Lecture Theoretical Physics III - fall term 2002/2003 - Michael Flohr

Exercises XII

January 20th

E12.1 Mott scattering

Consider an electron, confined to a volume V, in an external field $A_{\mu}(x)$. As a basis for the free solutions of the Dirac equation with momentum p and spin s we choose

$$
\psi(x)=\sqrt{\frac{m c^{2}}{E V}} u(p, s) \mathrm{e}^{-\frac{i}{\hbar}\langle p, x\rangle}(\text { electron }), \quad \psi(x)=\sqrt{\frac{m c^{2}}{E V}} v(p, s) \mathrm{e}^{\frac{i}{\hbar}\langle p, x\rangle} \text { (positron) }
$$

with ($v(p, s)$ is $u(p, s)$, the first two components interchanged with the last two)

$$
u\left(p, \frac{1}{2}\right)=\sqrt{\frac{E+m c^{2}}{2 m c^{2}}}\left(\begin{array}{c}
1 \\
0 \\
\frac{c p^{z}}{E+m c^{2}} \\
\frac{c p^{+}}{E+m c^{2}}
\end{array}\right), \quad u\left(p,-\frac{1}{2}\right)=\sqrt{\frac{E+m c^{2}}{2 m c^{2}}}\left(\begin{array}{c}
0 \\
1 \\
\frac{c p^{-}}{E+m c^{2}} \\
\frac{-c p^{2}}{E+m c^{2}}
\end{array}\right), \quad p^{ \pm}=p^{x} \pm \mathrm{i} p^{y} .
$$

We consider the external field $A_{\mu}(x)$ only in lowest order perturbation theory (Born approximation). Then the transition matrix element between ψ_{i} and ψ_{f} is

$$
S_{f i}=-\frac{\mathrm{i} e}{\hbar c} \int \mathrm{~d}^{4} x \bar{\psi}_{f}(x) \gamma^{\mu} A_{\mu}(x) \psi_{i}(x)
$$

(1) Show that the matrix element is in principle determined by the Fourier transform of the four potential, taken at the four momentum transfer:

$$
S_{f i}=-\frac{\mathrm{i} e}{V} \frac{m c}{\hbar} \frac{1}{\sqrt{E_{i} E_{f}}}\left(\bar{u}_{f} \gamma^{\mu} u_{i}\right)(2 \pi)^{2}\left(\mathcal{F} A_{\mu}\right)\left(\frac{p_{i}-p_{f}}{\hbar}\right)
$$

(2) In particular, consider a Coulomb potential $A_{0}(x)=-\frac{Z e}{r}, \vec{A}=0$. Using the momentum transfer $\vec{q}=\vec{p}_{i}-\vec{p}_{f}$, show that

$$
S_{f i}=\mathrm{i} 4 \pi \frac{Z e^{2}}{V} \frac{m c^{2}}{\sqrt{E_{i} E_{f}}}\left(\bar{u}_{f} \gamma^{0} u_{i}\right) \frac{\hbar^{2}}{|\vec{q}|^{2}} 2 \pi \delta\left(E_{f}-E_{i}\right)
$$

(3) Why does $N=\frac{V \mathrm{~d}^{3} p_{f}}{(2 \pi \hbar)^{3}}$ give the number of states in the momentum interval $\mathrm{d}^{3} p_{f}$? Thus, the transition probability per particle is given by $N\left|S_{f i}\right|^{2}$.
(4) Compute the number R of transitions to the momentum interval $\mathrm{d}^{3} p_{f}$ per time:

$$
R=\frac{4 Z^{2} \alpha^{2}(\hbar c)^{2}}{V} \frac{m^{2} c^{4}}{E_{i} E_{f}}\left|\bar{u}_{f} \gamma^{0} u_{i}\right|^{2} \frac{1}{|\vec{q}|^{4}} \mathrm{~d}^{3} p_{f} \delta\left(E_{f}-E_{i}\right) .
$$

(5) Why is $v_{i}=\frac{\left|\vec{p}_{i}\right| c^{2}}{E}$ the velocity of incoming particles and $j=\frac{v_{i}}{V}$ their current density? Compute the differential cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{4 Z^{2} \alpha^{2} m^{2}(\hbar c)^{2}}{|\vec{q}|^{4}}\left|\bar{u}_{f} \gamma^{0} u_{i}\right|^{2}
$$

(6) In most experiments one will not know the spin polarizations. Thus we have to sum the outgoing states and to average the incoming ones:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{4 Z^{2} \alpha^{2} m^{2}(\hbar c)^{2}}{|\vec{q}|^{4}} \frac{1}{2} \sum_{s_{f}, s_{i}}\left|\bar{u}_{f} \gamma^{0} u_{i}\right|^{2} .
$$

Show that this averaging can be written as a trace:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{4 Z^{2} \alpha^{2} m^{2}(\hbar c)^{2}}{2|\vec{q}|^{4}} \operatorname{Tr}\left(\gamma^{0} \frac{\gamma_{\mu} p_{i}^{\mu}+m c}{2 m c} \gamma^{0} \frac{\gamma_{\mu} p_{f}^{\mu}+m c}{2 m c}\right)
$$

(7) Why does the trace of a product of an odd number of γ^{μ} vanish? Show the identity $\operatorname{Tr}\left(a_{\mu} \gamma^{\mu} b_{\nu} \gamma^{\nu}\right)=4\langle a, b\rangle$ and generalize it. Deduce

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{Z^{2} \alpha^{2} \hbar^{2}}{2|\vec{q}|^{4} c^{2}}\left(8 E_{i} E_{f}-4\left\langle p_{i}, p_{f}\right\rangle c^{2}+4 m^{2} c^{4}\right)
$$

(8) Show that $\left\langle p_{i}, p_{f}\right\rangle=\frac{E^{2}}{c^{2}}-p^{2} \cos \vartheta$ and $|\vec{q}|^{2}=4 p^{2} \sin ^{2} \frac{\vartheta}{2}$, where $E_{i}=E_{f}=E$, $\left|\vec{p}_{i}\right|=\left|\vec{p}_{f}\right|=p$ and ϑ is the scattering angle. Deduce Mott's cross section $\left(\beta=\frac{v}{c}\right)$:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{Z^{2} \alpha^{2} \hbar^{2}}{4 p^{2} \beta^{2} \sin ^{4} \frac{\vartheta}{2}}\left(1-\beta^{2} \sin ^{2} \frac{\vartheta}{2}\right)=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\text {Rutherford }}\left(1-\beta^{2} \sin ^{2} \frac{\vartheta}{2}\right)
$$

Homework XII

Return: January 27th

H12.1 Pair creation

We would like to consider a process similar to E12.1, namely the creation of an electron-positron pair by an external field.
(1) Show that the matrix element is in principle determined by the Fourier transform of the four-potential, taken at the total four-momentum $P=p+p^{\prime}$:

$$
S_{f i}=-\frac{\mathrm{i} e}{V} \frac{m c}{\hbar} \frac{1}{\sqrt{E E^{\prime}}} \bar{v}\left(p^{\prime}, s^{\prime}\right) \gamma^{\mu} u(p, s)(2 \pi)^{2}\left(\mathcal{F} A_{\mu}\right)\left(\frac{P}{\hbar}\right)
$$

The electron has four momentum $p, \operatorname{spin} s$ and spinor u, the positron $p^{\prime}, s^{\prime}, v$.
(2) Perform the sum over the particle spins in $\left|S_{f i}\right|^{2}$ and show using $K=\frac{P}{\hbar}$:

$$
\left|S_{f i}\right|^{2}=\frac{(2 \pi)^{4} e^{2} m^{2} c^{2}}{\hbar^{2} V^{2} E E^{\prime}}\left(\mathcal{F} A_{\mu}\right)(K)\left(\mathcal{F} A_{\nu}\right)(-K) \operatorname{Tr}\left(\gamma^{\mu} \frac{\gamma^{\kappa} p_{\kappa}+m c}{2 m c} \gamma^{\nu} \frac{\gamma^{\kappa} p_{\kappa}^{\prime}-m c}{2 m c}\right)
$$

(3) Compute the trace using the rules from E12.1.7 and show

$$
\left|S_{f i}\right|^{2}=\frac{(2 \pi)^{4} e^{2}}{\hbar^{2} V^{2} E E^{\prime}}\left(\mathcal{F} A_{\mu}\right)(K)\left(\mathcal{F} A_{\nu}\right)(-K)\left(-m^{2} c^{2} g^{\mu \nu}+p^{\mu} p^{\prime \nu}+p^{\nu} p^{\prime \mu}-g^{\mu \nu}\left\langle p, p^{\prime}\right\rangle\right) .
$$

(4) Why is $N=\frac{V^{2} \mathrm{~d}^{3} p \mathrm{~d}^{3} p^{\prime}}{(2 \pi \hbar)^{6}}$ the number of states in the momentum interval $\mathrm{d}^{3} p \mathrm{~d}^{3} p^{\prime}$?
(5) Compute the Fourier transform for $A_{0}=0, \vec{A}=(a \cos \omega t) \vec{e}_{z}, a \in \mathbb{R}$.
(6) Calculate the number of produced pairs as $N\left|S_{f i}\right|^{2}$:

$$
\frac{e^{2}}{24 \pi \hbar^{2} c^{3}}|a|^{2} \omega^{2} \sqrt{1-\frac{4 m^{2} c^{4}}{\hbar^{2} \omega^{2}}}\left(1+\frac{2 m^{2} c^{4}}{\hbar^{2} \omega^{2}}\right)(2 \pi)^{4} \delta\left(\frac{\vec{p}+\vec{p}^{\prime}}{\hbar}\right) \delta\left(\frac{E+E^{\prime}}{\hbar}-\omega\right) .
$$

(7) Argue why the number R of pairs per volume and time unit is

$$
R=\frac{e^{2}}{24 \pi \hbar^{2} c^{3}}|a|^{2} \omega^{2} \sqrt{1-\frac{4 m^{2} c^{4}}{\hbar^{2} \omega^{2}}}\left(1+\frac{2 m^{2} c^{4}}{\hbar^{2} \omega^{2}}\right) .
$$

(8) How does the angular distribution of the particle momenta look like?
(9) In which cases can pair production take place at all?

