Abgabe 21.07.2015 vor der Vorlesung

BONUSBLATT

Die Punkte dieses freiwilligen Aufgabenblattes können der/dem einen oder anderen Helfen, die Studienleistung doch noch zu erreichen.

[H36*] Retardierte Potentiale

$$[4^* + 5^* = 9^* \text{ Punkte}]$$

Wir betrachten die inhomogene Wellengleichung $\Box \psi(t, \vec{r}) = -\sigma(t, \vec{r})$. Wir versuchen, diese direkt zu integrieren.

- (a) Zeigen Sie zunächst, dass sich der bekannte Ansatz für die Poisson-Gleichung, $\Delta \frac{1}{r} = -4\pi \delta(\vec{r})$ auf $(\Delta + k^2) \frac{\mathrm{e}^{\pm \mathrm{i} k r}}{r} = -4\pi \delta(\vec{r})$ verallgemeinern lässt.
- (b) Lösen Sie nun mit dem Ansatz

$$\psi(\vec{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \, \psi_{\omega}(\vec{r}) \, e^{-i\omega t} \,, \qquad \sigma(\vec{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \, \sigma_{\omega}(\vec{r}) \, e^{-i\omega t}$$

die inhomogene Wellengleichung.

[H37*] Elektrische Diplostrahlung

$$[3^* + 3^* + 3^* + 3^* + 3^* + 3^* + 3^* = 21^* \text{ Punkte}]$$

Das Vektorpotential räumlich begrenzter zeitlich oszillierender Ladungs- und Stromverteilungen,

$$\rho(t, \vec{x}) = \Re e^{-i\omega t} \, \widehat{\rho}(\vec{x}) \,, \qquad \qquad \vec{j}(t, \vec{x}) = \Re e^{-i\omega t} \, \widehat{\vec{j}}(\vec{x}) \,,$$

die sehr viel kleiner als die Wellenlänge der abgestrahlten Felder sind, hat einen Term

$$\vec{A}_1 = \frac{1}{4\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \int \mathrm{d}^3 r' \, \hat{\vec{j}}(\vec{r}') \,.$$

Dieser soll analysiert werden. Es gilt, wie immer, $\omega = |\vec{k}|$.

- (a) Zeigen Sie mit Hilfe der Kontinuitätsgleichung, dass \vec{A}_1 die Form $\vec{A}_1(\vec{r}) = -\mathrm{i}\omega\,\frac{1}{4\pi}\,\vec{p}\,\frac{\mathrm{e}^{\mathrm{i}kr}}{r}$ hat, wobei \vec{p} das elektrische Dipolmoment ist.
- (b) Berechnen Sie die magnetische Induktion $\vec{B}_1(\vec{r})$. Wie sehen die Feldlinien aus, wenn $\vec{p}=p\vec{e}_z$ ist? Welche Symmetrie hat das Feld? Zeigen Sie, dass das Feld transversal ist.
- (c) Zeigen Sie, dass im Vakuum die Phasengeschwindigkeit von $\vec{B}_1(\vec{r},t)$ größer als 1 ist (wir setzen c=1).
- (d) Berechnen Sie aus \vec{B}_1 das elektrische Feld. Ist \vec{E}_1 rein transversal?
- (e) Betrachten Sie den Fall, dass $r \gg \lambda$, also $kr \gg 1$ ist. Überlegen Sie, dass damit $k^2/r \gg k/r^2 \gg 1/r^3$ ist, und vereinfachen damit die Felder $\vec{B_1}$ und $\vec{E_1}$. Zeigen Sie, dass in der Strahlungszone $\vec{E_1}$ transversal ist, und $\vec{E_1}$, $\vec{B_1}$ und \vec{r} lokal ein orthogonales Dreibein bilden.
- (f) Berechnen Sie die Energiedichte und die zeitlich gemittelte Energiestromdichte des elektromagnetischen Feldes in der Fernzone. Zeigen Sie, dass $\left\langle \vec{S}_1(\vec{r}) \right\rangle = \frac{1}{32\pi^2} \frac{(k^2p)^2}{r^2} \sin^2 \vartheta \, \vec{n} \, \text{mit} \, \vartheta = \sphericalangle(\vec{n}, \vec{p}) \, \text{und} \, \vec{n} = \vec{r}/r.$
- (g) Betrachen Sie abschließend die Nahzone $kr\ll 1$, Wie vereinfachen Sie nun die Felder? Welches Feld ist in der Nahzone dominant?

HINWEIS

Bitte geben Sie auf Ihren abgegebenen Lösungen immer Name, Vorname, Matrikelnummer und die Übungsgruppe (Nummer und Name des Tutors) an! Lösungen unbedingt zusammenheften!