
Lecture Theoretical Physics III – fall term 2002/2003 – Michael Flohr

Exercises X
January 6th

E10.1 Other representations of the Dirac equation

For a four component spinor ψD, the Dirac equation takes the form
(
iγµ

∂

∂xµ
−
mc

h̄

)
ψD = 0,

where the γ matrices read in standard representation (σi are the Pauli matrices):

γ0 =

(
1l 0
0 −1l

)
, γi =

(
0 σi

−σi 0

)
.

However, this form of the matrices is only a choice, since they only have to satisfy

{γµ, γν} = γµγν + γνγµ = 2gµν1l.

If γµ satisfy this Clifford algebra then also all similarity transforms UγµU−1 will do.
(1) Construct an U ∈ SU(4), such that the two component Weyl spinors ψ, ψ̂ solve

(
0 W

Ŵ 0

)(
ψ

ψ̂

)
+
mc

h̄

(
ψ

ψ̂

)
= 0,

if ψD = U
(
ψ

ψ̂

)
solves the Dirac equation. W, Ŵ are the Weyl operators:

W = 1l
∂

∂x0
− ~σ(~∇), Ŵ = −1l

∂

∂x0
− ~σ(~∇).

The following form of the Dirac equation was found by E. Majorana in 1937.
(2) Show that the matrix U = 1√

2
γ0(γ2 + 1l) is unitary and that U 2 = 1l.

(3) Show that D′ = UDU is real and that ψ′ = Uψ solves the equation D′ψ′ = mc
h̄ ψ

′,
if ψ solves the Dirac equation Dψ = mc

h̄ ψ, with the Dirac operator D = iγµ∂µ.

E10.2 The Weyl equation

The Poincaré group P consists of pairs (Λ, a) with Lorentz transformations Λ ∈ L
and translations a ∈ R1,3. It operates on the Minkowski space as (Λ, a)x = Λx+ a.
(1) Show (Λ1, a1)(Λ2, a2) = (Λ1Λ2,Λ1a2+a1) for the composition of two elements of

P. Due to that property, P is called a semi direct product L × R1,3.
Now, we want to construct the spin 1

2 representations of P on the quantum mechanical

Hilbert space L2(R1,3,C2). Analogously to the spin 1
2 representation of the rotation

group we start with the covering group, i.e. SL(2,C) × R1,3. Here, h : SL(2,C) →
L is the covering map for L (cf. H9.1). We define the representations ρ and ρ̂ of

SL(2,C)× R1,3 with spin 1
2 for ψ, ψ̂ : R1,3 →C2 as

(ρ(g, a)ψ)(x) = gψ(Λ−1(x− a)), h(g) = Λ (∗)

(ρ̂(g, a)ψ̂)(x) = ĝ ψ̂(Λ−1(x− a)), h(g) = Λ, ĝ = (g+)−1.



ρ is defined in the same way as for rotations. ρ̂ is called conjugate representation and
is something new: g = ĝ für g ∈ SU(2), such that ρ(g, a) = ρ̂(g, a), if Λ = h(g) is a

rotation. Spinors ψ and ψ̂ transforming according to (∗) are called Weyl spinors.
(2) Show that ρ as well as ρ̂ are representations of the covering group of P.

(3) Show the intertwining relations Wρ̂(g, a) = ρ(g, a)W und Ŵρ(g, a) = ρ̂(g, a)Ŵ .

(4) Show using (3): if ψ̂(x) is a solution of the Weyl equation Wψ̂ = 0, then also

ρ̂(g, a)ψ̂ will be and if ψ(x) is a solution of the conjugate Weyl equation Ŵψ = 0,
then also ρ(g, a)ψ will be. This means that the solutions of the twoWeyl equations
both form a Poincaré invariant subspace of L2(R1,3,C2).

(5) Show WŴ = ŴW = −gµν ∂
∂xµ

∂
∂xν = − and deduce that solutions of the Weyl

equations satisfy the Klein–Gordon equation with m = 0.
(6) Show that P−1WP = −Ŵ , i.e. the Weyl operators are not invariant under parity.

(7) Take the ansatz ψ̂ = û0 e
−i〈p,x〉. Show that 〈p, p〉 = 0. Show that for positive

energy spin and momentum are antiparallel, but parallel for negative energy.
(8) Analogously, take the ansatz ψ = u0 e

−i〈p,x〉. What about the directions of spin
and momentum? What is the connection between the solution of the two Weyl
equations? Which elementary particle do they describe in good approximation?

If one wants to introduce a mass, one will have to consider the coupled system

(
0 W

Ŵ 0

)(
ψ

ψ̂

)
+
mc

h̄

(
ψ

ψ̂

)
= 0.

(9) State why one cannot write down two decoupled equations for two component
spinors in the case of nonvanishing mass, but one has to consider a four dimen-
sional spinor instead.

(10) Show: if ψ and ψ̂ solve the system above, then also ρ(g, a)ψ and ρ̂(g, a)ψ̂ will do.

Show that ψ and ψ̂ satisfy the Klein–Gordon equation with mass m.

Homework X
Return: January 13th

H10.1 Pionic atom

Consider the Klein–Gordon equation for a spinless particle with mass m and charge
(−e) in the Coulomb field of a point-like charge Ze. We are interested in the stationary

states, thus we take the ansatz ψ(~r, t) = ψ(~r ) e−
iE
h̄
t.

(1) Show ((
E +

Ze2

r

)2

−m2c4 + h̄2c2∆

)
ψ(~r ) = 0.

(2) Using the separation ψ(x) = R`(r)Y`m(ϑ, ϕ), show that with the variable % = βr

(
∂2

∂%2
+

2

%

∂

∂%
−
s(s+ 1)

%2
+
λ

%
−

1

4

)
R`(r) = 0

holds, where β2 = 4(m2c4−E2)
h̄2c2

, λ = 2ZαE
h̄cβ , s(s+1) = `(`+1)−Z2α2 and α = e2

h̄c .



(3) Motivate the ansatz R` = %sW (%) e−%/2 und zeige

%W ′′(%) + (2s+ 2− %)W ′(%) + (λ− s− 1)W (%) = 0.

(4) Compare (3) with Kummer’s equation for the nonrelavistic Coulomb problem
(TP II, E7.1) and read off the energy eigenvalues. Why does E > 0 hold?

(5) Expand the energy eigenvalues in orders of α and compare the result with the
nonrelativistic case. In particular, discuss the cancellation of the `-degeneracy.

(6) Estimate in how far one can assume a point-like nucleus for a π− meson.
(7) Discuss the solutions for E < 0. When is it possible that bound states exist?

Rem.: One can handle this problem in that way, since for massive particles the little
group is SO(3) and thus the solutions are labelled by angular momentum.

(15 points)

H10.2 Nonrelativistic limit of the Dirac equation

In this assignment we show how the spin–orbit coupling (TP II, H9.2) and the g factor
2 (H2.1) for spin 1

2 follow from the Dirac equation in a natural way.
(1) In the nonrelativistic case mc2 is the largest energy in the problem. This mo-

tivates the ansatz ψ = exp(−imc
2

h̄ t)(ϕχ ), where ϕ and χ only slightly depend on
time. Dirac equation: Using this, deduce from the Schrödinger–like form of the

ih̄
∂

∂t

(
ϕ

χ

)
= c

(
~σ(~p− q

c
~A)χ

~σ(~p− q
c
~A)ϕ

)
+ qΦ

(
ϕ

χ

)
− 2mc2

(
0

χ

)
. (∗)

Show that in lowest order, i.e. 1
c , one has: χ = 1

2mc~σ(~p−
q
c
~A)ϕ.

(2) Deduce the Pauli equation (why is it exact in order 1
c?) for ϕ from (1):

ih̄
∂

∂t
ϕ =

(
1

2m
(~p−

q

c
~A)2 −

qh̄

2mc
~σ( ~B) + qΦ

)
ϕ.

Show by taking ~A = 1
2
~B × ~r that the g factor for the spin is g = 2.

(3) For ~A = 0 we would like to compute the 1
c2 corrections. For that purpose, plug

the expression for χ from (1) into (∗) for the expressions neglected there and
resolve this in favour of χ. Insert the result into the first equation of (∗):

ih̄
∂

∂t
ϕ =

((
1−

~p 2

4m2c2

)(
~p 2

2m
+ qΦ

)
+

q

4m2c2
~σ(~p )Φ~σ(~p )

)
ϕ =: H ′ϕ.

Why does one obtains all corrections of order 1
c2 in this way?

(4) Why is the probability density % = |ϕ|2 + |χ|2 in order 1
c2 now given by % =

|ϕ|2+ h̄2

4m2c2 |~σ(
~∇)ϕ|2? In order to proceed in the Schrödinger picture, we have to

introduce a new ϕS such that % = |ϕS |
2. Show that ϕS = (1 + ~p 2

8m2c2 )ϕ.

(5) Why does ih̄ ∂
∂tϕS = HϕS hold with H = (1 + ~p 2

8m2c2 )H
′(1− ~p 2

8m2c2 )? Show that

H =
~p 2

2m
+ qΦ+ H̃, H̃ = −

|~p |4

8m3c2︸ ︷︷ ︸
dispersion term

−
qh̄

4m2c2
~σ( ~E × ~p )

︸ ︷︷ ︸
spin−orbit term

−
eh̄2

8m2c2
div ~E.

︸ ︷︷ ︸
G.Darwin′s term

Interpret the dispersion and the spin–orbit term (for spherically symmetric Φ).

(15 points)


