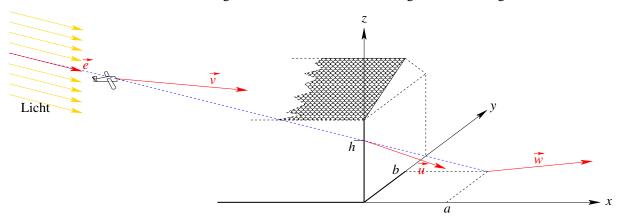
PD Dr. Michael Flohr

VEKTOREN, SKALAR- UND KREUZPRODUKT

Bei diesen Aufgaben geht es darum, physikalische Probleme mit Hilfe der Vektorrechnung zu lösen. Dabei treten auch Skalar- und Vektorprodukte auf.

[H1] Segelflug [5 Punkte]

Von einem Berggipfel bei \vec{r}_1 wird ein kleiner Modell-Segelflieger gestartet. Er segelt mit konstanter Geschwindigkeit \vec{v} und kommt dabei einer Kirchturmspitze im Tal bei \vec{r}_2 bedenklich nahe. Welche Position $\vec{r}_2 + \vec{R}$ und welche Distanz R hat er im gefährlichsten Moment? Versuchen Sie, eine Formel für \vec{R} zu finden, die nur die Vektoren \vec{v} und $\vec{\rho} = \vec{r}_2 - \vec{r}_1$ enthält. Für eine konkrete Rechnung sei


$$\vec{r}_1 = 100 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{m}, \quad \vec{r}_2 = \begin{pmatrix} 900, 3 \\ 198, 8 \\ -199, 6 \end{pmatrix} \text{m} \quad \vec{v} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} \frac{\text{m}}{\text{s}}.$$

Hinweis: Am einfachsten geht es durch das Bilden geeigneter Linearkombinationen, man kann \vec{R} aber auch als ein zweifaches Kreuzprodukt schreiben. Zur Kontrolle: $R=1,3\,\mathrm{m}$.

[H2] Flug in der Abendsonne

[5 Punkte]

Ein Flugzeug landet mit Geschwindigkeit $v=|\vec{v}|$ in der Abendsonne. Die Lichtstrahlen fallen in Richtung des Einheitsvektors \vec{e} ein. Der Schatten seiner Spitze huscht mit der Geschwindigkeit \vec{u} über eine Hauswand in der x-z-Ebene, zuletzt bei der Höhe h, und danach ab $\binom{a}{b}$ mit der Geschwindigkeit \vec{w} über den Erdboden. Per Funk und Messung stehen folgende Daten zur Verfügung: $v, u_1, u_3, w_1, w_2, h, a, b$. Berechnen Sie damit \vec{e} und \vec{v} . Überlegen Sie, welche der acht Daten gar nicht benötigt werden.

[H3] Meteoriteneinschlag?

[5 Punkte]

Die Astronomen haben einen kleinen Asteroiden entdeckt, der offenbar vom Gravitationsfeld des Mondes eingefangen wurde. Erste Beobachtungen ergaben, dass er sich mit großer Geschwindigkeit \vec{v} am Ort \vec{r}_A in der Nähe des Mondes \vec{r}_M bewegt. Wir legen den Koordinatenursprung in den Erdmittelpunkt und verwenden für die Längen als Einheit den Erddurchmesser. Es sei

$$\vec{v} = \alpha \begin{pmatrix} -3 \\ -\frac{1}{5} \\ 3 \end{pmatrix} \frac{1}{s}, \quad \vec{r}_A = \begin{pmatrix} 29 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{r}_M = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix}.$$

In welcher Ebene wird der Asteroid voraussichtlich bleiben? Bis auf welche Entfernung Δ kann er schlimmstenfalls der Erdoberfläche nahe kommen? Können Sie für Δ eine Formel für allgemeines \vec{v} angeben?

HINWEIS

Bitte geben Sie unbedingt auf Ihren abgegebenen Lösungen immer Name, Vorname, Matrikelnummer und die Übungsgruppe (Nummer und Name des Tutors) an!