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Exercises XIII

January 27th

E13.1 The Lamb Shift

If one solves the Dirac equation in the Coulomb potential (cf. H11.1), then the energy
eigenvalues Energieeigenwerte in a main shell will still be degenerated (besides the m
degeneracy because of rotational invariance) addionally: the states with the same j
will share the same energy. However, the ` degeneracy of the nonrelativistic problem
will be removed by effects like the spin-orbit coupling (fine structure). This would
also cancel the j degenary, but in fact there are more effects like the dispersion term
(cf. H10.2), such that in the full solution the degeneracy will be restored.
However, in experiments it was observed that the states 2Sj= 1

2
and 2Pj= 1

2
do not have

the same energy. This experiments was first done by Lamb and Retherford in 1947.
We would like to comprehed the explanation given by Bethe also in 1947.
In addition, the interaction of the electrons and the proton spin creates a hyperfine
splitting, but this energy scale is suppressed by the gyromagnetic ratio of the proton,
i.e. by its large mass.
The effects fine structure, Lamb shift and hyperfine structure are distinguished by a
factor of 10 in energy splitting. The absolute value of the fine structure splitting is in
the range 10−4 . . . 10−5 of typical atomic energies.
(1) Like in E4.1, consider the emission of a photon with wave number vector ~k and

polarisation λ by an atom, making a transition from the state |n〉 to |n′〉 übergeht.
In first order time dependent perturbation theory we obtained the transition rate,
the lifetime etc. Now we compute that in stationary perturbation theory. In first
order there is no contribution, since the interaction operator

H ′ = − e

mc
~A(~r, t) · ~p+ e2

2mc2
| ~A(~r, t)|2 + eΦ(~r, t)

︸ ︷︷ ︸

=0

contains only 1- and 2-photon exchange processes and thus has no diagonal ele-
ments. However, in second order there will be a shift of the energy levels, since
the emitted photon can be absorbed again, quantitatively we have:

∆En =
∑

n′,~k,λ

|〈n′, ~k, λ|H ′|n〉|2

En − En′ − h̄c|~k|
.

(2) We have already computed the matrix element of the interaction operator H ′:

〈n′, ~k, λ|H ′|n〉 = −
√
h̄

2π

1
√
ω~k
〈n′|~ (~k) · ~e (~k, λ)∗|n〉

where ω~k = c|~k|, ~ (~k) = e
m
~p e−i~k·~r is the “Fourier transformed” current density

and ~e (~k, λ) are the polarisation vectors of the photons. Then we have:

∆En =

∫

dk k
h̄

4π2c

∑

n′

∫
dΩ
∑

λ |〈n′|~ (~k) · ~e (~k, λ)∗|n〉|2
En − En′ − h̄ck .



(3) In the long wave approximation we stated ~ (~k) = ~ (~r ) = e
m
~p. The angular

integration and the sum over the two polarisations gave rise to a factor of 8π
3 ,

such that:

∆En =
2e2h̄

3πm2c3

∫ ∞

0

dω ω
∑

n′

|〈n′|~p |n〉|2
En − En′ − h̄ω .

(4) The integration over ω results in an infinite value. In order to understand that,
we do the same calculation for a free electron with momentum ~q:

∆E~q =
2e2h̄

3πm2c3

∫ ∞

0

dω ω

∫
d3q′

(2π)3
|〈~q ′|~p |~q 〉|2

E~q − E~q′ − h̄ω
= − 2e2

3πm2c3
|~q |2

∫ ∞

0

dω.

This gives a contribution which diverges with the same order as (3), but we see
that the energy shift is proportional to ~p 2, hence we can interpret this is as a
shift of the electron mass. If the electron without any electromagnetic field has

the kinetic energy ~p 2

2m0
, i.e. mass m0, due to the interaction it now will have the

renormalised mass
1

m
=

1

m0
− 4e2

3πm2c3

∫ ∞

0

dω,

i.e. the kinetic energy is now ~p 2

2m . Since we cannot switch off the interaction
with the electromagnetic field, we will not be able to observe the “bare” mass
m0, but rather m is the value one can measure. Thus, we have to start with

H = ~p 2

2m0
− e2

r
+H ′, then we have:

H =
~p 2

2m
− e2

r
+H ′ +

2e2~p 2

3πm2c3

∫ ∞

0

dω

︸ ︷︷ ︸

H′
ren.

.

(5) The new H ′
ren. yields a contribution in first order perturbation theory, having the

same order of magnitude as the second order term of H ′. Thus, for the energy
corrections with an e2 as prefactor of the ω integral we have:

∆En =
2e2h̄

3πm2c3

∫ ∞

0

dω ω

(
∑

n′

|〈n′|~p |n〉|2
En − En′ − h̄ω +

〈n|~p 2|n〉
h̄ω

)

.

With the completeness relation 〈n|~p 2|n〉 =∑n′ |〈n′|~p |n〉|2 we have:

∆En =
2e2

3πm2c3

∑

n′

|〈n′|~p |n〉|2
∫ ∞

0

dω
En − En′

En − En′ − h̄ω .

(6) This integral is still logarithmically divergent, we make it finite by regularisation
with a cutoff Λ as upper border at h̄ω = mc2. We could have done the same thing
for the divergent integrals in (3) and (4), but the result would much more depend



on this choice due to the linear divergence. The fact that one can really make that
choice (provided, the cutoff is large compared to all energy scales occuring in the
problem, in addition we use that there are no charged particle lighter than the
electron in nature), corresponds to a second renormalisation, the renormalisation
of the electric charge, done multiplicatively as running coupling constant:

e2(Λ2) =
e20

1− 12
e2
0

π2h̄c
ln m2c4

Λ2

,

where e0 is the bare charge. Note that e(Λ = mc2) = e0. Now we can compute
the integral, here we have to take care of the pole in the denominator, such
that we only consider the principal value, the additional imaginary part can be
interpreted as decay width and is not of interest to us:

∆En =
2e2

3πh̄m2c3

∑

n′

|〈n′|~p |n〉|2 (En′ − En) ln
mc2

|En′ − En|
,

where the energy differences En′ − En are neglected compared to mc2.
(7) With the following definition we eliminate the slowly varying logarithm from the

sum over the intermediate states |n′〉:

ln(δEn)av =

∑

n′ |〈n′|~p |n〉|2(En′ − En) ln |En′ − En|
∑

n′ |〈n′|~p |n〉|2(En′ − En)
.

Then we have:

∆En =
2e2

3πh̄m2c3
ln

mc2

(δEn)av

∑

n′

|〈n′|~p |n〉|2 (En′ − En).

The sum can now be converted to (H0 is the Hamiltonian of the atom):

∑

n′

|〈n′|~p |n〉|2 (En′ − En) = −
1

2

3∑

m=1

〈n|[pm, [pm, H0]]|n〉.

The double commutator gives rise to a delta distribution in our case:

∆En =
4e4h̄

3m2c3
|ψn(0)|2 ln

mc2

(δEn)av
.

Thus there is a contribution only for S states (|ψnS(0)|2 = 1
π(nr0)3

):

∆EnS =
1

3π

e2

2r0

(
2α

n

)3

ln
mc2

(δEnS)av
,

where α = e2

h̄c
≈ 1

137 and e2

2r0
≈ 13.6 eV, to estimate the order of magnitude.

(8) (δEnS)av can be calculated numerically only, for the 2S state one obtains the
huge (compared to the binding energy) value (δE2S)av = 248 eV, with it a value

of ln mc2

(δE2S)av
= 7.63 and so for ∆E2S an energy shift corresponding to a frequency

of 1034MHz. In experiment one measures 1057MHz, being fully reproduced in a
real quantum electrodynamically calculation.
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second check list for the final exam

We would like to suggest you to recapitulate (in addition to the first check list):
• different representations of the γ matrices: E10.1
• Weyl equation (in particular spinors under Lorentz transformations): E10.2
• Pauli equation (in particular rewriting the Dirac eqaution in Schrödinger-like form, g

factor of 2), corrections like the spin-orbit coupling: H10.2
• bilinear invariants: E11.1
• Dirac equation for the H atom (general procedure, energy eigenvalues): H11.1


