Prof. Dr. Norbert Dragon PD Dr. Micħael Flohr

KLEINE SCHWINGUNGEN

Kleine Schwingungen um die Ruhelage im Minimum eines Potentiales lassen sich durch den harmonischen Oszillator lösen.

[P34] Symmetrische Form

Wir betrachten eine relle, symmetrische Form Ω , $\Omega_{ij} = \Omega_{ji}$ und $\Omega_{ij} = \Omega_{ij}^*$, $i, j = 1, 2, \dots, n$.

- (a) Zeigen Sie, dass die Eigenwerte von Ω reell sind. Unterstellen Sie dazu, dass ein komplexer Eigenwert λ mit zugehörigem Eigenvektor $w^i=u^i+\mathrm{i} v^i$ existiert. Zeigen Sie, dass $u^i-\mathrm{i} v^i$ Eigenvektor mit Eigenwert λ^* ist. Werten Sie dann $(u^j-\mathrm{i} v^j)\Omega_{ji}(u^i+\mathrm{i} v^i)$ mit den Eigenwertgleichungen so aus, dass man auf $\lambda=\lambda^*$ schließen kann.
- (b) Zeigen Sie, dass Ω den Unterraum U_{\perp} , der senkrecht auf einem Eigenvektor e steht, auf sich abbildet, und dass Ω folglich n aufeinander senkrecht stehende, normierte Eigenvektoren besitzt.

[P35] Kleine Schwingungen

Ein Teilchen bewege sich in der xy-Ebene mit einer potentiellen Energie

$$V(x,y) = \kappa \left(\cosh(x+2y) - \cos(3x+y) - \frac{5}{2}x^2 - xy \right).$$

- (a) Bestimmen Sie die Frequenzen von kleinen Schwingungen um den Ursprung.
- (b) In welchen Richtungen werden gerade Bahnkurven durchlaufen?