
Lecture Theoretical Physics III – fall term 2002/2003 – Michael Flohr

Exercises IV
November 12th

E4.1 Spontaneous Emission

If an atom is not in its ground state, the experiment shows that it will change into
the ground state emitting light. However, an eigenstate is stable and in the con-
text of perturbation theory we may only explain emission stimulated by an external
electromagnetic field, which is the principle of the laser.
In order to explain spontaneous emission we have to take some facts from quantum
electrodynamics where the electromagnetic field itself will is quantised. We choose
the Coulomb gauge div ~A = 0. In vacuum thus Φ = 0 and ~E = − 1

c
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~B = rot ~A. hold. For the vector potential we assume ~A(~r, t) = ~A+(~r, t)+ ~A−(~r, t) with
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where ~A− = ~A∗
+ in order to have a real ~A(~r, t). ~e(~k, λ) are the two polarisation vectors

that are perpendicular to ~k in Coulomb gauge (why?). gλ(~k) describes the distribution
of wave vectors. The introduction of the normalisation 1/

√
ω~k

will be apparent later.

(1) Wer interpret ~A+(~r, t) as wave packet. Let gλ(~k) be sharply concentrated around
~k0. Show that the field energy is given by H = 1

8π

∫
d3r(| ~E|2 + | ~B|2) = h̄ω~k0

.
However, a sharply concentrated wave packet is considered as a particle, this
particle thus has the dispersion relation of a photon..

(2) Now, we interpret g∗λ(
~k) as annihilation operator a~k,λ and gλ(~k) as creation

operator a+~k,λ
of a photon with momentum ~k and polarisation λ. We require

the operatos to satisfy the commutation relation of the harmonic oscillator, i.e.
[a~k,λ, a
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] = δ~k~k′
δλλ′ , [a~k,λ, a~k′,λ′

] = [a+~k,λ
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] = 0. Show that the Hamilto-

nian of the field is then given by H = h̄
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prove useful?

(3) Deduce the interaction of a particle with the electromagnetic field:

H ′ = − q

mc
~A(~r, t) · ~p+ q2

2mc2
| ~A(~r, t)|2 + qΦ(~r, t).

Here, the identification ~ = q
m
~p is useful to be able to applay formulas from

classical electrodynamics. The term quadratic in ~A contains each two creation
and annihilation operators and thus describes processes like Compton scattering.
Only the linear term contributes to the emission of photons.

(4) Let V (t) = F e−iωt + F+eiωt be a time-dependent perturbation. Deduce the
following formula for the transition rate, i.e. the transition probability per time
unit (cf. the derivation of Fermi’s Golden Rule in the lecture):
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.

(5) Now, we consider the spontaneous emission of a photon with wave number ~k and
polarisation λ by an atom doing a transition from the state |m〉 to |n〉. The



radiation field does a transition from its ground state |0〉 to a one-photon state
a+~k,λ
|0〉. With the Golden Rule (or (4), respectively), show for the transition rate:

w
m→n,~k,λ

=
1

2π|~k|c
δ(Em − En − h̄ω~k

)
∣
∣
∣〈n|~ (~r ) · ~e(~k, λ)∗ e−i~k~r|m〉

∣
∣
∣

2

.

Deduce the power radiated into the solid angle dΩ:

dP
m→n,~k,λ

dΩ
=

ω2
~k

2πc3
∣
∣〈n|~ (~k) · ~e(~k, λ)∗|m〉

∣
∣
2
,

where ~ (~k) = ~ (~r )e−i~k~r and ~k in the matrix element has to satisfy |~k| = Em−En

h̄c
.

(6) Show that ~k~r ¿ 1. Thus, the exponential series in ~ (~k) can be truncated (long
wave approximation; Theoretical Physics II, A8.2).

(7) For the first term of this series, the electric dipole radiation, show that
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, where ~dnm = 〈n|~r |m〉.

The total power of radiation results in Pm→n =
4q2ω4

~k

3c3 |~dnm|2.
(8) Discuss which transitions are possible. What is the polarisation of the light?

Homework IV
Return: November 19th

Note: In H4.1 and H4.2 we use the notation introduced in E4.1.

H4.1 Lifetime for dipole transitions

(1) For the probability wm→n per time unit for a photon being emitted into the solid

angle dΩ (θ~k,λ is the angle between ~e(~k, λ)∗ and ~dnm):

dw
m→n,~k,λ

dΩ
=

q2ω3
~k

2πc3h̄
|~dnm|2cos2θ~k,λ.

(2) By adding up the polarisations and by integrating the angle, show for the total
transition probability per time unit:

wm→n =
4q2ω3

~k

3c3h̄
|~dnm|2.

(3) The lifetime τ of a state |m〉 depends on the probabilities via 1
τ
=

∑

n wm→n,
where the sum contains all allowed final states |n〉. Compute the lifetime of the
2p state of the hydrogen atom.

(15 points)

H4.2 Higher multipole orders

The term following the electric dipole radiation in the long wave expansion reads

〈n| − i (~k · ~r )~ (~r ) · ~e(~k, λ)∗|m〉.
(1) Show that this matrix element can be decomposed as follows:

− iq

2m
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︸ ︷︷ ︸

magnetic dipole transition

− q
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︸ ︷︷ ︸

electric quadrupole transition

.

(2) Discuss which transitions are possible and when they are. What is the suppression
of these transitions compared to electric dipole transitions?

(15 points)


