algorithms TV and CFLP are compared in particular. An
alternative hardcoded algorithm is also developed for the CFLP algorithm, di↵ering
from the original CFLP algorithm for n � 3.
Finally, the distribution of the approximation is shown and the percentage of cases
in which the minimum is approximated well is examined. These tests help to identify
which of the algorithms performs best.

2 Facility Location Problem

When expanding, many companies face the challenge of selecting new locations.
There are numerous examples of this. For instance, if a company wants to open
a new facility, the ideal location would be one that has a particularly large number
of potential customers nearby, allowing them to reach the shop quickly.
If we consider hospitals, for example, paramedics should reach every patient within 15
minutes, regardless of their location in Lower Saxony. Here, not only the geometric
distance but also the infrastructure between hospitals and patients is crucial.
Additionally, it is important to bear in mind that hospitals have limited capacity, so
there must be multiple hospitals in densely populated areas. (cf. [6])
As school attendance is compulsory in Germany, millions of children go to school
every day, making the choice of school locations a complex task. Important factors
include the number of pupils in the neighbourhood and the corresponding required
building size. Additionally, the distribution of pupils and maximum travel time must
also be taken into account.
For delivery companies, it is essential to choose ideal locations so that drivers have
the shortest routes to customers. This has numerous benefits, such as reducing
travel costs and journey times, which helps lower expenses and increases customer
satisfaction. If only these factors are considered, it would make sense to open a large
number of locations.
However, other factors must also be considered. One important factor is that each
location incurs costs, such as rental or purchase expenses, which also depend on the
location. For example, a facility in the city would be more expensive than one in
the countryside, but there are also more potential customers in the city. If a delivery
company has too many facilities, it also incurs more delivery costs for the procurement
of goods.
Therefore, when choosing locations, it is always a compromise between reducing
delivery costs, which include both the supplier’s salary and transport costs, and the
location costs. Location costs include acquisition costs for equipment as well as rental
or purchase expenses.

4

CHAPTER 2. FACILITY LOCATION PROBLEM 5

2.1 Mathematical Modelling of Location Problems

In this chapter, various location problems are presented to give a more detailed
overview of the Facility Location Problem.

Uncapacitated Facility Location Problem

First of all, we need to mathematise our problem. To do this, we first need a set of
potential facilities F that can theoretically be opened. Additionally, there is a set of
customers D that must be supplied. In open a factory i 2 F , we need to consider
the opening costs fi. The delivery costs from factory i 2 F to customer j 2 D are
denoted by ci,j . In order to minimise costs, we seek a subset of facilities S ⇢ F to
actually open, and an assignment � that assigns a facility i 2 S to each customer
j 2 D.

Problem 1: Uncapacitated Facility Location Problem (UCFLP)

Given are:

• a finite set of facilities F

• a finite set of customers D

• opening costs fi 2 R+ for a facility i 2 F

• delivery costs ci,j 2 R+ for factory i 2 F delivering customer j 2 D.

and we would like to find out:

• a subset S ⇢ F of facilities to be opened

• a assignment � : D ! S which assign each customer to a open facility

such that the following sum is minimised

X

i2S

fi +
X

j2D

c�(j),j .

The notation and definitions are adapted from [7, page 13]. An instance of the
UCFLP is defined by the tuple (F ,D, f i, ci, j). Many applications of UCFLP pertain
to deliveries from companies to customers. Typically, a metric is used to calculate
the distance, with the Euclidean metric being common for short distances. Up to

CHAPTER 2. FACILITY LOCATION PROBLEM 6

this point, there are no specific restrictions on how the delivery costs are calculated
or how they relate to each other.

Metric Uncapacitated Facility Location Problem

If a driver delivers from facility i 2 F to customer j 2 D and then drives to facility
i
0 2 F to deliver to customer j0 2 D, this should be more expensive than if the driver
delivers directly from facility i 2 F to customer j0 2 D. This can be expressed as the
inequality

ci,j + ci0,j + ci0,j0 � ci,j0 .

With this groundwork, we can define the “Metric Uncapacitated Facility Location
Problem“. Here we present the definition of [7, page 15] in more detail.

Problem 2: Metric Uncapacitated Facility Location Problem
(MUCFLP)

Let (F ,D, fi, ci,j) be a Uncapacitated Facility Location Problem. If ci,j satisfied

ci,j + ci0,j + ci0,j0 � ci,j0 (2.1)

with

• cii = 0 and cii0 = minj2D(ci,j + ci0,j) for i, i0 2 F

• cj,j = 0 and cjj0 = mini2F (ci,j + ci,j0) for j, j0 2 D

• ci,j = cji 8i, j 2 D [F

we called (F ,D, fi, ci,j) a Metric Uncapacitated Facility Location Problem.

The Metric Uncapacitated Facility Location Problem (MUCFLP) is named ”metric”
due to the special property that ci,j for all i, j 2 D [F satisfies the characteristics
of a metric. The properties of positivity and symmetry are inherently present by
definition. To demonstrate the triangle inequality, consider i, j, k 2 D [F , then we
get:

ci,k  ci,j + cj,j + cj,k = ci,j + cj,k.

CHAPTER 2. FACILITY LOCATION PROBLEM 7

UCFLP as Linear Program

Now we show that the UCFLP can be formulated as an integer linear program.
Formulating it as a linear program allows us to ignore the assignment function �.
Instead, we introduce the binary variables xi,j 8i 2 F , j 2 D, which have the value
1 if the customer j is supplied by the facility i. Otherwise, the value is 0. The sum
over the open facilities S can be replaced by the sum over all facilities. To achieve
this, we introduce the binary variable yi 8i 2 F . This variable is only set to 1 if the
facility i 2 F is open.

Theorem 1: UCFLP as an Integer Linear Program

Let (F ,D, fi, ci,j) be a Uncapacitated Facility Location Problem. Then it is
equivalent to the following integer linear program:

min
X

i2F

fiyi +
X

i2F

X

j2D

ci,jxi,j

under the secondary conditions:

• xi,j  yi 8i 2 F , j 2 D

•
P
i2F

xi,j = 1 8j 2 D

• xi,j 2 {0, 1} 8i 2 F , j 2 D

• yi 2 {0, 1} 8i 2 F .

Proof

Let (F ,D, fi, ci,j) be a Uncapacitated Facility Location Problem. We can change the
two sums in the following way:

X

i2S

fi =
X

i2F

fi · yi,
X

j2D

c�(j)j =
X

i2F

X

j2D

ci,j · xi,j .

The binary variables xi,j , yi are defined as follows:

yi =

⇢
1 if i 2 S
0 if i 62 S

, xi,j =

⇢
1 if �(j) = i

0 if �(j) 6= i
.

CHAPTER 2. FACILITY LOCATION PROBLEM 8

Now we show xi,j  yi. If xi,j = 0 then we have nothing to show. Let xi,j = 1, then
�(j) = i and � maps to S, which implies: i 2 S. It follows that yi = 1.
Finally we show

P
i2F

xi,j = 1:

X

i2F

xi,j =
X

i2F\{�(j)}

xi,j + x�(j),j = x�(j),j = 1.

⇤
In many cases, the number of facilities and customers is given. The following problem
formulation is equivalent to UCFLP. This is shown in theorem 1 considering that
|F| = n, |D| = m.

Problem 3: Facility Location Problem (FLP)

Given are:

• yi =

⇢
1 if facility i is opened

0 otherwise
for i 2 {1, . . . , n}

• xi,j =

⇢
1 if facility i serves customer j

0 otherwise
for i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• fi, ci,j 2 R+.

The Facility Location Problem is the problem

min
x,y

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j (2.2)

with the constraints

nX

i=1

xi,j = 1, 8j 2 {1, . . . ,m} (2.3)

xi,j  yi 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}. (2.4)

We will then denote an instance of the FLP by (F ,D, f i, ci, j, xi, j, yi). The first
constraint 2.3, is referred as the assignment constraint, and the second constraint
2.4, is referred as the opening constraint.

CHAPTER 2. FACILITY LOCATION PROBLEM 9

k-Facility Location Problem

In some cases, companies cannot or choose not to open more than a certain number
of facilities. This can be for various reasons, such as having too few employees or
the logistics between locations becoming too complicated. To accommodate these
scenarios, an additional constraint can be added to the Facility Location Problem,
which is explained in the following definition.

Problem 4: k-Facility Location Problem

Let (F ,D, fi, ci,j , xi,j , yi) be a Facility Location Problem. We call it k-Facility
Location Problem if yi fulfils the condition

X

i2F

yi  k, for k 2 N.

By definition, the k-FLP restricts the number of open facilities to a maximum of k.
This definition is taken from [7, page 34]. The k-FLP is a generalisation of the FLP.
If k � n holds, then the k-FLP can also be considered as FLP.

Capacitated Facility Location Problem

To make the FLP even more realistic, several other factors must be considered.
Firstly, di↵erent customers do not always require the same quantity of goods; for
example, the needs of a large company can greatly di↵er from those of a private
individual.
Additionally, an organisation cannot produce an unlimited amount of goods; there
is a maximum number of goods that can be produced within a certain time frame.
Therefore, customers should have the ability to order from multiple companies if, for
instance, one facility is fully utilised.
Now we define the Capacitated Facility Location Problem (CFLP). We integrate the
explanations from [7, pages 44/45] and [8] into a mathematical definition. For the
facility i 2 F , we denote the maximum production capacity by ui and the demand
of a customer by dj .
The first constraint ensures that the customer’s demand is fulfilled. The second
constraint stipulates that the facility i 2 F must not accept more orders than its
capacity. It is also specified that a customer cannot order more from a facility than
they need and can only order from open facilities.
The variable xi,j now describes how much the customer j 2 D orders from the facility

CHAPTER 2. FACILITY LOCATION PROBLEM 10

i 2 F . The penultimate condition prevents this value from becoming negative. As
with the Facility Location Problem, yi indicates whether the facility is open (value
of 1) or not (value of 0).

Problem 5: Capacitated Facility Location Problem (CAFLP)

Given are:

• a finite set of facilities F and customers D

• opening costs fi 2 R+ 8i 2 F and delivery costs ci,j 2 R+ 8i 2 F , j 2 D

• a capacity ui � 0 8i 2 F and a demand dj � 0 8j 2 D

and we would like to minimise

X

i2F

fiyi +
X

i2F

X

j2D

ci,jxi,j

under the secoundary conditions:

•
P
i2F

xi,j = dj 8j 2 {1, . . . ,m}

•
P
j2D

xi,j  uiyi 8i 2 {1, . . . , n}

• xi,j � 0 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• yi 2 {0,1} 8i 2 {1, . . . , n}.

Now we show that the FLP is a special case of the CFLP.

Theorem 2: FLP as a Special Case of CAFLP

Let (F ,D, fi, ci,j , ui, dj) be a CFLP. The CAFLP is an FLP under the following
conditions.

• dj = 1 8j 2 D

• ui = |D| 8i 2 F .

CHAPTER 2. FACILITY LOCATION PROBLEM 11

Proof

We have to show that the constraints of the FLP are now fulfilled. Since dj = 1, it
follows from the first constraint that the assignment constraint

X

i2F

xi,j = 1

is fulfilled. Combined with the third constraint, it follows xi,j 2 [0,1]. ui = |D| 8i 2 F
shows that each facility can deliver to all customers at the same time. Now we will
show that xi,j  yi applies. If yi = 1, we do not have to show anything because
xi,j 2 [0,1] is fulfilled. If yi = 0, then applies:

xi,j 
X

j2D

xi,j  uiyi = ui · 0 = 0.

Thus xi,j  yi.
Last we must show xi,j 2 {0,1}. Let yi = 1. From

P
i2F

xi,j = 1 it follows that there is

an decomposition
P
i2F

xi,j =
nP

i=1

xi,j = 1. Let F 0 := {i1, . . . , ip} ⇢ F be the facilities

that supply the customer j. Let k the facility with ck,j  ci,j8i 2 F 0 then:

X

i2F 0

fi +
X

i2F 0

ci,jxi,j �
X

i2F 0

fi + ck,j

X

i2F 0

xi,j =
X

i2F 0

fi + ck,j � fk + ck,j .

It is therefore more favourable to be supplied by one facility than to be supplied by
many facilities in parts. If k = i it follows xi,j = 1 otherwise xi,j = 0. This means
that a minimum of the FLP fulfils xi,j 2 {0,1}. ⇤

CHAPTER 2. FACILITY LOCATION PROBLEM 12

2.2 Relationship to Other Problems

Set Cover Problem

The Set Cover Problem is an NP-hard problem (more on this in the Chapter 3.3).
Given a set U and a set of subsets from U which is called S = {S1, . . . , Sk} with
Si ⇢ U . We search for the smallest S 0 ⇢ S such that S 0 covers the set U . The
problem definition is taken from [9, page 35].

Problem 6: Set Cover Problem

Given are:

• Set U with |U] = n

• S = {S1, . . . , Sk}, Si ⇢ U with i 2 {1, . . . , k}

• cost function c : S ! R

we want to minimise:

X

S2S 0

c(S)

under the secondary condition:

• U =
S

S2S 0
S.

The Set Cover Problem is used in the theorem 6 to show that the FLP is an NP-hard
problem.

Traveling Salesperson Problem

Another problem that has a certain connection to the FLP is the travelling salesperson
problem [10]. This problem involves determining how a salesperson can visit a certain
number of cities as quickly as possible. It can be represented as a graph V , where
each pair of vertices v, w 2 V corresponds to two cities. The cost cv,w represents
the travel time between the cities. The objective is to visit all cities, but visit each
city only once and minimise the travel time. This leads to the following problem
formulation.

CHAPTER 2. FACILITY LOCATION PROBLEM 13

Problem 7: Traveling Salesperson Problem

Given are:

• set of n points V

• costs cv,w 2 R+ for traveling from city v to w

• n
2 variables xv,i =

⇢
1 if the salesperson is in the city v at time i

0 otherwise

we want to minimise

nX

i=1

X

w2V \{v}

X

v2V

cv,w(xv,ixw,i+1 + xv,i+1xw,i)

under the secondary conditions:

•
nP

i=1

xv,i = 1 8v 2 V

•
P
v2V

xv,i = 1 8i 2 {1, . . . , n}.

The first constraint specifies that each city must be visited exactly once, while the
second constraint describes that the salesperson can be in exactly one city at any
given time i. These constraints show an interesting connection to the FLP, where
each customer must be connected to exactly one facility. This connection is later
used to adapt a quantum algorithm, developed for the travelling salesperson problem
to the FLP. This adaptation is presented in the Chapter 5.4.

3 Classical Observations of the FLP

In this chapter, we demonstrate that there are currently no fast, exact classical
algorithms for the FLP, and therefore, other approaches need to be considered.

3.1 Types of Solutions

Before we find out how well classical approximations work for the FLP, we first have
to define what we want to achieve in the optimal case. To do this, we will define the
concept of the combinatorial optimisation problem as well as the terms feasible and
optimal solution, which are mainly taken from the work of [10]. First, we start with
the definition of a combinatorial minimisation problem.

Definition 1: Combinatorial Minimisation Problem

Given are:

• a number N 2 N of bits

• costs ca 2 R+, a 2 {1, . . . A}

• clauses Ca : Z(N) ! {0,1}, a 2 {1, . . . A} which are satisfied if Ca(z) = 1

• constraints Db : Z(N) ! {0,1}, b 2 {1, . . . B} with are satisfied if
Db(z) = 1

we want to minimise the objective function:

C =

AX

a=1

caCa

under the secondary conditions:

• Db(z) = 1 8b 2 {1, . . . B}.

14

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 15

We call the CMP := (N, {ca}Aa=1
, {Ca}Aa=1

, {Db}Bb=1
) a combinatorial minimisation

problem, for B = 0 we define {Db}Bb=1
= ;. Z(N) = {0,1}N describes the set of N -

bit strings. The Facility Location Problem is a combinatorial minimisation problem,
making it a good example to understand the definition better. The following function
is to be minimised in the FLP:

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j .

The objective function of the FLP can be obtained with the following assignment:

(i, j) 7! (i� 1) ·m+ j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}
i 7! nm+ i 8i 2 {1, . . . , n}

The costs ca and clauses Ca can now be defined as follows:

ca =

⇢
ci,j if a  nm

fi if nm < a  nm+ n
, a 2 {1, . . . , nm+ n}

Ca =

⇢
xi,j if a  nm

yi if nm < a  nm+ n
, a 2 {1, . . . , nm+ n}.

This results in the following objective function for the FLP:

nm+nX

a=1

caCa.

The assignment constraint can be formulated as follows:

Db =

(
1 if 9! i 2 {1, . . . , n} with C(i�1)·m+b�n·m = 1

0 otherwise

for b 2 {n ·m+ 1, . . . , n ·m+ n} with b = nm+ i.

And the opening constraint as follows:

Db =

(
1 if C(i�1)·m+j  Cn·m+i8i for i 2 {1, . . . , n}, j 2 {1, . . . ,m}
0 otherwise

for b 2 {1, . . . , n ·m} with b = (i� 1)m+ j.

This shows that the FLP is a CMP with A = nm + n and B = nm + n. There are
therefore nm + n binary variables and also nm + n constraints. Now that the CMP

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 16

has been defined, the question is what kind of solution we are particulary looking for.
A feasible solution of CMP is defined as follows.

Definition 2: Feasible Solution

A bit string z 2 Z(N) is a feasible solution to a CMP if the constraints are
fulfils. The set of all feasible solutions is denoted as CMPsol.

If CMPsol = ; the CMP is infeasible. The solution we are looking for is an element
from CMPsol, so that all bit stings from Z(N)\CMPsol do not need to be considered
as optimal solutions.

Definition 3: Optimal Solution

A bit sting z⇤ 2 CMPsol is a optimal solution, if it’s fulfils:

z⇤ = argmin
z2CMPsol

AX

a=1

caCa(z).

The set of all optimal solutions is denoted as CMPopt.

3.2 Constraint Analysis

Alternative Constraints

The following section presents various alternative constraints for the FLP.
The assignment constraint is given by

nX

i=1

xi,j = 1 8j 2 {1, . . . ,m}

and the opening constraint is given by:

xi,j  yi 8i 2 {1, . . . , n}, 8j 2 {1, . . . ,m}.

We define two constraints as equivalent if exchanging these constraints does not
change the minimum of the FLP.

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 17

Definition 4: Equivalent Constraints

Two constraints D and D
0 are called equivalent if exchanging the two

constraints does not change the minimum of the objective function for every
instance I.

In the following, we always assume fi > 0 and ci,j > 0 for all customers and facilities.
First consider the assignment constraint, which dictates that a customer is supplied
by exactly one facility. However, another possibility would be that a customer is
supplied by more than one facility.

Theorem 3: Equivalent Formulation for the Assignment Constraint

Let a instance of the FLP be given. The constraint

nX

i=1

xi,j � 1 8j 2 {1, . . . ,m}

is equivalent to the assignment constraint.

Proof

Obviously, the set of feasible solutions with the assignment constraint Ssol is a subset
of the set of feasible solutions of the new constraint Snew. I.e. Ssol ⇢ Snew.
We have to show that the optimal solution of Snew is equal to the optimal solution
of Ssol. We proof by contradiction. Let us now assume that there is a optimal

solution for which
nP

i=1

xi,j � 2 holds for at least one j 2 {1, . . . ,m}. It must be

shown that there is a smaller function value in Snew to demonstrate the assertion.
Let Copt(z0) < Copt(z) with z0 2 Snew\Seq be given for all z 2 Ssol. There are
therefore i, i

0 2 {1, . . . , n} with i 6= i
0, so that x0i,j = x

0

i0,j = 1. We now define z00 as
follows:

x
00

i,j =

(
0 if 9i0 < i with x

0

i0,j = 1

x
0

i,j otherwise

y
00

i = y
0

i.

By construction, z00 2 Ssol and C(z00)  C(z0) holds. This disproves the assertion.
⇤

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 18

The theorem shows that even if we allow a customer to be supplied by several facilities,
it has no e↵ect on the minimum. Therefore, in the best case, each customer is always
supplied by exactly one facility.
The opening constraint was not changed in the previous considerations, but there are
also alternatives for the opening constraint, as the following theorem shows:

Theorem 4: Equivalent Formulation for the Opening Constraint

Let a instance of the FLP be given. The constraint

yi =

8
><

>:

0 if

mX

j=1

xi,j = 0

1 otherwise

8i 2 {1, . . . , n}

is equivalent to the opening constraint.

Proof

First, all feasible solutions of our new constraint Snew also fulfil the opening constraint,
so it holds

Snew ⇢ Ssol.

To show the assertion, we need to prove that the minimum of the objective function
also satisfies the new constraint if we only require the opening constraint. We prove
by contradiction. Let us now assume for a optimal solution holds z 2 Ssol\Snew.
Then there is an i0 with yi0 = 1 for which it holds that xi0,j = 0 8j 2 {1, . . . ,m}.
We now define z0 as follows:

y
0

i =

⇢
0 if xi,j = 0 8j 2 {1, . . . ,m}
yi otherwise

x
0

i,j = xi,j .

However, it is true that C(z0)  C(z) applies and z0 2 z 2 Ssol, so we have a
contradiction. This shows the theorem. ⇤
The theorem indicates that it is su�cient to check if a facility supplies any customer.
If a facility does not supply any customers, it does not need to be open. However, the
opening constraint does not e↵ectively enforce this. By requiring that a facility can
only be open if it supplies a customer, the number of feasible solutions is reduced,
but the minimum does not change.

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 19

Number of Feasible Solutions

In total, we have n facilities and m customers in the FLP. Whether a customer j

is supplied by a facility i is indicated by xi,j . If this value is 1, a supply takes
place; otherwise, it does not. This results in n · m parameters that can be 0 or 1.
Additionally, for the opening of the facilities, yi = 1 is valid only if the facility is
open; otherwise, it is 0. Therefore, we have nm + n parameters that can be either
0 or 1. This results in a total of 2nm+n possible solutions. However, these do not
necessarily fulfil one or even both constraints.
First consider the assignment constraint. There are a total of 2n · nm possible states
that fulfil it. The n

m holds because, for each customer j exactly one of the values
x1j to xn,j is 1 and the others are 0. There are therefore only n possible states for
each customer. If we consider this for each of the m customers, there are nm possible
states. However, there is still the option of closing or opening facilities, for which
there are another 2n possibilities, so that there are ultimately 2n · nm possible states
that fulfil the assignment constraint. However, if the equivalent formulation of the
opening constraint from Theorem 4 is added, there are exactly n

m possible states
under which the minimum of the objective function is located. This is because the
alternative constraint means that the value of yi is automatically uniquely determined
by the values of xi,j .
There are a total of (2m+1)n states that fulfil the opening constraint. For an facility
i there are two possibilities, either yi has the value 0 or 1. If yi has the value 1, the
values of xi,1, . . . , xi,m are irrelevant, since the opening constraint is always fulfilled.
This means that there are exactly 2m possible states for yi = 1. If yi = 0, there is only
one possible state that fulfils the opening constraint, namely xi,1 = · · · = xi,m = 0
This results in 2m + 1, but since there are a total of n facilities, it follows that there
are (2m + 1)n possible states that fulfil the opening constraint.
The question now is how many possible states there are that fulfil the assignment
constraint and the opening constraint. To answer this, we consider k opened facilities,
there are a total of km possible assignments from the customers to the facilities. In
addition, there are

�
n
k

�
possibilities to select k facilities from n. Thus, there are�

n
k

�
k
m possible states with exactly k open facilities. In order to be able to represent

all possible states, we sum over k and obtain

nX

k=1

✓
n

k

◆
k
m

possible states that fulfil both constraints.
If we compare the number of states that fulfil the assignment and the opening
constraints with those that fulfil the assignment constraint and the equivalent opening

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 20

constraint according to Theorem 4, we see that the number of states is reduced by

nX

k=1

✓
n

k

◆
k
m � n

m =

n�1X

k=1

✓
n

k

◆
k
m +

✓
n

n

◆
n
m � n

m =

n�1X

k=1

✓
n

k

◆
k
m
.

Thus, we have
n�1P
k=1

�
n
k

�
k
m states, which do not need to be considered if we use the

equivalent opening constraint from Theorem 4 instead of the opening constraint.
The following Table 3.1 can be used as an overview, which summarises the results of
this section once again.

Constraints Number of possibilities Example for n = 3,m = 4

None 2nm+n 32768

Only assignment 2n · nm 648

Only opening (2m + 1)n 4913

Assignment and opening
Pn

k=1

�
n
k

�
k
m 132

Assignment and Theorem 4 n
m 81

Table 3.1: Distribution of states for various constraints

The question is exists a equivalent constraints that reduce the number of possibilities
even further than n

m.

Theorem 5: Minimum Number of Feasible Solutions

For the FLP there exists non constraint which is equivalent to the assignment
or the opening constraint and makes the number of feasible states truly smaller
than n

m.

Proof

Proof is provided by contradiction. Suppose there are constraints on the solution
space with less than n

m elements. This means that there is a z0 with xi1,1 = · · · =
xim,m = yi1 = · · · = yim = 1, which is not in the set of feasible solutions z0 62 S. Now
consider the following instance of the FLP I.

c
0

i,j =

⇢
1 if i = ij

nm otherwise
f
0

i =

⇢
1 if i 2 {i1, . . . im}
n otherwise

.

By construction, C(z0) is the minimum of the instance I if we use the assignment and
opening constraint. However, z0 62 S. The minimum of the instance I is therefore

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 21

not z0. Let z be the minimum of the instance I. By construction, C(z0) < C(z)
applies. This means that the constraints change the value of the minimum for the
instance I and are therefore not equivalent. ⇤
The Theorem 5 shows that if we use the assignment constraint and the equivalent
opening constraint from theorem 4, we have the smallest possible number of feasible
solutions.
Thus we can show with simple reasoning that we have no polynomial growth. However,
the question is whether there is a polynomial algorithm for the FLP at all. This will
be discussed in the next section.

3.3 P and NP

The computing time required to solve a problem di↵ers between di↵erent problems.
The O notation is often used to represent the computing time, which is defined in
[11, page 13] as follows.

Definition 5: Landau Notation

Let g(n) be a function with limn!1 g(n) = 1. Then is f 2 O(g) if and only
if:

lim sup
n!1

����
f(n)

g(n)

���� < 1.

The function g(n) describes the order of magnitude of computational complexity,
specifically indicating how quickly the computing time increases. The primary
distinction is whether the function is a polynomial or a faster-growing function. To
define the complexity classes P and NP, it is essential to first understand the concepts
of a formal language and a Turing machine, as these are used to describe the time
required to solve a problem. A problem belongs to the complexity class P if it can be
decided in polynomial time (cf. [12, page 3], [1, page 232]). More formally, a problem
is decidable in polynomial time if a deterministic algorithm exists with a runtime of
O(nk), where k 2 N.
One of the biggest problems in computer science is whether P = NP or P NP
applies. NP describes the set of problems for which a possible solution can be verified
in polynomial time. An example of this is the calculation of the roots of polynomials
with degree 5 or higher, for which no general formula can be specified. However, it
is easy to check a possible solution by substituting the value into the polynomial.
Formally, the term verifier must be introduced to define the complexity class NP (cf.

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 22

[13, page 232]). We use the following explanation: A problem is in the complexity
class NP if a possible solution can be checked in polynomial time. A possible solution
can be checked in polynomial time if a deterministic algorithm with a running time
of O(nk), where k 2 N, exists.
The complexity class P only requires the existence of an algorithm; the algorithm
does not have to be known. There are many NP problems for which it is not clear
if they also lie in P. Some problems are at least as complex as all others in NP, but
these do not necessarily have to be in NP; these problems are called NP-hard.
Even if problems from NP-hard do not always lie in NP, there are also problems to
which both holds; these problems are called NP-complete. A well-known NP-hard
problem is the Set Cover Problem from Chapter 2.2. We will use this knowledge to
show that the Facility Location Problem is also NP-hard. (cf. [13, page 238], [14,
page 2])

Theorem 6: The FLP is NP-Hard

The Uncapacitated Facility Location Problem is NP-hard.

Proof

These proof is originates from [14, page 2].
We start with the Set Cover Problem and identify it with the FLP via: U ! D ,
S ! F . The costs can be defined by

ci,j =

⇢
1 if j 2 Si

3 otherwise
fi = 1.

We take the total cost of the Set Cover Problem as
X

S2S

c(S)xS = C.

Since fi = 1 the relation between the total cost of the Set Cover Problem and the
total cost of the FLP is given by

X

i2S

fi +
X

j2D

c�(j)j = C + n.

Now let the costs for the Facility Location Problem be C + n. We must now make a
case distinction.
1: Let the delivery costs be

X

j2D

c�(j)j = C.

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 23

Then we can use

C =
X

j2D

c�(j)j =
X

S2S 0

c(S).

Then the cost of the Set Cover Problem is given by C.
2: Let there be less than the n possible facilities open. Then the delivery costs are

X

j2D

c�(j)j > C.

For each customer j with a delivery cost of 3, we open a facility i 62 S ⇢ F with
ci,j = 1. We do this until the sum of the delivery costs is C. Then Case 1 can be
applied again, and we obtain a Set Cover Problem with costs of C.
If the FLP for this particular instance were not NP-hard, the FLP could simply be
solved and, with it, the Set Cover Problem. From this, it would follow that the Set
Cover Problem would not be NP-hard. However, since the Set Cover Problem is
NP-hard, the FLP is also NP-hard. ⇤
This theorem means that if P 6= NP holds, there exists no exact polynomial algorithm
for solving the Facility Location Problem. Nevertheless, there are polynomial
approximation algorithms for the FLP, which are briefly described in the next section.

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 24

3.4 Approximations for the FLP

Before approximation algorithms are presented, we define what an approximation
algorithm is. (cf. [15, page 1], [7, page 13])

Definition 6: k-Approximation Algorithm

Given are:

• a polynomial time algorithm A for an minimisation problem

• a solution A(I) for an instance I

• the optimal solution OPT(I) of the instance I.

Then A is a k-approximation algorithm if

OPT(I)  A(I)  k ·OPT(I)

holds forall instances I.

If we find a (k = 1)-approximation algorithm for the FLP, we automatically obtain
the proof that P = NP applies.

Greedy Algorithm

For the first approximation, we use the relationship between the Set Cover Problem
and the UFLP as presented in [7, page 14]. A greedy algorithm for the Set Cover
Problem works as follows: We always select the S

0 2 S \ S 0 that contains the most
elements from U \

S
S2S 0

S and add it to S 0. This process is repeated until U =
S

S2S 0
S

applies.

It can be represented as an algorithm as follows (cf. [16, page 2]):

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 25

Algorithm 1: Greedy Algorithm for Set Cover

U = U
S = S
S
0 = ;

while(U 6= ;)do:
select s 2 S such that it covers the most elements from U

add s to S
0

U = U\s
return: S 0 := S

0

In [16] and [17, pages 233-235], it’s shown that this is a (1+ log2(m))-approximation
algorithm with O(mn

2), where m = |U| and n = |S|. The greedy algorithm can
be adapted to the FLP with the same approximation and run time. The greedy
algorithm for the FLP is given by:

Algorithm 2: Greedy Algorithm for Facility Location

D = D
F = F
F

0 = ;
while(D 6= ;) do:

pick (i, A) with minimised ratio
fi+

P
j2A ci,j
|A|

F
0 = F

0 [i

fi = 0
D = D\A

return: S := F
0

The Algorithm 2 works as follows. We start with all possible customers and calculate

the e↵ectiveness
fi+

P
j2A ci,j
|A|

for a star (i,A). In this case, a star is a pair consisting
of a facility i and a subset of the as-yet unassigned customers D. Once we have found
the star with minimum e↵ectiveness, we remove all customer j 2 A from D and open
the facility i. As the facility i is now open, the value for fi is then set to 0. This
process is repeated until all customers are assigned to a star.

Theorem 7: Greedy-Approximation Algorithm

Let |D| = m.
Then the Algorithm 2 is an (1 + log2(m))-approximation algorithm.

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 26

Proof

For proof, please refer to the works [7, page 14], [18, page 1]. In particular, reference
is made to the Algorithm 1 and the FLP is identified with the Set Cover Problem. ⇤

Local Search

Another approach is the local search algorithm for the metric Facility Location
Problem. Let a feasible solution be given by S ⇢ F and � : D ! S be an assignment
with costs of

cost(S) =
X

i2S

fi +
X

j2D

c�(j)j .

The objective is now to reduce costs, for which a feasible solution is initially assumed.
It is checked whether the costs can be reduced by adding or removing a facility. It
can also be checked whether replacing the facility i with the facility i

0 will reduce
costs. This is a local search, as only one facility can be added or removed at a time.
If the algorithm can no longer be continued, there is a local minimum, which does
not necessarily have to be the global minimum, i.e., the optimal solution.

Algorithm 3: Local Search for Facility Location

F = F
S ⇢ F

while true do:
If it exists i 2 F\S s.t. cost(S [i) < cost(S), then S = S [i

If it exists i 2 S s.t. cost(S\i) < cost(S), then S = S\i
If it exists i 2 S and i

0 2 F\S s.t.
cost((S\i) [i

0) < cost(S), then S = (S\i) [i
0

return: S := S

The following theorem applies to the local search:

Theorem 8: Local Search-Approximation Algorithm

The Algorithm 3 is a 3-approximation algorithm for the MUCFLP.

Proof

The complete proof can be found in [19]. ⇤

CHAPTER 3. CLASSICAL OBSERVATIONS OF THE FLP 27

Currently there is the Jain-Mahdian-Saberi algorithm, a variation of the greedy
algorithm, which is a 1.52-approximation algorithm for the MUCFLP, as shown by
Mahdian, Ye and Zhang in 2002, see also: [7, page 28], [20, page 229-242].

4 Basics of Quantum Computing

Since there are no exact polynomial algorithms to solve the FLP, we want to use
quantum algorithmic solution methods. To do this, we first need a basic knowledge
of quantum computing. Unless otherwise stated, this chapter is based on [1, chapter
4].

4.1 Single Qubit Operations

Analogous to [10, page 5/6] and [21], we designate the single qubit system with .
Obviously

⇠= C2
.

The tensor product of n qubits from is given by

nO

i=1

=: ⌦n
.

This vector space is isomorphic to C2
n

. We denote the set of all n bit strings by
Z(n) := {0,1}n. With this we can define the computational basis.

Definition 7: Computational Basis

The computational basis of ⌦n is given by

{|zi := |z1z2 . . . zni : zi 2 {0,1}} = {|zi : z 2 Z(n)}.

In the next section we will look at linear operators on ⌦n.

28

CHAPTER 4. BASICS OF QUANTUM COMPUTING 29

Unitary Operators

The norm of a linear operator T can be defined by the norm of the Hilbert space:
(cf. [22, page 16/17])

kTk := sup
kxk=1

kTxk.

In the following, the set of all linear operators on the Hilbert space H is denoted by
L(H). The linear operators A 2 L(C2) are described by 2 ⇥ 2 matrices. We want
that if we apply a linear operator to a state vector, we get a state vector again. In
particular, the norm of the vector must be preserved. We therefore need special types
of operators, the unitary and hermitian operators. (cf. [22, page 87])

Definition 8: Types of Operators

A operator T 2 L(H) is called

• unitary if T is invertible and it fulfilled T
�1 = T

†.

• hermitian if T fulfilled T = T
†.

We denote the set of unitary operators on a Hilbert space H with U(H). If we apply
a unitary operator to a state vector, we get a state vector again, as the following
theorem shows.

Theorem 9: Unitary Operators are Norm Preserving

Let H be a Hilbert space, |'i 2 H and U 2 U(H) a unitary operator. Then

k'k = kU'k.

Proof

kU'k2 = hU'|U'i = h'|U †
U'i = h'|U�1

U'i = h'|'i = k'k2.

⇤
Unitary operators are therefore invariant with respect to the scalar product, another
useful property concerns unitary operators that are applied to vectors from Cn.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 30

Theorem 10: Rows and Columns of a Unitary Operator Form an
Orthonormal Basis

Let U 2 U(Cn) be unitary. Then the rows and columns of U form an
orthonormal basis of Cn.

Proof

From

= U
�1

U = U
†
U

follows the statement. ⇤
In [23] is an explanation for this theorem.

One of the most important properties of a linear operator are eigenvalues and
eigenvectors which are defined as follows:

Definition 9: Eigenvalues and Eigenvectors

Let T 2 L(H). If |zi 2 H fulfilled

T |zi = t |zi , t 2 C

then we call |zi eigenvector of T at eigenvalue t.

The eigenvector of an operator T is a vector |zi which only changes by a multiple
when the operator is applied to it. The corresponding multiple t is then called an
eigenvalue.

Pauli Matrices

The most important operators on C2⇥2 include the Pauli matrices, which are defined
as follows: (cf. [24, page 166], [10, page 6])

CHAPTER 4. BASICS OF QUANTUM COMPUTING 31

Definition 10: Pauli Matrices

The Pauli matrices are define as the following matrices:

�
0 = 2⇥2 =

✓
1 0
0 1

◆
�
1 = �

x = X =

✓
0 1
1 0

◆

�
2 = �

y = Y =

✓
0 �i

i 0

◆
�
3 = �

z = Z =

✓
1 0
0 �1

◆
.

The operators �1, �2, �3 are also the observables for the spin in x, y and z direction,
by multiplying with ~

2
. We can also represent the Pauli matrices by the basis vector

of a qubit. The Pauli matrices have the following representation in the basis of one
qubit.

�
0 = |0i h0|+ |1i h1| �

1 = |1i h0|+ |0i h1|
�
2 = i · (|1i h0|� |0i h1|) �

3 = |0i h0|� |1i h1| .

The Pauli matrices have some useful properties which we summarise in the following
theorem.

Theorem 11: Properties of the Pauli Matrices

1. The Pauli matrices are hermitian and unitary.

2. The Pauli matrices form a basis of C2⇥2.

3. The eigenvectors of �3 are the basis vectors of the single qubit system.

Proof

1. A calculation quickly shows that the Pauli matrices are hermitian and unitary.
2. We show that every matrix A 2 C2⇥2 can be represented as a linear combination

CHAPTER 4. BASICS OF QUANTUM COMPUTING 32

of the Pauli matrices.

A = a |0i h0|+ b |0i h1|+ c |1i h0|+ d |1i h1|

=
a+ a+ d� d

2
|0i h0|+ b+ b+ c� c

2
|0i h1|

+
b� b+ c+ c

2
|1i h0|+ a� a+ d+ d

2
|1i h1|

=
a+ d

2
(|0i h0|+ |1i h1|) + b+ c

2
(|1i h0|+ |0i h1|)

+ i
2 b� c

2
(|1i h0|� |0i h1|) + a� d

2
(|0i h0|� |1i h1|)

=
a+ d

2
�
0 +

b+ c

2
�
1 + i

b� c

2
�
2 +

a� d

2
�
3
.

3. Proof is provided by recalculation:

�
3 |0i = (|0i h0|� |1i h1|) |0i = |0i h0|0i � |1i h1|0i = |0i

�
3 |1i = (|0i h0|� |1i h1|) |1i = |0i h0|1i � |1i h1|1i = � |1i .

The eigenvalue for the eigenvector |0i is 1 and the eigenvalue for the eigenvector |1i
is -1. ⇤

Unitary Operators Represented by Rotation Operators

In this section, it is shown that any unitary operator can be decomposed into rotation
operators. For this, the following property of the exponential function is needed: (cf.
[1, page 175], [25])

Theorem 12: Euler-Formula for Unitary and Hermitian Operators

Let A 2 Cn⇥n be unitary and hermitian. Then the following applies:

exp(iAx) = cos(x) + i sin(x)A.

Proof

For the matrix A
n we have:

A
n =

⇢
if n = 2m,m 2 N

A if n = 2m+ 1,m 2 N
.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 33

We now use the series representation of the matrix exponential:

exp(iAx) =

1X

n=0

(iAx)n

n!
=

1X

m=0

(iAx)2m

(2m)!
+

1X

m=0

(iAx)2m+1

(2m+ 1)!

=

1X

m=0

(�1)mx
2m

(2m)!
+ i

1X

m=0

(�1)mx
2m+1

(2m+ 1)!
A

= cos(x) + i sin(x)A.

⇤
In quantum mechanics, rotations around certain axes can be described by rotation
operators.

Definition 11: Rotation Operators

These operators describe the rotation around the x, y and z axis.

Rx(✓) = exp(�i
✓

2
�
x)

Ry(✓) = exp(�i
✓

2
�
y)

Rz(✓) = exp(�i
✓

2
�
z).

We can use the Theorem 12 to reformulate the rotation operators. Thus, the rotation
operator Rj(✓) can be decomposed into �

0 and �
j .

Theorem 13: Reformulation of the Rotation Operators

The rotation operators can rewritten in the following way:

Rx(✓) = cos

✓
✓

2

◆
�
0 � i sin

✓
✓

2

◆
�
x =

✓
cos
�
✓
2

�
�i sin

�
✓
2

�

�i sin
�
✓
2

�
cos
�
✓
2

�
◆

Ry(✓) = cos

✓
✓

2

◆
�
0 � i sin

✓
✓

2

◆
�
y =

✓
cos
�
✓
2

�
� sin

�
✓
2

�

sin
�
✓
2

�
cos
�
✓
2

�
◆

Rz(✓) = cos

✓
✓

2

◆
�
0 � i sin

✓
✓

2

◆
�
z =

✓
exp
�
�i

✓
2

�
0

0 exp
�
i
✓
2

�
◆
.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 34

Proof

The Pauli matrices are hermitian and unitary, so we know

exp(�i�
j
x) = cos(�x)�0 + i sin(�x)�j for j 2 {x, y, z}.

Using the axis symmetry of cos and the point symmetry of sin

cos(�x) = cos(x), sin(�x) = � sin(x),

we get the representations we are looking for. ⇤
Our goal is now to establish a connection between unitary operators and rotation
operators. The following theorem from [1, pages 175-176] is helpful for this.

Theorem 14: General Form of an Unitary Operator

Let U 2 C2⇥2 be unitary then exists ↵, �, �, � 2 R such that

U =

✓
exp(i(↵� �

2
� �

2
)) cos(�

2
) � exp(i(↵� �

2
+ �

2
)) sin(�

2
)

exp(i(↵ + �
2
� �

2
)) sin(�

2
) exp(i(↵ + �

2
+ �

2
)) cos(�

2
)

◆
.

Proof

This proof is also shown in [26]. Let U be unitary and represent as follows:

U =

✓
a b

c d

◆
.

Since the rows and columns form an ONB follows

|a|2 + |b|2 = 1.

For two complex numbers a, b that fulfil this equation, it follows that they can be
represented as follows

a = exp(i↵11) cos(✓), b = exp(i↵12) sin(✓) ↵11,↵12, ✓ 2 R.

Analogously, it follows from this

U =

✓
exp(i↵11) cos(✓) exp(i↵12) sin(✓)
exp(i↵21) sin(✓) exp(i↵22) cos(✓)

◆
.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 35

Now we have a representation with five parameters, from

0 = ab+ cd = exp(i↵11) cos(✓) exp(�i↵12) sin(✓) + exp(i↵21) sin(✓) exp(�i↵22) cos(✓)

follows that

0 = exp(i(↵11 � ↵12)) + exp(i(↵21 � ↵22)).

The exponent must now fulfil the equation

↵11 � ↵12 = ↵21 � ↵22 + ⇡.

If we transform the equation to ↵11, it follows that we can express this angle using
the other angles

↵11 = ↵12 + ↵21 � ↵22 + ⇡.

Thus, we can represent a unitary operator by four operators. Now we define the
angles ↵, �, �, � from the theorem

✓ =
�

2
↵12 = ↵� �

2
+

�

2
+ ⇡

↵21 = ↵ +
�

2
� �

2
↵22 = ↵ +

�

2
+

�

2
.

This implies for ↵11

↵11 = ↵12 + ↵21 � ↵22 + ⇡ = ↵� �

2
+

�

2
+ ⇡ + ↵ +

�

2
� �

2
�
✓
↵ +

�

2
+

�

2

◆
+ ⇡

= ↵� �

2
� �

2
+ 2⇡.

If we use the following two properties of the complex exponential function

exp(ix) = exp(i(x+ 2⇡)) exp(i(x+ ⇡)) = � exp(ix)

we get the desired representation of a unitary operator. ⇤
Now it can be shown that every unitary single qubit operator can be represented by
rotation operators.

Theorem 15: Z � Y Decomposition of a Unitary Operator

Let U 2 C2⇥2 be unitary. Then their exists ↵, �, �, � 2 R such that

U = exp(i↵)Rz(�)Ry(�)Rz(�).

CHAPTER 4. BASICS OF QUANTUM COMPUTING 36

Proof

We calculate the right-hand side of the equation and show that it’s equal to U :

exp(i↵)Rz(�)Ry(�)Rz(�)

= exp(i↵)

✓
exp(�i

�
2
) 0

0 exp(i�
2
)

◆✓
cos(�

2
) � sin(�

2
)

sin(�
2
) cos(�

2
)

◆✓
exp(�i

�
2
) 0
0 exp(i �

2
)

◆

= exp(i↵)

✓
exp(�i

�
2
) cos(�

2
) � exp(�i

�
2
) sin(�

2
)

exp(i�
2
) sin(�

2
) exp(i�

2
) cos(�

2
)

◆✓
exp(�i

�
2
) 0
0 exp(i �

2
)

◆

=

✓
exp(i(↵� �

2
� �

2
)) cos(�

2
) � exp(i(↵� �

2
+ �

2
)) sin(�

2
)

exp(i(↵ + �
2
� �

2
)) sin(�

2
) exp(i(↵ + �

2
+ �

2
)) cos(�

2
)

◆
= U.

The last equality follows from Theorem 14. ⇤

Other Important Operators

Analogous to [1, page 174-177], we will now look at other important operators. The
most important unitary operators includes the Hadamard gate H, the phase gate S

and the ⇡/8-gate T . These operators are defined by the following matrices

H =
1p
2

✓
1 1
1 �1

◆
S =

✓
1 0
0 i

◆
T =

✓
1 0
0 exp(i⇡

4
)

◆
.

The Hadamard gate is obviously hermitian and unitary. If we apply H to the basis
states of , we obtain a superposition of the two basis states, each with a probability
of 1

2
.

H |0i = 1p
2
(|0i+ |1i) H |1i = 1p

2
(|0i � |1i).

Since H is unitary and hermitian, it follows that H2 = 2⇥2 and thus the basis states
can also be obtained from a linear superposition by applying H again. H can be
represent via the Pauli X and Z gates by:

H =
1p
2
(�1 + �

3).

The relationship between the two operators S and T is:

S = T
2
.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 37

From Single-Qubit to Multi-Qubit Gates

Logically, classical computers require more than one bit for calculations, and we
also need more than one qubit for a quantum computer. With a classical computer,
however, the computing operations are generally irreversible. In a quantum computer,
all operations are described as unitary operators. Since unitary operators are invertible
by definition, operations on qubits are always reversible simply by applying U

† to
the qubit. In the following we will introduce unitary operators that act on multiple
qubits. For n qubits, the new quantum state can be described by the tensor product
of n single qubit states

|zi = |z1i ⌦ · · ·⌦ |zni .

In the following, we abbreviate a single qubit operator A which only acts on the i-th
qubit as

Ai = ⌦ . . . ⌦ A|{z}
i�th

⌦ ⌦ · · ·⌦ .

4.2 Controlled Operations

One of the first tasks a computer should perform is to add two numbers modulo 2.
The CNOT gate is a unitary operator applied to two qubits. It maps two qubits |z1i
and |z2i to |z1i and |z1 � z2i, where � describes addition modulo 2. This means the
following for the basic states:

|z1i |z2i |z1 � z2i
0 0 0

0 1 1

1 0 1

1 1 0

Table 4.1: Application of the CNOT gates

The qubit |z1i determines whether the other qubit is flipped or not. If |z1i is 1, the
value of the qubit |z2i changes; if it is 0, it does not. We call |z1i the control qubit
and |z2i the target qubit. The CNOT gate quantum circuit is defined as follows:

CHAPTER 4. BASICS OF QUANTUM COMPUTING 38

Definition 12: CNOT Gate

The control gate is defined as the following circuit.

|z1i |z1i

|z2i |z1 � z2i

In future, the CNOT gate will be represented by CX. The CNOT gate changes the
value of the target qubit if the control qubit is set to 1. However, if we want to change
the target qubit when the control qubit is set to 0, we use the reverse control gate,
which is defined as follows:

Definition 13: Reverse Control Gate

The reverse control gate is defined as the following circuit.

|z1i |z1i

|z2i |(1� z1)� z2i

To indicate that we are using a reverse CNOT gate, we denoted it by CX. The
reverse control gate can be represented with one CNOT and two X gates. This is
illustrated by the following circuit equation.

=
X X

The first X gate transforms 0 into 1 and 1 into 0, after which the CNOT gate is
applied. Consequently, a NOT gate is applied to the target qubit if the control qubit
was initially 0. The second X gate is then applied to the control qubit to restore its
initial state.
In some cases, controlled operations on a unitary operator U are also needed. This
means that if the control qubit is set to 1, the operator U is applied to the target
qubit. Conversely, if the control qubit is set to 0, no operator is applied to the target
qubit. The quantum circuit for this operation looks like this:

|z1i |z1i

|z2i U CU |z2i

CHAPTER 4. BASICS OF QUANTUM COMPUTING 39

Universal Quantum Gates

The controlled-U gate can also be described with other gates, for this we consider
the equality of the following two circuits:

Theorem 16: Decomposition of the Controlled-U Gate

The controlled-U gate fulfils the identity

U = exp(i↵)A�1B�
1
C with ABC = �

0
.

Use this, we obtain the following circuit equivalence:

U

=

✓
1 0
0 exp(i↵)

◆

C B A

Proof

The proof is divided into two parts, first we check the equation for U and next the
equality of the two circuits.
1. This part is a more detailed version of the proof of [1, page 176] and builds on the
Theorem 15. We select A,B,C as

A = Rz(�)Ry

⇣
�

2

⌘
B = Ry

⇣
��

2

⌘
Rz

✓
�� + �

2

◆
C = Rz

✓
� � �

2

◆
.

First, it must be shown that ABC = applies.

ABC = Rz(�)Ry

⇣
�

2

⌘
Ry

⇣
��

2

⌘
Rz

✓
�� + �

2

◆
Rz

✓
� � �

2

◆
= .

The following properties of the rotation operators was used for the last equality:

Ri(↵)Ri(↵
0) = Ri(↵ + ↵

0), Ri(0) = for i 2 {x, y, z}.

We start with �
1
B�

1:

�
1
B�

1 = �
1
Ry

⇣
��

2

⌘
Rz

✓
�� + �

2

◆
�
1 = �

1
Ry

⇣
��

2

⌘
�
1
�
1
Rz

✓
�� + �

2

◆
�
1

= Ry

⇣
�

2

⌘
Rz

✓
� + �

2

◆
.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 40

The first equation was expanded with (�1)2 = and

�
1
Ry(✓)�

1 = Ry(�✓)

was used in the second equation. Finally:

exp(i↵)A�1B�
1
C = exp(i↵)Rz(�)Ry

⇣
�

2

⌘
Ry

⇣
�

2

⌘
Rz

✓
� + �

2

◆
Rz

✓
� � �

2

◆

= exp(i↵)Rz(�)Ry(�)Rz(�) = U.

The last equality follows from Theorem 15.
2. Now we show that the circuits match. The controlled-U operator has the following
representation as a 2 ⇥ 2 matrix, where the elements of the matrix are again 2 ⇥ 2
matrices:

✓
0

0 U

◆
.

We first use the following identity:

✓
exp(i↵) 0

0 exp(i↵)

◆ =

✓
1 0
0 exp(i↵)

◆

If we use this equality to represent the right side of the circuit from the theorem by
matrices, we get

✓
0

0 exp(i↵)

◆✓
A 0
0 A

◆✓
1 0
0 �

1

◆✓
B 0
0 B

◆✓
1 0
0 �

1

◆✓
C 0
0 C

◆

=

✓
0

0 exp(i↵)

◆✓
A 0
0 A

◆✓
1 0
0 �

1

◆✓
B 0
0 B

◆✓
C 0
0 �

1
C

◆

= · · · =
✓

ABC 0
0 exp(i↵)A�1B�

1
C

◆
=

✓
0

0 U

◆
.

The equality of the two circuits is shown simply by using matrix multiplication and
the identity from 1. ⇤

CHAPTER 4. BASICS OF QUANTUM COMPUTING 41

We see that the controlled-U gate can be decomposed into CNOT gates and single
qubit operators. But what about unitary multiple qubit operators in general? Can
they also be reduced to a certain set of gates? Thus, we are looking for a universal set
of quantum gates that can represent all other unitary operators by combining them.
First, the universal quantum gate must be defined. (cf. [27, page 2])

Definition 14: Universal Quantum Gate

S ⇢
S

n U(
n) is called a universal quantum gate if for all U 2

S
n U(

n) it
holds that for ✏ � 0 exists a subset {U1, . . . , Um} ⇢ S such that

kU � Um . . . U1k  ✏

is satisfied.

If ✏ = 0, the universal quantum gate is called exact; otherwise, it is called approximate.
There are di↵erent sets of universal quantum gates. An exact universal quantum gate
is formed by all 1 and 2 qubit gates, but it still comprises an uncountable number of
gates. Two possible universal quantum gates are:

• {CNOT, H, T}

• {CNOT, Ry(
⇡
4
), S}

The proofs of universality are too extensive for this thesis, so please refer to [28].

To↵oli Gate

Now we use [2] to show some really important properties about multi-qubit controlled
operations. We first expand the CNOT gate from one control qubit to two control
qubits and obtain the To↵oli gate.

Definition 15: To↵oli Gate

The To↵oli gate is defined as the following quantum circuit:

|z1i |z1i
|z2i |z2i

|z3i |(z1 · z2)� z3i

If both z1 and z2 are 1, a �
x gate is applied to |z3i; otherwise, nothing happens.

We now need to demonstrate the implementation of the To↵oli gate. This can be

CHAPTER 4. BASICS OF QUANTUM COMPUTING 42

achieved using CNOT, H, and T gates, as shown by the following theorem (cf. [1,
page 182]).

Theorem 17: Decomposition of the To↵oli Gate

The To↵oli Gate fulfils the following circuit equality:

=

T

T T
†

H T
† T T

† T H

In the following, we use the representation from [2]. Even if the two quantum
circuits only match up to a global phase, this has no subsequent consequences for
the measurement of the states at the end of the quantum circuits. The probabilities
match for any initial state, and we obtain the same probability for both output states.
We denote this type of equality with ⇠=.

Theorem 18: Ry Decomposition of the To↵oli Gate

The To↵oli Gate fulfils the following circuit equality except for a global phase:

⇠=
Ry(

⇡
4
) Ry(

⇡
4
) Ry(�⇡

4
) Ry(�⇡

4
)

Proof

We examine four di↵erent scenarios for the four possible states that the first two
qubits can have together.
1. Initial state: |z00i:

Ry

⇣�⇡

4

⌘
Ry

⇣�⇡

4

⌘
Ry

⇣
⇡

4

⌘
Ry

⇣
⇡

4

⌘
= Ry

⇣�⇡

2

⌘
Ry

⇣
⇡

2

⌘
= .

CHAPTER 4. BASICS OF QUANTUM COMPUTING 43

2. Initial state: |z01i

Ry

⇣�⇡

4

⌘
Ry

⇣�⇡

4

⌘
�
1
Ry

⇣
⇡

4

⌘
Ry

⇣
⇡

4

⌘
= Ry

⇣�⇡

2

⌘
�
1
Ry

⇣
⇡

2

⌘
= Z.

3. Initial state: |z10i

Ry

⇣�⇡

4

⌘
�
1
Ry

⇣�⇡

4

⌘
Ry

⇣
⇡

4

⌘
�
1
Ry

⇣
⇡

4

⌘
= .

4. Initial state: |z11i

Ry

⇣�⇡

4

⌘
�
1
Ry

⇣�⇡

4

⌘
�
1
Ry

⇣
⇡

4

⌘
�
1
Ry

⇣
⇡

4

⌘
= X.

This means that the two circuits match except for one global phase. ⇤
The question now is how to manage more than two control qubits. For this purpose,
additional qubits (ancilla qubits) are required. If we have n control qubits, with n�2
ancilla qubits, the problem can be reduced using 2n� 3 To↵oli gates. Let’s examine
the following algorithm.

Algorithm 4: Construction of an n-Controlled NOT gate

Given are:

• label n control qubits xi with i 2 {1, . . . , n}

• target qubits y

• label n� 2 ancilla qubits ai with i 2 {1, . . . , n� 2} set it to |0i

if n=1 do
apply CX with x1 as control and y as target

if n=2 do
apply To↵oli with x1 and x2 as control and y as target

else do
apply To↵oli with x1 and x2 as control and a1 as target
for i = 3, . . . , n� 1 do

apply To↵oli with ai�2 and x3 as control and ai�1 as target
apply To↵oli with an�2 and xn as control and y as target
for i = n� 1, . . . ,3 do

apply To↵oli with ai�2 and x3 as control and ai�1 as target
apply To↵oli with x1 and x2 as control and a1 as target

CHAPTER 4. BASICS OF QUANTUM COMPUTING 44

It must still be demonstrated that the Algorithm 4 indeed constructs a circuit that
produces an n-controlled NOT gate. For n = 4, the corresponding circuit looks as
follows:

x1

x2

x3

x4

y

=

x1

x2

a1 |0i |0i

x3

a2 |0i |0i

x4

y

We start by applying a To↵oli gate to the first two qubits x1 and x2. If both are set
to 1, the first ancilla qubit is set to 1. This operation records whether both qubits
are 1 or not. Next, another To↵oli gate is applied to the next ancilla qubit a2, which
stores whether a1 and x3 are both 1. Then a2 and x4 are checked to see if both are
1. The first ancilla qubit thus checks whether x1 and x2 are set to 1, and the i-th
ancilla qubit always checks whether the (i � 1)-th ancilla qubit and xi+1 are set to
1. In this way, an n-control NOT gate can be decomposed into 2n� 3 To↵oli gates.
The last n� 2 gates are used only to reset the ancilla qubits back to 0 if necessary.

Theorem 19: Construction of an n-Controlled NOT gate

The Algorithm 4 constructed a quantum circuit which is equal to the n-
controlled NOT gate.

Proof

For n = 1,2 we showed it before. a1 becomes 1 if and only if x1 and x2 are 1;
otherwise, a1 is 0. Now, for i = 2, . . . , n � 2, the value of ai becomes 1 if and only
if ai�1 and xi+1 are 1. Thus, to change ai to 1, we need x1 = · · · = xi+1 = 1. If we
consider an�2, it is 1 if and only if x1 = · · · = xn�1 = 1. Finally, we look at an�2

and xn. If both are 1, we apply the �1 gate to y. Thus, we only apply �
1 on y if and

only if x1 = · · · = xn = 1. Except for the last To↵oli gate, we reapply the previous
To↵oli gates in reverse order to reset the ancilla qubits back to 0, which has no e↵ect
on the other qubits. ⇤

CHAPTER 4. BASICS OF QUANTUM COMPUTING 45

So far, we have abbreviated the CNOT gate as CX. We will now abbreviate the
To↵oli gate as CCX or C

2
X. The n-CNOT gate is abbreviated as C

n
X. If the

number of qubits is greater than n + 1, we label each C with the corresponding
controlled qubits as follows: Ci1 . . . CinX.

Special case: ”Controlled-Ry-Gate”

We now use Theorem 16 to represent the Ry gate with single qubit and CNOT gates.

Theorem 20: Controlled Ry Gate

The Controlled-Ry gate fulfil the following circuit equality:

Ry(✓)
=

Ry(
�✓
2
) Ry(

✓
2
)

Proof

We select ↵, A,B, C as follows:

A = Ry

✓
✓

2

◆
, B = Ry

✓
�✓

2

◆
, C = , ↵ = 0.

We now check the identities from Theorem 16.

ABC = Ry

✓
�✓

2

◆
Ry

✓
✓

2

◆
= �

0

exp(i↵)A�1B�
1
C = Ry

✓
✓

2

◆
�
1
Ry

✓
�✓

2

◆
�
1 = Ry(✓).

If we now use Theorem 16 it follows that the circuits are equal. ⇤
Now that the n-CNOT gate has been discussed, the question is what it looks like for
an n-controlled U gate. To address this, the circuit is decomposed step by step into
smaller (n� 1)-controlled V gates, as the next algorithm shows. (c.f. [2, page 21])

CHAPTER 4. BASICS OF QUANTUM COMPUTING 46

Algorithm 5: Circuit for an n-Controlled U Gate

Given are:

• n controlled qubits labeled as xi

• one target qubit y

apply Cxn
V on y

apply Cx1 . . . Cxn�1X on xn

apply Cxn
V

† on y

apply Cx1 . . . Cxn�1X on xn

apply Cx1 . . . Cxn�1V on xn

The Algorithm 5 reduces the problem of constructing an n-controlled U gate to
constructing an (n � 1)-controlled V gate, where V

2 = U . An n-controlled U gate
can thus be reduced step by step to C

p
U,C

4
p
U, . . . , C

2n�1p
U gates. This reduction

can be formalized using Theorem 16.

For n = 4, the circuit looks as follows:

U

=

V V
† V

=

p
U

p
U

† 4p
U

4p
U

† 8p
U

8p
U

† 8p
U

As can be seen after the first equal sign, we replace a C
4
U gate with two C

3
X gates,

a CV , a CV
†, and a C

3
V gate. If the algorithm is applied to the C

3
V gate in the

same way, the circuit follows after the second equal sign. Here, n
p
U is the operator

V for which V
n = U holds. The next step is to show that Algorithm 5 works.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 47

Theorem 21: Construction of an n-Controlled U Gate

Let U 2 U(). The Algorithm 5 creates a n-controlled U gate, if V 2 = U and
n � 2.

Proof

We first consider the case where all control qubits are set to 1. It follows:

V · V = U.

Now we look at the case where there is a j 2 {1, . . . , n} with xj = 0. If xn = 0 there
are two possibilities.
1. xi = 18i 2 {1, . . . , n� 1} Then it follows:

V · V † = .

2. 9xi with xi = 0, i 2 {1, . . . , n� 1} No operator is executed.
In the case where there is a j 2 {1, . . . , n} with xj = 0, but xn = 1 it follows:

V
†
V = .

The circuit thus constructs an n-controlled U gate. ⇤
If we now consider the special case U = Ry(✓), then V can be determined very simply
by halving the angle, because Ry(a)Ry(b) = Ry(a+b). As a circuit, it looks as follows
for n = 4:

Ry(✓)

=

Ry(
✓
2
) Ry(

�✓
2
) Ry(

✓
2
)

The n-controlled Ry gates can be implemented easily since the root operation is
straightforward to define. To implement it, one simply needs to halve the angle.
The decomposition involves CRy, To↵oli, and CNOT gates, which allows for a more
precise estimation of the computational e↵ort required.

CHAPTER 4. BASICS OF QUANTUM COMPUTING 48

Theorem 22: Decomposition of the C
n
Ry Gate

The C
n
Ry gate for n � 2 can be created using the Algorithm 5, whereby the

following gates are used:

• 2n� 1 CRy gates

• 2(n� 2)2 To↵oli gates

• 2 CNOT gates

Proof

The Algorithm 5 splits the C
n
Ry gate into two CRy, two C

n�1
X and one C

n�1
Ry

gate. If we do this iterativly from n to 2 , we get 2(n� 2) CRy gates, 2(
n�1P
i=2

(2i� 3))

To↵oli gates and one C
2
Ry gate. If we now decompose the C

2
Ry gate, we get three

CRy gates and two CNOT gates. If we add up the CRy gates, the 2n� 1 CRy gates
are shown. The number of To↵oli gates must still be shown.

2

n�1X

i=2

(2i� 3)

!
= 2

n�1X

i=1

(2i� 1)� 2n+ 3

!

= 2((n� 1)2 � 2n+ 3) = 2(n2 � 4n+ 4) = 2(n� 2)2.

The following identity was used in the calculation
n�1P
i=1

(2i� 1) = (n� 1)2. ⇤

Expected Value of an Operator

Definition 16: Expected value

Let H be a Hilbert space, H 2 L(H) and |'i 2 H. The expected value from
H related to |'i is defined by

hHi := h'|H |'i .

One of the most useful properties of an operator are its eigenvalues and eigenvectors,
though often only the extreme values are of interest. In our case, we seek the smallest
eigenvalue Eg and the corresponding ground state |'gi. The connection between the

CHAPTER 4. BASICS OF QUANTUM COMPUTING 49

expected value and the ground state is that the expected value of an operator is never
smaller than its smallest eigenvalue.

Theorem 23: Relationship Between Expected Value and the Smallest
Eigenvalue

Let H be a Hilbert space, H 2 L(H), {|'ii , i 2 I} be the set of eigenvectors
and {Ei, i 2 I} the set of eigenvalues of H. Then it holds that

h'|H |'i � h'g|H |'gi = Eg.

Proof

We decompose |'i with respect to the basis of the eigenvectors of H:

|'i =
X

i2I

ai |'ii .

Now we show the assertion by recalculating.

h'|H |'i =
X

i2I

|ai|2 h'i|H |'ii =
X

i2I

|ai|2 Ei|{z}
�Eg

h'i|'ii| {z }
=1

� Eg

X

i2I

|ai|2

| {z }
=1

= Eg.

⇤
It is therefore obvious that the minimum expected value corresponds to the smallest
eigenvalue

Eg = min
|'i2H

h'|H |'i .

5 Quantum Approximation
Algorithms

5.1 Quantisation of the FLP

Unconstrained FLP

The next step is to quantise the objective function of the FLP. For this we use
the formulation of the FLP in Problem 3. This chapter is based on the work of
[4], in particular on the explanation on page 3-8. First, we reformulate the FLP
so that constraints are no longer necessary. Instead, a penalty is introduced for
each constraint. If a constraint is not fulfilled, the costs are increased, for this an
additional terms can be added. Now the Unconstrained Facility Location Problem
can be defined. (cf. [4, page 6/7])

Problem 8: Unconstrained FLP (UFLP)

Given are:

• yi =

⇢
1 if facility i is opened

0 otherwise
for i 2 {1, . . . , n}

• xi,j =

⇢
1 if facility i serves customer j

0 otherwise
for i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• fi, ci,j 2 R+.

The Unconstrained Facility Location Problem (UFLP) is the following problem

min
x,y

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j + �

mX

j=1

0

@

1�

nX

i=1

xi,j

!2

+

nX

i=1

(xi,j � xi,jyi)

1

A .

50

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 51

The following theorem demonstrates the relationship between UFLP and FLP.

Theorem 24: FLP with Penalty

Let the FLP formulated like Problem 3. Then there exists a � 2 R+ so that
the optimal solution of the FLP and the UFLP (Problem 8) agree.

Proof

Let z be a optimal solution of the FLP. The question now is whether there is a state
z0 for the UFLP that does not fulfil a constraint of the FLP and C(z0) corresponds
to the minimum. For this, � must be chosen so that there is no optimal solution
CMPsol 63 (x0, y0) 2 {0,1}nm+n of the UFLP with

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j >

nX

i=1

fiy
0

i +

nX

i=1

mX

j=1

ci,jx
0

i,j

+ �

mX

j=1

0

@

1�

nX

i=1

x
0

i,j

!2

+

nX

i=1

(x0i,j � x
0

i,jy
0

i)

1

A .

whereby (x, y) 2 CMPsol. We now select � as follows:

� =

nX

i=1

fi +

nX

i=1

mX

j=1

ci,j .

If
mP
j=1

 ✓
1�

nP
i=1

x
0

i,j

◆2

+
nP

i=1

(x0i,j � x
0

i,jy
0

i)

!
= 0, the optimal solution of the FLP

with penalty is equal to that of the FLP.

Now we assume
mP
j=1

 ✓
1�

nP
i=1

x
0

i,j

◆2

+
nP

i=1

(x0i,j � x
0

i,jy
0

i)

!
> 0,

since x
0

i,j , y
0

i 2 {0,1} it follows
mP
j=1

 ✓
1�

nP
i=1

x
0

i,j

◆2

+
nP

i=1

(x0i,j � x
0

i,jy
0

i)

!
� 1.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 52

The statement can be demonstrated with the following calculation.

nX

i=1

fiy
0

i +

nX

i=1

mX

j=1

ci,jx
0

i,j + �

mX

j=1

0

@

1�

nX

i=1

x
0

i,j

!2

+

nX

i=1

(x0i,j � x
0

i,jy
0

i)

1

A

| {z }
�1

�
nX

i=1

fiy
0

i +

nX

i=1

mX

j=1

ci,jx
0

i,j + � � � =

nX

i=1

fi +

nX

i=1

mX

j=1

ci,j

�
nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j .

The optimal solutions of the FLP therefore corresponds to the UFLP. ⇤
If we attach a penalty only for one of the two constraints, we get the following
objective functions:

CTV =

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j + �

mX

j=1

1�

nX

i=1

xi,j

!2

CSWAP =

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j + �

mX

j=1

nX

i=1

(xi,j � xi,jyi)

!
.

CTV only has a penalty for the assignment constraint and CSWAP has a penalty for
the opening constraint. The naming will become clear in the course of this chapter.

From now on we always choose � =
nP

i=1

fi +
nP

i=1

mP
j=1

ci,j .

Quantisation of the Objective Function

In combinatorial optimisation problems, the goal is to minimise the objective function,
which must first be quantised. For this, the objective function C is considered as a
Hamiltonian in the computational basis ⌦n. We define the e↵ect of C on |zi as
follows: (cf. [10, page 10])

Definition 17: Objective Hamiltonian

The objective Hamiltonian is defined by the objective function as

C |zi := C(z) |zi , z 2 Z(N).

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 53

By definition, C is an orthogonal operator in the computational basis. Simply
calculating the ground state of the objective Hamiltonian is not su�cient to solve the
CMP. It must also be ensured that the solution is located within CMPsol. Therefore,
we define the solution space S. (cf. [10, page 10])

Definition 18: Solution Space

The solution space S is defined as

S := span{|zi : z 2 CMPsol} ⇢ ⌦n
.

We define analogously: Smin := span{|zi : z 2 CMPopt} ⇢ S. The task is to find the
ground state of C|S . The vector |zi is the ground state of C|S if and only if z is an
optimal solution.
Assuming |zi is the ground state, then C(z) is the smallest eigenvalue of C|S , which
by definition corresponds to the smallest function value of the objective function
C(z)|z2CMPsol . This represents an optimal solution. Conversely, if z is an optimal
solution, then |zi is the eigenvector of the ground state, since C(z) is the smallest
possible function value.

Hamiltonian for the FLP

The next step is to quantise the two binary variables xi,j , yi, for this we are looking
for a unitary operator with the eigenvalue 0 to the eigenvector |0i and the eigenvalue
1 to the eigenvector |1i, for this we consider (cf.[29, page 4])

x̂ :=
�
0 � �

3

2
= |1i h1| .

Theorem 25: Eigenvalues and Eigenvectors of x̂

The operator x̂ has the eigenvector |0i with eigenvalue 0 and the eigenvectors
|1i with eigenvalue 1.

Proof

x̂ |0i = |1i h1|0i = 0 |1i = 0 |0i x̂ |1i = |1i h1|1i = |1i = 1 |1i .

⇤

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 54

Let a 2 {1, . . . , nm+ n}, the operator x̂ can be generalised for the qubit a

x̂a :=
�
0
a � �

3
a

2
.

Now xi,j , yi can be quantised in the following way:

xi,j 7! x̂(i�1)·m+j yi 7! x̂nm+i.

The indices are oriented to the Chapter 3.1 and can thus use the quantised version
of the FLP. The objective Hamiltonian is

HCFLP =

nX

i=1

fix̂nm+i +

nX

i=1

mX

j=1

ci,j x̂(i�1)·m+j .

This Hamiltonian can also be specified for the unconstrained FLP as

HUFLP = HCFLP + �

mX

j=1

0

@

�
nX

i=1

x̂(i�1)·m+j

!2

+

nX

i=1

x̂(i�1)·m+j(� x̂nm+i)

1

A .

HCFLP describes the Facility Location Problem with constraints, the C in CFLP
emphasises this. The costs for the open facilities are added together with the delivery
costs. For HUFLP the constraints are then added as penalties.

The term

✓
�

nP
i=1

x̂(i�1)·m+j

◆2

is di↵erent to the zero matrix if not exactly one

facility supplies the customer. The term
nP

i=1

x̂(i�1)·m+j(�x̂nm+i) penalises if customer

j is supplied by a not open facility i. These two terms are added together for each
individual customer. The pre-factor � ensures that the ground states of HCFLP and
HUFLP match.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 55

5.2 Quantum Approximate Optimisation Algorithm

There are generally two methods to deal with constraints. First, consider the objective
Hamiltonian HCFLP for the FLP. It is crucial not only to find the minimum itself but
also to ensure it is within the solution space. To account for the constraints, specific
mixers are required for each problem.
Hardcoding is a method where a special quantum circuit ensures that only states
fulfilling the constraints are generated. More on this can be found in Chapter
5.3. Alternatively, there is softcoding, where constraints are incorporated into the
Hamiltonian as additional terms in the form of penalties.
In Chapter 5.1, an unconstrained FLP was introduced with HUFLP. This chapter
presents the Quantum Approximate Optimisation Algorithm (QAOA), which can be
used to approximate the minimum of the FLP using softcoding. This section is guided
by the following papers: [10, chapter 3] and [3].

QAOA is a variational quantum algorithm, which combines quantum computing with
classical optimisation. It involves a natural number p � 1, which determines the
number of angles to optimise. In our case, 2p angles are optimised to approximate
the minimum of the FLP. In QAOA we first apply a phase separator UP (H, �) to the
initial state, followed by a mixer UM (B, �). The initial state of QAOA is the plus
state

|+i :=
NO

i=1

1p
2
(|0i+ |1i) = 1p

2N

X

z2Z(N)

|zi

which is the linear superposition of all states. First of all, we need to define what a
phase separator is. The following definition originates from [5].

Definition 19: Phase Separator

Let H be a Hamiltonian. We call H a phase separator Hamiltonian if H fulfils:

• H is diagonal in the computational basis.

• The eigenspace of the smallest eigenvalue from H|S is Smin.

Then

UP (H, �) := exp(�i�H)

is the corresponding phase separator.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 56

The UFLP is an unconstrained minimisation problem. For a su�ciently large �, it
holds that H|S = H. The eigenspace of the smallest eigenvalue corresponds to Smin.
After defining the objective Hamiltonian, we also have a diagonal operator in the
computational basis. Thus, HUFLP is a phase separator Hamiltonian.
We define the operator B as

B =

NX

i=1

�
1

i .

The corresponding mixer is given by

UM (B, �) =

NY

i=1

exp(�i��
1

i).

The mixer can be used to change the variables from zero to one or vice versa,
depending on the angle �. It should mix the states but only produce feasible solutions.
The following explanations of the QAOA are based on [10, page 20]. The initial state
is always the superposition of all possible states. First, a phase separator is applied,
followed by a mixer. These two unitary operators are applied p times. The associated
angles are given by � = (�1, . . . , �p),� = (�1, . . . , �p). The output state |�,�i is
defined as follows:

|�,�i := UM (B, �p)UP (H, �p) . . . UM (B, �1)UP (H, �1) |+i .

We then calculate the expected value of the objective function with respect to the
output and obtain

F (�,�) = h�,�|C |�,�i .

In general, the aim is now to calculate an extreme value of F (�,�). In the context
of the FLP, we are interested in the minimum of F (�,�),

M = min
�,�

F (�,�).

The QAOA works as follows:

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 57

Algorithm 6: QAOA

Given are:

• initial angles (�,�)

while until the termination condition are satified:
1. Prepare |+i on a quantum computer
2. Calculate |�i,�ii
3. Calculate F (�,�)
4. Update the angle �i,�i ! �i+1,�i+1 with a classical optimisation

Repeatedly measure the final output |�iend ,�iendi in the CB

Convergence towards the ground state follows for p ! 1.

lim
p!1

M = min
z2Z(N)

C(z).

The proof is shown in [10, appendix B].
If QAOA is to be used for the FLP, there are a few things to consider. First, as already
mentioned, the algorithm can only handle unconstrained problems. Therefore, we
need to use the softcoded version of the FLP, referred to as UFLP. The mixer can
connect or disconnect arbitrary customers with facilities by changing the value of xi,j .
Similarly, any facility can be opened or closed by changing the value of yi. Now let’s
look at the unconstrained Hamiltonian. First, the quadratic term is rewritten:

�

nX

i=1

x̂(i�1)·m+j

!2

= � 2

nX

i=1

x̂(i�1)·m+j +

nX

i=1

nX

i0=1

x̂(i�1)·m+j x̂(i0�1)·m+j

= � 2

nX

i=1

x̂(i�1)·m+j + 2

nX

i0=1

i0�1X

i=1

x̂(i�1)·m+j x̂(i0�1)·m+j +

nX

i=1

x̂
2

(i�1)·m+j

= �
nX

i=1

x̂(i�1)·m+j + 2

nX

i0=1

i0�1X

i=1

x̂(i�1)·m+j x̂(i0�1)·m+j .

Now it can be decomposed as

HUFLP =

nX

i=1

mX

j=1

ci,j x̂(i�1)·m+j +

nX

i=1

fix̂nm+i

+ 2�

mX

j=1

nX

i0=1

i0�1X

i=1

x̂(i�1)·m+j x̂(i0�1)·m+j +m� � �

nX

i=1

mX

j=1

x̂(i�1)·m+j x̂nm+i.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 58

The system does not verify whether the two constraints are fulfilled. However, the
penalty causes violations of the constraints to yield a larger value of C(z). This can
result in very high function values, complicating the search for the global minimum
due to large local minima. Although it is true that as p ! 1, the minimum is found,
there is no information about the convergence rate.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 59

5.3 Mixer for the Opening Constraint

QAOA is a very general algorithm that works exclusively for softcoded problems. The
FLP has an assignment constraint 2.3 and an opening constraint 2.4. In the following
sections, di↵erent possibilities are explored to find better mixers specifically focused
on the FLP. For the opening constraint, a quantum circuit is presented in [4]. This
circuit is detailed and proven in the following section.

Qubit Inequalities

If xi,j and yi are two qubits then the inequality xi,j  yi can also be represented as
a circuit, as the following theorem shows: (cf. [4, page 7])

Theorem 26: Quantum Circuit for x  y

The output of the following quantum circuit consisting of a control qubit y and
target qubit x satisfies x  y.

y: |0i Ry(✓1)

x: |0i Ry(✓2) H H Ry(�✓2)

Proof

Two cases are considered. The first case is trivial, if the control qubit y is in the state
|1i before the control gate, the target qubit x can either be in the state |0i or |1i at
the end, either way the inequality is fulfilled.
The second case describes the case in which the control qubit y is in the state |0i.
The following operators are then applied to the qubit x.

Ry(�✓2) ·H ·H| {z }
=

·Ry(✓2) |0i = Ry(�✓2) ·Ry(✓2)| {z }
=

|0i = |0i .

This means that if the qubit y has the value 0, the qubit x also has the value 0. ⇤
Theorem 26 shows that there is a circuit that guarantees for two qubits yi and xi,j

that xi,j  yi holds. In relation to the FLP, this circuit ensures that if a facility yi is
closed, the customer xi,j is not supplied, thus fulfilling the opening constraint. This

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 60

circuit can be extended for n facilities and m customers. As a small example, we
consider the following case: (n = 2,m = 2).

y1: |0i Ry(✓y1)

y2: |0i Ry(✓y2)

x11: |0i Ry(✓x11) H H Ry(�✓x11)

x12: |0i Ry(✓x12) H H Ry(�✓x12)

x21: |0i Ry(✓x21) H H Ry(�✓x21)

x22: |0i Ry(✓x22) H H Ry(�✓x22)

It can be seen that for each connection between a customer j and a facility i, the value
of xi,j depends only on the qubit yi representing facility i. The following algorithm
describes how the circuit can be created. (cf. [4, page 7])

Algorithm 7: Quantum Circuit for xi,j  yi

Given are:

• n facilities and m customers

• The first n ·m qubits labeled as xi,j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• The last n qubits labeled as yi 8i 2 {1, . . . , n}

• Angles (✓x11 , . . . , ✓xnm
, ✓y1 , . . . , ✓yn) 2 Rnm+n

Initialise: |0 . . . 0i| {z }
nm+n times

for i = 1, . . . , n do
apply Ry(✓yi) on yi

for j = 1, . . . ,m do
apply Ry(✓xi,j

) on xi,j

apply H on xi,j

apply CyiX with xi,j as target
apply H on xi,j

apply Ry(�✓xi,j
) on xi,j

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 61

Algorithm 7 iterates over each facility i and applies an Ry(✓yi) gate to the qubit yi,
where ✓yi is specific to the facility i. Each customer j is considered through the qubit
xi,j . It must be proven that Algorithm 7 always satisfies the opening constraint.

Theorem 27: Quantum Circuit for xi,j  yi

The Algorithm 7 creates a quantum circuit which satisfies for any
(✓x11 , . . . , ✓xnm

, ✓y1 , . . . , ✓yn) 2 Rnm+n the following inequalities:

xi,j  yi 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

Proof

Let an arbitrary qubit xi,j be given. If the qubit yi is in the state |1i, there is nothing
to show. Let yi therefore be in the state |0i. Then the following circuit is applied to
the qubit xi,j .

Ry(�✓xi,j
) ·H ·H| {z }

=

·Ry(✓xi,j
) |0i = Ry(�✓xi,j

) ·Ry(✓xi,j
)

| {z }
=

|0i = |0i .

The output of the qubit xi,j is therefore the state |0i if the qubit yi is in the state
|0i. This is valid for all customers j and facilities i. ⇤

Sum Representation of the Hamiltonian

As only the opening constraint is always fulfilled, the assignment constraint must still
be softcoded. Classically, this corresponds to the objective function

CTV =

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j + �

mX

j=1

1�

nX

i=1

xi,j

!2

.

The unconstrained Hamiltonian can be modified to obtain the Taylorised Variational
Hamiltonian HTV. The Hamiltonian is named after the article in which the
corresponding algorithm was presented. HTV is defined as

HTV =

nX

i=1

fix̂nm+i +

nX

i=1

mX

j=1

ci,j x̂(i�1)·m+j + �

mX

j=1

�

nX

i=1

x̂(i�1)·m+j

!2

.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 62

The Hamiltonian can be rewritten as

HTV =

nX

i=1

mX

j=1

(ci,j � �)x̂(i�1)·m+j +

nX

i=1

fix̂nm+i

+ 2�

mX

j=1

nX

i0=1

i0�1X

i=1

x̂(i�1)·m+j x̂(i0�1)·m+j +m� .

Let |'(✓)i := |'(✓x11 , . . . , ✓xnm
, ✓y1 , . . . , ✓yn)i be the output of Algorithm 7. Obviously,

the output of the quantum circuit depends on the angles
✓ := (✓x11 , . . . , ✓xnm

, ✓y1 , . . . , ✓yn) 2 Rnm+n. The objective is to minimise the expected
value of CTV in the states |'(✓)i. This results in a minimisation problem in the nm+n

angles ✓.

Theorem 28: Minimum from CTV

Given is the solution space S ⇢ ⌦nm+n of the FLP. Let Eopt a optimal solution
of the FLP, defined by:

Eopt := min
|'i2S

h'|CFLP |'i

The following equation holds:

Eopt = min
✓2Rnm+n

h'(✓)|CTV |'(✓)i

Proof

Let the ground state of the FLP be given by |zi. First, it must be shown that there
are angles ✓ so that |'(✓)i = |zi. Since the optimal solution z fulfils both constraints,
there is i1, . . . , im 2 {1, . . . , n} with xi1,1 = · · · = xim,m = yi1 = · · · = yim = 1. All
other xi,j , yi are set to 0.
Since Ry(0) = , we select the angle ✓yi = 0 for each facility i with yi = 0. Then
xi,j = 0 8i 6= ij holds.
Let us consider an arbitrary open facility i. Since Ry(⇡) ⇠= X is valid, we choose
✓yi = ⇡, so the qubit yi is changed from |0i to |1i. For all customers j that are
supplied by the facility i, we select ✓xi,j

= 3⇡
2
. This follows from the equality

Ry

⇣
�3⇡

2

⌘
·H ·X ·H| {z }

=Z

·Ry

⇣3⇡
2

⌘
|0i = Ry

⇣
�3⇡

2

⌘
· Z ·Ry

⇣3⇡
2

⌘

| {z }
=X

|0i = |1i .

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 63

For all other customers k we choose ✓xik
= 0, then the equality

Ry(0) ·H ·X ·H| {z }
=Z

·Ry(0) |0i = Z |0i = |0i

holds. If we select the angles as described, the statement follows. The penalty
term prevents states that do not fulfil the assignment constraint from becoming the
minimum. This means that Eopt = min

✓2Rnm+n

h'(✓)|CTV |'(✓)i holds. ⇤

The objective is now to determine ✓ in such a way that the expected value of CTV is
minimised. To achieve this, Algorithm 7 is used iteratively: first, the expected value
is calculated, and then the angles are optimised classically.

Algorithm 8: Taylored Variational Algorithm

Given are:

• n facilities and m customers

• The first n ·m qubits labels as xi,j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• The last n qubits labels as yi 8i 2 {1, . . . , n}

• initial angles ✓0 2 Rnm+n

Carry out the following steps, starting with i = 0:

1. Perform the Algorithm 7 with the angles ✓i and call the output |'(✓i)i

2. Calculate using a measurement: h'(✓i)|CTV |'(✓i)i.

3. Fit the angles to ✓i 7! ✓i+1 with a classic optimisation algorithm.

4. Return to step 1. until the maximum iterations are reached. Name the
final vector ✓iend

.

Algorithm 8 combines Algorithm 7 with Theorem 28. First, Algorithm 7 is applied
to ensure that the opening constraint is fulfilled in the output state |'(✓i)i. Next,
the expected value of CTV is calculated in the output state. The angles are then
classically optimised to minimise the next expected value h'(✓i+1)|CTV |'(✓i+1)i.
This process is repeated several times. Various criteria can be used to determine
when to stop, such as a specified number of iterations or the absence of significant
changes.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 64

5.4 Mixer for the Assignment Constraint

Now, we are shifting our perspective. Previously, we used either the standard QAOA
mixer with an unconstrained FLP or a mixer specifically tailored to the opening
constraint 2.4. Now, a mixer for the assignment constraint 2.3 will be introduced.
This approach is based on the Traveling Salesperson Problem (TSP), which was
discussed in Chapter 2.2. As demonstrated in [5], the optimal solution for the TSP can
be found by swapping qubits. For the FLP, we first included the opening constraint
2.4 in the objective function and Hamiltonian.

HSWAP =

nX

i=1

mX

j=1

(ci,j + �)x̂(i�1)·m+j +

nX

i=1

fix̂nm+i � �

nX

i=1

mX

j=1

x̂(i�1)·m+j x̂nm+i

CSWAP =

nX

i=1

fiyi +

nX

i=1

mX

j=1

ci,jxi,j + �

mX

j=1

nX

i=1

(xi,j � xi,jyi)

!
.

In the constraint 2.3, the main point is that exactly one facility i supplies each
customer j. The idea is that we first assign a facility i for each customer j, classically
setting xi,j = 1. Now we remain with the same customer j and change the facility to
i
0. Therefore, the following change is made classically:

(xi,j = 1, xi0j = 0)) (xi,j = 0, xi0j = 1).

For a quantum computer, we therefore have to swap the associated qubits so that we
can define the SWAP gate, inspired by [30]

SWAPii0j =
1

2
(+ �

1

(i�1)·m+j�
1

(i0�1)·m+j

+ �
2

(i�1)·m+j�
2

(i0�1)·m+j + �
3

(i�1)·m+j�
3

(i0�1)·m+j).

With this gate, the qubits (i � 1) · m + j and (i0 � 1) · m + j are swapped. The
qubit (i� 1) ·m+ j corresponds to xi,j and the qubit (i0 � 1) ·m+ j corresponds to
xi0,j . The following mechanism can be used to decide, based on an angle �, whether
two qubits should be swapped, depending on which configuration yields a smaller
expected value.

Uii0j(�ii0j) = exp(�i�ii0j · SWAPii0j).

Now the product is formed using all possible swaps of the facilities

USWAP(�) =

mY

j=1

nY

i=1

nY

i0=i+1

Uii0j(�ii0j) with � 2 Rm·
n
2�n

2 .

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 65

USWAP(�) can swap the values of xi,j while complying with the assignment constraint.
However, it must also be possible to open or close facilities. For this, we use the
QAOA mixer, but we only apply it to the yi qubits, influencing whether the facilities
are opened or closed.

UQAOA(↵) =

nm+nY

i=nm+1

exp(�i↵�
1

i).

If we apply the two mixers and the phase separator to a state |'i that fulfils the
assignment constraint, we get the output

|↵,�, �i = UQAOA(↵)UP (HSWAP, �)USWAP(�) |'i .

Since both the input and the output fulfil the assignment constraint, it can be applied
multiple times, resulting in a modified version of QAOA. Thus, we can choose a value
p � 1 and apply the mixer p times to our initial state. Then we get:

|↵,�,�i =
pY

i=1

UQAOA(↵i)UP (HSWAP, �i)USWAP(�i) |'i

The algorithm works as follows:

Algorithm 9: SWAP Mixer

Given are:

• p � 1

• initial state |'i which fulfilled the assignment constraint

• initial angles ↵0 = (↵10 , . . . ,↵p0),�0 = (�10
, . . . ,�p0),�0 = (�10 , . . . , �p0)

while until the termination conditions are satisfied:
1. Calculate |↵i,�i,�ii
2. Calculate F (↵i,�i,�i) = h↵i,�i,�i|CSWAP |↵i,�i,�ii
3. Update the angle (↵i,�i, ,�i) ! (↵i+1,�i+1,�i+1) with a classical
optimisation

Repeatedly measure the final output |↵iend ,�iend ,�iendi in the CB

We take a few steps back. Let’s look at the assignments of facilities and customers.
These are represented by the xi,j . What output states can be achieved with USWAP(�)?
The question answers the next theorem:

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 66

Theorem 29: Range from USWAP(�)

Let |Egi = |x11 = a11, . . . , xnm = anm, y1 = b1, . . . , yn = bni with
a11, . . . , anm, b1, . . . , bn 2 {0,1} be the ground state of a FLP and let
|'i be an initial state which fulfils the assignment constraint. Then

there are angles � 2 Rpmn
2�n

2 such that |↵,�,�i matches with |Egi for
x11, . . . , xnm, i.e. |↵,�,�i = |x11 = a11, . . . , xnm = anm, y1 = c1, . . . , yn = cni
with c1, . . . , cn 2 {0,1}.

Proof

Let the initial state be given as

|'i = |x11 = d11, . . . , xnm = dnm, y1 = e1, . . . , yn = eni

with d11, . . . , dnm, e1, . . . , en 2 {0,1}. Let dk1,1, . . . , dkm,m = 1 be given. Since |'i
satisfies the assignment constraint, this applies to all other dij = 0. For the ground
state |Egi applies ai1,1, . . . , aim,m = 1 and all others aij = 0. With this knowledge,
the angles can now be selected as

�ii0j =

⇢
⇡ if dij = ai0j = 1

0 otherwise
.

The rule is that only one facility i supplies the customer j. Thus, from xi,j to xn,j

there is only one xi,j = 1, the others are 0. We swap this value of 1 from the position
of our initial state to the position at which it is located in the ground state and obtain

USWAP(�) |'i = |x11 = a11, . . . , xnm = anm, y1 = e1, . . . , yn = eni .

The Operator UP (HSWAP) does not open or close any facilities or disconnect any
connections. The operator UQAOA(↵) only changes the values of y1, . . . , yn and thus
the assertion is shown. ⇤
The question is what constitutes a good initial state. If the opening cost were
zero, Theorem 29 shows that we can start with any state as long as the assignment
constraint holds. Since there are opening costs and associated qubits yi, the QAOA
mixer is applied to these qubits. Therefore, starting with a superposition state makes
the most sense. To achieve this superposition, a quantum circuit is required, which
is presented in the next section

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 67

Superposition of All Feasible States

First, it is necessary to define what is meant by all feasible states. Guided by Chapter
3.2, all feasible states are those that fulfill both the assignment constraint and the
equivalent opening constraint from Theorem 4. To achieve a superposition of all
feasible states, we consider each customer step by step. For a given customer, we
assign a probability of 1/n for each possible connected facility. As a quantum circuit,
this looks as follows:

.

.

.

x1,j : |0i Ry(2 · arcsin(
q

1
n))

x2,j : |0i Ry(2 · arcsin(
q

1
n�1))

x3,j : |0i Ry(2 · arcsin(
q

1
n�2))

xn�1,j : |0i Ry(2 · arcsin(
q

1
2))

xn,j : |0i

.

.

.

xi,1:

xi,2:

xi,3:

xi,m:

yi: |0i

A customer is associated with exactly one facility. For example, for customer j, the

operator Ry

✓
2 arcsin

✓q
1

n

◆◆
is applied to x1,j , which generates the state |1i with

a probability of 1

n and remains in the state |0i with a probability of n�1

n . Iteratively,

reverse-controlled Ry

⇣
2 arcsin

⇣q
1

n�i

⌘⌘
are applied to xi+1,j . The operator is only

applied if x1,j = · · · = xi,j = 0. If we apply this quantum circuit to all customers,
we get a superposition of all feasible x1,1, . . . , xn,m. However, the opening constraint
must still be considered. This means that if one of the xi,1, . . . , xi,m has the value 1,
then facility i must also be opened. Therefore, we go through the xi,j one after the

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 68

other, and if the value of yi is still 0, a CNOT gate is applied with xi,j as the control
qubit and yi as the target qubit. The algorithm that generates the superposition of
all possible feasible solutions is as follows:

Algorithm 10: Quantum Circuit for FLP Superposition

Given are:

• n facilities and m customers

• The first n ·m qubits labels as xi,j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• The last n qubits labels as yi 8i 2 {1, . . . , n}

Initialise: |0 . . . 0i| {z }
nm+n times

for j = 1, . . . ,m do

apply Ry

✓
2 arcsin

✓q
1

n

◆◆
on x1,j

for i = 1, . . . , n� 1 do

apply Cx1,j . . . Cxi,j
Ry

⇣
2 arcsin

⇣q
1

n�i

⌘⌘
to the target xi+1,j

for i = 1, . . . , n do
apply Cxi,1X to the target yi
for j = 2, . . . ,m do

apply Cxi,1 ...Cxi,j�1Cxi,j
X to the target yi

Now we look at the case n = m = 2:

x1,1: |0i H

x1,2: |0i H

x2,1: |0i

x2,2: |0i

y1: |0i

y2: |0i

In the case where n = m = 2, we can use Ry(2 ·arcsin(
q

1

2
)) = Ry

�
⇡
2

� ⇠= H. Initially,

there is a 50% probability that the first customer is assigned to the first facility; if

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 69

not, they are assigned to the second facility. This process is repeated for the second
customer. Afterward, a superposition of all possible assignments of customers to
facilities is generated. It is then checked whether facility 1 supplies any customers,
and if so, it is opened. The same process is repeated for the second facility. Next,
it is demonstrated that the algorithm indeed generates a superposition of all feasible
states.

Theorem 30: Circuit for Superposition of All Feasible States

Let an arbitrary instance of an FLP be given. Then Algorithm 10 creates
a superposition of all states which fulfils the assignment constraint and the
constraint from Theorem 4.

Proof

We split the proof into two parts. The first part deals with the assignments of
customers to the facilities and the second part deals with the opening of the facilities.
1. We look at the first for loop over j. In this loop, the individual customers j are
independent of each other. This means that it is su�cient to look at one customer
j. The following gate is applied to the qubit x1,j :

Ry

2 arcsin

 r
1

n

!!
|0ix1,j

=

r
n� 1

n
|0ix1,j

+

r
1

n
|1ix1,j

.

This results in P (x1,j = 0) = n�1

n , P (x1,j = 1) = 1

n . Next we apply a for loop over
each facility i. Here, if the customer j is not yet connected to the facilities 1, . . . , n,
the following operator is applied to the qubit xi+1,j :

Ry

2 arcsin

 r
1

n� i

!!
|0ixi+1,j

=

r
n� i� 1

n� i
|0ixi+1,j

+

r
1

n� i
|1ixi+1,j

.

We now calculate the probability that xi+1,j switches into the state 1:

P (xi+1,j = 1) =

i�1Y

k=0

n� k � 1

n� k
· 1

n� i
=

n� 1

n
· n� 2

n� 1
· · · · · n� i

n� i+ 1
· 1

n� i
=

1

n
.

The product at the beginning stands for the probability that all qubits before it
remain at 0. It is then multiplied with the probability that the state xi+1,j switches

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 70

to 1. After the second equals sign, we can see that all numbers except 1 and n are
cancel each other out. Logically it follows

P (xi+1,j = 0) = 1� P (xi+1,j = 1) = 1� 1

n
=

n� 1

n
.

2. The second step is to show how the facilities are opened. To do this, we examine
the for loop over i. The individual facilities are independent of each other, so we
can simply look at a single facility i. First, we check whether the first customer is
connected to facility i (i.e., if x1,j = 1). If so, the facility is set to 1. For customer j,
the algorithm first checks whether customers 1, . . . , j�1 are connected to the facility.
If none of these customers are connected, the algorithm checks whether customer j
is connected to facility i, and if so, facility i is opened. This prevents an open facility
from being closed again.
Thus, in part 1, we have shown how all possible combinations of facilities and
customers are generated as a superposition, and in part 2, we have shown how the
connected facilities are opened. ⇤
The greatest challenges in creating the circuit involve constructing the n-controlled
Ry and C

n
X gates. For the n-controlled Ry gate, Algorithm 5 can be used, where

the special case of the controlled Ry gate is explained. For the C
n
X gates, their

implementation is detailed in Algorithm 4. The CX gates can simply be changed to
CX gates with two X gates.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 71

5.5 Mixer for the Facility Location Problem

So far, we have presented mixers that require softcoding for one or both constraints.
Next, we will introduce a mixer that operates without softcoding. The inspiration for
this approach comes from Algorithm 10, where a superposition of all feasible states
was created. In Algorithm 10, all Ry gates have specified angles that ensure each state
has the same probability. However, by keeping the angles as variables and optimising
them, we can achieve an algorithm where any specific feasible state can be obtained
for particular angles, as will be demonstrated later. The quantum circuit is designed
as follows:

...

x1,j : |0i Ry(✓x1,j)

x2,j : |0i Ry(✓x2,j)

x3,j : |0i Ry(✓x3,j)

xn�1,j : |0i Ry(✓xn�1,j)

xn,j : |0i

...

xi,1:

xi,2:

xi,3:

xi,m:

yi: |0i

The upper circuit is executed for each customer in turn, followed by the lower circuit
for each facility. In total, we need (n � 1) · m angles for optimisation. The idea is
that if we look at customer j and connect it to the i-th facility, we set ✓xij

= ⇡ and
leave all other angles ✓xkj

8k 2 {1, . . . ,m}\{i} to 0. The corresponding algorithm is
as follows:

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 72

Algorithm 11: Quantum Circuit for FLP

Given are:

• n facilities and m customers

• The first n ·m qubits labels as xi,j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• The last n qubits labels as yi 8i 2 {1, . . . , n}

• Angles (✓x1,1 , . . . , ✓xn�1,m) 2 R(n�1)m

Initialise: |0 . . . 0i| {z }
nm+n times

for j = 1, . . . ,m do
apply Ry(✓x1,j) on x1,j

for i = 1, . . . , n� 2 do
apply Cx1,j . . . Cxi,j

Ry(✓xi+1,j) to the target xi+1,j

apply Cx1,j . . . Cxn�1,jX to the target xn,j
for i = 1, . . . , n do

apply Cxi,1X to the target yi
for j = 2, . . . ,m do

apply Cxi,1 ...Cxi,j�1Cxi,j
X to the target yi

It is important that for each customer j, if they are not connected to facilities
1, . . . , n�1, they are connected to facility n in order to fulfil the assignment constraint.
Incidentally, this is also the case in Algorithm 10 if we take into account the fact that
Ry(2 arcsin(1)) = Ry(⇡) ⇠= X applies, although this is not directly obvious from the
algorithm. The circuit generated by Algorithm 10 is therefore a special case where
the angles are specified.

Let’s take a look at the case n = m = 2. In this circuit, an Ry gate is first applied
to x1,1, which corresponds to connecting customer 1 with facility 1. If we leave the
qubit x1,1 at 0, the qubit x2,1 is changed to 1. The same then happens with the
second customer. This guarantees the assignment constraint. The first facility is
then opened (y1 changed to 1) if at least one of the customers is supplied by the
facility. This process is repeated for the second facility. In this way, the opening
constraint is also always fulfilled.

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 73

x1,1: |0i Ry(✓x1,1)

x1,2: |0i Ry(✓x1,2)

x2,1: |0i

x2,2: |0i

y1: |0i

y2: |0i

The question now is whether every possible ground state of an FLP can be achieved
with Algorithm 11 by selecting the appropriate angles. The following theorem
addresses this question:

Theorem 31: Quantum Circuit for FLP

Let an arbitrary instance of an FLP be given and let S be the set of all states
which fulfils the assignment constraint and the equivalent opening constraint
from Theorem 4. Then the following two points holds:

1. For all states z 2 S there are angles ✓ 2 R(n�1)m, such that the
Algorithm 11 generates the state z.

2. The Algorithm 11 cannot generate a non-feasible state z0 62 S.

Proof

1. We consider an arbitrary state which, fulfils the assignment constraint and the
equivalent opening constraint. Then there are i1, . . . , im 2 {1, . . . , n} with xi1,1 =
· · · = xim,m = yi1 = yim = 1. We now define the angles ✓xi,j

as

✓xi,j
=

⇢
⇡ if i = ij

0 otherwise
.

These angles are chosen because the output of an Ry gate is unique in the following
way

Ry(⇡) ⇠= X Ry(0) = .

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 74

Since a customer j is only connected to one facility ij , a non-trivial operator is only
applied to the qubit xij ,j . After initialisation, x1,j = · · · = xij�1,j = 0 applies. The
operator X is then applied to the qubit xij ,j , which changes the qubit to 1. This
means that we connect customer j to facility ij for all customers. With the second
large for loop, the associated facility is also automatically opened (yij = 1).
2. Now, let’s consider two cases. The first case is generating a state where the
assignment constraint is not fulfilled. The second case is generating a state where
the opening constraint is not fulfilled.
i. If all x1,j , . . . , xn�1,j are set to 0, xn,j is always set to 1. Therefore, it is not possible
to use the algorithm to create a state that does not fulfill the assignment constraint.
ii. States that fulfill the assignment constraint also automatically fulfill the opening
constraint. This is ensured by the second large for loop. The yi are always set to 1
if at least one of the xi,1, . . . , xi,m is set to 1. ⇤
The goal is to use Algorithm 11 to approximate the minimum of the FLP. To achieve
this, a classic optimisation algorithm is used after each step to optimise the angles.

Algorithm 12: FLP Approximation Algorithm

Given are:

• n facilities and m customers

• The first n ·m qubits labels as xi,j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• The last n qubits labels as yi 8i 2 {1, . . . , n}

• initial angles ✓0 2 R(n�1)m

Carry out the following steps, starting with i = 0:

1. Perform the Algorithm 11 with the angles ✓i and call the output |'(✓i)i

2. Calculate using a measurement: h'(✓i)|CCFLP |'(✓i)i.

3. Fit the angles to ✓i 7! ✓i+1 with a classic optimisation algorithm.

4. Return to step 1. until the maximum iterations are reached. Name the
final vector ✓iend

.

Algorithm 12 can be used to approximate the minimum of the FLP. To understand
this, let’s examine the second part of Theorem 31. No infeasible states can be created
with Algorithm 12. This means that there can be no states with smaller eigenvalues

CHAPTER 5. QUANTUM APPROXIMATION ALGORITHMS 75

than the ground state.
The next question is whether there are angles that allow us to reach the ground
state. For this, we consider the first part of Theorem 31, which explains that every
feasible state can be generated, including the ground state. Since there is no smaller
eigenvalue, the minimum can be approximated by optimising the angles.

Now that several quantum algorithms have been introduced to approximate the
solution of the FLP, the question arises as to which algorithm performs best. These
algorithms will be tested and compared in the next chapter.

6 Testing of the FLP Quantum
Algorithms

This chapter compares the algorithms presented in Chapter 5. The table below lists
the algorithms along with their associated objective functions and Hamiltonians.

Name of the Algorithm
Unconstraint
Algorithm

TV
Algorithm

SWAP
Algorithm

Constraint
Algorithm

Objektiv Function CUFLP CTV CSWAP CCFLP

Objectiv Hamiltonian HUFLP HTV HSWAP HCFLP

Softcoded Constraints both assignment opening none

Algorithms 6 8 9 12

Table 6.1: Overview of some approximation algorithms for the FLP which was
presented in Chapter 5.

6.1 Theoretical Analysis of the Algorithms

Representation of Hamiltonian’s in the Pauli Basis

For the implementation of phase separators it is useful to decompose the Hamiltonian
into Pauli matrices. It’s holds

x̂a =
1

2
� 1

2
�
3

a, a 2 {1, . . . , nm+ n}.

If we apply the two equations and summarise them, we get

HCFLP =

nX

i=1

mX

j=1

�ci,j

2
�
3

(i�1)·m+j +

nX

i=1

�fi

2
�
3

nm+i +
�

2
.

76

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 77

To rewrite the penalty for the assignment constraint, the following conversion is
required.

nX

i=1

i�1X

i0=1

x̂(i�1)·m+j x̂(i0�1)·m+j =

nX

i=1

i�1X

i0=1

1

4
(� x̂(i�1)·m+j)(� x̂(i0�1)·m+j)

=
1

4

nX

i=1

i�1X

i0=1

⇣
� �

3

(i�1)·m+j � �
3

(i0�1)·m+j + �
3

(i�1)·m+j�
3

(i0�1)·m+j

⌘

=
1

4

nX

i=1

i�1X

i0=1

�
3

(i�1)·m+j�
3

(i0�1)·m+j �
nX

i=1

(n� 1)�3
(i�1)·m+j +

n
2 � n

2

!
.

The decomposed into Pauli matrices, of the Hamiltonians look as follows:

HTV =

nX

i=1

mX

j=1

�ci,j + �(2� n)

2
�
3

(i�1)·m+j +

nX

i=1

�fi

2
�
3

nm+i

+

mX

j=1

nX

i=1

i�1X

i0=1

�

2
�
3

(i�1)·m+j�
3

(i0�1)·m+j +
�

2

✓
m
n
2 � 3n+ 4

2
+ 1

◆
.

HSWAP =

nX

i=1

mX

j=1

�2ci,j � �

4
�
3

(i�1)·m+j +

nX

i=1

�2fi +m�

4
�
3

nm+i

�
nX

i=1

mX

j=1

�

4
�
3

(i�1)·m+j�
3

nm+i +
(2 + n ·m)�

4
.

HUFLP =

nX

i=1

mX

j=1

�2ci,j + �(3� 2n)

4
�
3

(i�1)·m+j +

nX

i=1

�2fi +m�

4
�
3

nm+i

+

mX

j=1

nX

i0=1

i0�1X

i=1

�

2
�
3

(i�1)·m+j�
3

(i0�1)·m+j �
nX

i=1

mX

j=1

�

4
�
3

(i�1)·m+j�
3

nm+i

+
�

2

✓
m
n
2 � 2n+ 4

2
+ 1

◆
.

The following table shows the number of summands for each Hamiltonian.

In Table 6.2, it is shown that the Hamiltonian without softcoding naturally requires
the fewest terms. However, softcoding the opening constraint does not change the
order of magnitude, which remains O(nm). In contrast, softcoding the assignment
constraint increases the order of magnitude to O(n2m). The computational e↵ort
increases with the number of terms, so HSWAP and HTV perform worse in this regard.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 78

Hamiltonian HCFLP HTV HSWAP HSWAP

Terms nm+ n+ 1
n(m

2

+nm
2

+ 1) + 1
2nm+ n+ 1

n(3m
2

+nm
2

+ 1) + 1

Table 6.2: Comparison of the number of terms of the di↵erent Hamiltonian.

Number of Unitaries in Mixers

In Table 6.3 the number of qubits, angles and gates become compared.

Problem UFLP TV SWAP CFLP

Number of Qubits nm+ n nm+ n nm+ n
nm+ n

+max(n� 1,m)� 2

Angles 2p nm+ n p(mn2
�n
2

+ 2) (n� 1)m

Phase separator p p

Single qubit
operator

(nm+ n)p 5nm+ n np
2nm(n
+m� 2) +m

CNOT nm 4m(n� 1)

CRy m(n� 1)2

To↵oli
m

(n�3)(n�2)(2n�5)

3

+nm
2 + n

2 � 5m

e
i�SWAP

pm
n2

�n
2

Table 6.3: Comparison of the di↵erent algorithms in terms of number of qubits,
required angles and unitary operators used, for max(n � 1,m) � 3 in
the case of CFLP.

Exactly nm + n qubits are required for each algorithm. Due to the multi-controlled
gates, in the case that max(n� 1,m) � 3, we need an additional max(n� 1,m)� 2
ancilla qubits. The number of angles required depends heavily on the algorithm. For
the UFLP and SWAP algorithms, the number of angles is also strongly dependent
on the chosen value of p. Only UFLP and SWAP require a phase separator, but we
will analyse later how the addition of a phase separator a↵ects the TV and CFLP
algorithms.
The composition of the circuits is relatively easy to read from the algorithms for
UFLP, TV, and SWAP. However, the construction of the CFLP circuit consists of

many i-controlled NOT gates with i 2 {1, . . . ,max(n� 1,m)}. The C
i
X gates must

first be converted into C
i
X gates, for which 2nm(n+m�2) �1 gates are required. In

addition, an Ry gate is added for each x1,j , so that 2nm(n+m� 2)+m single-qubit
gates are required.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 79

For the C
i
Ry gates for i 2 {1, . . . , n � 1}, we can use Theorem 22 to calculate the

number of necessary gates. First, we calculate the number of CRy gates:

1 +

n�1X

i=2

(2i� 1) =

n�1X

i=1

(2i� 1) = (n� 1)2.

Since we use this algorithm for every j, we get m(n � 1)2 CRy gates. The number
of CNOT gates required for a C

i
Ry gate is 2 for i � 2, so a total of 2m(n � 2)

CNOT gates are required. For the To↵oli gates, let’s first look at the first part of the
algorithm. The number of To↵oli gates is

2

n�1X

i=2

(i� 2)2 = 2

n�3X

i=1

i
2 =

(n� 3)(n� 2)(2n� 5)

3
.

This value must still be multiplied by the number of customers m. The following

identity was used in the calculation:
nP

i=1

i
2 = n(n+1)(2n+1)

6
(cf. [31, page 73]).

The last Cn�1
X gate for xn,j can be represented by 2(n� 1)� 3 To↵oli gates. Since

we need this many To↵oli gates for each customer, we have m(2n � 5) more To↵oli
gates. However, further To↵oli gates are required, specifically in the second large for
loop, where the C

i
X gates must be decomposed into To↵oli gates. Then we get an

additional

mX

i=2

(2i� 3) =

mX

i=2

(2i� 1)� 2m+ 2 =

mX

i=1

(2i� 1)� 2m+ 1

= m
2 � 2m+ 1 = (m� 1)2

To↵oli gates. Since we have a total of n facilities, we have n(m�1)2 more To↵oli gates.

In total, m (n�3)(n�2)(2n�5)

3
+nm

2+n
2� 5m To↵oli gates are required. Additionally,

there are n more CNOT gates.
If we compare the four circuits, we observe that the CFLP circuit has the largest
order of magnitude in terms of the number of gates. If we compare the number
of single-qubit gates alone, we have an order of magnitude of O(n2m + nm

2). For
p ⇡ n � m, this is comparable to the order of magnitude of single-qubit gates in the
UFLP circuit. However, the number of To↵oli gates is particularly large. Here, the
order of magnitude for CFLP is O(n3m + nm

2), which is larger than the order of
magnitude of all other circuits for n ⇡ m. If we set p ⇡ n, the order of magnitude
of unitary operators in the SWAP algorithm can be comparable to that of the CFLP
circuit.
After each iteration step, a classical optimisation of the angles takes place, which

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 80

depends significantly on the number of angles. These are the largest with SWAP,
where the order of magnitude is O(pmn

2). Depending on the choice of p, CFLP or
UFLP has the least number of angles. The smaller the number of angles, the faster
the classical optimisation works.
For exact problems, the TV and CFLP algorithms can always be applied but cannot
be improved further because they do not depend on a parameter p. Therefore, their
quality remains fixed. Nevertheless, the comparison is worthwhile. With TV, we have
an order of magnitude of O(nm), compared to O(n3m+ nm

2) with CFLP, resulting
in considerably more gates with CFLP than with the TV algorithm. On the one hand
the construction of the quantum circuit for TV need less gates than that of CFLP. On
the other hand, CFLP has slightly fewer angles that need to be classically optimised,
even if the order of magnitude remains the same. When considering the SWAP
or UFLP algorithms, the approximation quality can be adjusted. If the obtained
approximation is unsatisfactory, the parameter p can be increased to achieve a better
approximation, although it is unclear how high p needs to be set.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 81

6.2 Implementation of the FLP for n = m = 2

This chapter addresses the practical implementation of the previously presented
algorithms for approximating the FLP. For this purpose, a class called
”QuantumApproximateOptimisation” in Python3 is used, which was provided by
ITP Hannover. One of the inputs is a problem class, which in our case is the FLP.
The various objective functions, Hamiltonians, and mixers are implemented in the
”FLP” problem class. This simulation handles qubits as vectors. Instead of using
nm+n qubits, we work with a vector of size 2nm+n to simulate a quantum computer.

Additionally, two other useful classes were provided by ITP Hannover: ”PureState”
and ”PauliString”, which shorten the computing times. ”PureState” runs most
matrix-vector multiplications on C++, and ”PauliString” represents tensor product
Pauli matrices as strings. Because the interactions between Pauli matrices are known,
calculations between di↵erent Pauli matrices can be performed quickly. This section
analyses how well the di↵erent algorithms perform.

Direct Comparison of the Algorithms

We begin by comparing the algorithms with a simple example. This instance consists
of 2 facilities and 2 customers. Let the following instance of an FLP be given:

min
x,y

1x1,1 + 4x1,2 + 2x2,1 + 10x2,2 + 3y1 + 7y2

s.t. x1,1 + x2,1 = 1

x1,2 + x2,2 = 1

x1,1  y1

x1,2  y1

x2,1  y2

x2,2  y2

There are four possible configurations in which the customers can be assigned to the
facilities, as illustrated in Table 6.4.

The optimal solution has a minimum value of 8. Figure 6.1 shows the approximation
of this minimum using various algorithms. It is evident that both the TV and
CFLP algorithms quickly reach the minimum. In contrast, for SWAP and UFLP,
the approximation of the minimum improves with larger values of p. For UFLP,
the rate of improvement is much slower compared to SWAP, whereas for p = 4, the

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 82

Scenario x1,1 x1,2 x2,1 x2,2 y1 y2
Total
cost

Customer 1 and 2 are both
supplied by facility 1

1 1 0 0 1 0 8

Customer 1 and 2 are both
supplied by facility 2

0 0 1 1 0 1 19

Customer 1 is supplied by facility 1
and customer 2 is supplied by facility 2

1 0 0 1 1 1 21

Customer 1 is supplied by facility 2 and
customer 2 is supplied by facility 1

0 1 1 0 1 1 16

Table 6.4: All possible combinations for the assignment of two customers to two
facilities, which do not leave any facility open unnecessarily, as well as
the associated costs.

approximation achieved with SWAP matches that of CFLP and TV. This example
highlights that pure softcoding performs worse than at least partially hardcoded
algorithms. This will be confirmed in the following sections. It is important to note
that only the integer values count in the figures, and not those in between, but these
points have been connected for a better overview.

Figure 6.1: Approximation of the minimum of an explicit example for n = m = 2
with di↵erent FLP algorithms

So far, only a single example has been considered, but the algorithms are designed to

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 83

work across a variety of instances. To test their general applicability, 1000 FLP
instances were generated pseudo-randomly using the Python package ”random”.
These 1000 instances were then averaged for each algorithm to assess their
performance. To ensure a fair comparison, all instances were normalised as follows:

Normalised cost =
Minimal cost

Approximated cost

Because the approximated costs are always greater or equal as the minimum, the
algorithms approximate better if the normalised costs are closer to 1.

Figure 6.2: Average approximate of 1000 random instances for n = m = 2 for di↵erent
FLP algorithms.

The algorithms can be e↵ectively compared using Figure 6.2. In this figure, the
average approximation of CFLP performs the best. Based on the results from Figure
6.1, the values of p for SWAP and UFLP were deliberately chosen to be larger. It
can be seen that SWAP for p = 4 and TV have very similar approximations. With
a smaller p, SWAP performs worse, while increasing p improves the approximation,
making it better than TV. As previously assumed, UFLP also approximates much
worse for large p, with an average normalised cost of 0.6, compared to the other
algorithms, which are at a normalised cost of 0.85. CFLP even achieves a normalised
cost of 0.95.
To analyse the quality of the algorithms even more precisely, it is also necessary to
compare how many gates and angles are required by the di↵erent algorithms.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 84

The Table 6.5 illustrates the gates they are used for the various algorithms.

Algorithm Angles
Single qubit
gates

CNOT Two qubit gates To↵oli

UFLP
p = 4

8 76

UFLP
p = 10

20 190

TV 6 22 4

SWAP
p = 3

9 39 24

SWAP
p = 4

12 52 32

SWAP
p = 5

15 65 40

CFLP 2 10 4 2

Table 6.5: Decomposition of the mixers of di↵erent algorithms into gates.

For SWAP, the exp(i�SWAP) gates in SWAP were broken down into four two-qubit
Pauli matrices. The reverse NOT gates are decomposed into CNOT and two X

gates. UFLP and SWAP require a substantial number of angles and gates to match
the approximation performance of the TV and CFLP algorithms. Specifically, UFLP
exhibits the worst approximation and the highest gate count for p = 10 compared to
the algorithms TV and SWAP for p 2 {3,4,5} and CFLP. When comparing SWAP
with TV, both o↵er similar approximation quality for p = 4, but TV needs fewer
angles and gates. Therefore, SWAP should be used for p > 4, as it provides a slightly
better approximation than TV but involves more angles and gates. To minimise the
number of angles, TV and CFLP are preferable. CFLP requires fewer angles than
TV for each choice of n and m, but the order of magnitude of the gates in CFLP
grows much faster than that of TV, as already shown in Table 6.3.
In the case of n = m = 2, we use Theorem 18 to decompose the two To↵oli gates.
One To↵oli gate corresponds to 3 CNOT and 4 single-qubit gates, so we have 18
single-qubit gates and 10 CNOT gates in CFLP as opposed to 22 single-qubit gates
and 4 CNOT gates in TV. Thus, the two algorithms di↵er mainly in the number of
CNOT gates, which are lower in the TV algorithm. This means that CFLP requires
slightly more gates, but on average, it also provides a better approximation.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 85

Dependence of the SWAP and UFLP Algorithms on p

For larger values of p, it is worth considering whether the SWAP algorithm could
potentially outperform the CFLP algorithm or whether the UFLP approximation for
very large p could be superior to that of TV. To investigate this, we will calculate the
normalised minimal costs for SWAP and UFLP for di↵erent values of p and present
them as a function of p.

Figure 6.3: p-dependence of the average approximation for the SWAP and UFLP
algorithm.

Figure 6.3 shows that the average approximation improves consistently, at least up to
p = 10. For p � 6, the SWAP algorithm, on average, surpasses the pure hardcoded
CFLP algorithm. However, it must also be noted that p was chosen to be larger
than n or m, resulting in a higher number of gates required to implement the
algorithm compared to the TV and CFLP algorithms. The UFLP algorithm also
shows continuous improvement for larger p values, yet remains the last in terms of
average approximation up to p = 10.

6.3 Approximation Quality as a Dependency of the
Size of the FLP

Having previously only considered the case n = m = 2, we will now examine scenarios
with more facilities and customers. From previous considerations, it became evident

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 86

that the UFLP algorithm exhibits poor approximation values even with two customers
and two facilities. Therefore, we will exclude it from further analysis. We have
also observed that the SWAP algorithm requires a significant number of gates for
n = m = 2. To compare larger instances, we will focus on the CFLP and TV
algorithms.

Dependence on the Number of Customers

Firstly, the dependency on the number of customers is examined by varying the
number of customers while keeping the number of facilities constant. The number
of facilities is set to the minimum value of 2. If there were only one facility, the
assignment would be trivial since all customers would be assigned to that single
facility.

Figure 6.4: Approximation of 100 random instances for n = 2,m 2 {1, . . . , 6}.

Figure 6.4 illustrates that as the number of customers increases, the approximation
accuracy for the CFLP algorithm slightly declines, from 0.95 for n = 2 to
approximately 0.85 for n = 6 on average. The TV algorithm’s performance remains
relatively stable, fluctuating between 0.8 and 0.85. Up to m = 6, the CFLP algorithm
generally outperforms the TV algorithm on average. Despite the decrease in performance
for the CFLP algorithm, both algorithms maintain stability even with an increased
number of customers.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 87

In future studies, it may be possible to analyse the FLP with both algorithms on a
quantum computer across a significantly larger number of customers and over more
than 100 di↵erent instances. An interesting question to explore would be whether
there exists a value of m for which the CFLP and TV algorithms achieve the same
approximation accuracy, or if, for larger m, the TV algorithm might outperform the
CFLP algorithm.

Dependence on the Number of Facilities

Having considered the dependency of the approximation on the number of customers,
we now examine the dependency on the number of facilities. We consider both the
cases m = 1 and m = 2. It is important to note that the number of qubits is given
by nm + n. If the number of customers is increased by one, the number of qubits
increases by n. Conversely, if the number of facilities is increased by one, the number
of qubits increases by m + 1. This implies that the number of qubits grows faster
with increasing n than with increasing m, when the other value (either the number
of customers or the number of facilities) is held constant. For example, comparing
n = 2,m = 5 with n = 5,m = 2 results in 12 and 15 qubits, respectively. We first
consider the minimum number of customers to be 1 and then increase the number of
facilities.

Figure 6.5: Approximation of 400 random instances for m = 1, n 2 {2, . . . , 6}.

Figure 6.5 demonstrates that for n  3, the CFLP algorithm provides a better average

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 88

approximation than the TV algorithm. From n = 4 onwards, the di↵erence between
the two algorithms becomes negligible. It is evident that for m = 1 and n 2 {2, 3},
the CFLP algorithm converges for all 400 random instances. This raises the question
of whether the approximation also deteriorates for larger values of m when n � 4.

Figure 6.6: Approximation of 100 random instances for m = 2, n 2 {2, . . . , 5}.

Figure 6.6 indicates that the approximation accuracy decreases when there are two
customers and four or more facilities. In the cases considered, the approximation
decreases more significantly when the number of facilities is increased compared to
when the number of customers is increased.

This observation raises the question of whether this trend holds for larger values of
n or m. Specifically, if max(n,m) � 4, do the TV and CFLP algorithms provide the
same approximation or decreases more.

Higher Order Problems

After previously setting one of the parameters n or m to a maximum of 2, the TV
and CFLP algorithms are now applied to problems with min(n,m) = 3.
Figure 6.7 shows the average approximation for three di↵erent instances. It is evident
that, especially for m � n, the approximation of CFLP is better than that of the TV
algorithm. In the case of m < n, there is no significant di↵erence between the two
algorithms, consistent with the previously considered cases.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 89

Thus, in the scenarios examined, the CFLP algorithm performs better, particularly
when there are more customers than potential facilities. In many everyday
applications, companies often have a limited number of potential locations for their
facilities but significantly more customers. A special case occurs when a facility is to
be built to supply one or only a few other companies.

Figure 6.7: Approximation of 100 random instances for min(n,m) = 3 from the CFLP
and TV algorithm

6.4 Customisation of the Algorithms

Dependence on the Number of Angles

Thus far, we have only examined the overall performance of the algorithms. To
analyse the CFLP algorithm in more detail, we will vary the number of angles used
for optimisation in the specific case where n = m = 3. As we know, the CFLP
algorithm requires a total of (n � 1)m = 2 · 3 = 6 angles, while the TV algorithm
necessitates n · m + n = 12 angles. We will simulate how the CFLP algorithm
performs when fewer angles are optimised, and the remaining angles are selected as
in Algorithm 10.

Figure 6.8 demonstrates that only every second additional angle causes a change in
the approximation. In each case, two angles are responsible for connecting one of

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 90

Figure 6.8: Normalised approximation for a di↵erent number of optimised angles for
the CFLP algorithm for m = n = 3.

the three customers to the possible facilities. For n = m = 3, adding an angle to
be optimised results in a better approximation if it a↵ects a new customer. This is
evidenced by the staircase structure of the figure.
It is now interesting to determine if this phenomenon occurs for each instance when
the number of facilities is increased by one.

Influence of a Phase Separator to CFLP and TV

The phase separator is indispensable for QAOA, which is why it is included in the
UFLP algorithm. It is also fully implemented for the SWAP algorithm, and the
QAOA mixer is at least partially implemented. Without a phase separator, the
approximations using the SWAP algorithm are significantly worse. Even for n = m =
2, without a phase separator, the value of the normalised costs of the superposition of
all feasible states is often in the range of 0.2-0.3. This raises the question of whether
the use of a phase separator can improve the approximations following the respective
algorithms of CFLP and TV. The algorithms are compared both with and without a
phase separator.

An additional angle is required for the phase separator, and the number of additional

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 91

Figure 6.9: Comparison of the CFLP and the TV algorithm with and without phase
separator for m = n = 2.

single-qubit gates needed can be found in Table 6.2. The phase separator was
employed in each iteration step following the respective algorithms and was then
optimised classically according to the angles.
When simulating various random instances, it is observed that the phase separator
has minimal influence on the CFLP algorithm. The average approximation of the
CFLP without a phase separator is 0.951, while with a phase separator, it is 0.953.
This di↵erence is not easily discernible in Figure 6.9. In the figure, the TV algorithm
without a phase separator performs slightly better, but the di↵erence is very minimal.
Given that the phase separator does not significantly a↵ect the approximation, the
versions of the TV and CFLP algorithms without a phase separator were used in all
other analyses. This approach also helps in reducing the computation time.

Simplification of the CFLP Algorithm

Algorithm 12 describes the CFLP algorithm, which consists of two parts: the first
part connects customers with facilities, and the second part opens the facilities. It
is evident that many controlled operations occur in both parts. These operations
ensure that only states in which a customer is connected to exactly one facility are
considered, and that a facility is opened only if it supplies at least one customer, as
demonstrated by Theorem 31.
Consider Theorem 3, which states that it does not matter if a customer is connected

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 92

to exactly one facility or at least one facility. The minimum of the FLP remains
unchanged. The following circuit illustrates that the number of gates is reduced,
which results in an increased number of feasible states.

...

x1,j : |0i Ry(✓x1,j)

x2,j : |0i Ry(✓x2,j)

x3,j : |0i Ry(✓x3,j)

xn�1,j : |0i Ry(✓xn�1,j)

xn,j : |0i

...

xi,1:

xi,2:

xi,3:

xi,m:

yi: |0i

For each individual customer, connections to other customers 1, . . . , n�1 are managed
only by applying an Ry gate and without additional checks to determine if the
customer is already connected to another facility. To ensure that the customer is

connected to at least one facility, a C
n�1

X gate is applied to the last connection.
This means that the customer is connected to facility n at the latest. The opening
of the facilities remains the same like the CFLP algorithm. All states which can be
created with the circuit fulfils the equivalent assignment constraints from theorem 3
and the equivalent opening constraint from theorem 4.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 93

Algorithm 13: Simplified Quantum Circuit for FLP

Given are:

• n facilities and m customers

• The first n ·m qubits labels as xi,j 8i 2 {1, . . . , n}, j 2 {1, . . . ,m}

• The last n qubits labels as yi 8i 2 {1, . . . , n}

• Angles (✓x1,1 , . . . , ✓xn�1,m) 2 R(n�1)m

Initialise: |0 . . . 0i| {z }
nm+n times

for j = 1, . . . ,m do
for i = 1, . . . , n� 1 do

apply Ry(✓xi,j
) on xi,j

apply Cx1,j . . . Cxn�1,jX to the target xn,j
for i = 1, . . . , n do

apply Cxi,1X to the target yi
for j = 2, . . . ,m do

apply Cxi,1 ...Cxi,j�1Cxi,j
X to the target yi

The question now is how the Simplified CFLP (SCFLP) Algorithm 13 performs
against the CFLP Algorithm 11.

Gates Single qubit CNOT To↵oli

Number of gates 4mn
2 � nm� 3m n nm

2 � 5m+ 1

Table 6.6: Number of gates of the SCFLP algorithm for min(n� 1,m) � 3.

To compare the gates of the SCFLP and CFLP algorithms, we present the number
of gates for SCFLP in Table 6.6 alongside those for CFLP (see Table 6.3). It is
evident that the order of magnitude of To↵oli gates for SCFLP is O(mn

2), compared
to O(mn

3) for the CFLP algorithm. This significantly reduces the number of gates,
especially when there are many facilities.
Since the SCFLP algorithm can result in more feasible states, it is necessary to
evaluate how the two algorithms perform against each other when implemented. The
CFLP and SCFLP algorithms di↵er only for n � 3, so we compare the two algorithms
for instances with n � 3.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 94

Figure 6.10: Distribution of the CFLP and SCFLP algorithm for 1000 random
instances for n = 3

When comparing the two algorithms in Figure 6.10, it is evident that the SCFLP
algorithm performs slightly worse on average than the CFLP algorithm. Nevertheless,
both algorithms achieve a better average approximation than the TV algorithm in
the considered cases.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 95

6.5 Distribution of the Approximations

Thus far, we have compared the di↵erent algorithms based on their average
approximation. However, we have not determined the frequency with which each
algorithm finds the exact minimum. Since the distribution of the approximations is
not known, we cannot make direct statements about standard deviation or variance.
Therefore, various previously shown instances are compared again with regard to
their distribution.

Figure 6.11: Distribution of the CFLP, TV, SWAP and UFLP algorithm for 1000
random instances with n = m = 2.

CHAPTER 6. TESTING OF THE FLP QUANTUM ALGORITHMS 96

The distributions illustrated in Figure 6.11 reveal how frequently each particular
approximation was achieved. For clarity, the normalised approximations were rounded
to two decimal places. The CFLP algorithm identified the minimum for n = m = 2 in
over 75% of the cases considered. In contrast, the TV algorithm found the minimum
in around 50% of cases. The UFLP algorithm never found the minimum for p = 10,
with approximations clustering around 0.6. The SWAP algorithm often failed to
find the exact minimum, but usually achieved approximations between 0.8 and 1.0.
The remaining 50% of the states in the TV algorithm exhibit an approximately
uniform distribution of approximations between 0.2 and 1.0. While the SWAP and
TV algorithms yield a similar mean value, their distributions di↵er. It is evident that
the CFLP algorithm performs best in this scenario.
The distributions for larger orders of magnitude are also of great interest, for which
we compare the CFLP, SCFLP, and TV algorithms in two cases.

Figure 6.12: Distribution of the CFLP, TV and SCFLP algorithm for 1000 random
instances for n = 3.

When comparing the three algorithms, it is evident that the CFLP algorithm achieves
the exact minimum most frequently, followed by the SCFLP algorithm, which
approximates the minimum in about 10% fewer cases. The TV algorithm
approximates the minimum about half as often as the CFLP algorithm.

7 Conclusion and Outlook

In this work, we explored various quantum algorithms to approximate the Facility
Location Problem (FLP). Given that the FLP is an NP-hard problem and assuming
P 6= NP, there is no polynomial-time algorithm for solving it. Quantum algorithms
present a fascinating approach to approximating the FLP.
We investigated four di↵erent algorithms, aiming to determine whether soft-coded
algorithms (UFLP) or hard-coded quantum algorithms (CFLP) perform better.
Additionally, we examined algorithms that combine both soft-coded and hard-coded
components (TV, SWAP).
Our analysis revealed that the TV algorithm is the most e�cient in terms of gate
count. The UFLP and SWAP algorithms are e↵ective only for large values of p,
requiring substantial gate counts, thus performing worst in this regard. Among the
algorithms, CFLP and TV cannot be further improved for a given specific instance.
Conversely, the SWAP and UFLP algorithms, based on QAOA, depend on p.
Increasing the value of p enhances the approximation, but even for high values of
p, the UFLP algorithm performs worst and requires the most gates. This indicates
that purely soft-coded algorithms provide the least e↵ective approximation, as QAOA
was developed for arbitrary unconstrained combinatorial optimisation problems. All
other algorithms are specially adapted to the FLP, yielding better results.
For instances where the number of customers exceeds the number of facilities, the
CFLP algorithm performs better on average than the TV algorithm. This also applies
to the simplified CFLP version, SCFLP, suggesting that purely hard-coded algorithms
can be more e↵ective than partially soft-coded ones in such scenarios. However,
when comparing the CFLP algorithm with the SWAP algorithm, SWAP achieves a
better approximation for n = m = 2 and p � 6 than CFLP, though at the cost
of a significantly higher gate count. For larger problem instances, the value of p

must be increased substantially for SWAP to perform comparably to CFLP. If there
are significantly more potential facilities than customers, the di↵erence between the
TV and CFLP algorithms diminishes. The advantage lies in everyday problems
where the number of customers typically exceeds the number of facilities, making
CFLP approximations generally superior to TV. If the number of angles is reduced
according to the CFLP algorithm, the approximation accuracy decreases. However,

97

CHAPTER 7. CONCLUSION AND OUTLOOK 98

for m = n = 3, the number of angles can be reduced by one without significant loss
in accuracy. Although a phase separator is used in the SWAP and UFLP algorithms,
applying it to the TV or CFLP algorithm does not result in a significant di↵erence
in approximations with or without the phase separator.
Examining the distribution of the di↵erent approximations further highlights the
distinction between the TV and CFLP algorithms and the SWAP and UFLP
algorithms. The first two algorithms often achieve the exact minimum, while the
latter two exhibit a greater spread in approximations. Hence, for achieving the exact
minimum, the TV and CFLP algorithms are the most suitable. The SWAP algorithm
also performs well if a good approximation su�ces.
In summary, the hard-coded CFLP algorithm generally performs best. However, the
TV algorithm, as presented in [4], has clear advantages, particularly in its low gate
count requirements. Due to computational constraints, only small instances were
simulated. This is because the TV algorithm necessitates vectors of size 2nm+n to
simulate nm+n qubits. In our simulation of the CFLP, an additional max(n�1,m)�2
qubits were also required. As future quantum computers evolve, larger instances could
be executed, enabling a more detailed investigation of the di↵erences between the
TV and CFLP algorithms. For some instances, the algorithms do not approximate
as well as for others, so it would be interesting to determine whether there is a way
to characterise which instances can be approximated well and which cannot. Further
research in this area could focus on whether and how the hard-coded algorithm for the
FLP can be improved. This work has already presented an algorithm, SCFLP, which
reduces the number of gates required. The approximation is only slightly reduced
compared to the CFLP algorithm. Both the CFLP and SCFLP algorithms consist of
two parts. The first part assigns customers to facilities. Here, the SCFLP algorithm
has succeeded in greatly reducing the number of gates. One possible approach would
be to determine how the number of gates in the second part of the CFLP algorithm,
which involves opening the facilities that supply a customer, can be reduced.
Some further formulations for the FLP were presented in Chapter 2. The MUCFLP
is a special case of the FLP where the cost c is a metric. All the algorithms considered
can also be applied to this problem. However, it is important to find out how the
algorithms approximate instances of the MUCFLP. Some classical algorithms only
work for FLP instances that fulfil the triangle inequality. It would be interesting to
find out how the quantum algorithms could be improved, especially for MUCFLP
instances. The k-FLP is a possible generalisation of the FLP where a maximum of k
facilities are opened. Adapting the algorithms to this scenario would be worthwhile.
In reality, a single facility cannot supply an unlimited number of customers. Another
possible generalisation of the algorithms for the Capacitated FLP would be a
fascinating research topic as well.

Bibliography

[1] Isaac L. Chuang Michael A. Nielsen. Quantum Computation and Quantum
Information. 2010.

[2] Adriano Barenco andothers. Elementary gates for quantum computation. november
1995. doi: 10.1103/physreva.52.3457. url: http://dx.doi.org/10.1103/
PhysRevA.52.3457.

[3] Edward Farhi, Je↵rey Goldstone and Sam Gutmann. A Quantum Approximate
Optimization Algorithm. 2014. arXiv: 1411.4028 [quant-ph].

[4] Miguel Paredes Quinones and Catarina Junqueira. Modeling Linear Inequality
Constraints in Quadratic Binary Optimization for Variational Quantum Eigensolver.
2020. arXiv: 2007.13245 [quant-ph].

[5] Gereon Koßmann andothers. Open-Shop Scheduling With Hard Constraints.
2023. arXiv: 2211.05822 [quant-ph].

[6] Dennis L. So lange braucht ein Rettungswagen bis zum Eintre↵en im Notfall.
2021. url: https://www.forschung-und-wissen.de/nachrichten/oekonomie/
so-lange-braucht-ein-rettungswagen-bis-zum-eintreffen-im-notfall-

13375259#. (Letzter Zugri↵: 01.02.24).

[7] Jens Vygen. Approximation Algorithms for Facility Location Problems. Lecture
Notes. Research Institute for Discrete Mathematics,, University of Bonn. 2005.

[8] João Pedro Pedroso andothers. Facility location problems. 2012. url: https:
//scipbook.readthedocs.io/en/latest/flp.html. (Letzter Zugri↵: 14.02.24).

[9] lak. Set Cover. 2012. url: https://ac.informatik.uni- freiburg.de/
lak_teaching/ws11_12/combopt/notes/set_cover.pdf. (Letzter Zugri↵:
17.02.24).

[10] Lennart Binkowski. Constraint Graph Model Analysis of the Quantum Alternating
Operator Ansatz. 2022.

[11] Thomas Wick Thomas Richter. Einführung in die Numerische Mathematik.
2017.

99

https://doi.org/10.1103/physreva.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2007.13245
https://arxiv.org/abs/2211.05822
https://www.forschung-und-wissen.de/nachrichten/oekonomie/so-lange-braucht-ein-rettungswagen-bis-zum-eintreffen-im-notfall-13375259#
https://www.forschung-und-wissen.de/nachrichten/oekonomie/so-lange-braucht-ein-rettungswagen-bis-zum-eintreffen-im-notfall-13375259#
https://www.forschung-und-wissen.de/nachrichten/oekonomie/so-lange-braucht-ein-rettungswagen-bis-zum-eintreffen-im-notfall-13375259#
https://scipbook.readthedocs.io/en/latest/flp.html
https://scipbook.readthedocs.io/en/latest/flp.html
https://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/set_cover.pdf
https://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/set_cover.pdf

Bibliography 100

[12] Kim Kern. Komplexitätsklasse P. 2012. url: http://www.inf.fu-berlin.
de/lehre/WS11/ProSem-ThInf/Komplexittsklasse_P.pdf.

[13] Juraj Hromkovic. Theoretische Informatik. 2011.

[14] Bishal Thapa San Tan. Algorithmic Power Tools. 2009. url: https://www.
khoury . northeastern . edu / home / rraj / Courses / 7880 / F09 / Lectures /

FacLocFiltering.pdf.

[15] Arindam Khan. Approximation Algorithm for Set Cover. 2014. url: https:
//www14.in.tum.de/personen/khan/Arindam%20Khan_files/1.%20Set%

20Cover.pdf.

[16] Dave Mount. Greedy Approximation: Set Cover. 2017. url: https://www.cs.
umd.edu/class/fall2017/cmsc451-0101/Lects/lect09-set-cover.pdf.

[17] Chvatal. Mathematics of Operations Research 4. 1979.

[18] Anupam Gupta. Lecture 6: Facility location: greedy and local search algorithms.
2008. url: https://www.cs.cmu.edu/~anupamg/adv-approx/lecture6.pdf.

[19] Deeparnab Chakrabarty. Local Search Algorithms for Facility Location. 2022.
url: https : / / www . cs . dartmouth . edu / ~deepc / LecNotes / Appx / 2b .

%20Local%20Search%20Algorithms%20for%20Facility%20Location.pdf.

[20] Vijay Vazirani Klaus Jansen Stefano Leonardi. Approximation Algorithms for
Combinatorial Optimization. springer, 2002. isbn: 3-540-44186-7.

[21] Vazirani. Lecture 2: Quantum Algorithms. 2009. url: https://people.eecs.
berkeley.edu/~vazirani/s09quantum/notes/lecture2.pdf.

[22] Wolfram Bauer. Funktionalanalysis. 2023.

[23] Unitäre und orthogonale Abbildungen. 2021. url: https://www2.physik.uni-
muenchen.de/lehre/vorlesungen/wise_21_22/r_rechenmethoden_21_22/

skript/auth/16-L8_1-2-vor-Matrizen-V-UnitaerOrthogonalHermiteschSymmetrisch.

pdf.

[24] Prof. Dr. Wolfgang von der Linden. Quantenmechanik. 2000. url: https://
itp.tugraz.at/LV/arrigoni/QM/a_qm_all.pdf.

[25] Stefan Boresch. Taylorreihen. 2011. url: https://www.mdy.univie.ac.at/
lehre/mathe/molbio/folien/taylor.pdf.

[26] General parametrisation of an arbitrary 2×2 unitary matrix. 2023. url: https:
/ / quantumcomputing . stackexchange . com / questions / 5199 / general -

parametrisation-of-an-arbitrary-2-times-2-unitary-matrix.

[27] Andrew M. Childs. Lecture Notes on Quantum Algorithms. 2022. url: https:
//www.cs.umd.edu/~amchilds/qa/qa.pdf.

http://www.inf.fu-berlin.de/lehre/WS11/ProSem-ThInf/Komplexit%C3%83%C2%A4tsklasse_P.pdf
http://www.inf.fu-berlin.de/lehre/WS11/ProSem-ThInf/Komplexit%C3%83%C2%A4tsklasse_P.pdf
https://www.khoury.northeastern.edu/home/rraj/Courses/7880/F09/Lectures/FacLocFiltering.pdf
https://www.khoury.northeastern.edu/home/rraj/Courses/7880/F09/Lectures/FacLocFiltering.pdf
https://www.khoury.northeastern.edu/home/rraj/Courses/7880/F09/Lectures/FacLocFiltering.pdf
https://www14.in.tum.de/personen/khan/Arindam%20Khan_files/1.%20Set%20Cover.pdf
https://www14.in.tum.de/personen/khan/Arindam%20Khan_files/1.%20Set%20Cover.pdf
https://www14.in.tum.de/personen/khan/Arindam%20Khan_files/1.%20Set%20Cover.pdf
https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect09-set-cover.pdf
https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect09-set-cover.pdf
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture6.pdf
https://www.cs.dartmouth.edu/~deepc/LecNotes/Appx/2b.%20Local%20Search%20Algorithms%20for%20Facility%20Location.pdf
https://www.cs.dartmouth.edu/~deepc/LecNotes/Appx/2b.%20Local%20Search%20Algorithms%20for%20Facility%20Location.pdf
https://people.eecs.berkeley.edu/~vazirani/s09quantum/notes/lecture2.pdf
https://people.eecs.berkeley.edu/~vazirani/s09quantum/notes/lecture2.pdf
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_21_22/r_rechenmethoden_21_22/skript/auth/16-L8_1-2-vor-Matrizen-V-UnitaerOrthogonalHermiteschSymmetrisch.pdf
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_21_22/r_rechenmethoden_21_22/skript/auth/16-L8_1-2-vor-Matrizen-V-UnitaerOrthogonalHermiteschSymmetrisch.pdf
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_21_22/r_rechenmethoden_21_22/skript/auth/16-L8_1-2-vor-Matrizen-V-UnitaerOrthogonalHermiteschSymmetrisch.pdf
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_21_22/r_rechenmethoden_21_22/skript/auth/16-L8_1-2-vor-Matrizen-V-UnitaerOrthogonalHermiteschSymmetrisch.pdf
https://itp.tugraz.at/LV/arrigoni/QM/a_qm_all.pdf
https://itp.tugraz.at/LV/arrigoni/QM/a_qm_all.pdf
https://www.mdy.univie.ac.at/lehre/mathe/molbio/folien/taylor.pdf
https://www.mdy.univie.ac.at/lehre/mathe/molbio/folien/taylor.pdf
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://www.cs.umd.edu/~amchilds/qa/qa.pdf
https://www.cs.umd.edu/~amchilds/qa/qa.pdf

Bibliography 101

[28] Adam Sawicki1 and Katarzyna Karnas. Criteria for universality of quantum
gates. 2017. url: https://arxiv.org/pdf/1610.00547.pdf.

[29] Sha-Sha Wang andothers. Variational quantum algorithm-preserving feasible
space for solving the uncapacitated facility location problem. 2024. arXiv: 2312.
06922 [quant-ph].

[30] Maximilian Balthasar Mansky andothers.Decomposition Algorithm of an Arbitrary
Pauli Exponential through a Quantum Circuit. 2023. arXiv: 2305.04807 [quant-ph].
url: https://arxiv.org/abs/2305.04807.

[31] Merziger. Formeln + Hilfen Höhere Mathematik. 2014.

https://arxiv.org/pdf/1610.00547.pdf
https://arxiv.org/abs/2312.06922
https://arxiv.org/abs/2312.06922
https://arxiv.org/abs/2305.04807
https://arxiv.org/abs/2305.04807

	Introduction
	Facility Location Problem
	Mathematical Modelling of Location Problems
	Relationship to Other Problems

	Classical Observations of the FLP
	Types of Solutions
	Constraint Analysis
	P and NP
	Approximations for the FLP

	Basics of Quantum Computing
	Single Qubit Operations
	Controlled Operations

	Quantum Approximation Algorithms
	Quantisation of the FLP
	Quantum Approximate Optimisation Algorithm
	Mixer for the Opening Constraint
	Mixer for the Assignment Constraint
	Mixer for the Facility Location Problem

	Testing of the FLP Quantum Algorithms
	Theoretical Analysis of the Algorithms
	Implementation of the FLP for n=m=2
	Approximation Quality as a Dependency of the Size of the FLP
	Customisation of the Algorithms
	Distribution of the Approximations

	Conclusion and Outlook

