INTEGRATION, WIRKUNGSPRINZIP

Wir üben noch weiter das Integrieren, insbesondere partielle Integration, und wenden uns dann dem Wirkungsprinzip zu.

[P1] Partielle Integration?

Berechnen Sie für ganzzahlige n, m die Integrale

(a)
$$I_n = \int_0^{2\pi} dx \, e^{inx}$$
,

(a)
$$I_n = \int_0^{2\pi} dx e^{inx}$$
,
(b) $I_{m,n} = \int_0^{2\pi} dx \cos mx \cos nx$,
(c) $\hat{I}_{m,n} = \int_0^{2\pi} dx \sin mx \cos nx$.

(c)
$$\hat{I}_{m,n} = \int_0^{2\pi} \mathrm{d}x \sin mx \cos nx$$

Berücksichtigen Sie insbesondere die Fälle n=0 und n=m. Stellen Sie die trigonometrischen Funktionen als Linearkombination von Exponentialfunktionen dar.

[P2] Gauss-Integral

Zeigen Sie $I = \int_{-\infty}^{\infty} dx \, e^{-x^2} = \sqrt{\pi}$, indem Sie I^2 als zweidimensionales Integral deuten, das in Polar-koordinaten leicht ausgewertet werden kann. Berechnen Sie durch Substitution der Integrationsvariablen $\int_{-\infty}^{\infty} \mathrm{d}x \, \mathrm{e}^{-ax^2}, \, a > 0$, und durch Ableiten dieses Ergebnisses nach a die Integrale $\int_{-\infty}^{\infty} \mathrm{d}x \, x^2 \mathrm{e}^{-ax^2}$ und $\int_{-\infty}^{\infty} \mathrm{d}x \, x^4 \mathrm{e}^{-ax^2}.$

[P3] Euler-Ableitung

Wir betrachten eine Lagrangefunktion $\mathcal{L}(t,x,v)$ in den Koordinaten $x=(x^1,\ldots,x^N)$ mit $v=\dot{x}$. Wir betrachten andere Koordinaten $(y, w = \dot{y})$, in denen wir die ursprünglichen Koordinaten ausdrücken können: x = x(t, y).

- (a) Wie hängen die Geschwindigkeiten v und w miteinander zusammen?
- (b) Geben Sie die durch den Koordinatenwechsel definierte Lagrangefunktion $\tilde{\mathcal{L}}(t, y, w)$ an.
- (c) Zeigen Sie: Die Euler-Lagrange-Gleichungen für $\tilde{\mathcal{L}}$ gelten in y-Koordinaten genau dann wenn die Euler-Lagrange-Gleichungen für \mathcal{L} in x-Koordinaten erfüllt sind.