Lecture Theoretical Physics III - fall term 2002/2003 - Michael Flohr

Exercises XI

January 13th

E11.1 Dirac invariants

The covering map $h: S L(2, \mathbb{C}) \rightarrow \mathcal{L}_{+}^{\uparrow}, g \mapsto \rho(g)=\Lambda$ was defined in such a way that

$$
g \sigma_{\mu} g^{+}=\Lambda^{\nu}{ }_{\mu} \sigma_{\nu}, \quad \mu=0,1,2,3
$$

holds. For $\widehat{\sigma}_{0}=\sigma_{0}, \widehat{\sigma}_{k}=-\sigma_{k}$ the following relation is satisfied (cf. E10.2.3):

$$
\left(g^{+}\right)^{-1} \widehat{\sigma}_{\mu} g^{-1}=\Lambda_{\mu}^{\nu} \widehat{\sigma}_{\nu}, \quad \mu=0,1,2,3
$$

Thus the Poincaré group can be represented on 2 -spinors ξ, η in two different ways:

$$
\rho(g, a) \xi=g \xi\left(\Lambda^{-1}(x-a)\right), \quad \widehat{\rho}(g, a) \eta=\left(g^{+}\right)^{-1} \eta\left(\Lambda^{-1}(x-a)\right) .
$$

If $\psi=\binom{\xi}{\eta}$ solves the Dirac equation $\mathrm{i} \gamma^{\mu} \frac{\partial}{\partial x^{\mu}} \psi=\frac{m c}{\hbar} \psi$ also $D(g, a) \psi$ will do, where

$$
D(g, a) \psi=\binom{\rho \xi}{\widehat{\rho} \eta}=\left(\begin{array}{cc}
g & 0 \\
0 & \left(g^{+}\right)^{-1}
\end{array}\right) \psi\left(\Lambda^{-1}(x-a)\right)=S(g) \psi\left(\Lambda^{-1}(x-a)\right)
$$

In this Weyl representation the γ matrices have the special form

$$
\gamma^{0}=\mathrm{i}\left(\begin{array}{cc}
0 & \mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right), \quad \gamma^{k}=-\mathrm{i}\left(\begin{array}{cc}
0 & \sigma^{k} \\
\sigma^{k} & 0
\end{array}\right) .
$$

(1) Show $\gamma^{5}:=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}\mathbf{1} & 0 \\ 0 & -\mathbf{1}\end{array}\right)$ in this representation. Deduce $\left[S(g), \gamma^{5}\right]=0$.
(2) Deduce from the definition of the covering map that $S(g)^{-1} \gamma^{\mu} S(g)=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}$.
(3) Show that $S(g)^{+} \gamma^{0} S(g)=\gamma^{0}$.

We define the adjoint spinor

$$
\bar{\psi}(x)=\psi^{+}(x) \gamma^{0}
$$

and hence the following bilinear (why are they real?) expressions:

$$
\begin{align*}
\text { scalar } & s=\bar{\psi}(x) \psi(x) \\
\text { pseudo scalar } & \widetilde{s}=\mathrm{i} \bar{\psi}(x) \gamma^{5} \psi(x) \\
\text { vector current } & j^{\mu}=\bar{\psi}(x) \gamma^{\mu} \psi(x) \tag{*}\\
\text { axial vector current } & \widetilde{j}^{\mu}=\bar{\psi}(x) \gamma^{5} \gamma^{\mu} \psi(x) \\
\text { antisymmetric tensor } & B^{\mu \nu}=\bar{\psi}(x) \gamma^{\mu} \gamma^{\nu} \psi(x) \quad(\mu>\nu)
\end{align*}
$$

(4) Check that the expressions above indeed transform as scalar, vector and tensor, respectively, under proper orthocrone Lorentz transformations.

We define the parity \mathcal{P}, the time reversal \mathcal{T} and the charge conjugation \mathcal{C} as

$$
\begin{aligned}
& \mathcal{P} \psi(x)=\gamma^{0} \psi(P x) \\
& \mathcal{T} \psi(x)=\gamma^{2} \gamma^{0} \psi^{*}(T x)=\left(\begin{array}{cc}
-\sigma_{2} & 0 \\
0 & \sigma_{2}
\end{array}\right) \psi^{*}(T x) \\
& \mathcal{C} \psi(x)=\gamma^{2} \gamma^{5} \psi^{*}(x)
\end{aligned}
$$

(5) Show that $\mathcal{P} \psi$ will solve the Dirac equation if ψ is a solution.
(6) Compute the action of \mathcal{P} on $(*)$. How do s and j distinguish from \widetilde{s} and \widetilde{j} ?
(7) Show that time reversed solutions of the Weyl equations (i.e. $W \eta=0, \widehat{W} \xi=0$ for $m=0$) are again solutions (as we learned in E10.2.6, this is not true for \mathcal{P}). Deduce that $\mathcal{T} \psi$ will be a solution of the Dirac equation if ψ solves the equation.
(8) Show that the charge conjugated spinor $\mathcal{C} \psi$ will be a solution of the Dirac equation if ψ solves the equation. How will it look like if an electromagnetic field is present?
(9) Calculate $\mathcal{P T C}$ and discuss this transformation.
(10) Compute the action of \mathcal{T} and \mathcal{C} on $(*)$.

Homework XI

Return: January 20th

H11.1 Dirac equation in a spherically symmetric electric field particle with spin $\frac{1}{2}$, charge q and mass m moves in a spherically symmetric electric field ($q A_{0}=V(r), \vec{A}=0$). In general, the Dirac equation reads

$$
\mathrm{i} \gamma^{\mu}\left(\frac{\partial}{\partial x^{\mu}}+\mathrm{i} \frac{q}{\hbar c} A_{\mu}\right) \psi=\frac{m c}{\hbar} \psi
$$

and can be converted to the form

$$
\mathrm{i} \frac{\partial}{\partial x^{0}} \psi=\left(-\mathrm{i} \sum_{k=1}^{3} \alpha^{k}\left(\frac{\partial}{\partial x^{k}}+\mathrm{i} \frac{q}{\hbar c} A_{k}\right)+\beta \frac{m c}{\hbar}+\frac{1}{\hbar c} V(r)\right) \psi .
$$

(1) Show that the matrices α^{k} and β can be expressed by the $\gamma^{\mu}: \alpha^{k}=\gamma^{0} \gamma^{k}, \beta=\gamma^{0}$. Compute $\alpha^{k} \alpha^{\ell}+\alpha^{\ell} \alpha^{k}, \beta^{2}$ and $\beta \alpha^{k}+\alpha^{k} \beta$.
(2) Take the ansatz $\psi(x)=\psi_{0}(\vec{r}) \mathrm{e}^{-\mathrm{i} \frac{E t}{\hbar}}$ and deduce an eigenvalue equation for $\psi_{0}(\vec{r})$:

$$
H \psi=\left(-i \hbar c \sum_{k=1}^{3} \alpha^{k} \frac{\partial}{\partial x^{k}}+\beta m c^{2}+V(r)\right) \psi_{0}(\vec{r})=E \psi_{0}(\vec{r}) .
$$

(3) Show: if $\psi_{0}(\vec{r})$ is a solution of this equation then also $\mathcal{P} \psi_{0}(\vec{r})=\beta P \psi_{0}(\vec{r})=$ $\beta \psi_{0}(-\vec{r})$ will be. What is the meaning of \mathcal{P} ? Why can one assume $\mathcal{P} \psi_{0}= \pm \psi_{0}$?
(4) Show that the total angular momentum operator \vec{J} commutes with H and \mathcal{P}.

According to (3) and (4) the eigenfunctions of H can be chosen as eigenfunctions of \vec{J}^{2}, J_{3} and \mathcal{P}. For the spinor spherical harmonics $\Phi_{\ell j m_{j}}$ one has (cf. TP II, H9.1)

$$
\vec{J}^{2} \Phi_{\ell j m_{j}}=\hbar^{2} j(j+1) \Phi_{\ell j m_{j}}, \quad J_{3} \Phi_{\ell j m_{j}}=\hbar m_{j} \Phi_{\ell j m_{j}}, \quad P \Phi_{\ell j m_{j}}=(-1)^{\ell} \Phi_{\ell j m_{j}} .
$$

For one value of j there are two values of $\ell: j \pm \frac{1}{2}$, i.e. two different parities in space.
(5) Show that the eigenfunctions of \vec{J}^{2}, J_{3} and \mathcal{P} must have the following form:

$$
\psi_{0}(\vec{r})=\binom{\Phi_{\ell=j \mp \frac{1}{2} j m_{j}} \times \text { radial function } F(r)}{\Phi_{\ell^{\prime}=j \pm \frac{1}{2} j m_{j}} \times \text { radial function } G(r)}
$$

Two more properties of $\Phi_{\ell j m_{j}}$ shown in TP II, H9.1: given a spinor spherical harmonic $\Phi_{\ell j m_{j}}$ for fixed j and m_{j}, then one will obtain the one with the opposite parity by

$$
\Phi_{\ell^{\prime}=j \pm \frac{1}{2} j m_{j}}=\vec{\sigma}\left(\frac{\vec{r}}{r}\right) \Phi_{\ell=j \mp \frac{1}{2} j m_{j}} .
$$

Furthermore, the spinor spherical harmonics are eigenfunctions of $K=1+\frac{1}{\hbar} \vec{\sigma}(\vec{L})$:

$$
K \Phi_{\ell j m_{j}}=\kappa \Phi_{\ell j m_{j}}, \quad \kappa= \begin{cases}\ell+1, & \text { if } \ell=j-\frac{1}{2} \\ -\ell, & \text { if } \ell=j+\frac{1}{2}\end{cases}
$$

(6) Using these properties, show that by taking the ansatz from (5) the radial functions $F(r)=f(r)$ and $G(r)=-\mathrm{i} g(r)$ satisfy the following differential equations:

$$
\begin{aligned}
& \hbar c\left(f^{\prime}(r)+\frac{1-\kappa}{r} f(r)\right)-\left(E+m c^{2}-V(r)\right) g(r)=0 \\
& \hbar c\left(g^{\prime}(r)+\frac{1+\kappa}{r} g(r)\right)+\left(E-m c^{2}-V(r)\right) f(r)=0
\end{aligned}
$$

(7) Now, let $V(r)=-\frac{Z e^{2}}{r}=-\hbar c \frac{Z \alpha}{r}$. Show that $f, g \sim \mathrm{e}^{-\lambda r}$ for $r \rightarrow \infty$ with $\lambda=\frac{1}{\hbar c} \sqrt{m^{2} c^{4}-E^{2}}$ and that $f, g \sim r^{\gamma-1}$ for $r \rightarrow 0$ with $\gamma=\sqrt{\kappa^{2}-(Z \alpha)^{2}}$.
(8) Using the variable $\varrho=\lambda r$, consider new radial functions $\varphi_{ \pm}(\varrho)$, defined by $\binom{f(\varrho)}{g(\varrho)}=V_{+} \varphi_{+}(\varrho)+V_{-} \varphi_{-}(\varrho), V_{ \pm}=\binom{1}{ \pm b^{-1}}, b=\frac{m c^{2}+E}{\sqrt{m^{2} c^{4}-E^{2}}}=\sqrt{\frac{m c^{2}+E}{m c^{2}-E}}$. Show $\left(\varrho \frac{\mathrm{d}}{\mathrm{d} \varrho}+1+\frac{Z \alpha}{2}\left(b-b^{-1}\right)-\varrho\right) \varphi_{+}+\left(-\kappa+\frac{Z \alpha}{2}\left(b+b^{-1}\right)\right) \varphi_{-}=0$ $\left(\varrho \frac{\mathrm{d}}{\mathrm{d} \varrho}+1-\frac{Z \alpha}{2}\left(b-b^{-1}\right)+\varrho\right) \varphi_{-}-\left(-\kappa-\frac{Z \alpha}{2}\left(b+b^{-1}\right)\right) \varphi_{+}=0$.
(9) Eliminate φ_{-}in (8) and show for the ansatz $\varphi_{+}=\varrho^{\gamma-1} \mathrm{e}^{-\varrho} \varphi(y)$ (motivated by the investigation of the asymptotics in (7)) with $y=2 \varrho$ that

$$
\left(y \frac{\mathrm{~d}^{2}}{\mathrm{~d} y^{2}}+(2 \gamma+1-y) \frac{\mathrm{d}}{\mathrm{~d} y}-\left(1+\gamma-\frac{Z \alpha}{2}\left(1-b^{-1}\right)\right)\right) \varphi(y)=0 .
$$

(10) Read off the energy eigenvalues from this Kummer equation:

$$
E=m c^{2}\left(1+\left(\frac{Z \alpha}{n+\gamma}\right)^{2}\right)^{-\frac{1}{2}}, \quad n \in \mathbb{N}
$$

and compare with the nonrelativistic result. Which degenerations do still occur?

