Exercises II

October 28th

E2.1 Wigner-Eckart Theorem

If $2\ell+1$ operators $T_{\ell M},\,M=-\ell,-\ell+1,\ldots,\ell$ satisfy the commutation relations

$$[J_{\pm}, T_{\ell M}] = \hbar \sqrt{\ell(\ell+1) - M(M \pm 1)} T_{\ell(M \pm 1)}$$
 and $[J_3, T_{\ell M}] = \hbar M T_{\ell M}$,

then these are the components of an *irreducible tensor operator of* ℓ^{th} order T_{ℓ} . In addition, one can define *cartesian* components, e.g. for $\ell = 1$:

$$T_1 = rac{1}{\sqrt{2}} \left(T_{1,-1} - T_{1,1}
ight), \quad T_2 = rac{\mathrm{i}}{\sqrt{2}} \left(T_{1,1} + T_{1,-1}
ight), \quad T_3 = T_{1,0}.$$

(1) Show for the cartesian components of such a vector operator (since $\ell = 1$) that

$$[J_m, T_n] = i\hbar \sum_{k=1}^3 \varepsilon_{mnk} T_k.$$

The Wigner-Eckart theorem proved in the lecture states: matrix elements of $T_{\ell M}$ with eigenstates of angular momentum depend on the m quantum numbers only via Clebsch-Gordan coefficients, where the factor $\langle j||T_{\ell}||j'\rangle$ is called reduced matrix element and is independent of m quantum numbers:

$$\langle j'm'|T_{\ell M}|jm
angle = \langle jm\ell M|j\ell j'm'
angle \, rac{1}{\sqrt{2j+1}} \, \langle j'||T_{\ell}||j
angle.$$

(2) Without using the theorem, show that the following condition for a non-vanishing matrix element holds:

$$m+M=m'$$
.

(3) For a scalar operator $S = T_{00}$ ($\ell = 0$), show that $\langle j'm'|S|jm \rangle \sim \delta_{ij'}\delta_{mm'}$ and does not denpend on m.

(4) For a vector operator, show that a non-vanishing matrix element requires

$$|\Delta j| = |j - j'| \le 1$$
 und $|\Delta m| = |m - m'| \le 1$,

with the additional condition that j = j' = 0 is not allowed.

- (5) Show that angular momentum is a vector operator, with $J_{\pm 1} = \mp \frac{1}{\sqrt{2}} J_{\pm}$, $J_0 = J_3$.
- (6) For a components V_M of a vector operator, show the so-called projection theorem

$$\langle jm'|V_M|jm
angle = rac{1}{\hbar^2 j(j+1)} \langle j\widetilde{m}|ec{J}\cdotec{V}|j\widetilde{m}
angle \langle jm'|J_M|jm
angle.$$

Here, \tilde{m} is arbitrary, i.e. $\vec{J} \cdot \vec{V}$ is proportional to 1 on the space with fixed j.

(7) In assignment A3 of the exam Theoretical Physics II we considered a hydrogen atom in an electric quadrupole field, giving rise to $H' = c r^2 Y_{20}$ as perturbation of the Hamiltonian. Show that all matrix elements $\langle \psi | H' | \psi' \rangle$ between eigenstates ψ, ψ' in the first and second main shell vanish, except $\Delta E_m = \langle \psi_m | H' | \psi_m \rangle$, where for brevity the states with angular momentum quantum number $\ell = 1$ and magnetic quantum number m in the second main shell will be denoted by ψ_m . In addition, show that $\Delta E_1 = \Delta E_{-1} = -\frac{1}{2}\Delta E_0$.

Homework II

Return: November 4th

H2.1 Landé factor

Consider an atom in a magnetic field $\vec{B} = B\vec{e}_z$ (constant in time, homogeneous in space). Let the magnetic field be so weak that the perturbation Hamiltonia is given by $H' = \omega(L_z + 2S_z)$, where $\omega = \frac{eB}{2mc}$ is called Larmor frequency. We already know the term involving orbit angular momentum from the linear Zeeman effect (Theoretical Physics II, H7.1), the g factor 2 of the spin coupling follows from its relativistic nature and can be deduced in the Dirac theory.

- (1) Let the Hamiltonian H of the atom contain the $\vec{L} \cdot \vec{S}$ term, the spin-orbit coupling (Theoretical Physics II, H9.2). Why are then H, \vec{L}^2 , \vec{S}^2 , \vec{J}^2 and J_3 a complete set of commuting observables?
- (2) Why does an energy level have the degeneracy 2j + 1 at least?
- (3) With the projection theorem from E2.1, show that $H' = g_J \omega J_3$ holds on the subspace of states with fixed E, j, ℓ and s, where

$$g_J = \frac{3}{2} + \frac{s(s+1) - \ell(\ell+1)}{2j(j+1)}$$

is the so-called Landé factor. How do the energy eigenvalues look like?

(10 points)

H2.2 Central force field

A particle in a central force potential has bound states $|n\ell m\rangle$ with energy $E_{n\ell}$.

- (1) Using only the Wigner-Eckart theorem, relate, as much as possible, the matrix elements $\langle n'\ell'm'| \mp \frac{x \pm iy}{\sqrt{2}} |n\ell m\rangle$ and $\langle n'\ell'm'|z|n\ell m\rangle$.
- (2) State under which conditions the matrix elements are non-vanishing.
- (3) Do the same problem using wave functions $\psi(\vec{r}) = R_{nl}(r)Y_{\ell m}(\vartheta, \varphi)$.
- (4) Consider $M_{mn} = \langle n|\frac{1}{|\vec{r}-\vec{a}|}|m\rangle$ for constant \vec{a} , where $|m\rangle$ and $|n\rangle$ are Coulomb eigenfunctions. Which multipoles of $\frac{1}{|\vec{r}-\vec{a}|}$ can contribute to M_{mn} ?

(10 points)

H2.3 Quadrupole moment

- (1) Write xy, xz, $x^2 y^2$ as components of a spherical tensor of rank 2.
- (2) The expectation value $Q = e\langle jj|3z^2 r^2|jj\rangle$ is called quadrupole moment. Evaluate $e\langle jm'|x^2 y^2|jj\rangle$ in terms of Q and appropriate Clebsch–Gordan coefficients. (6 points)

H2.4 More operatoren in Schwinger's model of angular momentum

In Schwinger's model (cf. the lecture) one considers two pairs of mutually commuting raising and lowering operators a, a^+ and b, b^+ . Then the angular momentum algebra is satisfied by $J_+ = \hbar a^+ b$, $J_- = \hbar b^+ a$ and $J_3 = \hbar (a^+ a - b^+ b)$. Discuss the physical significance of $K_+ = a^+ b^+$, $K_- = ab$. Give the non-vanishing matrix elements of K_{\pm} .

(4 points)